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Abstract. In the competitive market, a customer’s choice for an item depends on several factors like management’s

marketing strategy and service, the item’s price and greenness. Demand increases with the marketing strategy, service

and item’s greenness, but it is inversely related to the item’s price. These relations are non-linear and imprecise.

Recently, neutrosophic set has been introduced to represent impreciseness more realistically. Moreover, resources (cap-

ital, storage space, etc.) are generally uncertain (random or imprecise). Considering the above business scenarios,

profit maximization EOQ models with price, marketing, service, and green dependent neutrosophic demand and or-

der quantity dependent unit production cost are developed under different uncertain resource constraints. Models’

parameters are pentagonal neutrosophic (PN) numbers. The proposed models are first made deterministic and then

solved using the geometric programming technique. The PN parameters are made crisp using the score function. The

random, fuzzy, rough and trapezoidal neutrosophic resource constraints in different models are converted to crisp using

possibility measure, chance-constrained technique, trust measure and (α, β, γ)-cut with weighted mean, respectively.

These processes reduce the objective function and constraints to signomial forms, and the reduced problems are solved

by geometric programming technique with the degree of difficulty 2. Numerical experiments and sensitivity analyses

are performed to illustrate the models.

Keywords: Inventory; Pentagonal neutrosophic number; Possibility; Chance constrained programming; Trust mea-

sure;

—————————————————————————————————————————-

1. Introduction

Nowadays, integration of the effects of marketing cost, service cost, green cost, etc., into demand in

an EOQ model is a realistic production and business strategy. Marketing costs are generally the total

expenditure of a manufacturing company on marketing activities. This cost includes advertisement
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of the products, campaigning, promotional events, market research, etc. Now these activities, and

hence marketing costs, directly affect the demand of items. Again, some manufacturing companies

spend incentives on their sales representatives for better performance. Sometimes incentives are given

to the delivery agents to have perfect timing in delivering the items. These types of expenditure

are termed service cost and this cost also directly affects total demand. The demands for green

goods are always very high in any market. Green costs include the extra expenditure to produce

green goods. Thus the demand of an item increases with its greenness. Moreover, it is well known

that an item’s demand is inversely related to its selling price, i.e., demand continuously decreases

with the price. In practice, the relations mentioned above are not linear and deterministic. Demand

is always related to the marketing effort, service provided, greenness and price non-linearly in an

imprecise sense, i.e., fuzzy. Recently, neutrosophic set more realistically represents the impreciseness.

Following these real-life facts, demand is taken as a non-linear function of marketing and service

costs, item’s greenness and price in a neutrosophic fuzzy sense. This presentation of demand is new

in the literature. Lee and Kim [1] first identified the idea of marketing planning into a classical

inventory problem. They formulated the model with price and marketing cost dependent demand

and solved using the geometric programming (GP) method. Later, Lee [2, 3] investigated profit

maximization problems with optimal selling price and order quantity as decision variables along

with some constraints. A multi-objective marketing planning EOQ problem was studied by Islam [4].

Later, marketing cost, selling price and service cost dependent demand was considered by Samadi et

al. [5]. They solved the model under a fuzzy environment. Recently, Aggarwal et al. [6] developed

an inventory model with price and advertising expenditure dependent demand.

In reality, an inventory model is formulated along with one or more restrictions like a limitation

on storage space, order, production cost, etc. Among these restrictions, storage space constraint

is very common. A manufacturing company builds or hires a warehouse to store its products at

the beginning of production or business. These warehouses bear certain dimension that limits total

storage space. In practical situations, this space may not be adequate all the time. Hence, space

may be augmented if necessary. This augmentation is usually uncertain, i.e., the total available

area may be considered as imprecise, random, rough, etc., in nature. Roy and Maiti [7] investigated

a fuzzy EOQ problem under space constraints where demand depends on unit cost. Later, multi-

objective inventory problems were considered for deteriorating items with space constraints under

fuzzy (cf. [8]) and intuitionistic fuzzy (cf. [9]) environments. Again, Mandal and Islam [10], Panda

and Maiti [11] solved an EOQ model with space constraint having fuzzy coefficients by applying the

GP method. Recently, Kar et al. [12, 13] proposed neutrosophic GP technique to solve inventory

problems with space constraints under neutrosophic environment. Das et al. [14] investigated a multi-

item production inventory model with limited storage area under fuzzy environment. Moreover,
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Karimi and Sadjadi [15] developed a deteriorating multi-item EOQ model under capacity constraint

and solved by a dynamic programming approach.

Chance constrained programming is introduced in an optimization problem when the chances of

satisfying a certain constraint are above a certain level. In other words, when any constraint involves

one or more random parameters, it is called a chance constraint. Charnes and Cooper [16] first

developed a chance-constrained programming technique to solve stochastic optimization. Later, it

has been extended in various directions [17–19]. An EOQ model for stochastically imperfect products

was investigated and solved using chance-constrained programming by Panda et al. [20]. In the recent

era, Widyan [21] developed a multi-criteria inventory model with random constraints. Furthermore,

Hajiagha et al. [22] solved a multi-criteria fuzzy inventory model using chance-constrained and

probabilistic programming based hybrid algorithm.

In the real world scenario, the demand for items in the manufacturing companies changes fre-

quently. We can only note down the sales data of an item for one period and suggest an estimated

demand of that item for the next period based on the previous one. Depending on this estimate,

which may be fuzzy, rough, random, etc., the amount of resources, such as budget, warehouse space,

etc., are determined. In such situations, the rough set theory, developed by Pawlak [23] and oth-

ers [24], is used to deal with imprecise, inconsistent, incomplete information and knowledge. Later,

many researchers have studied the rough set theory in various working fields [25, 26]. Also, Xu and

Zhao [27] solved a fuzzy rough multi-objective decision making problem. De et al. [28] investigated

an imperfect economic production model over different time horizons. Xu and Yao [29] proposed

randomness and roughness simultaneously and established that some parameters follow random

distribution with rough expected value. Recently, Bera and Mandal [30] and Midya and Roy [31]

investigated multi-objective transportation problems under rough environment.

The theory of impreciseness has been used in various fields in the recent era. The concept of fuzzy

set was first came up with Zadeh [32], and after that, many researchers [33–39] extended it and

applied it in different problems. Later, Atanassov [40] successfully introduced the generalization of

fuzzy set, called intuitionistic fuzzy set (IFS). In IFS, there are two-degree functions: membership

and non-membership. Many researchers [41–43] have applied IFS in various fields. Nowadays, to deal

with indeterminate/inconsistent information, Smarandache [44–46] developed neutrosophic set (NS).

Unlike IFS, NS has three independent components: membership, indeterminacy and falsity. These

independent degrees lie within ]0−, 1+[. Later, Wang et al. [47] developed single valued neutrosophic

set, and Peng et al. [48] proposed simplified NS. In recent era, Chakraborty et al. [49–51] applied

the idea of pentagonal neutrosophic number on different problems. Moreover, Khalid et al. [52–54]

and Pramanik et al. [55] introduced neutrosophic GP technique in several fields.

Generally, the GP technique is a very effective method for solving a class of non-linear optimization

problems. The GP technique’s most remarkable advantage is that this converts a complicated
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non-linear optimization problem involving highly non-linear constraints into an equivalent linear

optimization problem with only linear constraints. The basic concept of GP was initially introduced

by Duffin [56]. GP has contributed several applications in various areas such as inventory systems,

circuit design, system design, project management, etc. Kochenberger [57] first tackled the inventory

problem by GP technique. Later, several researchers [58–61] efficiently applied the GP technique for

solving various non-linear problems in different fields.

In spite of the above developments in GP and its application in inventory control problems under

uncertain environments, very few researchers have used GP in EOQ with neutrosophic uncertainty

(cf. Kar et al. [12]). Only a few analytically expressed the limited resource amounts using neutro-

sophic numbers. Moreover, there are very few inventory control problems for green products using

GP. We have tried to fill up the above lacunas in the present investigation.

