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Abstract: The purpose of this work is to understand the ranking order of the neutrosophic sets, 

where the uncertain or ambiguous information/data is stored in the terms of three independent 

variables i.e., degree of truthfulness, degree of indeterminacy, and degree of falseness. There exist 

many ranking tools in decision-making (DM) like score function (SF) and accuracy function (AF) 

that help to rank the single-valued neutrosophic set (SVNS) and the interval-valued neutrosophic 

set (IVNS) to make a better choice among all the available alternatives. An intensive study about all 

the existing score functions and an accuracy function reveals that the existing ranking method for 

SVNS and IVNS in DM problems holds for certain kinds of neutrosophic information and has its 

limitations. To validate these observations some well-defined examples are chosen, illustrating that 

the existing score functions and accuracy functions are like special cases for certain kinds of 

neutrosophic data. Since nothing in this world is an ultimate truth, hence this existing gap is a real 

motivation to come up with a more efficient SF and AF that would rank SVNS and IVNS in the 

real-life problems to make a better selection among all the available alternatives in DM problems in 

an efficient way. Hence, a new SF and AF have been proposed and multi-criteria decision-making 

(MCDM) method is developed based on these proposed SF and AF. Furthermore, a real-life 

problem from our immediate surroundings is taken and solved successfully, and also a 

comparative analysis of the solutions for the existing problems is made in detail.   

Keywords: Accuracy function (AF), average operators, IVNS, multi-criteria decision-making 

(MCDM), score function (SF), SVNS. 

 

1. Introduction 

Humans among all the living beings have evolved most intelligently since their existence and the 

reason behind it is a proper and timely DM in their environment. In this computer age, the scientific 

world is in continuous motion and whatever is new today is old in another hour, and the 

information or statistical data available is not always crisp, definite, constant, determinate, and 
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consistent. Thus to deal with such kind of firsthand information, a new theory was evolved in 1965 

by a great philosopher Zadeh, who had a farsighted vision and a penetrating understanding of the 

known and unknown data. He has come up with his intriguing theory of sets claiming that in 

real-life uncertainty is the only thing that is certain in life and named it as a fuzzy set (FS) [1] which 

deals with the concept of belongingness. This theory was reluctantly accepted in that period (i.e. in 

and around 1965) which tells that the available data is not always a real-value but it beholds the 

hand of uncertainty together and the study of this uncertainty or vagueness would be able to bring a 

huge revolution in the coming time with the real-life MCDM and MADM problems [2, 3]. After the 

acceptance of this theory of fuzzy sets, later with time, the scientific and intellectual world 

developed a keen interest in this concept of fuzziness, and then onwards various and wide 

extensions of fuzzy sets are propounded like- Atanassov proposed an intuitionistic fuzzy set (IFS) [4] 

who considered together both the concept of the degree of belongingness and the degree of 

non-belongingness. Since it is not always possible to evaluate any information in an exact value so, 

to define such data sometimes it is expressed in the interval, thus IFS was later expanded by 

Atanassov and Gargov to an interval-valued intuitionistic fuzzy set (IVIFS) [5]. Yager developed a 

Pythagorean fuzzy set (PFS) [6-8] which was extended by Zhang to an interval-valued Pythagorean 

fuzzy set (IVPFS) [9]. Smarandache introduced another extension of the FS as neutrosophic sets 

[10-12] which was more like a philosophical approach stating that together with membership and 

non-membership there is also an existence of one more component and he named it as 

indeterminacy such that, all these three values are independent of each other. IFS did not tell or 

explain indeterminate or inconsistent sets of information and hence neutrosophic set (NS) was able 

to handle such indeterminate data in a more efficient way. To apply this philosophy of NS into the 

real-world application Wang et al. [13, 14] proposed the concept of SVNSs and IVNSs along with 

their operators and properties respectively. 

Since FS theory and its extensions lagged to deal with indeterminacy and inconsistent set of data 

therefore neutrosophic sets have successfully overcome these fuzzy drawbacks. A lot of exploration 

has been made till now in the area of SVNSs and IVNSs like neutrosophic sets are successfully 

applied in fuzzy linear optimization by using an important DM technique as linear programming by 

various researchers say Hezam et al. [15], Abdel-Basset et al. [16-17], Pramanik [18], Ye [19], Nafei et 

al. [20], Khatter [21], Bera et al. [22], Basumatary et al. [23], etc. Cubic fuzzy sets (CFSs) are 

introduced by YB Jun et al. [24] and, then YB Jun et al. [25] and M. Alia et al. [26] have extended CFSs 

to the neutrosophic environment and proposed neutrosophic cubic fuzzy sets (NCFSs) along with 

some of their basic operations. Recently, Ajay et al. [27] proposed aggregation operators on NCFSs. 

