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Abstract. There are several decision-making based situations in which it is necessary to categorize the eval-

uating parameters into their respective sub-parametric values based non-overlapping sets. The existing soft

set model is not compatible with such situations therefore hypersoft set (Ĥs-set) is developed which manages

such situations by utilizing a novel mapping called multi-argument approximate mapping which broadens the

domain of soft approximate mapping. This research presents the characterization of several essential axiomatic

properties and set-based operations of Ĥs-set which will help the researchers to implement this emerging theory

to other fields of study. The brief discussion on some hybridized structures of Ĥs-set with fuzzy set-like models

is also provided.
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—————————————————————————————————————————-

1. Introduction

There are several models in literature to deal uncertainties but fuzzy set [1] is the most signif-

icant in this regards. It has its own intricacies which limit it to tackle uncertain decision-making

scenarios effectively. The justification behind these obstacles is, potentially, the deficiency of

parameterization tool. A novel model is required for managing vagueness and uncertainties

which should be liberated from all such obstacles. In 1999, Molodtsov [2] established a set-

structure known as soft set (ŝ-set) in literature as a novel parameterized sub-class of universal

set. In the year 2003, Maji et al. [3] broadened the idea and investigated several rudimental

axiomatic properties and set-operations of ŝ-sets . They also validated several results. Later

on Pei et al. [4] introduced an information system (Inf-sys) by using the idea of ŝ-sets. It is

proved that ŝ-set can be considered as a particular class of Inf-sys. Afterwards, Ali et al. [5]

identified many assertions in the research proposed by Maji et al. and introduced novel notions
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by using the concept of restricted and extended ŝ-set aggregation operations. In the same way,

Babitha et al. [6, 7] made investigation on ŝ-set relation, Ĥs-set function by using the Carte-

sian product of Ĥs-sets. Sezgin et al. [8], Ge et al. [9], Fuli [10] provided few amendments

in previous work by establishing few novel results. In order to utilize the concept of ŝ-sets in

the development of algebraic structures, Saeed et al. [11] characterized the classical notions

of elements and points under ŝ-set environment. Many researchers [12–23] discussed various

gluing structures of ŝ-sets with other fuzzy set-like models to resolve several real-life decision

making issues.

It is a matter of common observation that in various decision making problems, parameters

have to be partitioned into their related sub-parametric valued sets whereas the previous re-

searches on ŝ-set are not sufficient to manage such settings therefore Smarandache [24] initiated

the notion of hypersoft set (Ĥs-set) as an extension of ŝ-set by introducing a novel multi-

argument approximate mapping (maa-mapping). Any novel theory can not be implemented

in real-world situations without the characterization of its elementary axiomatic-properties.

Although Saeed et al. [25] made a good effort to investigate various basic properties of Ĥs-

set but it does not cover many of the aspects of Ĥs-set theory. Therefore this paper aims

to (i). generalize the research works described in [3, 5–10] for Ĥs-set environment and (ii).

to modify the results discussed by Saeed et al. [25]. In the present work, all the necessary

rudiments of Ĥs-set are investigated for its further developments. The Figure 1 explains the

sectional-outlines of the paper.

Figure 1. Outlines of the paper

2. Preliminaries

The purpose of this section is to review some basic properties of ŝ-set for clear understanding

of proposed study. The symbol Π̂ will represent initial universe in the remaining parts of the

article.
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Definition 2.1. [2]

A ŝ-set S on Π̂ is usually stated by a pair (ΨS,G) in which ΨS ∶ G → P Π̂ is an approximate

mapping & G be a sub-family of parameters. The family of ŝ-sets is symbolized as Σ(ΨS,G).

Definition 2.2. [3]

For (ΨS1 ,G1) & (ΨS2 ,G2) ∈ Σ(ΨS,G), if G1 ⊆ G2, & ΨS1(ε̂) ⊆ ΨS2(ε̂) for all ε̂ ∈ G1 then ŝ-set

(ΨS1 ,G1) is a soft-subset of ŝ-set (ΨS2 ,G2).

Definition 2.3. [3]

For (ΨS1 ,G1) & (ΨS2 ,G2) ∈ Σ(ΨS,G), their union is a ŝ-set (ΨS3 ,G3) with G3 = G1 ∪G2 & for

ε̂ ∈ G3,

ΨS3(ε̂) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΨS1(ε̂)
ΨS2(ε̂)

ΨS1(ε̂) ∪ΨS2(ε̂)

ε̂ ∈ (G1 ∖G2)
ε̂ ∈ (G2 ∖G1)
ε̂ ∈ (G1 ∩G2)

Definition 2.4. [3]

For (ΨS1 ,G1) & (ΨS2 ,G2) ∈ Σ(ΨS,G), their intersection is a ŝ-set (ΨS4 ,G4) with G4 = G1 ∩G2

& for ε̂ ∈ G4, ΨS4(ε̂) = ΨS1(ε̂) ∩ΨS2(ε̂).

One can refer [2–10] for detailed description on ŝ-sets.

3. Hypersoft Set

This part of the paper provides the basic axiomatic-properties of Ĥs-set along with the

modification of some notions stated in [25].

Definition 3.1. [22]

Let A1,A2,A3, ....,An are non-overlapping sets having sub-parametric values of parameters

ä1, ä2, ä3, ...., än respectively, then a Ĥs-set on Π̂, is usually stated by a pair (Θ,A) in which

Θ ∶ A → P Π̂ is a maa-mapping and A =
n

∏
i=1

Ai. The family of Ĥs-sets is symbolized by Σ(Θ,A).

The model of Ĥs-set is presented in Figure 2.

Example 3.2. Mrs. Smith visits a mobile mall to purchase a mobile for her personal

use. She is accompanied by her two friends who are experts in mobile purchasing. They

collectively observed 8 types of mobiles which are considered as elements of universal set

Π̂ = {M̂1,M̂2,M̂3,M̂4,M̂5,M̂6,M̂7,M̂8}. They have fixed some parameters for this purchase

with their mutual consensus that are ê1 = random only memory in giga bytes, ê2 = Resolution

of camera in pixels, ê3 = length in inches, ê4 = random access memory in giga bytes, and ê5

= power of battery in mAh. These parameters have their sub-collections as:

B1 = {ê11 = 32, ê12 = 64}, B2 = {ê21 = 8, ê22 = 16}, B3 = {ê31 = 6.5, ê32 = 6.7}
B4 = {ê41 = 4, ê42 = 8}, B5 = {ê51 = 4000} then A =B1 ×B2 ×B3 ×B4 ×B5
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Figure 2. Pictorial Version of Ĥs-set

A = {θ̂1, θ̂2, θ̂3, θ̂4, ....., θ̂16} and every θ̂i, (1)i
(16), is a 5-tuple member. Then the Ĥs-set (Θ,A)

is constructed as

(Θ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{M̂1,M̂2}) , (θ̂2,{M̂1,M̂2,M̂3}) , (θ̂3,{M̂2,M̂3,M̂4}) , (θ̂4,{M̂4,M̂5,M̂6}) ,
(θ̂5,{M̂6,M̂7,M̂8}) , (θ̂6,{M̂2,M̂3,M̂4,M̂7}) , (θ̂7,{M̂1,M̂3,M̂5,M̂6}) ,
(θ̂8,{M̂2,M̂3,M̂6,M̂7}) , (θ̂9,{M̂2,M̂3,M̂6,M̂7,M̂8}) , (θ̂10,{M̂1,M̂3,M̂6,M̂7,M̂8}) ,
(θ̂11,{M̂2,M̂4,M̂6,M̂7,M̂8}) , (θ̂12,{M̂1,M̂2,M̂3,M̂6,M̂7,M̂8}) ,
(θ̂13,{M̂2,M̂3,M̂5,M̂7,M̂8}) , (θ̂14,{M̂1,M̂3,M̂5,M̂7,M̂8}) ,
(θ̂15,{M̂1,M̂2,M̂3,M̂5,M̂7,M̂8}) , (θ̂16,{M̂4,M̂5,M̂6,M̂7,M̂8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 3.3. Let F Π̂ be a collection consisting of fuzzy subsets on Π̂. Let äi, n ≥ 1, 1i
n

are parameters having their relevant sub-parametric values in the sets Ai respectively, with

Ai ∩Aj = ∅, for i ≠ j, & 1i
n, 1j

n. Then a fuzzy Ĥs-set (Θfhs,A) on Π̂ is stated as,

(Θfhs,A) = {(θ̂,Θfhs(θ̂)) ∶ θ̂ ∈ A,Θfhs(θ̂) ∈ F Π̂}

where Θfhs ∶ A→ F Π̂ and for all θ̂ ∈ A = A1 ×A2 ×A3 × ..... ×An

Θfhs(θ̂) = {µΘfhs(θ̂)($)/$ ∶$ ∈ Π̂, µΘfhs(θ̂)($) ∈ C(I) = [0,1]}

is a fuzzy set on Π̂.