In this paper, single item profit maximization inventory models are formulated with selling price,

marketing, service and green dependent neutrosophic demand. The models are developed with

different uncertain storage space constraints. Parameters of all models’ objective functions are

considered as PN numbers to formulate the models more realistically. Again, the resource constraint

is taken in various environments as fuzzy, random, rough and trapezoidal neutrosophic (TN) numbers

to derive particular models. At first, all the models are transformed into equivalent crisp forms using

score function, possibility measure, chance-constrained programming, trust measure and (α, β, γ)-

cut for PN, fuzzy, random, rough and TN environments respectively. These processes lead both

objective function and constraint expression to signomial forms, which are solved using the GP

technique. Solution procedures for all models are numerically illustrated. Sensitivity analysis is

presented to observe the changes in optimum results against various parameters.

Thus, the main contributions of this investigation are

• For the first time, marketing, service and green expenditures, along with the item’s selling

price, is integrated into the item’s demand to develop the model more realistically. Relations

of these parameters with the demand are imprecise, expressed by PN numbers.

• Realistically, in this investigation, uncertain resource capacities are considered as fuzzy, ran-

dom, rough and neutrosophic.

• Unit production cost is taken as a non-linear function of the order quantity.

• Models are appropriately solved by the GP technique to get the exact values/expressions of

the decision variable.

• Due to the presence of neutrosophic parameters in the model, the concept of score function

is introduced to convert the model into a crisp maximization problem.

• For converting particular models from fuzzy, random and rough environments to an equiv-

alent crisp form, possibility measure, chance-constrained programming and trust measure
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are respectively applied. In the case of TN resource constraint, (α, β, γ)-cuts and weighted

arithmetic mean are used.

The remaining part of the present investigation is arranged as follows: Section 2 represents the

formulation of the proposed models. Section 3 derives some particular cases. The solution procedures

for all the models are explained in Section 4. In Section 5, numerical experiments are performed

and the optimum results are described. Section 6 represents a sensitivity analysis. Conclusion and

future extensions are presented in Section 7. All required preliminaries are explained in Appendix.

2. Formulation of the proposed models

The proposed models are established using the following notations and assumptions:

Notations:

Inventory related parameters:
Symbol Explanation
D: demand rate per unit time
C: production cost per unit item
A: set-up cost per period
H: holding cost per item per unit time
T: period of each cycle
w: available total storage capacity area
w0: capacity area to store per unit quantity
I(t): inventory level at any time t (≥ 0)
a: selling price elasticity to demand
b: marketing expenditure elasticity to demand
c: service expenditure elasticity to demand
d: green expenditure elasticity to demand
θ: lot size elasticity to unit production cost
Decision variables:
P: selling price per unit quantity
Q: number of order quantity
M: marketing expenditure per unit item
R: service expenditure per unit item
G: green expenditure per unit item

Assumptions:

(a) Replenishment rate is instantaneous.

(b) Shortages are not allowed.

(c) Lead time is negligible.

(d) The inventory system allows a single item.

(e) In real life, it is always seen that when the items are ordered in a lot, the per item production

cost reduces with the size of ordered units. Therefore, the unit production cost is inversely

related to order quantity. So it is taken as C = rQ−θ, where r is the scaling factor and

0 < θ < 1.
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(f) It is universally accepted that the demand of an item is negatively influenced by its price

- either inversely or linearly. Marketing effort in the form of advertisement in electronic

media, displayed hoardings on roadsides, etc., always uplifts the demand. Similarly, the

service sector, in the form of timely dispatch, availability, good handling of customers, etc.,

plays an important role in increasing the sale/demand of an item (cf. Samadi et al. [5]).

Nowadays, due to increased environmental consciousness, the demand for green products

gradually increases day by day. Thus, greenness also plays a role in increased demand. Hence,

demand can be expressed as D = kP−aM bRcGd, where k is the scaling factor/market size

and a > 1, 0 < b, c, d < 1. Normally, the market size for a customized product is considered

to be very high. So, the market size parameter, k, is estimated by an uncertain high number

(cf. Samadi et al. [5]).

2.1. Mathematical model

In the present investigation, the inventory level continuously decreases to satisfy the demand (See

Figure 1). If I(t) be the inventory level at time t, then the governing differential equation over the

time (0,T) is given by

D
′
I(t) = −D, 0 ⩽ t ⩽ T ,

(
D

′ ≡ d

dt

)
(1)

where I(0) = Q and I(T ) = 0.

Figure 1. Crisp inventory model

Solving the above differential equation, we get I(t) = Q−Dt and T = Q
D

Now, the average profit in the system involves the following:

Average sales revenue = PQ
T , average production cost = CQ

T , average marketing cost = MQ
T , average

service cost = RQ
T , average green cost = GQ

T , average set-up cost = A
T and average holding cost =∫ T

0 HI(t) dt = HQ
2 .
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Hence total profit per unit time is

f = Sales revenue - Production cost - Merketing cost - Service cost - Green cost

- Set-up cost - Holding cost

= kP 1−aM bRcGd − krP−aM bRcGdQ−θ − kP−aM1+bRcGd − kP−aM bR1+cGd

− kP−aM bRcG1+d − kAP−aM bRcGdQ−1 − 0.5HQ

Here, the space constraint is expressed as w0Q ≤ w.

2.2. Model-1: Model in neutrosophic environment

In reality, all data in an inventory model may not be found accurately. There may arise the

case when some of the data are uncertain, incomplete and/or indeterminant. To deal with such a

situation, the model’s parameters are expressed in an imprecise environment considering fuzzy sets,

intuitionistic sets, neutrosophic sets, rough sets, etc. The present inventory model considers all the

elasticity parameters, scaling factors, holding cost, set-up cost, total available space, and per unit

quantity area in the neutrosophic environment using PN numbers. Let us assume,

ãn = ⟨(a1, a2, a3, a4, a5) ;µãn , σãn , νãn⟩ , b̃
n
=
〈
(b1, b2, b3, b4, b5) ;µb̃

n , σb̃n , νb̃n
〉

c̃n = ⟨(c1, c2, c3, c4, c5) ;µc̃n , σc̃n , νc̃n⟩ , d̃
n
=
〈
(d1, d2, d3, d4, d5) ;µd̃

n , σd̃n , νd̃n
〉

θ̃n =
〈
(θ1, θ2, θ3, θ4, θ5) ;µθ̃n , σθ̃n , νθ̃n

〉
, k̃n =

〈
(k1, k2, k3, k4, k5) ;µk̃n , σk̃n , νk̃n

〉
r̃n = ⟨(r1, r2, r3, r4, r5) ;µr̃n , σr̃n , νr̃n⟩ , H̃n =

〈
(H1, H2, H3, H4, H5) ;µH̃n , σH̃n , νH̃n

〉
Ãn =

〈
(A1, A2, A3, A4, A5) ;µÃn , σÃn , νÃn

〉
, w̃n = ⟨(w1, w2, w3, w4, w5) ;µw̃n , σw̃n , νw̃n⟩

w̃0
n = ⟨(w01, w02, w03, w04, w05) ;µw̃0

n , σw̃0
n , νw̃0

n⟩


(2)

Thus, the inventory model in neutrosophic environment is formulated as

Max f = k̃nP 1−ãnM b̃
n

Rc̃nGd̃
n

− k̃nr̃nP−ãnM b̃
n

Rc̃nGd̃
n

Q−θ̃n − k̃nP−ãnM1+b̃
n

Rc̃nGd̃
n

−k̃nP−ãnM b̃
n

R1+c̃nGd̃
n

− k̃nP−ãnM b̃
n

Rc̃nG1+d̃
n

− k̃nÃnP−ãnM b̃
n

Rc̃nGd̃
n

Q−1 − 0.5H̃nQ (3)

subject to w̃0
n Q ≤ w̃n (4)

P,M,R,G,Q > 0 (5)

3. Particular cases

3.1. Model-1.1: (Model with fuzzy space constraint)

In this consideration, the inventory problem remains similar as formulated previously, except that

the space constraint is taken under fuzzy environment. Practically, the total available space in a

production source point may not be predicted precisely. Keeping this fact in mind, it is assumed

that the total storage space is imprecise in nature, and it is expressed by triangular fuzzy number

w̃ = (w1, w2, w3). Thus, for Model-1.1, the profit function (Max f1.1, say) is same as in expression

(3) subject to w0 Q ≤ w̃ and positivity condition (5).
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3.2. Model-1.2: (Model with random space constraint)

In this case, total available space w̄ is assumed to be random in nature and all the other terms in

the model are left same as in Model-1. Hence, the Model-1.2 is formulated with the profit expression

(Max f1.2, say) same as in equation (3) and the constraints are given by w0 Q ≤ w̄ and positivity

condition (5).

