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Abstract: The Vehicle Routing Problem (VRP) has been extensively studied by different researchers from all over the world 

in recent years. Multiple solutions have been proposed for different variations of the problem, such as Capacitive Vehicle 

Routing Problem (CVRP), Vehicle Routing Problem with Time Windows (VRP-TW), Vehicle Routing Problem with Pickup 

and Delivery (VRPPD), among others, all of them with deterministic times. In the last years, researchers have been interested 

in including in their different models the variations that travel times may experience when exposed to all kind of phenomena, 

mainly vehicle traffic. This article addresses the VRP from this perspective, proposing the design and implementation of a 

genetic algorithm based on neutrosophic theory for calculating the fitness function of each route, considering the variability 

and uncertainty present in travel times. A deterministic genetic algorithm is also implemented with the average travel times 

to compare it with the neutrosophic algorithm using simulation. As conclusion, a deterministic algorithm does not necessarily 

generate the best solution in the real world, full of uncertainty. Also, the quantification of uncertainty using neutrosophic 

theory can be used in route planning, opening a broad and interesting field of research for future investigations. 

Keywords: Vehicle Routing Problem (VRP); Neutrosophic Theory; Uncertain Travel Times; Stochastic Vehicle Routing 
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1. Introduction 

One of the characteristics that most affect the proper functioning of supply chains today is the variability and 

uncertainty present in their transportation systems [1], mainly due to three causes: firstly, the high complexity of 

its large-scale processes, secondly, to the occurrence of complex and random traffic phenomena, and, thirdly, to 

the susceptibility of being affected by external and unpredictable factors. 

It is a common practice in companies to face the challenge of planning routes with many customers and 

demands using the empirical knowledge of their most experienced workers [2]. However, they face exceptionally 

tough working conditions due to the increasing number of routes and diversity of demands. For this reason, it is 

necessary to develop decision support systems that facilitate this task and allow planning efficient routes in short 

times applicable to the daily operation of companies. 

It should also be considered that the flow of traffic on urban roads in developing countries is characterized by 

being heterogeneous, due to the large number of buses on its main roads [3]. This condition makes it especially 

difficult to model traffic behavior in its most populated cities and, particularly complex, to estimate vehicle travel 

times through its streets. 

Among the external factors that affect the planning of the routes and cause the calculations to move away from 

reality, generating an increase in costs, we can consider the unpredictable behavior of some users, the various 

weather conditions that may occur, some of them extreme, in addition to the errors in the measurement or 

estimation of the travel times of each one of the routes [4]. 

Stochastic vehicle routing problems (SVRP) arise whenever some elements of the problem are random [5]. 

The most common cases found in the literature can be classified into three large groups: vehicle routing problems 
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with stochastic demand, vehicle routing problems with stochastic travel times, or problems in which both 

conditions are present. 

SVRPs differ from their deterministic counterpart in several fundamental aspects, mainly in a different solution 

concept, which results in much more complex solution methodologies, which are often considered computationally 

intractable, since only relatively small instances can be solved optimally and the difficulty programmers face when 

designing and evaluating good heuristics for this kind of problem. 

For the scope of this article, the authors focus on vehicle routing problems with stochastic travel times, mainly 

affected by unpredictable traffic behavior over time. This uncertainty is mainly due to two possible causes: the 

first, the probability of occurrence of traffic accidents and, the second, the variability of the demand of the transport 

networks, which generates phenomena such as peak hours or hours of high flow of vehicles and off-peak hours or 

hours with low vehicle traffic. These factors are the reason why the travel time between any two nodes in the 

transport network is considered stochastic [6]. 

A widely used tool to treat this stochasticity is the information available through historical data that is collected 

and analyzed to be converted into models or probability distributions of the random variables available, for our 

case study, of the travel times of each one of the arcs of the network [7]. In a pure SVRP, these distributions are 

available, and the route optimization process is static and is performed only once, without considering the changes 

that occur during the route. 

Among the different solutions found in the literature, we can cite branch and price algorithms [8], [9], 

simulation-based heuristics [10], simheuristics [11], [12], adaptive local search algorithms, ALNS, [13], scatter 

search [14], tabu search [15], iterative local search, ILS [16], particle swarm optimization, PSO [17], genetic 

algorithms [18], non-dominated sorting genetic algorithms, NSGA [19] and memetic algorithms [20], [21]. 