JC Kely [28] in 1963 introduced bitopological spaces which were extended in other fuzzy 

environments by many other researchers like Kandil et al. [29], Lee et al. [30] and Mwchahary et al. 

[31] recently proposed the concept and the propositions of neutrosophic bitopological spaces. 

Abdel-Basset et al. [32] proposed a method using quality function deployment (QFD) and 

plithogenic aggregation operations, and also, Abdel-Basset and Rehab [33] proposed a methodology 

based on plithogenic MCDM approach, utilizing both, techniques for order preference by similarity 

to ideal solution (TOPSIS) and criteria importance through inter-criteria correlation (CRITIC) 
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techniques and applied in the study of telecommunications equipment categories. Lately, Nabeeh et 

al. [34] have contributed a lot in decision-making problems undertaken in the neutrosophic field like 

they have developed a neutrosophic MCDM framework to deal with inconsistent data related to 

environmental problems. Nabeeh et al. [35] have used integrated neutrosophic and TOSIS to deal 

with the personnel selection process. Nabeeh et al. [36] have applied the neutrosophic analytical 

hierarchy process (AHP) of the internet of things (IoT) in enterprises to estimate influential factors. 

Abdel-Basset et al. [37] proposed a hybrid combination of AHP and neutrosophic theory to deal with 

the uncertainty of IoT-based enterprises. 

DM is a procedure that helps in selecting the best possible alternative among the set of feasible 

solutions. Since the world is in continuous motion, the societal structure is growing every second, 

and we need to make decisions under all these factors i.e., peer pressure, the vagueness of the 

imprecise data, limited funds, high-risk factor, environmental factors, biases, etc. which influences 

the DM of a decision-maker. There influencing factors are directly or indirectly associated with the 

unpredictability of the set of data which could be indeterminate, inconsistent, or uncertain, etc., 

occurring in different fields of life like economics, engineering, medical sciences, computer sciences, 

management sciences, psychology, meteorology, sociology, decision making. Since neutrosophic 

sets are quite efficient in dealing with indeterminate and inconsistent sets of data hence, many 

researchers in literature [15-42] have applied neutrosophic sets in real-life applications and can 

provide a more satisfactory solution to  real-world applications like telecommunication, supply 

chain management, environment, personnel selection, enterprises, signal processing, pattern 

recognition, medical diagnosis, social sciences, engineering, management sciences, artificial 

intelligence, robotics, computer networks, DM, etc. MCDM helps the decision-maker to make his 

preferences by taking care of each criterion of the available alternatives, rank them by using some 

MCDM tools, and choose the best among the available alternatives.  

This paper is the outcome of a deep study that has been made to understand the various existing 

ranking orders like SF and AF of the extensions of fuzzy sets like IFS [43-45], PFS [6-8], IVPFS [46-54], 

NS [17, 55-65], trapezoidal interval-valued neutrosophic numbers [66], etc., by the various 

researchers. After a rigorous analysis, it has been observed that the existing SF and AF [67, 68] for 

comparing single-valued neutrosophic sets (SVNSs) and the interval-valued neutrosophic sets 

(IVNSs) are more efficient for some special cases of SVNSs and IVNSs. Some well-defined 

counter-examples are chosen where the rating value of uncertainty is taken as SVNSs and IVNSs to 

claim that, the existing SF and AF rank these SVNSs and IVNSs correctly only to a certain limit. 

Hence to fulfill all the restrictions of the existing SF and AF, there is a need to propose a new SF and 

AF which would act as a helpful tool in the real-world DM problems. Taking this notion as an 

inspiration, an effort is made to suggest a new SF and AF for efficiently comparing SVNSs and 

IVNSs. Furthermore, based on these proposed SF and AF, an MCDM method is developed to solve 

the real-life applications and to validate these proposed SF and AF, the exact result of the real-life 

problem taken from our immediate surroundings is solved successfully in which the preference 

rating values are expressed by SVNSs and IVNSs and also, a detailed comparative analysis of the 

solutions with the existing approaches is presented respectively.  