3.3. Model-1.3: (Model with rough space constraint)

When the available total storage space ŵ is a rough variable, the constraint reduces to the rough

environment and is expressed as w0Q ≤ ŵ, where ŵ = ([w1, w2][w3, w4]) , 0 ≤ w3 ≤ w1 ≤ w2 ≤ w4

is a rough variable. Therefore, the Model-1.3 is described by the same profit function (say, f1.3) as

in equation (3) with the restriction w0 Q ≤ ŵ and condition (5).

3.4. Model-1.4: (Model with neutrosophic space constraint)

In this case, we express the total available storage area capacity using a TN number w̌ =

⟨(w1, w2, w3, w4);µw̌, σw̌, νw̌⟩. The corresponding neutrosophic inventory model becomes maximize

profit (say, f1.4) as represented in (3) subject to the constraints w0 Q ≤ w̌ and positivity restriction

(5).

3.5. Model-1.5: (Model without space constraint)

In this particular case, the inventory model is considered as an unconstrained profit maximization

problem by omitting the space constraint from Model-1. Here, the expression for optimal profit (say,

f1.5) remains same as in equation (3) along with the positivity constraint (5) only.

4. Solution procedure

4.1. Solution procedure for Model-1

In this Section, a solution procedure is described to find a solution space for the neutrosophic

inventory Model-1. Firstly, the model is converted into a crisp one from the neutrosophic one

by applying the definition of the score function for PN numbers. It is then transformed into a

posynomial problem. After that GP technique is used to get an ideal solution space.
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Let us find the score values for the neutrosophic parameters as follows: (See Appendix)

S(ãn) =
1

15
{(a1 + a2 + a3 + a4 + a5)× (2 + µãn − σãn − νãn)}

S(b̃
n
) =

1

15

{
(b1 + b2 + b3 + b4 + b5)× (2 + µb̃

n − σb̃n − νb̃n)
}

S(c̃n) =
1

15
{(c1 + c2 + c3 + c4 + c5)× (2 + µc̃n − σc̃n − νc̃n)}

S(d̃
n
) =

1

15

{
(d1 + d2 + d3 + d4 + d5)× (2 + µd̃

n − σd̃n − νd̃n)
}

S(θ̃n) =
1

15

{
(θ1 + θ2 + θ3 + θ4 + θ5)× (2 + µθ̃n − σθ̃n − νθ̃n)

}
S(k̃n) =

1

15

{
(k1 + k2 + k3 + k4 + k5)× (2 + µk̃n − σk̃n − νk̃n)

}
S(r̃n) =

1

15
{(r1 + r2 + r3 + r4 + r5)× (2 + µr̃n − σr̃n − νr̃n)}

S(H̃n) =
1

15

{
(H1 +H2 +H3 +H4 +H5)× (2 + µH̃n − σH̃n − νH̃n)

}
S(Ãn) =

1

15

{
(A1 +A2 +A3 +A4 +A5)× (2 + µÃn − σÃn − νÃn)

}
S(w̃n) =

1

15
{(w1 + w2 + w3 + w4 + w5)× (2 + µw̃n − σw̃n − νw̃n)}

S(w̃0
n) =

1

15
{(w01 + w02 + w03 + w04 + w05)× (2 + µw̃0

n − σw̃0
n − νw̃0

n)}



(6)

Using these values in Model-1, the converted crisp model can be formulated as follows:

Max f = S(k̃n)P 1−S(ãn)MS(b̃
n
)RS(c̃n)GS(d̃

n
) − S(k̃n)S(r̃n)P−S(ãn)MS(b̃

n
)RS(c̃n)GS(d̃

n
)Q−S(θ̃n)

−S(k̃n)P−S(ãn)M1+S(b̃
n
)RS(c̃n)GS(d̃

n
) − S(k̃n)P−S(ãn)MS(b̃

n
)R1+S(c̃n)GS(d̃

n
)

−S(k̃n)P−S(ãn)MS(b̃
n
)RS(c̃n)G1+S(d̃

n
) − S(k̃n)S(Ãn)P−S(ãn)MS(b̃

n
)RS(c̃n)GS(d̃

n
)Q−1

−0.5S(H̃n)Q (7)

subject to S(w̃0
n) Q ≤ S(w̃n) (8)

P,M,R,G,Q > 0

This transformed form of the inventory problem represents by a signomial GP problem, and its

degree of difficulty is 2. Some necessary modifications are needed to convert the model into a posyn-

omial GP problem. For the conversion, an appropriate lower bound is considered for the objective

function with the aim that the maximization of that lower bound will be equivalent to the maxi-

mization of the objective function of the model. In this way, the signomial model is converted into
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the following equivalent form by introducing another additional auxiliary variable and a constraint:

Max f0

subject to S(k̃n)P 1−S(ãn)MS(b̃
n
)RS(c̃n)GS(d̃

n
) − S(k̃n)S(r̃n)P−S(ãn)MS(b̃

n
)RS(c̃n)GS(d̃

n
)Q−S(θ̃n)

−S(k̃n)P−S(ãn)M1+S(b̃
n
)RS(c̃n)GS(d̃

n
) − S(k̃n)P−S(ãn)MS(b̃

n
)R1+S(c̃n)GS(d̃

n
)

−S(k̃n)P−S(ãn)MS(b̃
n
)RS(c̃n)G1+S(d̃

n
) − S(k̃n)S(Ãn)P−S(ãn)MS(b̃

n
)RS(c̃n)GS(d̃

n
)Q−1

−0.5S(H̃n)Q ≤ f0 (9)

S(w̃0
n) Q ≤ S(w̃n) (10)

P,M,R,G,Q > 0 (11)

Again, this reduced model is equivalent to the following minimization problem:

Min F = f0
−1

subject to f0S(k̃n)
−1PS(ãn)−1M−S(b̃

n
)R−S(c̃n)G−S(d̃

n
) + S(r̃n)P−1Q−S(θ̃n) + P−1M + P−1R

+P−1G+ S(Ãn)P−1Q−1 + 0.5S(H̃n)S(k̃n)−1PS(ãn)−1M−S(b̃
n
)R−S(c̃n)G−S(d̃

n
)Q ≤ 1

S(w̃0
n) Q ≤ S(w̃n)

P,M,R,G,Q > 0 (12)

The derived inventory model (12) is a posynomial GP problem whose degree of difficulty is 2. To

solve this problem the dual geometric programming problem is expressed as follows:

Max d(ẇ) =

(
1

w00

)w00
(
S(k̃n)

−1

w01

)w01 (
S(r̃n)

w02

)w02
(

1

w03

)w03
(

1

w04

)w04
(

1

w05

)w05

(
S(Ãn)

w06

)w06
(
0.5S(H̃n)

w07

)w07
(

7∑
i=1

w0i

)∑7
i=1 w0i (

S(w̃0
n)

S(w̃n)

)w11

(13)

subject to the following conditions:

Normality condition: w00 = 1

Orthogonality conditions: − w00 + w01 = 0

(S(ãn)− 1)w01 − w02 − w03 − w04 − w05 − w06 + (S(ãn)− 1)w07 = 0

−S(b̃
n
)w01 + w03 − S(b̃

n
)w07 = 0

−S(c̃n)w01 + w04 − S(c̃n)w07 = 0

−S(d̃
n
)w01 + w05 − S(d̃

n
)w07 = 0

−S(θ̃n)w02 − w06 + w07 + w11 = 0

Positivity condition: w00, w01, w02, w03, w04, w05, w06, w07, w11 > 0
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where ẇ = (w00, w01, w02, w03, w04, w05, w06, w07, w11)
T and w0i(i = 0, 1, ..., 7), w11 are the dual vari-

ables against the primal variables P,M,R,G and Q for the problem defined by equation (12).