For the scope of this article, the authors focus on the difficulty of modeling traffic, due to its complexity and 

randomness, especially on last-mile route planning. Authors based on the open-source data published by Uber 

Movement of the historical travel times to get the minimum, maximum and average values for travel times between 

two nodes. Also, a function is proposed to convert this data into a triangular neutrosophic number [22] to make 

use of the score function to compare two neutrosophic numbers. This score function is used to calculate the fitness 

function of the proposed genetic algorithm. Finally, the results are compared and a good behavior of the 

neutrosophic algorithm is observed in stochastic scenarios. 

2. The proposed algorithm  

The methodology proposed for the development of this research consists of the following phases: the definition 

of the structure of the data available to carry out the study, the design of a function to convert the available data 

into neutrosophic triangular numbers, the definition of a fitness function based on a neutrosophic score function 

to compare two triangular neutrosophic numbers, the definition of the parameters and the design of the genetic 

algorithm, the implementation of a deterministic genetic algorithm to solve the VRP problem using the mean 

values of the travel times to compare it with the neutrosophic algorithm and finally the simulation through the 

generation of scenarios to test the performance of both algorithms. 

2.1. Definition of the structure of the data 

This research is based on the open-source data provided by Uber Movement [23] on the history of travel times 

between two nodes, in our case, in the city of Bogotá, Colombia. The data structure that we are going to use includes 

the minimum, maximum and mean value of the data history of each route for the period between March 1 and March 

31, 2020. 

2.2. Design of a function to convert the data to neutrosophic triangular number  

Once the travel times between a pair of nodes are obtained as a triplet [a, b, c] where a is the minimum value of 

the interval, b is the mean value and c the maximum value of the interval, we must proceed to convert this triplet into 

a neutrosophic triangular number 〈[𝑎, 𝑏, 𝑐], (𝑇, 𝐼, 𝐹)〉. For this purpose, the authors propose the use of the following 

function: 

𝑇𝑁𝑆 𝑛𝑢𝑚𝑏𝑒𝑟 =  〈[𝑎, 𝑏, 𝑐], (𝑇, 𝐼, 𝐹)〉 
where: 
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∆𝑇= min (
𝑏 − 𝑎
𝑐 − 𝑏

) 

 

∆𝐹= max (
𝑏 − 𝑎
𝑐 − 𝑏

) 

 

𝑇 = [1 −
∆𝑇

𝑏
, ∆𝑇< 𝑏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
] 

 

𝐼 = [

𝑐 − 𝑎

𝑏
, 𝑐 − 𝑎 < 𝑏

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
] 

 

𝐹 = [
∆𝐹

𝑏
, ∆𝐹< 𝑏

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
] 

2.3. Definition of the fitness function 

To calculate the fitness function, we rely on the score function used to compare two neutrosophic triangular 

numbers. 

 

Definition 1 [24]: (Comparison of any two random TNS numbers). Let �̂�
𝑁𝑆

= 〈[�̂�𝑇, �̂�𝐼, �̂�𝑃], (𝑇�̂�, 𝐼�̂�, 𝐹�̂�)〉 be a 

TNS number, and then the score function is defined as follows:  
 

𝑠(𝑟𝑁𝑆) =
1

12
∙ [�̂�𝑇 + 2 ∙ �̂�𝐼 + �̂�𝑃] ∙ [2 + 𝑇�̂� − 𝐼�̂� − 𝐹�̂�] 

 

Let �̂�
𝑁𝑆

= 〈[�̂�𝑇, �̂�𝐼, �̂�𝑃], (𝑇�̂�, 𝐼�̂�, 𝐹�̂�)〉 and �̂�𝑁𝑆 = 〈[�̂�𝑇, �̂�𝐼, �̂�𝑃], (𝑇�̂�, 𝐼�̂�, 𝐹�̂�)〉 be two arbitrary TNSNs, the 

ranking of �̂�𝑁𝑆 and �̂�𝑁𝑆 by score function is defined as follows: 

 

if 𝑠(�̂�𝑁𝑆) ≻ 𝑠(�̂�𝑁𝑆) then �̂�𝑁𝑆 ≻ �̂�𝑁𝑆 

if 𝑠(�̂�𝑁𝑆) ≺ 𝑠(�̂�𝑁𝑆) then �̂�𝑁𝑆 ≺ �̂�𝑁𝑆 

if 𝑠(�̂�𝑁𝑆) ≈ 𝑠(�̂�𝑁𝑆) then �̂�𝑁𝑆 ≈ �̂�𝑁𝑆 

 

The value of the fitness function of each individual is equal to the sum of the score function of the neutrosophic 

triangular number that represents the distance between each pair of nodes of the route. 