Neutrosophic Sets and Systems, Vol. 41, 2021     171  

 

 

Akanksha Singh, Shahid Ahmad Bhat; A novel score and accuracy function for neutrosophic sets and their real-world 

applications to multi-criteria decision-making process 

 

This paper is presented in the following manner: Section 2 - preliminaries; Section 3 - proposed 

SF and AF for SVNSs and IVNSs; Section 4 - MCDM method is proposed; Section 5 - real-life 

problem considered and solved; Section 6 - discussion and a comparative analysis of the obtained 

solutions; Section 7 – managerial insights; Section 8-conclusions. 

 2. Preliminaries - SVNSs, IVNSs and its SF and AF 

This section states some requisites while dealing with SVNSs and IVNSs in the real-life 

application for the DM process. 

Definition 2.1 [1] A set Ã = {〈x, μÃ(x)〉 | x ∈ X, 0 ≤ μÃ(x) ≤ 1}, defined on the universal set X, is said 

to be an FS, where μÃ(x) represents the degree of membership of the element x in Ã. 

Definition 2.2 [10] A set  ÃN  = {〈x, TÃN(x), IÃN(x), FÃN(x)〉|x ∈ X, 0− ≤ TÃN(x) ≤ 1+, 0− ≤ IÃN(x) ≤

1+, 0− ≤ FÃN ≤ 1+, TÃN(x) + IÃN(x) + FÃN(x) ≤ 3+}, defined on the universal set X, is said to be an 

NS, where, TÃN(x), IÃN(x), and FÃN(x) represents the degree of truth-membership, the degree of 

indeterminacy-membership and degree of falsity-membership respectively of the element x in ÃN 

as a real standard or real non-standard subsets of ]0−, 1+[.  

Definition 2.3 [13] A set  ÃN  = {〈x, TÃN(x), IÃN(x), FÃN(x)〉|x ∈ X, 0 ≤ TÃN(x) ≤ 1, 0 ≤ IÃN(x) ≤ 1, 0 ≤

FÃN ≤ 1, TÃN(x) +  IÃN(x) + FÃN(x) ≤ 3}, defined on the universal set X, is said to be an SVNS, 

where, TÃN(x), IÃN(x) , and FÃN(x)  represents the degree of truth-membership, the degree of 

indeterminacy-membership and degree of falsity-membership respectively of the element x in ÃN. 

For convenience, we may write the single-valued neutrosophic number (SVNN) as ÃN  =  〈α, β, γ〉. 

Definition 2.4 [14] A set ÃN  = {〈x, [T
ÃN
L (x), T

ÃN
U (x)], [I

ÃN
L (x), I

ÃN
U (x)], [F

ÃN
L (x), F

ÃN
U (x)]〉|x ∈ X, 0 ≤

T
ÃN
L (x) ≤ T

ÃN
U (x) ≤ 1, 0 ≤ I

ÃN
L (x) ≤ I

ÃN
U (x) ≤ 1, 0 ≤ F

ÃN
L (x) ≤ F

ÃN
U (x) ≤ 1, T

ÃN
U (x) + I

ÃN
U (x) + F

ÃN
U (x) ≤

3 }, defined on the universal set X, is said to be an IVNS, where, [T
ÃN
L (x), T

ÃN
U (x)], [I

ÃN
L (x), I

ÃN
U (x)] 

and [F
ÃN
L (x), F

ÃN
U (x)] represents the intervals of the degree of truth-membership, the degree of 

indeterminacy-membership and the degree of falsity-membership respectively of the element x in 

ÃN . For convenience, we may write interval-valued neutrosophic number (IVNN) as ÃN  =

 〈[α1, α2)], [β1, β2], [γ1, γ2]〉. 

Definition 2.5 [67] Average operator for SVNSs:  

Since ÃN  = {〈x, TÃN(x), IÃN(x), FÃN(x)〉|x ∈ X}  is an SVNS, then let Ãk
N(k = 1,2, … , n)  be n 

numbers of SVNSs.  

 (i) Weighted arithmetic average operator (WAM) for SVNSs is defined as 

AOWA = (Ã1
N, Ã2

N, … , Ãn
N) = ∑ wkÃk

Nn
k=1   

= (1 − ∏ (1 − TÃk
N(x))

wk
n
k=1 , ∏ (IÃk

N(x))
wk

n
k=1 , ∏ (FÃk

N(x))
wk

n
k=1 )       (1) 

where wk  denotes the weight vector of SVNSs Ãk
N(k = 1,2, … , n)  and satisfies the 

conditions such that wk ∈ [0,1] and ∑ wk
n
k=1 = 1.     