As the model has 2 degree of difficulty, we cannot calculate all the dual variables directly from the con-

ditions. Therefore, solving the above constraints and expressing the dual variables w0i, i = 2, 3, ..., 6

in terms of w07 and w11 we get

w00 = 1 = w01

w02 =
S(ãn)− S(b̃

n
)− S(c̃n)− S(d̃

n
)− 2

1− S(θ̃n)
w07 −

1

1− S(θ̃n)
w11

+
S(ãn)− S(b̃

n
)− S(c̃n)− S(d̃

n
)− 1

1− S(θ̃n)
w03 = S(b̃

n
)(1 + w07)

w04 = S(c̃n)(1 + w07)

w05 = S(d̃
n
)(1 + w07)

w06 =
1− S(θ̃n)

(
S(ãn)− S(b̃

n
)− S(c̃n)− S(d̃

n
)− 1

)
1− S(θ̃n)

w07 +
1

1− S(θ̃n)
w11

−
S(θ̃n)

(
S(ãn)− S(b̃

n
)− S(c̃n)− S(d̃

n
)− 1

)
1− S(θ̃n)



(14)

Letting k1 =
S(ãn)−S(b̃

n
)−S(c̃n)−S(d̃

n
)−1

1−S(θ̃n)
and k2 =

1
1−S(θ̃n)

we get,

w02 = (k1 − k2)w07 − k2w11 + k1 and w06 =
(
k2 − S(θ̃n)k1

)
w07 + k2w11 − S(θ̃n)k1

Substituting these dual variables in equation (13), the dual objective function is expressed in terms

of w07 and w11 as given below:

d(w07, w11) = S(k̃n)
−1 ×

(
S(r̃n)

(k1 − k2)w07 − k2w11 + k1

)(k1−k2)w07−k2w11+k1

×

(
1

S(b̃
n
)(1 + w07)

)S(b̃
n
)(1+w07)

×
(

1

S(c̃n)(1 + w07)

)S(c̃n)(1+w07)

×

(
1

S(d̃
n
)(1 + w07)

)S(d̃
n
)(1+w07)

×

(
0.5S(H̃n)

S(k̃n)w07

)w07

×

(
S(Ãn)

(k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1

)(k2−S(θ̃n)k1)w07+k2w11−S(θ̃n)k1

× (S(ãn)(1 + w07))
S(ãn)(1+w07) ×

(
S(w̃0

n)

S(w̃n)

)w11

(15)

To evaluate the optimum dual variables w∗
07 and w∗

11 that optimize the dual objective d(w07, w11),

we first take logarithm of equation (15) and get the following expression:
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log d(w07, w11) = logS(k̃n)
−1

+ ((k1 − k2)w07 − k2w11 + k1)logS(r̃n)

− ((k1 − k2)w07 − k2w11 + k1) log((k1 − k2)w07 − k2w11 + k1)

−(S(b̃
n
)(1 + w07))log(S(b̃

n
)(1 + w07))− (S(c̃n)(1 + w07))log(S(c̃

n)(1 + w07))

−(S(d̃
n
)(1 + w07))log(S(d̃

n
)(1 + w07)) + w07log

(
0.5S(H̃n)

S(k̃n)

)
− w07logw07

+((k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1)logS(Ãn)

−((k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1)log((k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1)

+ (S(ãn)(1 + w07)) log (S(ã
n)(1 + w07)) + w11log

(
S(w̃0

n)

S(w̃n)

)
(16)

Since there are two variables w07 and w11 in the above logarithmic expression (16), to derive these

optimal dual variables, we set the first order partial derivatives of log d(w07, w11) with respect to

w07 and w11, respectively, to zero and get the followings:

∂ log d(w07, w11)

∂w07
= (k1 − k2)logS(r̃n)− (k1 − k2)log((k1 − k2)w07 − k2w11 + k1)

−S(b̃
n
)log(S(b̃

n
)(1 + w07))− S(c̃n)log(S(c̃n)(1 + w07))

−S(d̃
n
)log(S(d̃

n
)(1 + w07)) + (k2 − S(θ̃n)k1)logS(Ãn)

−(k2 − S(θ̃n)k1)log((k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1)

+log

(
0.5S(H̃n)

S(k̃n)

)
+ logw07 + S(ãn)log(S(ãn)(1 + w07))

= 0 (17)

∂ log d(w07, w11)

∂w11
= −k2logS(r̃n) + k2log((k1 − k2)w07 − k2w11 + k1) + k2logS(Ãn)

−k2log((k2 − S(θ̃n)k1)w07 + k2w11 − S(θ̃n)k1) + log

(
S(w̃0

n)

S(w̃n)

)
= 0 (18)

By using any search method or any software the above equations (17) and (18) can be solved to get

the optimal dual variables w∗
07 and w∗

11. With the help of these optimal values, other optimal dual

variables can easily be evaluated from equation (14). Consequently, the optimum dual objective

function d∗(ẇ∗) can be calculated. Now, the primal-dual relations of the problem (12) are derived

as:

λ =

7∑
i=1

w∗
0i, S(k̃n)

−1
P ∗S(ãn)−1M∗−S(b̃

n
)R∗−S(c̃n)G∗−S(d̃

n
) =

w∗
01

λ
, S(r̃n)P ∗−1Q∗−S(θ̃n) =

w∗
02

λ

P ∗−1M∗ =
w∗
03

λ
, P ∗−1R∗ =

w∗
04

λ
, P ∗−1G∗ =

w∗
05

λ
, S(Ãn)P ∗−1Q∗−1 =

w∗
06

λ
,
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0.5S(H̃n)S(k̃n)
−1

P ∗S(ãn)−1M∗−S(b̃
n
)R∗−S(c̃n)G∗−S(d̃

n
)Q∗ =

w∗
07

λ
,

(
S(w̃0

n)

S(w̃n)

)
Q∗ =

w∗
11

w∗
11

With the help of these equations, we obtain the following expressions for the optimal primal

variables:

Q∗ =
S(w̃n)

S(w̃0
n)

, P ∗ = S(Ãn)
S(w̃0

n)

S(w̃n)

∑7
i=1w

∗
0i

w∗
06

, M∗ = S(Ãn)
S(w̃0

n)

S(w̃n)

w∗
03

w∗
06

,

R∗ = S(Ãn)
S(w̃0

n)

S(w̃n)

w∗
04

w∗
06

, G∗ = S(Ãn)
S(w̃0

n)

S(w̃n)

w∗
05

w∗
06

Substituting the above obtained optimal variables in neutrosophic inventory model i.e. Model-1, the

optimal profit becomes

f∗ =

(
S(Ãn)

w∗
06

S(w̃0
n)

S(w̃n)

)1−S(ãn)+S(b̃
n
)+S(c̃n)+S(d̃

n
) 7∑
i=1

w∗
0i

−S(ãn)

w∗
03

S(b̃
n
)w∗

04
S(c̃n)w∗

05
S(d̃

n
) ×

[
7∑

i=1

w∗
0i

−S(r̃n)

(
S(Ãn)

w∗
06

S(w̃0
n)

S(w̃n)

)S(θ̃n)−1

− w∗
03 − w∗

04 − w∗
05 − S(Ãn)

]
S(k̃n)− 0.5S(H̃n)

S(w̃n)

S(w̃0
n)

4.2. Solution procedure for Model-1.1

In this case, the constraint is formulated under fuzzy environment. To deal with such type

of constraint in inventory model, we follow the possibility theory. After defuzzification the space

constraint reduces to Pos (w0Q ≤ w̃) ≥ η, η represents the degree of fuzziness and w̃ = (w1, w2, w3).