One can consider this definition as modified form of fuzzy Ĥs-set stated in [22] and [24].
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Example 3.4. Assuming the Example 3.2, Fuzzy Ĥs-set (Θfhs,A) is constructed as

(Θfhs,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{0.1/M̂1,0.2/M̂2}) , (θ̂2,{0.1/M̂1,0.2/M̂2,0.3/M̂3}) , (θ̂3,{0.2/M̂2,0.3/M̂3,0.4/M̂4}) ,
(θ̂4,{0.4/M̂4,0.5/M̂5,0.6/M̂6}) , (θ̂5,{0.6/M̂6,0.7/M̂7,0.8/M̂8}) , (θ̂6,{0.2/M̂2,0.3/M̂3,0.4/M̂4,0.7/M̂7}) ,
(θ̂7,{0.1/M̂1,0.3/M̂3,0.5/M̂5,0.6/M̂6}) , (θ̂8,{0.2/M̂2,0.3/M̂3,0.6/M̂6,0.7/M̂7}) ,
(θ̂9,{0.2/M̂2,0.3/M̂3,0.6/M̂6,0.7/M̂7,0.8/M̂8}) , (θ̂10,{0.1/M̂1,0.3/M̂3,0.6/M̂6,0.7/M̂7,0.8/M̂8}) ,
(θ̂11,{0.2/M̂2,0.4/M̂4,0.6/M̂6,0.7/M̂7,0.8/M̂8}) , (θ̂12,{0.1/M̂1,0.2/M̂2,0.3/M̂3,0.6/M̂6,0.7/M̂7,0.8/M̂8}) ,
(θ̂13,{0.2/M̂2,0.3/M̂3,0.5/M̂5,0.7/M̂7,0.8/M̂8}) , (θ̂14,{0.1/M̂1,0.3/M̂3,0.5/M̂5,0.7/M̂7,0.8/M̂8}) ,
(θ̂15,{0.1/M̂1,0.2/M̂2,0.3/M̂3,0.5/M̂5,0.7/M̂7,0.8/M̂8}) , (θ̂16,{0.4/M̂4,0.5/M̂5,0.6/M̂6,0.7/M̂7,0.8/M̂8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 3.5. Let (Θ1,A1), (Θ2,A2) ∈ Σ(Θ,A) then (Θ1,A1) is said to be Ĥs- subset of

(Θ2,A2) if A1 ⊆ A2 and ∀θ̂ ∈ A1,Θ1(θ̂) ⊆ Θ2(θ̂).

Example 3.6. Assuming Example 3.2, if

(Θ1,A1) = { (θ̂1,{M̂1}) , (θ̂2,{M̂1,M̂2}) , (θ̂3,{M̂2,M̂3}) }

(Θ2,A2) = { (θ̂1,{M̂1,M̂2}) , (θ̂2,{M̂1,M̂2,M̂3}) , (θ̂3,{M̂2,M̂3,M̂4}) , (θ̂4,{M̂4,M̂5,M̂6}) }
then (Θ1,A1) ⊆ (Θ2,A2).

Definition 3.7. A set A = A1 ×A2 ×A3 × ..... ×An in Ĥs-set (Θ,A) is said to be Not set if it

has the representation as ⋉A = {⋉θ̂1,⋉θ̂2,⋉θ̂3,⋉θ̂4, .....,⋉θ̂m} where m =
n

∏
i=1

∣Ai∣.

Example 3.8. Reconsidering A1,A2,A3,A4, ,A5 from Example 3.2, we get

⋉A = {⋉θ̂1,⋉θ̂2,⋉θ̂3,⋉θ̂4, .....,⋉θ̂16}

.

Definition 3.9. A Ĥs-set (Θ,A1) is stated as a relative null Ĥs-set w.r.t A1 ⊆ A, symbolized

by (Θ,A1)Φ , if Θ(θ̂) = ∅,∀θ̂ ∈ A1.

Example 3.10. Assuming Example 3.2, if (Θ,A1)Φ = { (θ̂1,∅) , (θ̂2,∅) , (θ̂3,∅) } where A1 ⊆
A.

Definition 3.11. A Ĥs-set (Θ,A1) is stated as a relative whole Ĥs-set w.r.t A1 ⊆ A, symbol-

ized by (Θ,A1)Π̂ , if Θ(θ̂) = Π̂,∀θ̂ ∈ A1.

Example 3.12. Assuming Example 3.2, if (Θ,A1)Π̂ = { (θ̂1, Π̂) , (θ̂2, Π̂) , (θ̂3, Π̂) } where A1 ⊆
A.

Definition 3.13. A Ĥs-set (Θ,A) is stated as a absolute whole Ĥs-set on Π̂, symbolized by

(Θ,A)Π̂ , if Θ(θ̂) = Π̂,∀θ̂ ∈ A.

Example 3.14. Assuming Example 3.2, if

(Θ,A)Π̂ =
⎧⎪⎪⎨⎪⎪⎩

(θ̂1, Π̂) , (θ̂2, Π̂) , (θ̂3, Π̂) , (θ̂4, Π̂) , (θ̂5, Π̂) , (θ̂6, Π̂) , (θ̂7, Π̂) , (θ̂8, Π̂) ,
(θ̂9, Π̂) , (θ̂10, Π̂) , (θ̂11, Π̂) , (θ̂12, Π̂) , (θ̂13, Π̂) , (θ̂14, Π̂) , (θ̂15, Π̂) , (θ̂16, Π̂)

⎫⎪⎪⎬⎪⎪⎭
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Proposition 3.15. Let (Θ1,A1), (Θ2,A2), (Θ3,A3) ∈ Σ(Θ,A) with A1,A2,A3 ⊆ A then

(i) (Θ1,A1) ⊆ (Θ1,A1)Π̂

(ii) (Θ1,A1)Φ ⊆ (Θ1,A1)
(iii) (Θ1,A1) ⊆ (Θ1,A1)
(iv) If (Θ1,A1) ⊆ (Θ2,A2) & (Θ2,A2) ⊆ (Θ3,A3) then (Θ1,A1) ⊆ (Θ3,A3)
(v) If (Θ1,A1) = (Θ2,A2) & (Θ2,A2) = (Θ3,A3) then (Θ1,A1) = (Θ3,A3)

Definition 3.16. The complement of a Ĥs-set (Θ,A), symbolized by (Θ,A)⊖, is stated as

(Θ,A)⊖ = (Θ⊖,⋉A) where Θ⊖ ∶ ⋉A→ P Π̂ with Θ⊖(⋉θ̂) = Π̂ ∖Θ(θ̂),∀θ̂ ∈ A.

Example 3.17. From Example 3.2, we get

(Θ,A)⊖ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(⋉θ̂1,{M̂3, M̂4,M̂5, M̂6,M̂7, M̂8}) , (⋉θ̂2,{M̂4,M̂5, M̂6,M̂7, M̂8}) , (⋉θ̂3,{M̂1, M̂5, M̂6,M̂7, M̂8}) ,
(⋉θ̂4,{M̂1, M̂2,M̂3, M̂7,M̂8}) , (⋉θ̂5,{M̂1, M̂2,M̂3, M̂4,M̂5}) , (⋉θ̂6,{M̂2, M̂3,M̂4, M̂7}) ,
(⋉θ̂7,{M̂2, M̂4, M̂7,M̂8}) , (⋉θ̂8,{M̂1,M̂4, M̂5,M̂8}) , (⋉θ̂9,{M̂1, M̂4,M̂5}) , (⋉θ̂10,{M̂2, M̂4,M̂5}) ,
(⋉θ̂11,{M̂1,M̂3, M̂5}) , (⋉θ̂12,{M̂4,M̂5}) , (⋉θ̂13,{M̂1, M̂4, M̂6}) , (⋉θ̂14,{M̂2,M̂4, M̂6}) ,
(⋉θ̂15,{M̂4,M̂6}) , (⋉θ̂16,{M̂1, M̂2,M̂3})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 3.18. The relative complement of a Ĥs-set (Θ,A), symbolized by (Θ,A)⊛, is

stated as (Θ,A)⊛ = (Θ⊛,A) where Θ⊛ ∶ A→ P Π̂ with Θ⊛(θ̂) = Π̂ ∖Θ(θ̂),∀θ̂ ∈ A.