2.4. Definition of parameters and design of the genetic algorithm 

2.4.1. Individual 

Each individual is represented by a chromosome of n+2 positions, where n is the number of customers that are 

visited on the route. For example, for 10 clients, the chromosome would have 12 positions, one for each of the clients 

represented by 1, 2, 3..., n plus a zero at the beginning and at the end of the chromosome that represent the deposit 

from which the route starts and where the route finishes as seen on figure 1. 

 

 

Figure 1. Chromosome for an individual with 10 clients. 
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2.4.2. Parent selection 

The selection is carried out by a selection function, proportional to the fitness function, in which each individual 

has a probability of being selected as a parent that is proportional to the value of its fitness function. Because for the 

VRP the best individual is the one with the lowest value of the fitness function, the probability of being selected will 

be inversely proportional to their fitness. 

2.4.3. Crossover function 

The crossover function generates two random positions from the first parent to cut a chromosome fragment 

between the two positions. That fragment is then inserted at a random location within the second parent. Finally, the 

values that are repeated within the chromosome are eliminated from this resulting chromosome to generate the child. 

Figure 2 shows an example of the crossover function. 

 

 

Figure 2. Example of the crossover function. 

2.4.4. Mutation function 

The mutation probability was set at 5 percent to diversify the individuals and avoid falling into a local optimum. 

If an individual is chosen for the mutation, two chromosome positions are randomly selected, and their values are 

swapped. Figure 3 shows an example of a mutation. 

 

 

Figure 3. Example of the mutation function. 

2.4.5. Pseudocode 

Step 1. Generate random population 

Step 2. Calculate fitness 

Step 3. Update the incumbent 

Step 4. For the number of generations: 

Step 4.1. Parent selection 

Step 4.2. Crossover function 

Step 4.3. Mutation function 

Step 4.4. Calculate fitness 

Step 4.5. Update the incumbent 
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2.5. Design of the deterministic genetic algorithm 

To test the results of the proposed neutrosophic algorithm, we are going to implement a deterministic algorithm, 

which will have the same design as the neutrosophic algorithm with the difference that its fitness function will be 

equal to the sum of the mean travel times of each pair of nodes. 

2.6. Simulation 

In order to simulate the behavior of the algorithm in the real world we are going to randomly generate one hundred 

scenarios based on the data we have. To randomly generate the travel times between any pair of nodes, we need to 

fit the data we have to a probability distribution. For our case, the probability distribution that is closest to the behavior 

of the travel times and to the data we have is the triangular distribution, for which we need the values of the maximum, 

minimum, and mode. The maximum and minimum values are available in the data; however, the mode is not. To 

calculate the mode, we rely on the following equation applicable to a triangular distribution: 

 

𝑀𝑒𝑎𝑛 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 + 𝑀𝑜𝑑𝑒 + 𝑀𝑖𝑛𝑖𝑚𝑢𝑚

3
 

 

Bearing in mind that we have the value of the mean in the data, we only have to get the mode from the equation 

to be able to calculate it for the travel times between each pair of nodes. 

 

𝑀𝑜𝑑𝑒 = 3 ∙ 𝑀𝑒𝑎𝑛 − 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 
 

Having the values of maximum, minimum and mode we proceed to randomly generate the travel times between 

each pair of nodes using the triangular distribution. One hundred scenarios are generated, and the best solution 

obtained by the neutrosophic algorithm is compared against the best solution obtained by the deterministic algorithm 

to evaluate the results and draw conclusions. 

 
3. Results  

To test the performance of the algorithm, eleven locations will be selected from the Uber Movement database. 

Ten will be the customers and will be numbered from 1 to 10 and one will be the supplier and will have the number 

zero. The values in seconds for the maximum value of the range of travel times between each location can be seen 

in table 1. 

Table 1. Maximum value for the range of travel times between each pair of nodes. 

CUSTOMER 0 1 2 3 4 5 6 7 8 9 10 

0 0 2217 1076 1965 2780 2518 3402 1344 2071 1778 2242 

1 1945 0 1732 1505 2586 2926 3635 2283 1339 1037 2000 

2 1490 1425 0 719 2095 1719 3692 1371 1231 855 1187 

3 2125 1367 1141 0 2323 2758 2376 950 889 984 737 

4 2486 2668 2200 1945 0 784 1015 2968 1798 1419 2511 

5 1984 1986 1715 1542 773 0 1690 2544 1341 907 2113 

6 3086 3558 3491 2517 1273 1583 0 3743 2754 2299 2901 

7 1236 2503 1219 1278 3055 2723 3103 0 1762 1823 1058 

8 2051 1194 1873 927 1954 2240 2963 1770 0 1009 1552 

9 1016 998 809 819 2000 1964 2870 1597 542 0 1362 

10 2064 2647 1894 1229 3900 3676 4547 1318 2301 2507 0 

 

The values in seconds for the mean value of the range of travel times between each location can be seen in 

table 2. 
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Table 2. Mean value for the range of travel times between each pair of nodes. 