Following Lemma 1, the crisp formulation of the constraint becomes :

w0Q ≤ ηw2 + (1− η)w3 (19)

Here the above obtained constraint is under crisp environment. Using the score function formula,

the neutrosophic objective function is converted into a crisp one, and consequently, the equivalent

crisp model becomes:

Maximize profit f1.1 as given in equation (7) subject to conditions (19) and (5).

Now the model reduces to a signomial GP problem with degree of difficulty 2. Therefore, this

problem can be solved by the GP technique. Following the similar approach as computed in section

4.1, the optimum results are evaluated as follows:

Q∗ =
ηw2 + (1− η)w3

w0
, P ∗ = S(Ãn)

w0

ηw2 + (1− η)w3

∑7
i=1w

∗
0i

w∗
06

,

M∗ = S(Ãn)
w0

ηw2 + (1− η)w3

w∗
03

w∗
06

, R∗ = S(Ãn)
w0

ηw2 + (1− η)w3

w∗
04

w∗
06

,

G∗ = S(Ãn)
w0

ηw2 + (1− η)w3

w∗
05

w∗
06

Chaitali Kar, Tapan Kumar Roy and Manoranjan Maiti, EOQ model with price, marketing,
service and green dependent neutrosophic demand under uncertain resource constraint: A
geometric programming approach

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                                       809



and the optimum profit becomes

f∗
1.1 =

(
S(Ãn)

w∗
06

w0

ηw2 + (1− η)w3

)1−S(ãn)+S(b̃
n
)+S(c̃n)+S(d̃

n
) 7∑
i=1

w∗
0i

−S(ãn)

w∗
03

S(b̃
n
)w∗

04
S(c̃n)w∗

05
S(d̃

n
)

×

 7∑
i=1

w∗
0i − S(r̃n)

(
S(Ãn)

w∗
06

w0

ηw2 + (1− η)w3

)S(θ̃n)−1

− w∗
03 − w∗

04 − w∗
05 − S(Ãn)

S(k̃n)

−0.5S(H̃n)
ηw2 + (1− η)w3

w0

4.3. Solution procedure for Model-1.2

For this particular case, the space constraint is considered in a random sense. To deal with such

types of constraints, we follow the chance-constrained programming approach and the corresponding

constraint becomes:

Pr (w0Q ≤ w̄) ≥ p , 0 < p < 1

where ’Pr’ indicates probability and p represents the prescribed permissible probability.

Now, assume that w̄ be normally distributed random variable with mw and σw as mean and standard

deviation respectively. Then, the constraint can be expressed as

Pr

[
w −mw

σw
≥ w0Q−mw

σw

]
≥ p

where w−mw
σw

is a standard normal variate.

If we consider ϕ(p), such that
∫∞
ϕ(p) ϕ(t) dt , where ϕ(t) is the standard normal density function, then

we get
w −mw

σw
≤ ϕ(p)

Thus, using chance-constrained programming the reduced crisp constraint can be written as

w0Q ≤ mw + σwϕ(p) (20)

Again, Definition 7 is used to transform the objective function into a crisp expression from a neutro-

sophic one. Thus, the corresponding crisp model can be expressed by the objective function given

in equation (7) subject to the constraints (20) and (5). The above is again a signomial GP problem

having degree of difficulty 2. Now we follow the GP approach as presented in section 4.1 to solve

the model. Finally, the optimal solution is obtained in the following form:

Q∗ =
mw + σwϕ(p)

w0
, P ∗ = S(Ãn)

w0

mw + σwϕ(p)

∑7
i=1w

∗
0i

w∗
06

, M∗ = S(Ãn)
w0

mw + σwϕ(p)

w∗
03

w∗
06

,

R∗ = S(Ãn)
w0

mW + σWϕ(p)

w∗
04

w∗
06

, G∗ = S(Ãn)
w0

mw + σwϕ(p)

w∗
05

w∗
06
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and corresponding optimum profit becomes

f∗
1.2 =

(
S(Ãn)

w∗
06

w0

mw + σwϕ(p)

)1−S(ãn)+S(b̃
n
)+S(c̃n)+S(d̃

n
) 7∑
i=1

w∗
0i

−S(ãn)

w∗
03

S(b̃
n
)w∗

04
S(c̃n)w∗

05
S(d̃

n
)

×

 7∑
i=1

w∗
0i − S(r̃n)

(
S(Ãn)

w∗
06

w0

mw + σwϕ(p)

)S(θ̃n)−1

− w∗
03 − w∗

04 − w∗
05 − S(Ãn)

S(k̃n)

−0.5S(H̃n)
mw + σwϕ(p)

w0

4.4. Solution procedure for Model-1.3

In this case, the space constraint is supposed to be in rough environment. Therefore, using

Definition 12, the trust measure to the crisp conversion becomes

Tr (ŵ ≥ w0Q) ≥ η1

where η1 ∈ [0, 1] is the trust level.

Now, following Theorem 2, the rough constraint can be written in equivalent crisp form as expressed

below:

w0Q ≤



w4 − η1(w4−w3)
ζ if w2 ≤ w0Q ≤ w4

ζ(w2−w1)+(1−ζ)w2(w4−w3)−η1(w4−w3)(w2−w1)
ζ(w2−w1)+(1−ζ)(w4−w3)

if w1 ≤ w0Q ≤ w2

w4 +
(1−ζ−η1)(w4−w3)

ζ if w3 ≤ w0Q ≤ w1

w3

(21)

where ζ ∈ (0, 1).

After reducing the neutrosophic objective function into its crisp form, the consequent model can be

expressed by the profit function f1.3 as given in expression (7) subject to restrictions (21) and(5).

This obtained signomial GP problem bearing degree of difficulty 2 is then solved using GP technique

as described in section 4.1. The optimal decision variables and profit are respectively obtained as:

Q∗ =
T

w0
, P ∗ = S(Ãn)

w0

T

∑7
i=1w

∗
0i

w∗
06

, M∗ = S(Ãn)
w0

T

w∗
03

w∗
06

, R∗ = S(Ãn)
w0

T

w∗
04

w∗
06

,

G∗ = S(Ãn)
w0

T

w∗
05

w∗
06

and

f∗
1.3 =

(
S(Ãn)

w∗
06

w0

T

)1−S(ãn)+S(b̃
n
)+S(c̃n)+S(d̃

n
) 7∑
i=1

w∗
0i

−S(ãn)

w∗
03

S(b̃
n
)w∗

04
S(c̃n)w∗

05
S(d̃

n
)

×

 7∑
i=1

w∗
0i − S(r̃n)

(
S(Ãn)

w∗
06

w0

T

)S(θ̃n)−1

− w∗
03 − w∗

04 − w∗
05 − S(Ãn)

S(k̃n)− 0.5S(H̃n)
T

w0

Chaitali Kar, Tapan Kumar Roy and Manoranjan Maiti, EOQ model with price, marketing,
service and green dependent neutrosophic demand under uncertain resource constraint: A
geometric programming approach

Neutrosophic Sets and Systems, Vol. 51, 2022                                                                                       811



where

T =



w4 − η1(w4−w3)
ζ if w2 ≤ w0Q ≤ w4

ζ(w2−w1)+(1−ζ)w2(w4−w3)−η1(w4−w3)(w2−w1)
ζ(w2−w1)+(1−ζ)(w4−w3)

if w1 ≤ w0Q ≤ w2

w4 +
(1−ζ−η1)(w4−w3)

ζ if w3 ≤ w0Q ≤ w1

w3

and ζ ∈ (0, 1).