Example 3.19. Reconsidering Example 3.2, we get

(Θ,A)⊛ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{M̂3,M̂4, M̂5,M̂6, M̂7,M̂8}) , (θ̂2,{M̂4, M̂5,M̂6, M̂7,M̂8}) , (θ̂3,{M̂1, M̂5,M̂6, M̂7,M̂8}) ,
(θ̂4,{M̂1,M̂2, M̂3,M̂7, M̂8}) , (θ̂5,{M̂1,M̂2, M̂3,M̂4, M̂5}) , (θ̂6,{M̂2,M̂3, M̂4,M̂7}) ,
(θ̂7,{M̂2,M̂4, M̂7,M̂8}) , (θ̂8,{M̂1, M̂4,M̂5, M̂8}) , (θ̂9,{M̂1,M̂4, M̂5}) , (θ̂10,{M̂2,M̂4, M̂5}) ,
(θ̂11,{M̂1, M̂3, M̂5}) , (θ̂12,{M̂4,M̂5}) , (θ̂13,{M̂1, M̂4,M̂6}) , (θ̂14,{M̂2, M̂4,M̂6}) ,
(θ̂15,{M̂4, M̂6}) , (θ̂16,{M̂1, M̂2, M̂3})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Proposition 3.20. Let (Θ,A) ∈ Σ(Θ,A) then

(i) ((Θ,A)⊖)⊖ = (Θ,A)
(ii) ((Θ,A)⊛)⊛ = (Θ,A)
(iii) ((Θ1,A1)Π̂)⊖ = (Θ1,A1)Φ = ((Θ1,A1)Π̂)⊛; A1 ⊆ A

(iv) ((Θ1,A1)Φ)⊖ = (Θ1,A1)Π̂ = ((Θ1,A1)Φ)⊛; A1 ⊆ A

Definition 3.21. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), the union-operation (Θ1,A1)∪ (Θ2,A2), is

a Ĥs-set (Θ3,A3) with A3 = A1 ∪A2 and for θ̂ ∈ A3,

Θ3(θ̂) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Θ1(θ̂)
Θ2(θ̂)

Θ1(θ̂) ∪Θ2(θ̂)

θ̂ ∈ (A1 ∖A2)
θ̂ ∈ (A2 ∖A1)
θ̂ ∈ (A1 ∩A2)

.

Example 3.22. Let

(Θ1,A1) = { (θ̂1,{M̂1,M̂2}) , (θ̂2,{M̂1,M̂2,M̂3}) , (θ̂3,{M̂2,M̂3,M̂4}) }

(Θ2,A2) = { (θ̂3,{M̂1,M̂2}) , (θ̂4,{M̂4,M̂5,M̂6}) , (θ̂5,{M̂2,M̂4,M̂6}) }
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then

(Θ3,A3) =
⎧⎪⎪⎨⎪⎪⎩

(θ̂1,{M̂1,M̂2}) , (θ̂2,{M̂1,M̂2,M̂3}) , (θ̂3,{M̂1,M̂2,M̂3,M̂4}) ,
(θ̂4,{M̂4,M̂5,M̂6}) , (θ̂5,{M̂2,M̂4,M̂6})

⎫⎪⎪⎬⎪⎪⎭
Definition 3.23. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), the intersection-operation (Θ1,A1) ∩
(Θ2,A2), is a Ĥs-set (Θ3,A3) with A3 = A1 ∩A2 & for θ̂ ∈ A3, Θ3(θ̂) = Θ1(θ̂) ∩Θ2(θ̂).

Example 3.24. Reconsidering Example 3.22, we get (Θ3,A3) = { (θ̂3,{M̂2}) }.

Definition 3.25. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their extended-intersection (Θ1,A1) ∩ε
(Θ2,A2), is a Ĥs-set (Θ3,A3) with A3 = A1 ∪A2 and for θ̂ ∈ A3,

Θ3(θ̂) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Θ1(θ̂)
Θ2(θ̂)

Θ1(θ̂) ∩Θ2(θ̂)

θ̂ ∈ (A1 ∖A2)
θ̂ ∈ (A2 ∖A1)
θ̂ ∈ (A1 ∩A2)

Example 3.26. Taking assumptions of Example 3.22, we get

(Θ3,A3) =
⎧⎪⎪⎨⎪⎪⎩

(θ̂1,{M̂1,M̂2}) , (θ̂2,{M̂1,M̂2,M̂3}) , (θ̂3,{M̂2}) ,
(θ̂4,{M̂4,M̂5,M̂6}) , (θ̂5,{M̂2,M̂4,M̂6})

⎫⎪⎪⎬⎪⎪⎭
Definition 3.27. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their AND-operation (Θ1,A1)⋀(Θ2,A2),
is a Ĥs-set (Θ3,A3) with A3 = A1 ×A2 and for (θ̂i, θ̂j) ∈ A3, θ̂i ∈ A1, θ̂j ∈ A2,

Θ3(θ̂i, θ̂j) = Θ1(θ̂i) ∪Θ2(θ̂j).

Example 3.28. Taking assumptions of Example 3.22, we get

A1 ×A2 =
⎧⎪⎪⎨⎪⎪⎩

π1 = (θ̂1, θ̂3) , π2 = (θ̂1, θ̂4) , π3 = (θ̂1, θ̂5) , π4 = (θ̂2, θ̂3) , π5 = (θ̂2, θ̂4) ,
π6 = (θ̂2, θ̂5) , π7 = (θ̂3, θ̂3) , π8 = (θ̂3, θ̂4) , π9 = (θ̂3, θ̂5)

⎫⎪⎪⎬⎪⎪⎭
then

(Θ3,A3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(π1,{M̂1,M̂2}) , (π2,{M̂1,M̂2,M̂4,M̂5,M̂6}) ,
(π3,{M̂1,M̂2,M̂4,M̂6}) , (π4,{M̂1,M̂2,M̂3}) ,
(π5,{M̂1,M̂2,M̂3,M̂4,M̂5,M̂6}) , (π6,{M̂1,M̂2,M̂3,M̂4,M̂6}) ,
(π7,{M̂1,M̂2,M̂3,M̂4}) , (π8,{M̂2,M̂3,M̂4,M̂5,M̂6}) ,
(π9,{M̂2,M̂3,M̂4,M̂6}) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 3.29. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their OR-operation (Θ1,A1)⋁(Θ2,A2), is

a Ĥs-set (Θ3,A3) with A3 = A1 ×A2 and for (θ̂i, θ̂j) ∈ A3, θ̂i ∈ A1, θ̂j ∈ A2,

Θ3(θ̂i, θ̂j) = Θ1(θ̂i) ∩Θ2(θ̂j).

Example 3.30. Taking assumptions of Examples 3.22 and 3.30, we get

(Θ3,A3) =
⎧⎪⎪⎨⎪⎪⎩

(π1,{M̂1,M̂2}) , (π2,{}) , (π3,{M̂2}) , (π4,{M̂1,M̂2}) ,
(π5,{}) , (π6,{M̂2}) , (π7,{M̂2}) , (π8,{M̂4}) , (π9,{M̂2,M̂4}) ,

⎫⎪⎪⎬⎪⎪⎭
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Definition 3.31. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their restricted-union (Θ1,A1)∪R(Θ2,A2),
is a Ĥs-set (Θ3,A3) with A3 = A1 ∩A2 and for θ̂ ∈ A3,

Θ3(θ̂) = Θ1(θ̂) ∪Θ2(θ̂).

Example 3.32. Taking assumptions of Example 3.22, we get

(Θ3,A3) = { (θ̂3,{M̂1,M̂2,M̂3,M̂4}) }

Definition 3.33. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their restricted-difference (Θ1,A1) ∖R
(Θ2,A2), is a Ĥs-set (Θ3,A3) with A3 = A1 ∩A2 and for θ̂ ∈ A3,

Θ3(θ̂) = Θ1(θ̂) −Θ2(θ̂).

Example 3.34. Taking suppositions of Example 3.22, we get (Θ3,A3) = { (θ̂3,{M̂3,M̂4}) }.

Definition 3.35. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their restricted-symmetric-difference

(Θ1,A1)▲ (Θ2,A2), is a Ĥs-set (Θ3,A3) stated by

(Θ3,A3) = { ((Θ1,A1) ∪R (Θ2,A2)) ∖R ((Θ1,A1) ∩ (Θ2,A2)) }

or

(Θ3,A3) = { ((Θ1,A1) ∖R (Θ2,A2)) ∪R ((Θ2,A2) ∖R (Θ1,A1)) }

Example 3.36. Taking suppositions of Example 3.22, we get

((Θ1,A1) ∖R (Θ2,A2)) = { (θ̂3,{M̂3,M̂4}) }

&

((Θ2,A2) ∖R (Θ1,A1)) = { (θ̂3,{M̂1}) }

then

(Θ3,A3) = { (θ̂3,{M̂1,M̂3,M̂4}) }

4. Axioms-based Results of Ĥs-sets

This part presents some classical axioms-based results of set theory that are also valid for

Ĥs-settings.