 (ii) Weighted geometric average operator (WGM) for SVNSs is defined as 

AOWG = (Ã1
N, Ã2

N, … , Ãn
N) = ∏ wkÃk

Nn
k=1   

= (∏ (TÃk
N(x))

wk
n
k=1 , 1 − ∏ (1 − IÃk

N(x))
wk

n
k=1 , 1 − ∏ (1 − FÃk

N(x))
wk

n
k=1 )     (2) 
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where wk  denotes the weight vector of SVNSs Ãk
N(k = 1,2, … , n)  and satisfies the 

conditions such that wk ∈ [0,1] and ∑ wk
n
k=1 = 1.     

Definition 2.6 [67] Average operator for IVNSs:  

Since ÃN  = {〈x, [T
ÃN
L (x), T

ÃN
U (x)], [I

ÃN
L (x), I

ÃN
U (x)], [F

ÃN
L (x), F

ÃN
U (x)]〉|x ∈ X}  is an IVNS, then let 

Ãk
N(k = 1,2, … , n) be n numbers of IVNSs.  

 (i) Weighted arithmetic average operator (WAM) for IVNSs is defined as 

AOWA = (Ã1
N, Ã2

N, … , Ãn
N) = ∑ wkÃk

Nn
k=1  = ([1 − ∏ (1 − T

ÃN
L (x))

wkn
k=1 , 1 − ∏ (1 −n

k=1

T
ÃN
U (x))

wk
] , [∏ (I

ÃN
L (x))

wkn
k=1 , ∏ (I

ÃN
U (x))

wkn
k=1 ]  , [∏ (F

ÃN
L (x))

wkn
k=1 , ∏ (F

ÃN
U (x))

wkn
k=1 ])    

                  (3) 

 where wk  denotes the weight vector of IVNSs Ãk
N(k = 1,2, … , n)  and satisfies the 

conditions such that wk ∈ [0,1] and ∑ wk
n
k=1 = 1.    

 (ii)  Weighted geometric average operator (WGM) for IVNSs is defined as 

AOWG = (Ã1
N, Ã2

N, … , Ãn
N) = ∏ wkÃk

Nn
k=1   

= ([∏ (T
ÃN
L (x))

wkn
k=1 , ∏ (T

ÃN
U (x))

wkn
k=1 ] , [1 − ∏ (1 − I

ÃN
L (x))

wkn
k=1 , 1 − ∏ (1 −n

k=1

 I
ÃN
U (x))

wk
] , [1 − ∏ (1 − F

ÃN
L (x))

wkn
k=1 , 1 − ∏ (1 −  F

ÃN
U (x))

wkn
k=1 ])      (4) 

where wk  denotes the weight vector of IVNSs Ãk
N(k = 1,2, … , n)  and satisfies the 

conditions such that wk ∈ [0,1] and ∑ wk
n
k=1 = 1.     

SF and AF are defined as a metric method for ranking SVNSs and IVNSs which clearly and 

precisely order the available alternatives and helps in choosing the best alternative among all the 

present alternatives.  

Definition 2.7 SF and AF for ranking SVNS 

Let ÃN  = {〈x, TÃN(x), IÃN(x), FÃN(x)〉|x ∈ X} be an SVNS, then SF and AF for SVNS is defined as, 

 (i) Existing SVNS SF [67] is defined as 

 σS(ÃN) =
1+T

ÃN−2I
ÃN−F

ÃN

2
,              where σS(ÃN) ∈ [0,1].    (5) 

 (ii) Existing SVNS AF [67] is defined as 

 σA(ÃN) = TÃN − IÃN(1 − TÃN) − FÃN(1 − IÃN),   where σA(ÃN) ∈ [−1,1].    (6) 

 (iii)  Existing SVNS SF [68] is defined as 

 τS(ÃN) =
1+(T

ÃN−2I
ÃN−F

ÃN)(2−T
ÃN−F

ÃN)

2
,         where τS(ÃN) ∈ [0,1].    (7) 

 (iv)  Existing SVNS AF [68] is defined as 

 τA(ÃN) = TÃN − 2IÃN − FÃN ,        where τA(ÃN) ∈ [−1,1].     (8) 