4.5. Solution procedure for Model-1.4

To convert this neutrosophic model into a crisp representation, we first need to calculate the

α − cut, β − cut and γ − cut of the TN number. Using Definition 10 , we derive the following

α− cut, β − cut and γ − cut for the neutrosophic total space

w̌α = [Lw̌(α), Rw̌(α)] =

[
(µw̌ − α)w1 + αw2

µw̌
,
(µw̌ − α)w4 + αw3

µw̌

]
w̌β = [L

′
w̌(β), R

′
w̌(β)] =

[
(1− β)w2 + (β − σw̌)w1

1− σw̌
,
(1− β)w3 + (β − σw̌)w4

1− σw̌

]

w̌γ = [L
′′
w̌(γ), R

′′
w̌(γ)] =

[
(1− γ)w2 + (γ − νw̌)w1

1− νw̌
,
(1− γ)w3 + (γ − νw̌)w4

1− νw̌

]
After that, we transform the neutrosophic parameters in the constraint into a crisp interval number

by using Theorem 1. Thus, we have the crisp constraint as w0Q ≤ [Lw̌, Rw̌],

where Lw̌ = max
{
Lw̌(α), L

′
w̌(β), L

′′
w̌(γ)

}
, Rw̌ = min

{
Rw̌(α), R

′
w̌(β), R

′′
w̌(γ)

}
Now applying the weighted mean approach (cf. Lemma 2), convert the interval number into para-

metric function and get the crisp formulation of the constraint as follows:

w0Q ≤ Lw̌(1− ρ) +Rw̌ρ (22)

After reducing the PN objective of the model-1.4 into a crisp one using the score function, the

converted equivalent crisp formulation is expressed with the objective function same as in (7) along

with the constraints given in (22) and (5). Now the reduced model is again a signomial GP problem

having 2 degree of difficulty. Following the solution procedure, explained in Section 4.1, we get the

following optimal solutions:

Q∗ =
Lw̌(1− ρ) +Rw̌ρ

w0
, P ∗ = S(Ãn)

w0

Lw̌(1− ρ) +Rw̌ρ

∑7
i=1w

∗
0i

w∗
06

,

M∗ = S(Ãn)
w0

Lw̌(1− ρ) +Rw̌ρ

w∗
03

w∗
06

, R∗ = S(Ãn)
w0

Lw̌(1− ρ) +Rw̌ρ

w∗
04

w∗
06

,

G∗ = S(Ãn)
w0

Lw̌(1− ρ) +Rw̌ρ

w∗
05

w∗
06
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along with the optimum profit given by

f∗
1.4 =

(
S(Ãn)

w∗
06

w0

Lw̌(1− ρ) +Rw̌ρ

)1−S(ãn)+S(b̃
n
)+S(c̃n)+S(d̃

n
) 7∑
i=1

w∗
0i

−S(ãn)

w∗
03

S(b̃
n
)w∗

04
S(c̃n)w∗

05
S(d̃

n
)

×

 7∑
i=1

w∗
0i − S(r̃n)

(
S(Ãn)

w∗
06

w0

Lw̌(1− ρ) +Rw̌ρ

)S(θ̃n)−1

− w∗
03 − w∗

04 − w∗
05 − S(Ãn)

S(k̃n)

−0.5S(H̃n)
Lw̌(1− ρ) +Rw̌ρ

w0

4.6. Solution procedure for Model-1.5

The objective function of this particular model is transformed into crisp environment by using the

definition of score function, and obtained crisp expression is given in the equation (7). Since there is

only the positivity restriction in this model, the problem is a signomial GP problem with 1 degree

of difficulty. Thus, the model can be solved by the GP technique, and the optimum solutions are as

follows:

Q∗ =

(
S(Ãn)

S(r̃n)

w∗
02

w∗
06

) 1
1−S(θ̃n)

, P ∗ =

(
S(r̃n)

w∗
02

) 1
1−S(θ̃n)

(
w∗
06

S(Ãn)

) S(θ̃n)

1−S(θ̃n)

,

M∗ = w∗
03

(
S(r̃n)

w∗
02

) 1
1−S(θ̃n)

(
w∗
06

S(Ãn)

) S(θ̃n)

1−S(θ̃n)

, R∗ = w∗
04

(
S(r̃n)

w∗
02

) 1
1−S(θ̃n)

(
w∗
06

S(Ãn)

) S(θ̃n)

1−S(θ̃n)

,

G∗ = w∗
05

(
S(r̃n)

w∗
02

) 1
1−S(θ̃n)

(
w∗
06

S(Ãn)

) S(θ̃n)

1−S(θ̃n)

.

Now using these optimum decision variables, optimal profit can be calculated easily.

5. Numerical experiments

Input data for Model-1:

The proposed models (Model-1,-1.1,-1.2,-1.3,-1.4 and -1.5) are illustrated with a theoretical example

in this section. For this, the following inputs in appropriate units are considered:

ãn = ⟨(2, 3, 7, 8, 10); 0.6, 0.5, 0.6⟩ , b̃
n
= ⟨(0.2, 0.32, 0.45, 0.52, 0.61) ; 0.9, 0.1, 0.3⟩ ,

c̃n = ⟨(0.09, 0.18, 0.34, 0.43, 0.52) ; 0.9, 0.3, 0.1⟩ , d̃n = ⟨(0.09, 0.12, 0.19, 0.28, 0.37) ; 0.8, 0.5, 0.3⟩ ,

θ̃n = ⟨(0.01, 0.02, 0.03, 0.04, 0.05) ; 0.8, 0.4, 0.4⟩ , r̃n = ⟨(2, 5.5, 8, 10, 12) ; 0.6, 0.2, 0.4⟩ ,

k̃n = ⟨(200000, 400000, 600000, 750000, 1050000) ; 0.9, 0.3, 0.1⟩ ,

H̃n = ⟨(0.9, 1.2, 2.5, 3.8, 4.1) ; 0.9, 0.8, 0.6⟩ , Ãn = ⟨(36, 58, 86, 110.5, 122) ; 0.7, 0.4, 0.3⟩ ,

w̃0
n = ⟨(1, 6, 10, 15, 18) ; 0.5, 0.5, 0.2⟩ , w̃n = ⟨(280, 450, 695, 860, 1390) ; 0.7, 0.4, 0.3⟩ .
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Input data for particular models:

For the particular models (Model-1.1,-1.2,1.3 and -1.4) the required inputs are presented in Table 1.

All the other parameters for these models are similar as in Model-1.

Table 1. Other input data for particular models

Environments Related data
Fuzzy w̃ = (410, 490, 570) η = 0.5
Random (mw, σw) = (480, 20) p = 0.96
Rough ŵ = ([460, 510][420, 580]), ζ = 0.5, η1 = 0.6
TN w̌ = ⟨(420, 465, 500, 550); 0.7, 0.3, 0.3⟩, α = 0.1, β = 0.7, γ = 0.9

Optimum results:

All models are formulated with the help of above considered parameters and optimized using the

proposed solution approach. The optimum values of selling price P ∗, number of order quantity Q∗,

marketing expenditure M∗, service expenditure R∗, green expenditure G∗ and profit f∗ are eval-

uated for the inventory models with the constraint in different environments, and the results are

indicated in Table 2.