CUSTOMER 0 1 2 3 4 5 6 7 8 9 10 

0 0 1604 739 1333 1938 1768 2448 922 1491 1228 1550 

1 1392 0 1194 1046 1705 1930 2432 1587 942 685 1354 

2 896 971 0 481 1379 1147 2351 837 824 546 734 

3 1370 989 699 0 1471 1857 1582 578 574 600 405 

4 1742 1821 1475 1341 0 342 633 1979 1203 888 1706 

5 1459 1393 1199 1089 327 0 988 1726 928 602 1450 

6 2234 2576 2376 1865 798 991 0 2487 1889 1533 2164 

7 805 1743 711 775 2098 1902 2134 0 1191 1208 585 

8 1419 824 1198 600 1215 1435 1856 1171 0 615 976 

9 726 688 507 550 1129 1108 1792 1016 364 0 877 

10 1375 1905 1194 669 2658 2529 3008 724 1412 1684 0 

 

The values in seconds for the mean value of the range of travel times between each location can be seen in 

table 3. 

Table 3. Minimum value for the range of travel times between each pair of nodes. 

CUSTOMER 0 1 2 3 4 5 6 7 8 9 10 

0 0 1160 507 904 1350 1241 1761 632 1073 847 1071 

1 995 0 823 726 1124 1272 1626 1102 662 452 916 

2 538 661 0 321 907 765 1496 510 551 348 453 

3 882 715 428 0 931 1250 1052 351 370 365 222 

4 1220 1242 988 924 0 149 394 1319 804 555 1158 

5 1072 976 837 768 138 0 577 1170 642 399 994 

6 1617 1864 1616 1381 500 620 0 1652 1295 1021 1613 

7 524 1213 414 469 1490 1328 1467 0 804 800 323 

8 981 568 766 387 755 919 1162 774 0 374 613 

9 518 473 317 369 637 624 1118 646 244 0 564 

10 915 1370 752 364 1811 1739 1989 397 866 1131 0 

 
Using the function defined in section 2.2, we proceed to calculate the degrees of truth, indeterminacy, and 

falsity of each triplet. The degrees of truth of each of the travel times between each pair of nodes can be seen in 

table 4. 

Table 4. Degree of truth for the values of travel times between each pair of nodes. 

CUSTOMER 0 1 2 3 4 5 6 7 8 9 10 

0  0,723 0,686 0,678 0,697 0,702 0,719 0,685 0,720 0,690 0,691 

1 0,715 
 

0,689 0,694 0,659 0,659 0,669 0,694 0,703 0,660 0,677 

2 0,600 0,681 
 

0,667 0,658 0,667 0,636 0,609 0,669 0,637 0,617 

3 0,644 0,723 0,612 
 

0,633 0,673 0,665 0,607 0,645 0,608 0,548 

4 0,700 0,682 0,670 0,689 
 

0,436 0,622 0,666 0,668 0,625 0,679 

5 0,735 0,701 0,698 0,705 0,422 
 

0,584 0,678 0,692 0,663 0,686 

6 0,724 0,724 0,680 0,740 0,627 0,626 
 

0,664 0,686 0,666 0,745 
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CUSTOMER 0 1 2 3 4 5 6 7 8 9 10 

7 0,651 0,696 0,582 0,605 0,710 0,698 0,687 
 

0,675 0,662 0,552 

8 0,691 0,689 0,639 0,645 0,621 0,640 0,626 0,661 
 

0,608 0,628 

9 0,713 0,688 0,625 0,671 0,564 0,563 0,624 0,636 0,670 
 

0,643 

10 0,665 0,719 0,630 0,544 0,681 0,688 0,661 0,548 0,613 0,672 
 

 

The degrees of indeterminacy of each of the travel times between each pair of nodes can be seen in table 5. 

Table 5. Degree of indeterminacy for the values of travel times between each pair of nodes. 