Definition 2.8 SF and AF for ranking IVNS  

Let ÃN  = {〈x, [T
ÃN
L (x), T

ÃN
U (x)], [I

ÃN
L (x), I

ÃN
U (x)], [F

ÃN
L (x), F

ÃN
U (x)]〉|x ∈ X} be an IVNS, then SF and 

AF for IVNS is defined as, 

 (i) Existing IVNS SF [67] is defined as 
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χS(ÃN) =
2+T

ÃN
L +T

ÃN
U −2I

ÃN
L −2I

ÃN
U −F

ÃN
L −F

ÃN
U

4
,     where χS(ÃN) ∈ [0,1].   (9) 

 (ii) Existing IVNS AF [67] is defined as 

 χA(ÃN) =
1

2
(T

ÃN
L + T

ÃN
U − I

ÃN
U (1 − T

ÃN
U ) − I

ÃN
L (1 − T

ÃN
L ) − F

ÃN
U (1 − I

ÃN
L ) − F

ÃN
L (1 − I

ÃN
U )), 

where χA(ÃN) ∈ [−1,1].              (10) 

 

 (iii) Existing IVNS SF [68] is defined as 

ψS(ÃN) =
4+(T

ÃN
L +T

ÃN
U −2I

ÃN
L −2I

ÃN
U −F

ÃN
L −F

ÃN
U )(4−T

ÃN
L −T

ÃN
U −F

ÃN
L −F

ÃN
U )

8
, where ψS(ÃN) ∈ [0,1]. (11) 

3. Proposed SF and AF for SVNSs and IVNSs 

This section of the paper suggests a new SF and AF to obtain the correct ranking order of all the 

available alternatives of SVNSs and IVNSs and helps to choose the best alternative among all.  

3.1 Proposed SF and AF for SVNSs 

3.1.1 Proposed SF for SVNSs 

Let 𝐴̃𝑁  = {〈𝑥, 𝑇𝐴𝑁(𝑥), 𝐼𝐴𝑁(𝑥), 𝐹𝐴𝑁(𝑥)〉|𝑥 ∈ 𝑋} be an SVNS, then an SF in terms of the degree of 

truth-membership, the degree of indeterminacy-membership and the degree of falsity-membership 

respectively for SVNS, is defined by: 

𝜑𝑆(𝐴̃𝑁) =
1+(𝑇

𝐴̃𝑁−2𝐼
𝐴̃𝑁−𝐹

𝐴̃𝑁)

2 (2−𝑇
𝐴̃𝑁−𝐹

𝐴̃𝑁)
,   𝑤ℎ𝑒𝑟𝑒 𝜑𝑆(𝐴̃𝑁) ∈ [0,1] 𝑎𝑛𝑑 𝑇𝐴𝑁 + 𝐹𝐴𝑁 ≠ 2.        (12) 

Clearly, it is observed that if 𝑇𝐴𝑁 + 𝐹𝐴𝑁 = 1, then 𝜑𝑆(𝐴̃𝑁) = 𝜎𝑆(𝐴̃𝑁), therefore 𝑇𝐴𝑁 + 𝐹𝐴𝑁 ≠ 1. 

To validate the claim of the proposed SF (Eq. (12)), some well-defined SVNNs are chosen and 

evaluated. Let us consider the following examples. 

Example 1. Let 𝐴̃1
𝑁 = 〈𝑇𝐴1

𝑁(𝑥), 𝐼𝐴1
𝑁(𝑥), 𝐹𝐴1

𝑁(𝑥)〉,  and 𝐴̃2
𝑁 = 〈𝑇𝐴2

𝑁(𝑥), 𝐼𝐴2
𝑁(𝑥), 𝐹𝐴2

𝑁(𝑥)〉  be any two 

SVNNs, then the desirable alternative is selected according to the obtained value of SF using Eq. 

(12) among 𝐴̃1
𝑁 and 𝐴̃2

𝑁. 

 (i) Let 𝐴̃1
𝑁 = 〈0.6, 0.3, 0.0〉 and 𝐴̃2

𝑁 = 〈0.2, 0.1, 0.0〉, then 𝐴̃1
𝑁 > 𝐴̃2

𝑁 in accordance with proposed 

SF (Eq. (12)). 

 (ii)  Let 𝐴̃1
𝑁 = 〈0.6,0.2,0.2〉  and 𝐴̃2

𝑁 = 〈0.3,0.1,0.1〉  , then 𝐴̃1
𝑁 > 𝐴̃2

𝑁  in accordance with 

proposed SF (Eq. (12)).  