(1) Idempotent Laws

(a) (Θ,A) ∪ (Θ,A) = (Θ,A) = (Θ,A) ∪R (Θ,A)
(b) (Θ,A) ∩ (Θ,A) = (Θ,A) = (Θ,A) ∩ε (Θ,A)

(2) Identity Laws

(a) (Θ,A) ∪ (Θ,A)Φ = (Θ,A) = (Θ,A) ∪R (Θ,A)Φ

(b) (Θ,A) ∩ (Θ,A)Π̂ = (Θ,A) = (Θ,A) ∩ε (Θ,A)Π̂

(c) (Θ,A) ∖R (Θ,A)Φ = (Θ,A) = (Θ,A)▲ (Θ,A)Φ

(d) (Θ,A) ∖R (Θ,A) = (Θ,A)Φ = (Θ,A)▲ (Θ,A)
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(3) Domination Laws

(a) (Θ,A) ∪ (Θ,A)Π̂ = (Θ,A)Π̂ = (Θ,A) ∪R (Θ,A)Π̂

(b) (Θ,A) ∩ (Θ,A)Φ = (Θ,A)Φ = (Θ,A) ∩ε (Θ,A)Φ

(4) Property of Exclusion

(Θ,A) ∪ (Θ,A)⊛ = (Θ,A)Π̂ = (Θ,A) ∪R (Θ,A)⊛

(5) Property of Contradiction

(Θ,A) ∩ (Θ,A)⊛ = (Θ,A)Φ = (Θ,A) ∩ε (Θ,A)⊛

(6) Absorption Laws

(a) (Θ1,A1) ∪ ((Θ1,A1) ∩ (Θ2,A2)) = (Θ1,A1)
(b) (Θ1,A1) ∩ ((Θ1,A1) ∪ (Θ2,A2)) = (Θ1,A1)
(c) (Θ1,A1) ∪R ((Θ1,A1) ∩ε (Θ2,A2)) = (Θ1,A1)
(d) (Θ1,A1) ∩ε ((Θ1,A1) ∪R (Θ2,A2)) = (Θ1,A1)

(7) Commutative Laws

(a) (Θ1,A1) ∪ (Θ2,A2) = (Θ2,A2) ∪ (Θ1,A1)
(b) (Θ1,A1) ∪R (Θ2,A2) = (Θ2,A2) ∪R (Θ1,A1)
(c) (Θ1,A1) ∩ (Θ2,A2) = (Θ2,A2) ∩ (Θ1,A1)
(d) (Θ1,A1) ∩ε (Θ2,A2) = (Θ2,A2) ∩ε (Θ1,A1)
(e) (Θ1,A1)▲ (Θ2,A2) = (Θ2,A2)▲ (Θ1,A1)

(8) Associative Laws

(a) (Θ1,A1) ∪ ((Θ2,A2) ∪ (Θ3,A3)) = ((Θ1,A1) ∪ (Θ2,A2)) ∪ (Θ3,A3)
(b) (Θ1,A1) ∪R ((Θ2,A2) ∪R (Θ3,A3)) = ((Θ1,A1) ∪R (Θ2,A2)) ∪R (Θ3,A3)
(c) (Θ1,A1) ∩ ((Θ2,A2) ∩ (Θ3,A3)) = ((Θ1,A1) ∩ (Θ2,A2)) ∩ (Θ3,A3)
(d) (Θ1,A1) ∩ε ((Θ2,A2) ∩ε (Θ3,A3)) = ((Θ1,A1) ∩ε (Θ2,A2)) ∩ε (Θ3,A3)
(e) (Θ1,A1)⋁((Θ2,A2)⋁(Θ3,A3)) = ((Θ1,A1)⋁(Θ2,A2))⋁(Θ3,A3)
(f) (Θ1,A1)⋀((Θ2,A2)⋀(Θ3,A3)) = ((Θ1,A1)⋀(Θ2,A2))⋀(Θ3,A3)

(9) De Morgans Laws

(a) ((Θ1,A1) ∪ (Θ2,A2))⊖ = (Θ1,A1)⊖ ∩ε (Θ2,A2)⊖

(b) ((Θ1,A1) ∩ε (Θ2,A2))⊖ = (Θ1,A1)⊖ ∪ (Θ2,A2)⊖

(c) ((Θ1,A1) ∪R (Θ2,A2))⊛ = (Θ1,A1)⊛ ∩ (Θ2,A2)⊛

(d) ((Θ1,A1) ∩ (Θ2,A2))⊛ = (Θ1,A1)⊛ ∪R (Θ2,A2)⊛

(e) ((Θ1,A1)⋁(Θ2,A2))⊖ = (Θ1,A1)⊖⋀(Θ2,A2)⊖

(f) ((Θ1,A1)⋀(Θ2,A2))⊖ = (Θ1,A1)⊖⋁(Θ2,A2)⊖

(g) ((Θ1,A1)⋁(Θ2,A2))⊛ = (Θ1,A1)⊛⋀(Θ2,A2)⊛

(h) ((Θ1,A1)⋀(Θ2,A2))⊛ = (Θ1,A1)⊛⋁(Θ2,A2)⊛

(10) Distributive Laws
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(a) (Θ1,A1) ∪ ((Θ2,A2) ∩ (Θ3,A3)) = ((Θ1,A1) ∪ (Θ2,A2)) ∩ ((Θ1,A1) ∪ (Θ3,A3))
(b) (Θ1,A1) ∩ ((Θ2,A2) ∪ (Θ3,A3)) = ((Θ1,A1) ∩ (Θ2,A2)) ∪ ((Θ1,A1) ∩ (Θ3,A3))
(c) (Θ1,A1) ∪R ((Θ2,A2) ∩ε (Θ3,A3)) = ((Θ1,A1) ∪R (Θ2,A2)) ∩ε ((Θ1,A1) ∪R (Θ3,A3))
(d) (Θ1,A1) ∩ε ((Θ2,A2) ∪R (Θ3,A3)) = ((Θ1,A1) ∩ε (Θ2,A2)) ∪R ((Θ1,A1) ∩ε (Θ3,A3))
(e) (Θ1,A1) ∪R ((Θ2,A2) ∩ (Θ3,A3)) = ((Θ1,A1) ∪R (Θ2,A2)) ∩ ((Θ1,A1) ∪R (Θ3,A3))
(f) (Θ1,A1) ∩ ((Θ2,A2) ∪R (Θ3,A3)) = ((Θ1,A1) ∩ (Θ2,A2)) ∪R ((Θ1,A1) ∩ (Θ3,A3))

5. Relations-based Operations of Ĥs-sets

Here some relations-based classical notions and results are generalized for Ĥs-sets.

Definition 5.1. For (Θ1,A1)&(Θ2,A2) ∈ Σ(Θ,A), their Cartesian product (Θ1,A1)× (Θ2,A2),
is a Ĥs-set (Θ3,A3) where A3 = A1 × A2 & Θ3 ∶ A3 → P (Π̂ × Π̂) stated by Θ3(θ̂i, θ̂j) =
Θ1(θ̂i) ×Θ2(θ̂j) ∀ (θ̂i, θ̂j) ∈ A3 that is Θ3(θ̂i, θ̂j) = {(θ̂i, θ̂j) ∶ θ̂i ∈ Θ1(θ̂i), θ̂j ∈ Θ2(θ̂j)}.

Definition 5.2. If (Θ1,A1), (Θ2,A2) ∈ Σ(Θ,A) then a relation from (Θ1,A1) to (Θ2,A2) is

stated as Ĥs-relation (Ξ̂,A4) (conveniently Ξ̂) which is the Ĥs-subset of (Θ1,A1) × (Θ2,A2)
where A4 ⊆ A1 × A2 & ∀ (θ̂1, θ̂2) ∈ A4, Ξ̂(θ̂1, θ̂2) = Θ3(θ̂1, θ̂2), where (Θ3,A3) = (Θ1,A1) ×
(Θ2,A2).