Table 2. Optimal solutions for all models

Models
Environments

P ∗ M∗ R∗ G∗ Q∗ f∗
Objective constraint

1 PN PN 12.600 1.470 1.092 0.588 81.67 1089.50
1.1 PN Fuzzy 12.466 1.454 1.080 0.581 88.33 1101.27
1.2 PN Random 12.790 1.492 1.108 0.597 74.17 1073.64
1.3 PN Rough 12.610 1.471 1.093 0.588 81.43 1089.04
1.4 PN TN 12.710 1.483 1.102 0.593 77.21 1080.44
1.5 PN No constraint 11.463 1.337 0.993 0.535 197.87 1160.63

From Table 2, it is observed that the optimal profit for the model with PN numbers (Model-1)

is 1089.50 $. Again, the optimal selling price per unit item is 12.6 $ for this model, and the total

order quantity is 81.67 units. Moreover, the marketing, service and green expenditure per item are

1.47 $, 1.092 $ and 0.588 $, respectively. Similarly, we note that the optimal profit for the particular

cases, i.e., models with fuzzy constraint (Model-1.1), random constraint (Model-1.2), rough con-

straint (Model-1.3) and TN constraint (Model-1.4) are 1101.27 $, 1073.64 $, 1089.04 $ and 1080.44

$ respectively. The optimal values of these particular models’ decision variables are presented in

Table 2. Again, as per expectation, the unconstrained model (Model-1.5) gives the maximum profit

among all models. Strictly speaking, as the environments under which the models are formulated

are different, their optimum results can not be compared.
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6. Sensitivity analysis

In this Section, we perform some sensitivity analysis to observe the changes in optimal profit with

respect to the changes in parameters for the particular models. From Figure 2a, it is noted that

whenever the degree of fuzziness (η) or the trust level (η1) increases from 0.1 to 0.9, the optimal

profit decreases continuously. But, with the increases of weights (ρ) of the weighted mean used

in Model-1.4, optimal profit increases (cf. Figure 2a). Again, the decrease of optimal profit with

respect to the considered probability (p) of Model-1.2 is plotted in Figure 2b. The changes in optimal

profit of all the models along with the changes in total available space and set-up cost are figured

in Figures 2c and 2d respectively.
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Figure 2. (A) Optimal profit vs. degree of fuzzyness (η)/ trust measure (η1)/ weight
of weighted mean (ρ); (B) Optimal profit vs. permissible probability (p) for Model-
1.2; (C) Optimal profit of all models vs. total available space; (D) Optimal profit of
all models vs. set-up cost

7. Conclusions

The main goal of the present study is to develop an economic order quantity model with space

constraint having all its parameters as PN numbers. In reality, marketing expenditure and service

quality play a significant role in the demand of any manufacturing company. Again, the demand for

green items is always very high in the market. Therefore, the demand in this model is considered as a
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function of the selling price, marketing, service and green expenditure to be more realistic. Moreover,

order quantity dependent unit production cost is assumed here. Again, the space constraint is

considered in several environments like fuzzy, random, rough, and TN. Possibility measure and

chance-constrained programming are used to deal with the fuzzy and random constraint goals,

respectively. For all the models, a solution procedure is suggested. Finally, the GP technique is

applied to solve the converted crisp models. Moreover, some numerical experiments and sensitivity

analyses are done to illustrate the models.

In the future, the model can be developed more realistically by assuming ramp type demand, power

demand, probabilistic demand, etc. Here, the model is considered for a single item, and hence it can

be extended to a multi-item model. Also, shortages can be allowed in the problem. Furthermore,

the items may be damageable, and preservation technology may be introduced. Moreover, different

environments can be considered, such as intuitionistic, fuzzy-random, fuzzy-rough, type-2 fuzzy, etc.

Again, the researchers may suggest different solution procedures and compare the optimum results

with the present one.
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Appendix

Definition 1 (Fuzzy set). [32] A fuzzy set B̃ in X (space of points/objects) is an object having the

form B̃ = {(x, µB̃(x)) : x ∈ X} where µB̃ : X → [0, 1] is the membership function of the fuzzy set B̃.

Definition 2 (Triangular fuzzy number). [20] A triangular fuzzy number B̃ = (b1, b2, b3) is a fuzzy

number whose membership function µB̃(x) is defined as

µB̃(x) =


x−b1
b2−b1

b1 ≤ x < b2

b3−x
b3−b2

b2 ≤ x ≤ b3

0 otherwise

where [b1, b3] is the supporting interval and the point (b2, 1) is the peak.

Definition 3 (Possibility measure). [20] Let m̃ and ñ be two fuzzy numbers and the corresponding

memberships functions be µm̃(x) and µñ(x) respectively. Then the possibility measure of m̃ and ñ is

defined as: Pos(m̃ ∗ ñ) = Sup {min(µm̃(x), µñ(y)), x, y ∈ R, x ∗ y}
Here, the abbreviation ’Pos’ stands for possibility measure and ’*’ represents any one of the relations

<,>,=,≤,≥ . Analogously if ñ be a crisp number,say n, then we have

Pos(m̃ ∗ n) = Sup {min(µm̃(x), x ∈ R, x ∗ n}
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Lemma 1. Let m̃ = (m1,m2,m3) be any triangular fuzzy number and 0 < m1 and n be any crisp

number. Then,

Pos(m̃ > n) ≥ α iff m3−n
m3−m2

≥ α

Definition 4 (Neutrosophic set). [45] Let the set X be a space of points (objects) and x ∈ X. A

neutrosophic set (NS) B̃n ⊂ X is represented by three independent functions: membership function

µB̃n(x), hesitation function σB̃n(x) and non-membership function νB̃n(x) and expressed as

B̃n = {(x, µB̃n(x), σB̃n(x), νB̃n(x)) : x ∈ X}.

where µB̃n(x), σB̃n(x), νB̃n(x) : X → ]0−, 1+[ ∀ x ∈ X are real standard or non-standard subset of

]0−, 1+[. The sum of these three independent functions is related as follows:

0− ≤ Sup µB̃n(x) + Sup σB̃n(x) + Sup νB̃n(x) ≤ 3+ ∀ x ∈ X.

Definition 5 (Single valued neutrosophic set). [45] Let the set X be a space of points (objects). A

single valued neutrosophic set (SVNS) B̃ ⊂ X is expressed as

B̃n = {(x, µB̃n(x), σB̃n(x), νB̃n(x)) : x ∈ X}

where µB̃n , σB̃n , νB̃n : X → [0, 1] satisfy the condition 0 ≤ µB̃n(x) + σB̃n(x) + νB̃n(x) ≤ 3 ∀ x ∈
X. µB̃n(x), σB̃n(x) and νB̃n(x) denote the membership, hesitation and non-membership function

respectively.

Definition 6 (Single valued pentagonal neutrosophic number). [51] A single valued pentagonal

neutrosophic number (SVPN-number) B̃n having the form

B̃n = ⟨[(b′1, b
′
2, b

′
3, b

′
4, b

′
5);w], [(b

′′
1 , b

′′
2 , b

′′
3 , b

′′
4 , b

′′
5);u], [(b

′′′
1 , b

′′′
2 , b

′′′
3 , b

′′′
4 , b

′′′
5 ); y]⟩

where w, u, y ∈ [0, 1]. Here, membership function µB̃n(x) : R → [0, w], hesitation function σB̃n(x) :

R → [u, 1] and non-membership function νB̃n(x) : R → [y, 1] are defined as follows:

µB̃n(x) =



µ
B̃nl1

(x) b
′
1 ≤ x < b

′
2

µ
B̃nl2

(x) b
′
2 ≤ x < b

′
3

w x = b
′
3

µ
B̃nr2

(x) b
′
3 ≤ x < b

′
4

µ
B̃nr1

(x) b
′
4 ≤ x < b

′
5

0 otherwise

, σB̃n(x) =



σ
B̃nl1

(x) b
′′
1 ≤ x < b

′′
2

σ
B̃nl2

(x) b
′′
2 ≤ x < b

′′
3

u x = b
′′
3

σ
B̃nr2

(x) b
′′
3 ≤ x < b

′′
4

σ
B̃nr1

(x) b
′′
4 ≤ x < b

′′
5

0 otherwise
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and

νB̃n(x) =



ν
B̃nl1

(x) b
′′′
1 ≤ x < b

′′′
2

ν
B̃nl2

(x) b
′′′
2 ≤ x < b

′′′
3

y x = b
′′′
3

ν
B̃nr2

(x) b
′′′
3 ≤ x < b

′′′
4

ν
B̃nr1

(x) b
′′′
4 ≤ x < b

′′′
5

0 otherwise

respectively.