 (iii)  Let 𝐴̃1
𝑁 = 〈0.1,0.0,0.1〉  and 𝐴̃2

𝑁 = 〈0.3,0.0,0.3〉  , then 𝐴̃2
𝑁 > 𝐴̃1

𝑁  in accordance with 

proposed SF (Eq. (12)). 

 

For a deliberate comparison among various existing metric methods, for finding the correct 

ranking order of Example 1, a systematic tabular representation of the function values of various 

metric methods is presented in Table 1. 

 

 

 

 



Neutrosophic Sets and Systems, Vol. 41, 2021     174  

 

 

Akanksha Singh, Shahid Ahmad Bhat; A novel score and accuracy function for neutrosophic sets and their real-world 

applications to multi-criteria decision-making process 

 

Table 1. SF (𝝋𝑺(𝑨̃𝑵)) values in comparison with various existing metric methods 

 

SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝈𝑨(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝉𝑨(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈0.6, 0.3, 0.0〉 

𝐴̃2
𝑁 = 〈0.2, 0.1, 0.0〉 

 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.48 

0.12 

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.0 

0.0 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.4545 

0.2777 

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵 

𝐴̃1
𝑁 = 〈0.6, 0.2, 0.2〉 

𝐴̃2
𝑁 = 〈0.3, 0.1, 0.1〉 

 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.36 

0.14 

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.0 

0.0 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.4166 

0.3125 

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵 

𝐴̃1
𝑁 = 〈0.1, 0.0, 0.1〉 

𝐴̃2
𝑁 = 〈0.3, 0.0, 0.1〉 

(Adopted from [61]) 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.0 

0.0 

𝑨̃𝟏
𝑵 = 𝑨̃𝟐

𝑵 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.0 

0.0 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.2777 

0.3571 

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵 

 From Table 1, it is expressed that there may exist several ranking methods for SVNNs which can 

rank the alternatives, 𝐴̃1
𝑁, 𝐴̃2

𝑁 , and suggest which of the alternative is better among both. It has been 

observed that sometimes, the existing metric methods [67, 68] may or may not fail to rank, but the 

proposed SF (Eq. (12)) is providing desirable results respectively. Hence, it claims the validity of 

the proposed SF (Eq. (12)), stating that it is reasonable. 

  3.1.2 Proposed AF for SVNSs  

It is observed that there may exist several SVNNs where, 𝑇𝐴𝑁 + 𝐹𝐴𝑁 = 1, then sometimes the 

proposed SF, Eq. (12) may or may not be able to rank the SVNNs desirably. Some of SVNNs 𝐴̃1
𝑁 

and 𝐴̃2
𝑁, exhibiting such nature are considered as follows: 

Example 2. Let 𝐴̃1
𝑁 = 〈𝑇𝐴1

𝑁(𝑥), 𝐼𝐴1
𝑁(𝑥), 𝐹𝐴1

𝑁(𝑥)〉,  and 𝐴̃2
𝑁 = 〈𝑇𝐴2

𝑁(𝑥), 𝐼𝐴2
𝑁(𝑥), 𝐹𝐴2

𝑁(𝑥)〉  be any two 

SVNNs, then the desirable alternative is selected according to the obtained value of SF using Eq. 

(12) among 𝐴̃1
𝑁 and 𝐴̃2

𝑁. 

 (i) Let 𝐴̃1
𝑁 = 〈0.6, 0.1, 0.4〉 and 𝐴̃2

𝑁 = 〈0.8, 0.3, 0.2〉, then 𝐴̃1
𝑁 = 𝐴̃2

𝑁 in accordance with proposed 

SF (Eq. (12)). While it is obvious that A1 ≠ A2. 

 (ii)  Let 𝐴̃1
𝑁 = 〈0.9,0.4,0.1〉 and 𝐴̃2

𝑁 = 〈0.7,0.2,0.3〉, then 𝐴̃1
𝑁 = 𝐴̃2

𝑁 in accordance with proposed 

SF (Eq. (12)). While it is obvious that 𝐴1 ≠ 𝐴2. 

For a deliberate comparison among various existing metric methods, for finding the correct 

ranking order of Example 2, a systematic tabular representation of the function values of various 

metric methods is presented below in Table 2.  