Definition 5.3. Let Ξ̂ be a Ĥs-relation from (Θ1,A1) to (Θ2,A2) such that (Θ3,A3) =
(Θ1,A1) × (Θ2,A2). Then

(i) The DoM Ξ̂ (the domain of Ξ̂) is a Ĥs-set (Θ,W) ⊂ (Θ1,A1) where W = {θ̂i ∈ A1 ∶
Θ3(θ̂i, θ̂j) ∈ Ξ̂ forsome θ̂j ∈ A2} & Θ(θ̂1) = Θ1(θ̂1),∀ θ̂1 ∈W.

(ii) The RNG Ξ̂ (the range of Ξ̂) is a Ĥs-set (ξ,L) ⊂ (Θ2,A2) where L ⊂ A2 & L = {θ̂j ∈
A2 ∶ Θ3(θ̂i, θ̂j) ∈ Ξ̂ forsome θ̂i ∈ A1} & ξ(θ̂2) = Θ1(θ̂2),∀ θ̂2 ∈ L.

(iii) The Ξ̂−1 (inverse of Ξ̂) is a Ĥs-relation from (Θ2,A2) to (Θ1,A1) stated by Ξ̂−1 =
{Θ2(θ̂j) ×Θ1(θ̂i) ∶ Θ1(θ̂i)Ξ̂Θ2(θ̂j)}.

Example 5.4. Let

(Θ1,A1) = { Θ1(θ̂1),Θ1(θ̂2),Θ1(θ̂3) } , (Θ2,A2) = { Θ2(θ̂4),Θ2(θ̂5),Θ2(θ̂6) }

(Θ1,A1) × (Θ2,A2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Θ1(θ̂1) ×Θ2(θ̂4)), (Θ1(θ̂1) ×Θ2(θ̂5)), (Θ1(θ̂1) ×Θ2(θ̂6)),
(Θ1(θ̂2) ×Θ2(θ̂4)), (Θ1(θ̂2) ×Θ2(θ̂5)), (Θ1(θ̂2) ×Θ2(θ̂6)),
(Θ1(θ̂3) ×Θ2(θ̂4)), (Θ1(θ̂3) ×Θ2(θ̂5)), (Θ1(θ̂3) ×Θ2(θ̂6))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
then

Ξ̂ = { (Θ1(θ̂1) ×Θ2(θ̂4)), (Θ1(θ̂1) ×Θ2(θ̂6)), (Θ1(θ̂2) ×Θ2(θ̂6)), (Θ1(θ̂3) ×Θ2(θ̂6)) }

(i) DoM Ξ̂ = (Θ,W) where W = {θ̂1, θ̂2, θ̂3} ⊆ A1 & Θ(θ̂i) = Θ1(θ̂i)∀ θ̂i ∈W.

(ii) RNG Ξ̂ = (ξ,L) where L = {θ̂4, θ̂6} ⊂ A2 & ξ(θ̂j) = Θ2(θ̂j)∀ θ̂j ∈ L.
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(iii)

Ξ̂−1 = { (Θ2(θ̂4) ×Θ1(θ̂1)), (Θ2(θ̂6) ×Θ1(θ̂1)), (Θ2(θ̂6) ×Θ1(θ̂2)), (Θ2(θ̂6) ×Θ1(θ̂3)) } .

Definition 5.5. Let Ξ̂ & S are two Ĥs-relations on Ĥs-set (Θ,W), then we get

(i) Ξ̂ ⊂S, if for all $, ς ∈W,Θ($) ×Θ(ς) ∈ Ξ̂ then Θ($) ×Θ(ς) ∈S.

(ii) Ξ̂© = {Θ($) ×Θ(ς) ∶ Θ($) ×Θ(ς) ∉ Ξ̂,∀ $, ς ∈W}.
(iii) Ξ̂ ∪S = {Θ($) ×Θ(ς) ∶ Θ($) ×Θ(ς) ∈ Ξ̂ or Θ($) ×Θ(ς) ∈S,∀ $, ς ∈W}.
(iv) Ξ̂ ∩S = {Θ($) ×Θ(ς) ∶ Θ($) ×Θ(ς) ∈ Ξ̂ & Θ($) ×Θ(ς) ∈S,∀ $, ς ∈W}.

Example 5.6. Let (Θ,W) = { Θ(θ̂1),Θ(θ̂2),Θ(θ̂3) } then

(Θ,W) × (Θ,W) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂1) ×Θ(θ̂3)),
(Θ(θ̂2) ×Θ(θ̂1)), (Θ(θ̂2) ×Θ(θ̂2)), (Θ(θ̂2) ×Θ(θ̂3)),
(Θ(θ̂3) ×Θ(θ̂1)), (Θ(θ̂3) ×Θ(θ̂2)), (Θ(θ̂3) ×Θ(θ̂3))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
then we get

Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂1) ×Θ(θ̂3)), (Θ(θ̂2) ×Θ(θ̂3)), (Θ(θ̂3) ×Θ(θ̂3)) }

&

S = { (Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂2) ×Θ(θ̂2)), (Θ(θ̂3) ×Θ(θ̂2)) }

now

(1) Ξ̂© =
⎧⎪⎪⎨⎪⎪⎩

(Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂2) ×Θ(θ̂1)), (Θ(θ̂2) ×Θ(θ̂2)),
(Θ(θ̂3) ×Θ(θ̂1)), (Θ(θ̂3) ×Θ(θ̂2))

⎫⎪⎪⎬⎪⎪⎭
. &

S© = { (Θ(θ̂1) ×Θ(θ̂3)), (Θ(θ̂2) ×Θ(θ̂1)), (Θ(θ̂2) ×Θ(θ̂3)), (Θ(θ̂3) ×Θ(θ̂3)) } .

(2) Ξ̂ ∪S =
⎧⎪⎪⎨⎪⎪⎩

(Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂1) ×Θ(θ̂3)), (Θ(θ̂2) ×Θ(θ̂2)),
(Θ(θ̂2) ×Θ(θ̂3)), (Θ(θ̂3) ×Θ(θ̂2)), (Θ(θ̂3) ×Θ(θ̂3))

⎫⎪⎪⎬⎪⎪⎭
.

(3) Ξ̂ ∩S = { (Θ(θ̂1) ×Θ(θ̂1)) } .

Definition 5.7. Let Ξ̂ be a Ĥs-relation on (Θ,W), then

(i) if Θ($) ×Θ($) ∈ Ξ̂∀$ ∈W, then Ξ̂ is reflexive, e.g. Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂1)) } .
(ii) if Θ($) ×Θ(ς) ∈ Ξ̂ then Θ(ς) ×Θ($) ∈ Ξ̂∀$, ς ∈W, so Ξ̂ is symmetric, e.g.

Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂2) ×Θ(θ̂1)) } .

(iii) if Θ($) × Θ(ς) ∈ Ξ̂ & Θ(ς) × Θ(w) ∈ Ξ̂ then Θ($) × Θ(w) ∈ Ξ̂∀$, ς,w ∈ W, so Ξ̂ is

transitive. e.g. Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂1) ×Θ(θ̂3)), (Θ(θ̂2) ×Θ(θ̂3)) } .
(iv) if properties (i)-(iii) are satisfied then Ξ̂ is stated as equivalence relation. E.g.

Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂1) ×Θ(θ̂2)), (Θ(θ̂2) ×Θ(θ̂1)), (Θ(θ̂2) ×Θ(θ̂2)) } .

(v) if Θ($) ×Θ(ς) ∈ Ξ̂ then $ = ς∀$, ς ∈W, so Ξ̂ is stated as identity. e.g.

Ξ̂ = { (Θ(θ̂1) ×Θ(θ̂1)), (Θ(θ̂2) ×Θ(θ̂2)), (Θ(θ̂3) ×Θ(θ̂3)) } .
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Definition 5.8. If Ξ̂ is a Ĥs-relation from (Θ1,A1) to (Θ2,A2) & S is a Ĥs-relation from

(Θ2,A2) to (Θ3,A3) then composition of Ξ̂ & S, symbolized by Ξ̂ ○S, is also a Ĥs-relation

T from (Θ1,A1) to (Θ3,A3) stated as if Θ1($) ∈ (Θ1,A1) & Θ3(w) ∈ (Θ3,A3) then Θ1($) ×
Θ3(w) ∈ Ξ̂ ○S i.e. Θ1($) ×Θ3(w) ∈ Ξ̂ ○S iff Θ1($) ×Θ2(ς) ∈ Ξ̂ & Θ2(ς) ×Θ3(w) ∈ Ξ̂.