CUSTOMER 0 1 2 3 4 5 6 7 8 9 10 

0  0,659 0,770 0,796 0,738 0,722 0,670 0,772 0,669 0,758 0,755 

1 0,682 

 

0,761 0,745 0,857 0,857 0,826 0,744 0,719 0,854 0,801 

2 1,000 0,787 

 

0,827 0,861 0,832 0,934 1,000 0,825 0,929 1,000 

3 0,907 0,659 1,000 

 

0,946 0,812 0,837 1,000 0,904 1,000 1,000 

4 0,727 0,783 0,822 0,761 

 

1,000 0,981 0,833 0,826 0,973 0,793 

5 0,625 0,725 0,732 0,711 1,000 

 

1,000 0,796 0,753 0,844 0,772 

6 0,658 0,658 0,789 0,609 0,969 0,972 

 

0,841 0,772 0,834 0,595 

7 0,884 0,740 1,000 1,000 0,746 0,733 0,767 

 

0,804 0,847 1,000 

8 0,754 0,760 0,924 0,900 0,987 0,921 0,970 0,851 

 

1,000 0,962 

9 0,686 0,763 0,970 0,818 1,000 1,000 0,978 0,936 0,819 

 

0,910 

10 0,836 0,670 0,956 1,000 0,786 0,766 0,850 1,000 1,000 0,817 

 

 
The degrees of falsity for each of the travel times between each pair of nodes can be seen in table 6. 

Table 6. Degree of falsity for the values of travel times between each pair of nodes. 

CUSTOMER 0 1 2 3 4 5 6 7 8 9 10 

0  0,382 0,456 0,474 0,434 0,424 0,390 0,458 0,389 0,448 0,446 

1 0,397 
 

0,451 0,439 0,517 0,516 0,495 0,439 0,421 0,514 0,477 

2 0,663 0,468 
 

0,495 0,519 0,499 0,570 0,638 0,494 0,566 0,617 

3 0,551 0,382 0,632 
 

0,579 0,485 0,502 0,644 0,549 0,640 0,820 

4 0,427 0,465 0,492 0,450 
 

1,000 0,603 0,500 0,495 0,598 0,472 

5 0,360 0,426 0,430 0,416 1,000 
 

0,711 0,474 0,445 0,507 0,457 

6 0,381 0,381 0,469 0,350 0,595 0,597 
 

0,505 0,458 0,500 0,341 

7 0,535 0,436 0,714 0,649 0,456 0,432 0,454 
 

0,479 0,509 0,809 

8 0,445 0,449 0,563 0,545 0,608 0,561 0,596 0,512 
 

0,641 0,590 

9 0,399 0,451 0,596 0,489 0,771 0,773 0,602 0,572 0,489 
 

0,553 

10 0,501 0,390 0,586 0,837 0,467 0,454 0,512 0,820 0,630 0,489 
 

 

Now with the data of the travel times converted to neutrosophic triangular numbers we proceed to execute the 

genetic algorithm for the proposed example. The best solution obtained by the neutrosophic genetic algorithm with 

a fitness of 3456.4 can be seen in figure 4. 

 

 

Figure 4. Best individual for the neutrosophic genetic algorithm. 
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The next step is to execute the deterministic genetic algorithm using the average values of the travel times 

between each pair of nodes. The best individual, with a fitness of 8508, for the deterministic genetic algorithm, 

can be seen in figure 5. 

 

 

Figure 5. Best individual for the deterministic genetic algorithm. 

Afterwards, the travel times between each pair of nodes are simulated for one hundred scenarios. Then the 

travel time of each of the best routes obtained by both the neutrosophic algorithm and the deterministic algorithm 

is calculated. The results can be seen in figure 6. 

 

The neutrosophic algorithm obtained a shorter total travel time than the deterministic algorithm in 52 of the 

100 simulated scenarios, while the deterministic algorithm obtained a shorter total travel time in 48 of the 100 

simulated scenarios. The graph of the percentage of success of each of the algorithms can be seen in figure 7. 

 

Figure 6. Travel times for both, the neutrosophic algorithm and the deterministic algorithm in the simulation. 

 

Figure 7. Percentage of successes of each algorithm. 

4. Conclusions 

Throughout this investigation we were able to verify the importance of including the uncertainty present in the 

data in the models we use for route planning. Working with mathematical models that only consider deterministic 

values can lead to generating solutions that in real life will not have the same behavior that was observed when 

solving the model. 
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The good performance of the neutrosophic theory was once again verified to work with values subject to 

different types of uncertainty, since it allows quantifying this uncertainty in order to take it into account in 

mathematical models and, as in this case, in the algorithms used to solve complex problems. 

Even though the simulation was based on fitting the data to a triangular distribution, which greatly reduces the 

uncertainty present in them, the algorithm presented good results for the problem we were studying. This research 

is expected to open a new branch in neutrosophic research by combining metaheuristics with neutrosophic theory 

to solve complex problems that are also subject to high levels of uncertainty. 
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