Definition 7 (Score function of PN number). [51] The score function is significantly used in the

conversion of PN number into a crisp real number. The value of the score function utterly depends

on the value of the membership, hesitation and non-membership degree of the PN number. Let

B̃n = ⟨(b1, b2, b3, b4, b5);µB̃n , σB̃n , νB̃n⟩ be any SVPN-number. Then the value of the score function

is evaluated as

S(B̃n) = 1
15

{
(b1 + b2 + b3 + b4 + b5)× (2 + µB̃n − σB̃n − νB̃n)

}
Definition 8 (Single valued trapezoidal neutrosophic number). [62] A single valued trapezoidal

neutrosophic number (SVTN-number) B̌ is a special neutrosophic set on R (set of real number)

having the form

B̌ = ⟨(b1, b2, b3, b4);wB̌, uB̌, yB̌⟩

where wB̌, uB̌, yB̌ ∈ [0, 1] be any real numbers and b1, b2, b3, b4 ∈ R, b1 ≤ b2 ≤ b3 ≤ b4 are the

values of the trapezoidal number. Here, membership function µB̌(x), hesitation function σB̌(x) and

non-membership function νB̌(x) are defined as follows:

µB̌(x) =



x−b1
b2−b1

wB̌ if b1 ≤ x < b2

wB̌ if b2 ≤ x ≤ b3

b4−x
b4−b3

wB̌ if b3 < x ≤ b4

0 otherwise

, σB̌(x) =



b2−x+uB̌(x−b1)
b2−b1

if b1 ≤ x < b2

uB̌ if b2 ≤ x ≤ b3
x−b3+uB̌(b4−x)

b4−b3
if b3 < x ≤ b4

0 otherwise

and

νB̌(x) =



b2−x+yB̌(x−b1)
b2−b1

if b1 ≤ x < b2

yB̌ if b2 ≤ x ≤ b3
x−b3+yB̌(b4−x)

b4−b3
if b3 < x ≤ b4

0 otherwise

respectively.

Definition 9 (⟨α, β, γ⟩-cut set of SVTN-number). [62] Let B̌ = ⟨(b1, b2, b3, b4);wB̌, uB̌, yB̌⟩ be a

SVTN-number. Then, ⟨α, β, γ⟩-cut set of the SVTN-number B̌ is denoted by B̌⟨α,β,γ⟩ and defined as:
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B̌⟨α,β,γ⟩ = {x|µB̌(x) ≥ α, σB̌(x) ≤ β, νB̌(x) ≤ γ, x ∈ R}

which satisfies following the conditions:

0 ≤ α ≤ wB̌, uB̌ ≤ β ≤ 1, yB̌ ≤ γ ≤ 1 and 0 ≤ α+ β + γ ≤ 3

where µB̌, σB̌ and νB̌ represent membership, hesitation and non-membership function respectively.

Definition 10 (α-cut, β-cut, γ-cut of SVTN-number). [62] Let B̌ = ⟨(b1, b2, b3, b4);wB̌, uB̌, yB̌⟩ be
an arbitrary SVTN-number. Then

1. α-cut of B̌ is defined by

B̌α = [LB̌(α), RB̌(α)] =
[
(wB̌−α)b1+αb2

wB̌
,
(wB̌−α)b4+αb3

wB̌

]
where α ∈ [0, wB̌].

2. β-cut of B̌ is defined by

B̌β = [L
′

B̌
(β), R

′

B̌
(β)] =

[
(1−β)b2+(β−uB̌)b1

1−uB̌
,
(1−β)b3+(β−uB̌)b4

1−uB̌

]
where β ∈ [uB̌, 1].

3. γ-cut of B̌ is defined by

B̌γ = [L
′′

B̌
(γ), R

′′

B̌
(γ)] =

[
(1−γ)b2+(γ−yB̌)b1

1−yB̌
,
(1−γ)b3+(γ−yB̌)b4

1−yB̌

]
where γ ∈ [yB̌, 1].

Theorem 1. Let B̌ = ⟨(b1, b2, b3, b4);wB̌, uB̌, yB̌⟩ be an arbitrary SVTN-number. Then, B̌⟨α,β,γ⟩ =

B̌α ∩ B̌β ∩ B̌γ is hold for any 0 < α < wB̌, uB̌ < β < 1 and yB̌ < γ < 1 where 0 ≤ α+ β + γ ≤ 3.

Proof: See [62]

Lemma 2. Let A = [a, b], a, b > 0 be a closed interval with weights w1(> 0), w2(> 0). Then the

interval can be represented by a function using the weighted arithmetic mean

WAMA(ρ) =
w1a+ w2b

w1 + w2
= a(1− ρ) + bρ

where ρ = w2
w1+w2

, ρ ∈ [0, 1].

Definition 11 (Rough variable). [28] Let (Λ, δ,A, π) be a rough space. A rough variable ξ is a

measurable function from the rough space (Λ, δ,A, π) to R (the set of real numbers). That is, for

every Borel set B of R, we have {η ∈ Λ : ξ(η) ∈ B} ∈ A
The upper and lower approximations of the rough variable ξ are denoted and defined by ξ̄ =

{ξ(η) : η ∈ Λ} and ξ = {ξ(η) : η ∈ δ} respectively.

Definition 12 (Trust measure). [28] Let (Λ, δ,A, π) be a rough space. The trust measure of event

A is denoted by Tr {A} and defined by Tr {A} = 1
2(Tr {A} + Tr {A}), where the lower and upper

trust measure of event A are defined by Tr {A} = π{A∩δ}
π{δ} and Tr {A} = π{A}

π{Λ} respectively.
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For a real life problem when sufficient information is given about the measurement of π, it may

be treated as Lebesgue measure. More generally, the trust measure can be considered in the form as

Tr {A} = (1− η)Tr {A}+ ηTr {A} , 0 < η < 1.

Let ξ̂ = ([m,n][p, q]), p ≤ m ≤ n ≤ q be a rough variable. Lebesgue measure is considered for the

trust measure of the rough event associated with ξ̂ ≥ r. Then the trust measure of the rough event

ξ̂ ≥ r is defined by the following function curve

Tr
{
ξ̂ ≥ r

}
=



0 if q ≤ r

η(q−r)
q−p if n ≤ r ≤ q

η(q−r)
q−p + (1−η)(n−r)

n−m if m ≤ r ≤ n

η(q−r)
q−p + (1− η) if p ≤ r ≤ m

1 if r ≤ p

Theorem 2. [28] Let ξ̂ = ([m,n][p, q]), p ≤ m ≤ n ≤ q be a rough variable and ξ̂ ≥ r be a rough

event. Then Tr
{
ξ̂ ≥ r

}
≥ α iff

r ≤



q − α(q−p)
η if n ≤ r ≤ q

η(n−m)+(1−η)n(q−p)−α(q−p)(n−m)
η(n−m)+(1−η)n(q−p) if m ≤ r ≤ n

q + (1−η−α)(q−p)
η if p ≤ r ≤ m

p

for any predetermined level α ∈ [0, 1]

Proof. For any α ∈ [0, 1], we have

Tr
{
ξ̂ ≥ r

}
≥ α

⇔ α ≤ Tr
{
ξ̂ ≥ r

}

⇔ α ≤



0 if q ≤ r

η(q−r)
q−p if n ≤ r ≤ q

η(q−r)
q−p + (1−η)(n−r)

n−m if m ≤ r ≤ n

η(q−r)
q−p + (1− η) if p ≤ r ≤ m

1 if r ≤ p

[With the help of definition of trust measure of an event]

⇔ r ≤



q − α(q−p)
η if n ≤ r ≤ q

η(n−m)+(1−η)n(q−p)−α(q−p)(n−m)
η(n−m)+(1−η)n(q−p) if m ≤ r ≤ n

q + (1−η−α)(q−p)
η if p ≤ r ≤ m

p
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Hence the proof is done.
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