Example 5.9. Let

Ξ̂ =
⎧⎪⎪⎨⎪⎪⎩

(Θ1(θ̂1) ×Θ2(θ̂1)), (Θ1(θ̂1) ×Θ2(θ̂3)),
(Θ1(θ̂2) ×Θ2(θ̂3)), (Θ1(θ̂3) ×Θ2(θ̂3))

⎫⎪⎪⎬⎪⎪⎭
&

S =
⎧⎪⎪⎨⎪⎪⎩

(Θ2(θ̂1) ×Θ3(θ̂1)), (Θ2(θ̂1) ×Θ3(θ̂2)),
(Θ2(θ̂2) ×Θ3(θ̂2)), (Θ2(θ̂3) ×Θ3(θ̂2))

⎫⎪⎪⎬⎪⎪⎭
then

Ξ̂ ○S =
⎧⎪⎪⎨⎪⎪⎩

(Θ1(θ̂1) ×Θ3(θ̂1)), (Θ1(θ̂1) ×Θ3(θ̂2)),
(Θ1(θ̂2) ×Θ3(θ̂2)), (Θ1(θ̂3) ×Θ3(θ̂2))

⎫⎪⎪⎬⎪⎪⎭
.

Definition 5.10. A Ĥs-relation F from (Θ1,A1) to (Θ2,A2), represented by F ∶ (Θ1,A1) →
(Θ2,A2), is stated as Ĥs-function when (a). DoM F = A1, (b). DoM F has not repeated mem-

bers & (c). Element-based uniqueness exists between RNGF & DoM F i.e. if Θ1($)FΘ2(ς)
(or Θ1($) ×Θ2(ς) ∈ F) then F(Θ1($)) = Θ2(ς).

Example 5.11. Let A1 = {$1,$2,$3} & A2 = {ς1, ς2, ς3, ς4} then

(Θ1,A1) = { Θ1($1),Θ1($2),Θ1($3) }, (Θ2,A2) = { Θ2(ς1),Θ2(ς2),Θ2(ς3),Θ2(ς4) }
so Ĥs-functions is

F = { (Θ1($1) ×Θ2(ς1)), (Θ1($2) ×Θ2(ς3)), (Θ1($3) ×Θ2(ς4)) }

Definition 5.12. A Ĥs-function F ∶ (Θ1,A1)→ (Θ2,A2) is stated as

(i) if RNGF ⊂ A2, then INTO-Ĥs-function. E.g. Let A1 = {$1,$2,$3} & A2 =
{ς1, ς2, ς3, ς4} then F = { (Θ1($1) ×Θ2(ς1)), (Θ1($2) ×Θ2(ς3)), (Θ1($3) ×Θ2(ς4)) }

(ii) if RNGF = A2, then ONTO-Ĥs-function. E.g. Let A1 = {$1,$2,$3,$4} & A2 =
{ς1, ς2, ς3, ς4} then

F = { (Θ1($1) ×Θ2(ς1)), (Θ1($2) ×Θ2(ς3)), (Θ1($3) ×Θ2(ς4)), (Θ1($4) ×Θ2(ς2)) }

(iii) 1-1 Ĥs-function if Θ1($1) ≠ Θ1($2) then F(Θ1($1)) ≠ F(Θ1($2)). E.g.

F = { (Θ1($1) ×Θ2(ς1)), (Θ1($2) ×Θ2(ς4)), (Θ1($3) ×Θ2(ς2)), (Θ1($4) ×Θ2(ς3)) }

(iv) if it is both INTO and ONTO then bijective Ĥs-function. E.g.

F = { (Θ1($1) ×Θ2(ς1)), (Θ1($2) ×Θ2(ς2)), (Θ1($3) ×Θ2(ς3)), (Θ1($4) ×Θ2(ς4)) }

Definition 5.13. The identity Ĥs-function on Ĥs-set (Θ,L) is stated by I ∶ (Θ,L)→ (Θ,L)
such that I(Θ(l)) = Θ(l) ∀ Θ(l) ∈ (Θ,L). E.g. Let L = {l1, l2, l3, l4} then

I = { (Θ(l1) ×Θ(l1)), (Θ(l2) ×Θ(l2)), (Θ(l3) ×Θ(l3)), (Θ(l4) ×Θ(l4)) }
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6. Matrix-theory Based on Ĥs-sets

Here some classical matrix-based notions are generalized for Ĥs-sets.

Definition 6.1.

(i) Let (Θ,A) be a Ĥs-set on Π̂. A set RA ⊆ Π̂×A is a relation version of (Θ,A) stated as

RA = { ($, θ̂) ∶ θ̂ ∈ A,$ ∈ Θ(θ̂) } .

(ii) The characteristic function XRA
is stated by XRA

∶ Π̂ ×A→ {0,1}, where

XRA
($, θ̂) =

⎧⎪⎪⎨⎪⎪⎩

1 ; ($, θ̂) ∈ RA

0 ; ($, θ̂) ∉ RA

(iii) If ∣Π̂∣ =m & ∣A∣ = n then (s̈ij) is an m × n Ĥs-matrix of (Θ,A) on Π̂ and stated as

(s̈ij)m×n =

⎛
⎜⎜⎜⎜⎜⎜
⎝

s̈11 s̈12 .... s̈1n

s̈21 s̈22 .... s̈2n

⋮ ⋮ ⋮
s̈m1 s̈m2 .... s̈mn

⎞
⎟⎟⎟⎟⎟⎟
⎠

Note: The family of all m × n Ĥs- matrices on Π̂ is symbolized by (Π̂)(hsm)m×n .

Example 6.2. Let Π̂ = {$1,$2,$3,$4,$5} & A = {θ̂1, θ̂2, θ̂3, θ̂4, θ̂5}. Then Θ(θ̂1) =
{$1,$2}, Θ(θ̂2) = ∅, Θ(θ̂3) = {$4,$5}, Θ(θ̂4) = {$2,$3,$4,}, Θ(θ̂5) = ∅, therefore we

get (Θ,A) = { (θ̂1,{$1,$2}), (θ̂3,{$4,$5}), (θ̂4,{$2,$3,$4,}) } &

RA = { ($1, θ̂1), ($2, θ̂1), ($4, θ̂3), ($5, θ̂3), ($2, θ̂4), ($3, θ̂4), ($4, θ̂4) } . Hence Ĥs- matrix is

given as

(s̈ij)5×5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0

1 0 0 1 0

0 0 0 1 0

0 0 1 1 0

0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1i
5, 1j

5.

Definition 6.3. Let (s̈ij)m×n ∈ (Π̂)(hsm)m×n then (s̈ij)m×n is characterized as:

(i) The (0)m×n is stated as a null Ĥs- matrix if s̈ij = 0 ∀ i, j e.g.

(0)5×5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1i
5, 1j

5.
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(ii) An A1-universal Ĥs- matrix, symbolized by (s̈ij)A1

m×n, if s̈ij = 1,∀j ∈ JA1 = {j ∶ θ̂j ∈ A1}
& i. E.g. Let A be as provided in 6.2 & A1 = {θ̂2, θ̂4, θ̂5} ⊆ A with Θ(θ̂2) = Θ(θ̂4) =
Θ(θ̂5) = Π̂ then

(s̈ij)A1

5×5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1i
5, 1j

5.

(iii) The (s̈ij)Π̂
m×n is stated as universal Ĥs- matrix if s̈ij = 1,∀ i, j. E.g. Let A as stated

in 6.2 with Θ(θ̂1) = Θ(θ̂2) = Θ(θ̂3) = Θ(θ̂4) = Θ(θ̂5) = Π̂ then

(s̈ij)Π̂
5×5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1i
5, 1j

5.

Definition 6.4. Let L1 = (s̈ij)m×n ,L2 = (ẗij)m×n ∈ (Π̂)(hsm)m×n then

(a) L1 is stated as Ĥs- sub-matrix of L2, symbolized by L1 ⊆ L2 if s̈ij ≤ ẗij e.g. L1 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(b) L1 & L2 are stated as comparable, symbolized by L1 ∥ L2, if L1 ⊆ L2 or L2 ⊆ L1.

(c) L1 is stated as proper Ĥs- sub-matrix of L2, symbolized by L1 ⊂ L2 if for atleast one

term s̈ij ≤ ẗij e.g. L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(d) L1 is stated as strictly Ĥs- sub-matrix of L2, symbolized by L1 ⫋ L2 if for each term

s̈ij ≤ ẗij e.g. L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(e) union of L1 & L2, symbolized by L1 ∪ L2, is also a Ĥs- matrix L3 = (δij)m×n if

δij =max{s̈ij , ẗij} ∀ i, j e.g.

M. Saeed, A. U. Rahman, M. Ahsan, F. Smarandache, Theory of Hypersoft Sets: Axiomatic
Properties, Aggregation Operations, Relations, Functions and Matrices

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                             757



Let L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

then

L3 = L1 ∪L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(f) intersection of L1 & L2, symbolized by L1 ∩ L2, is also a Ĥs- matrix L3 = (δij)m×n if

δij =min{s̈ij , ẗij} ∀ i, j e.g.