Table 2. SF (𝝋𝑺(𝑨̃𝑵)) value of some special SVNNs using various existing methods 

SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝉𝑨(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈0.6, 0.1, 0.4〉 

𝐴̃2
𝑁 = 〈0.8, 0.3, 0.2〉 

 

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.0  

0.0  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝑨̃𝟏
𝑵 = 𝑨̃𝟐

𝑵  

𝐴̃1
𝑁 = 〈0.9,0.4,0.1〉 

𝐴̃2
𝑁 = 〈0.7, 0.2, 0.3〉 

 

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.0  

0.0  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝑨̃𝟏
𝑵 = 𝑨̃𝟐

𝑵  
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  From Table 2, it is observed that if there exist SVNNs where, 𝑇𝐴𝑁 + 𝐹𝐴𝑁 = 1, then sometimes 

may or may not the proposed SF, Eq. (12) lacks in providing a desirable solution.  

  Thus, to overcome this restriction, there is a need to find a new function that would be helpful to 

rank such alternatives 𝐴̃1
𝑁 and 𝐴̃2

𝑁 appropriately. Hence, a novel AF is proposed as follows: 

𝜑𝐴(𝐴̃𝑁) = 1 − 𝐼𝐴𝑁 − 2𝐹𝐴𝑁,                    (13) 

𝑤ℎ𝑒𝑟𝑒 𝜑𝐴(𝐴̃𝑁) ∈ [−1, 1], 𝑇𝐴𝑁 + 𝐹𝐴𝑁 = 1, and 𝐼𝐴𝑁 ≠ 0.  

  To validate the claim of the proposed AF (Eq. (13)), Example 2 is considered again and 

evaluated using the proposed AF (Eq. (13)) as follows:  

 (i) For Example 2 (i), where Ã1
N = 〈0.6, 0.1, 0.4〉  and Ã2

N = 〈0.8, 0.3, 0.2〉 , then Ã2
N > Ã1

N  in 

accordance with the proposed AF (Eq. (13)). 

 (ii) For Example 2 (ii), where 𝐴̃1
𝑁 = 〈0.9, 0.4, 0.1〉  and 𝐴̃2

𝑁 = 〈0.7, 0.2, 0.3〉 , then 𝐴̃1
𝑁 > 𝐴̃2

𝑁  in 

accordance with proposed AF (Eq. (13)). 

  For a deliberate comparison among various existing metric methods for finding the correct 

ranking order of Example 2, a systematic tabular representation is presented in Table 3. 

Table 3. AF (𝝋𝑨(𝑨̃𝑵)) values in comparison with various metric methods 

 

SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝉𝑨(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 𝝋𝑨(𝑨̃𝑵) 𝝈𝑨(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈0.6,0.1,0.4〉 

𝐴̃2
𝑁 = 〈0.8,0.3,0.2〉 

 

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.0  

0.0  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.1  

0.3  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.2  

0.6  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

𝐴̃1
𝑁 = 〈0.9,0.4,0.1〉 

𝐴̃2
𝑁 = 〈0.7,0.2,0.3〉 

 

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.0  

0.0  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.4  

0.2  

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵  

0.8  

0.4  

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵  

 

From Table 3, it is expressed that if there exist some SVNNs, exhibiting some peculiar behavior, 

then it can be ranked accordingly by using Eq. (13), and hence it produces desirable results and 

helps in selecting a better alternative among available SVNNs. Hence, it claims the validity of the 

proposed AF (Eq. (13)), stating that it is reasonable.  

Furthermore, it is observed that, if any of the necessary condition of AF (Eq. (13)) is violated 

i.e.,  

 (i) 𝑇𝐴𝑁 + 𝐹𝐴𝑁 = 1, or 

 (ii)  𝐼𝐴𝑁 ≠ 0,  

then the proposed AF (Eq. (13)), may or may not give a desirable result. Let us consider the 

following examples: 

Example 3. Let 𝐴̃1
𝑁 = 〈𝑇𝐴1

𝑁(𝑥), 𝐼𝐴1
𝑁(𝑥), 𝐹𝐴1

𝑁(𝑥)〉,  and 𝐴̃2
𝑁 = 〈𝑇𝐴2

𝑁(𝑥), 𝐼𝐴2
𝑁(𝑥), 𝐹𝐴2

𝑁(𝑥)〉  be any two 

SVNNs, then the desirable alternative is selected according to the obtained value of AF using Eq. 

(13) among these two SVNNs 𝐴̃1
𝑁 and 𝐴̃2

𝑁. 