Let L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

then

L3 = L1 ∩L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(g) The L© (µij)m×n (complement of L = (s̈ij)m×n), is also a Ĥs- matrix if µij = 1−s̈ij ∀ i, j
e.g.

Let L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

then L© =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0

0 0 0 0 0

1 0 1 0 0

0 0 0 0 0

1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(h) The difference L2 ∖L1, is also a Ĥs- matrix L3 such that L3 = L2 ∩L
©
1 e.g.

L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

1 1 1 1 1

0 1 0 1 1

1 1 1 1 1

0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

& L2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

then
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L3 = L2 ∩L
©
1

L3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0

0 0 0 0 0

1 0 1 0 0

0 0 0 0 0

1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0

0 0 0 0 0

1 0 1 0 0

0 0 0 0 0

1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Proposition 6.5. For C1 = (s̈ij)m×n,C2 = (ẗij)m×n,C3 = (üij)m×n ∈ (Π̂)(hsm)m×n , the following

axiomatic results are valid:

(1) C1 ∪ C1 = C1, C1 ∩ C1 = C1

(2) C1 ∪ (0)m×n = C1, C1 ∩ (s̈ij)Π̂
m×n = C1

(3) C1 ∩ (0)m×n = (0)m×n, C1 ∪ (s̈ij)Π̂
m×n = (s̈ij)Π̂

m×n

(4) ((0)m×n)© = (s̈ij)Π̂
m×n , ((s̈ij)Π̂

m×n)
© = (0)m×n

(5) C1 ∪ C1
© = (s̈ij)Π̂

m×n , C1 ∩ C1
© = (0)m×n

(6) (C1 ∪ C2)© = C1
© ∩ C2

©, (C1 ∩ C2)© = C1
© ∪ C2

©

(7) (C1
©)© = C1

(8) C1 ∪ C2 = C2 ∪ C1, C1 ∩ C2 = C2 ∩ C1

(9) C1 ∪ (C2 ∪ C3) = (C1 ∪ C2) ∪ C3, C1 ∩ (C2 ∩ C3) = (C1 ∩ C2) ∩ C3

(10) C1 ∪ (C2 ∩ C3) = (C1 ∪ C2) ∩ (C1 ∪ C3), C1 ∩ (C2 ∪ C3) = (C1 ∩ C2) ∪ (C1 ∩ C3)

Definition 6.6. Let P = (c̈ij)m×n, Q = (d̈ik)m×n ∈ (Π̂)(hsm)m×n , then

(i) AND-product is stated as

∧ ∶ (Π̂)(hsm)m×n × (Π̂)(hsm)m×n → (Π̂)(hsm)
m×n2 with (c̈ij) ∧ (d̈ik) = (ḧil) & ḧil = min{c̈ij , d̈ik} &

l = n(j − 1) + k.

(ii) OR-product is stated as

∨ ∶ (Π̂)(hsm)m×n × (Π̂)(hsm)m×n → (Π̂)(hsm)
m×n2 with (c̈ij) ∨ (d̈ik) = (ḧil) & ḧil =max{c̈ij , d̈ik}.

(iii) AND-NOT-product is stated as

∧ ∶ (Π̂)(hsm)m×n × (Π̂)(hsm)m×n → (Π̂)(hsm)
m×n2 with (c̈ij) ∧ (d̈ik) = (ḧil) & ḧil =min{c̈ij ,1 − d̈ik}.

(iv) OR-NOT-product is stated as

∨ ∶ (Π̂)(hsm)m×n × (Π̂)(hsm)m×n → (Π̂)(hsm)
m×n2 with (c̈ij) ∨ (d̈ik) = (ḧil) & ḧil =max{c̈ij ,1 − d̈ik}.

Example 6.7. Let P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1

1 1 1 1

0 1 0 1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

& Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

then

(i) P ∧Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠
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(ii) P ∨Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

(iii) P ∧Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1

1 1 1 1

0 1 0 1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

∧

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

(iv) P ∨Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1

1 1 1 1

0 1 0 1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

∨

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

7. Hybridized Structures of Ĥs-sets

Here the notions of some hybridized model of Ĥs-sets are presented. The set A = A1 ×A2 ×
.....×Am with Aα̂∩Aβ̂ = ∅ ∀ α̂, β̂ = 1,2, ...,m and Aα̂ are same as stated in Definition 3.1. The

Figure 3 presents the notations and their full names that are used in this section.

Figure 3. Notations

Definition 7.1. An ˆivfHs-set (Γ,A) on Π̂ is stated by

(Γ,A) = { (θ̂,Γ(θ̂)); θ̂ ∈ A,Γ(θ̂) ∈ F ivf(Π̂) }
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where Γ ∶ A→ F ivf(Π̂) & Γ(θ̂) = { ψ̈Γ(θ̂)($)/$ ∶$ ∈ Π̂, ψ̈Γ(θ̂)($) ∈ C(I) } is an ivf-set on Π̂.

Example 7.2. Let Π̂ = {$1,$2,$3,$4,$5,$6,$7,$8} & A = {θ̂1, θ̂2, θ̂3, θ̂4, θ̂5, θ̂6, θ̂7, θ̂8},

ˆivfHs-set (Γ,A) is constructed as

(Γ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{[0.1,0.2]/$1, [0.2,0.3]/$2, [0.4,0.5]/$4, [0.5,0.6]/$5}) ,
(θ̂2,{[0.1,0.3]/$1, [0.2,0.4]/$2, [0.3,0.4]/$3, [0.6,0.8]/$6}) ,
(θ̂3,{[0.2,0.3]/$2, [0.3,0.4]/$3, [0.4,0.5]/$4, , [0.5,0.7]/$5}) ,
(θ̂4,{[0.4,0.5]/$4, [0.5,0.6]/$5, [0.6,0.7]/$6, [0.7,0.8]/$7}) ,
(θ̂5,{[0.3,0.6]/$3, [0.6,0.7]/$6, [0.7,0.8]/$7, [0.8,0.9]/$8}) ,
(θ̂6,{[0.2,0.4]/$2, [0.3,0.5]/$3, [0.4,0.6]/$4, [0.7,0.8]/$7}) ,
(θ̂7,{[0.1,0.4]/$1, [0.3,0.4]/$3, [0.5,0.7]/$5, [0.6,0.8]/$6}) ,
(θ̂8,{[0.2,0.5]/$2, [0.3,0.6]/$3, [0.6,0.8]/$6, [0.7,0.8]/$7})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.3. A fphs-set (D,A) on Π̂ is stated as

(D,A) = { (ϕF(θ̂)/θ̂,ΘF(θ̂)) , θ̂ ∈ A, ΘF(θ̂) ∈ P Π̂, ϕF(θ̂) ∈ C(I) }

where F is a fuzzy set with ϕF ∶ A→ C(I) as membership function of fphs-set &

ΘF ∶ A→ P Π̂ is maa-function of fphs-set.

Example 7.4. From Example 7.2, we get

(D,A) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(0.1/θ̂1,{$1,$2}) , (0.2/θ̂2,{$1,$2,$3}) , (0.3/θ̂3,{$2,$3,$4}) ,
(0.4/θ̂4,{$4,$5,$6}) , (0.5/θ̂5,{$6,$7,$8}) , (0.6/θ̂6,{$2,$3,$4,$7}) ,
(0.7/θ̂7,{$1,$3,$5,$6}) , (0.8/θ̂8,{$2,$3,$6,$7})

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Definition 7.5. An iv-fphs-set (E ,A) on Π̂ is stated as

(E ,A) = { (ΨFiv(θ̂)/θ̂, ψFiv(θ̂)) , θ̂ ∈ A, ψFiv(θ̂) ∈ P Π̂, ΨFiv(θ̂) ∈ C(I) }

where F iv is an ivf-set with ΨFiv ∶ A → C(I) as membership function of fphs-set and ψFiv ∶
A→ P Π̂ is maa-function of iv-fphs-set.

Example 7.6. From Example 7.2, we get

(E ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

([0.1,0.2]/θ̂1,{$1,$2}) , ([0.2,0.3]/θ̂2,{$1,$2,$3}) ,
([0.3,0.4]/θ̂3,{$2,$3,$4}) , ([0.4,0.5]/θ̂4,{$4,$5,$6}) ,
([0.5,0.6]/θ̂5,{$6,$7,$8}) , ([0.6,0.7]/θ̂6,{$2,$3,$4,$7}) ,
([0.7,0.8]/θ̂7,{$1,$3,$5,$6}) , ([0.8,0.9]/θ̂8,{$2,$3,$6,$7})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.7. An ifphs-set (H,A) on Π̂ is stated as

(H,A) = { (< ς1(θ̂), ς2(θ̂) > /θ̂, ψIF(θ̂)) ; θ̂ ∈ A, ψIF(θ̂) ∈ P Π̂, ς1(θ̂), ς2(θ̂) ∈ C(I) }

where IF is an if-set with ς1(θ̂), ς2(θ̂) ∶ A → C(I) as membership and non-membership func-

tions of ifphs-set and ψIF ∶ A→ P Π̂ is maa-function of ifphs-set.
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Example 7.8. From Example 7.2, we get

(H,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(< 0.1,0.2 > /θ̂1,{$1,$2}) , (< 0.2,0.3 > /θ̂2,{$1,$2,$3}) ,
(< 0.3,0.4 > /θ̂3,{$2,$3,$4}) , (< 0.4,0.5 > /θ̂4,{$4,$5,$6}) ,
(< 0.5,0.6 > /θ̂5,{$6,$7,$8}) , (< 0.6,0.7 > /θ̂6,{$2,$3,$4,$7}) ,
(< 0.7,0.8 > /θ̂7,{$1,$3,$5,$6}) , (< 0.8,0.9 > /θ̂8,{$2,$3,$6,$7})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.9. A nphs-set (N ,A) on Π̂ is stated as

(N ,A) =
⎧⎪⎪⎨⎪⎪⎩

(< λ1(θ̂), λ2(θ̂), λ3(θ̂) > /θ̂, ψN (θ̂)) ; θ̂ ∈ A, ψN (θ̂) ∈ P Π̂,

λ1(θ̂) ∈ C(I), λ2(θ̂) ∈ C(I), λ3(θ̂) ∈ C(I)

⎫⎪⎪⎬⎪⎪⎭

where N is a neutrosophic set with λ1(θ̂), λ2(θ̂), λ3(θ̂) ∶ A → C(I) as membership, indetermi-

nate and falsity of nphs-set and ψN ∶ A→ P Π̂ is maa-function of nphs-set.

Example 7.10. From Example 7.2, we get

(N ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(< 0.1,0.2,0.2 > /θ̂1,{$1,$2}) , (< 0.2,0.3,0.3 > /θ̂2,{$1,$2,$3}) ,
(< 0.3,0.4,0.4 > /θ̂3,{$2,$3,$4}) , (< 0.4,0.5,0.5 > /θ̂4,{$4,$5,$6}) ,
(< 0.5,0.6,0.6 > /θ̂5,{$6,$7,$8}) , (< 0.6,0.7,0.7 > /θ̂6,{$2,$3,$4,$7}) ,
(< 0.7,0.5,0.8 > /θ̂7,{$1,$3,$5,$6}) , (< 0.8,0.4,0.9 > /θ̂8,{$2,$3,$6,$7})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.11. A Ĥs-set (B̈,A) is known as bijective Ĥs-set (bhs-set) on Π̂ if

(i) ⋃
j∈A

B̈(θ̂) = Π̂

(ii) for θ̂α̂, θ̂β̂ ∈ A, α̂ ≠ β̂, B̈(θ̂α̂) ∩ B̈(θ̂β̂) = ∅

Example 7.12. Reconsidering Example 7.2, we get

(B̈,A) = { (θ̂1,{$1}) , (θ̂2,{$2}) , (θ̂3,{$3}) , (θ̂4,{$4}) , (θ̂5,{$5}) , (θ̂6,{$6}) , (θ̂7,{$7}) , (θ̂8,{$8}) }

Definition 7.13. A ˆfhs-set (B̈f ,A) is stated as bijective ˆfhs-set on Π̂ if

(i) ⋃
θ̂∈A

B̈f(θ̂) = Π̂ with ∑
$∈Π̂

ψ̈f ($) ∈ C(I) where ψ̈f ($) is a f-membership for each $ ∈ Π̂

(ii) for θ̂α̂, θ̂β̂ ∈ A, α̂ ≠ β̂, B̈f(θ̂α̂) ∩ B̈f(θ̂β̂) = ∅

Example 7.14. Reconsidering Example 7.2, we get

(B̈f ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{0.1/$1}) , (θ̂2,{0.2/$2}) ,
(θ̂3,{0.13/$3}) , (θ̂4,{0.14/$4}) ,
(θ̂5,{0.05/$5}) , (θ̂6,{0.06/$6}) ,
(θ̂7,{0.07/$7}) , (θ̂8,{0.08/$8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.15. An ˆivfhs-set (B̈ivf ,A) is stated as bijective ˆivfhs-set on Π̂ if

(i) ⋃
θ̂∈A

B̈ivf(θ̂) = Π̂ with ∑
$∈Π̂

Sup(ψ̈f ($)) ∈ C(I) where ψ̈f ($) is an ivf-membership for

each $ ∈ Π̂
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(ii) for θ̂α̂, θ̂β̂ ∈ A, α̂ ≠ β̂, B̈ivf(θ̂α̂) ∩ B̈ivf(θ̂β̂) = ∅

Example 7.16. Reconsidering Example 7.2, we get

(B̈ivf ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{[0.01,0.1]/$1}) , (θ̂2,{[0.02,0.2]/$2}) ,
(θ̂3,{[0.03,0.13]/$3}) , (θ̂4,{[0.04,0.14]/$4}) ,
(θ̂5,{[0.03,0.05]/$5}) , (θ̂6,{[0.02,0.06]/$6}) ,
(θ̂7,{[0.03,0.07]/$7}) , (θ̂8,{[0.04,0.08]/$8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.17. An ˆifhs-set (B̈if ,A) is known as bijective ˆifhs-set on Π̂ if

(i) ⋃
θ̂∈A

B̈if(θ̂) = Π̂ with ∑
$∈Π̂

Tif ($) & ∑
$∈Π̂

Fif ($) ∈ C(I) where Tif ($) & Fif ($) are

membership and non-membership grades for each $ ∈ Π̂

(ii) for θ̂α̂, θ̂β̂ ∈ A, α̂ ≠ β̂, B̈if(θ̂α̂) ∩ B̈if(θ̂β̂) = ∅

Example 7.18. Reassuming Example 7.2, we get

(B̈if ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{< 0.01,0.1 > /$1}) , (θ̂2,{< 0.02,0.2 > /$2}) ,
(θ̂3,{< 0.03,0.13 > /$3}) , (θ̂4,{< 0.04,0.14 > /$4}) ,
(θ̂5,{< 0.03,0.05 > /$5}) , (θ̂6,{< 0.02,0.06 > /$6}) ,
(θ̂7,{< 0.03,0.07 > /$7}) , (θ̂8,{< 0.04,0.08 > /$8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 7.19. A ˆnhs-set (B̈N ,A) is known as bijective ˆnhs-set on Π̂ if

(i) ⋃
θ̂∈A

B̈N (θ̂) = Π̂ with ∑
$∈Π̂

TN ($), ∑
$∈Π̂

IN ($) & ∑
$∈Π̂

FN ($) ∈ C(I) where

TN ($) , IN ($) & FN ($) are membership, indeterminacy and non-membership

grades for each $ ∈ Π̂

(ii) for θ̂α̂, θ̂β̂ ∈ A, α̂ ≠ β̂, B̈N (θ̂α̂) ∩ B̈N (θ̂β̂) = ∅

Example 7.20. Reassuming Example 7.2, we get

(B̈N ,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ̂1,{< 0.01,0.02,0.1 > /$1}) , (θ̂2,{< 0.02,0.03,0.2 > /$2}) ,
(θ̂3,{< 0.03,0.04,0.13 > /$3}) , (θ̂4,{< 0.04,0.05,0.14 > /$4}) ,
(θ̂5,{< 0.03,0.04,0.05 > /$5}) , (θ̂6,{< 0.02,0.05,0.06 > /$6}) ,
(θ̂7,{< 0.03,0.04,0.07 > /$7}) , (θ̂8,{< 0.04,0.05,0.08 > /$8})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

8. Conclusions

In this research work, several important rudiments (i.e. axioms-based properties, set-based

aggregations etc.,) of Ĥs-set are investigated and explained with the support of real-scenarios

based examples. In order to attract the intellectual attention of researchers, definitions of

some glued models of Ĥs-set are also presented which will motivate them to extend the theory

to other branches of mathematical-cum-computational sciences. Some future directions and

scope of Ĥs-sets are presented in Figure 4.
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Figure 4. Future Directions and Scope of Ĥs-sets
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