 (i) Let 𝐴̃1
𝑁 = 〈0.1,0.0,0.9〉  and 𝐴̃2

𝑁 = 〈0.5,0.0,0.9〉 , then 𝐴̃1
𝑁 = 𝐴̃2

𝑁 = −0.8  in accordance with 

proposed AF (Eq. (13)) . While, it is obvious that 𝐴1 ≠ 𝐴2 , but we can see that the 

necessary conditions of AF, Eq. (13) are violated. 
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 (ii)  Let 𝐴̃1
𝑁 = 〈0.1,0.0,0.4〉  and 𝐴̃2

𝑁 = 〈0.7,0.2,0.3〉 , then 𝐴̃1
𝑁 = 𝐴̃2

𝑁 = 0.2  in accordance with 

proposed AF (Eq. (13)) . While, it is obvious that 𝐴1 ≠ 𝐴2 , but we can see that the 

necessary conditions of AF, Eq. (13) are violated. 

  Therefore, if we are using AF, Eq. (13), to obtain a reasonable solution then the must condition 

of AF, Eq. (13) should be necessarily followed. To validate this claim and to understand more 

precisely, let us consider some other example as follows: 

Example 4. Let 𝐴̃1
𝑁 = 〈𝑇𝐴1

𝑁(𝑥), 𝐼𝐴1
𝑁(𝑥), 𝐹𝐴1

𝑁(𝑥)〉,  and 𝐴̃2
𝑁 = 〈𝑇𝐴2

𝑁(𝑥), 𝐼𝐴2
𝑁(𝑥), 𝐹𝐴2

𝑁(𝑥)〉  be any two 

SVNNs, then the desirable alternative is selected according to the obtained value of AF using Eq. 

(13) among these two SVNNs 𝐴̃1
𝑁 and 𝐴̃2

𝑁. 

 (i) Let 𝐴̃1
𝑁 = 〈0.7, 0.2, 0.3〉 and 𝐴̃2

𝑁 = 〈0.6, 0.0, 0.4〉 be any two SVNNs, then on applying AF Eq. 

(13), the obtained values of 𝐴̃1
𝑁 and 𝐴̃2

𝑁 are 𝐴̃1
𝑁 = 𝐴̃2

𝑁 = 0.2 respectively. 

 (ii)   Let 𝐴̃1
𝑁 = 〈0.7, 0.2, 0.3〉  and 𝐴̃2

𝑁 = 〈0.6, 0.000001, 0.4〉  be any two SVNNs, then on 

applying AF Eq. (13), the obtained values of 𝐴̃1
𝑁  = 0.2 and 𝐴̃2

𝑁 = 0.1999999 respectively. 

 Thus, we observe that in SVNN 𝐴̃2
𝑁 = 〈0.6, 0.0, 0.4〉, of Example 4 (i), 𝐼𝐴2

𝑁(𝑥) = 0.0, the must 

condition of AF Eq. (13) i.e., 𝐼𝐴2
𝑁 ≠ 0, is violated, whereas in, SVNN 𝐴̃2

𝑁 = 〈0.6, 0.000001, 0.4〉 of 

Example 4 (ii), 𝐼𝐴2
𝑁  is nearly zero but is strictly not zero, i.e., 𝐼𝐴2

𝑁 = 0.0000001 ≠ 0, therefore, when 

AF Eq. (13) is applied on 𝐴̃2
𝑁 = 〈0.6, 0.0, 0.4〉 of Example 4 (i), the obtained value of 𝐴̃2

𝑁 is 𝐴̃2
𝑁 =

0.2, and when AF Eq. (13) is applied on 𝐴̃2
𝑁 = 〈0.6, 0.000001, 0.4〉 of Example 4 (ii), the obtained 

value of 𝐴̃2
𝑁 is 𝐴̃2

𝑁 = 0.1999999. Hence, we conclude that in Example 4 (i) alternatives 𝐴̃1
𝑁 and 𝐴̃2

𝑁 

are equal i.e., 𝐴̃1
𝑁 = 𝐴̃2

𝑁 = 0.2 while in Example 4 (ii) alternatives 𝐴̃1
𝑁 is greater than 𝐴̃2

𝑁 i.e.,  𝐴̃1
𝑁 >

𝐴̃2
𝑁 . 

 Therefore, we conclude from the above Example 3 and Example 4 that there may or may not 

exist several such SVNNs violating the must condition of the proposed AF, then Eq. (13) may or 

may not give an appropriate result. To handle such cases where the must condition for AF, Eq. (13) 

are not satisfied, then we can find the solution of such SVNNs from the AF, Eq. (6) of the literature 

[67] which can handle such special SVNNs in a better way.    

 Hence, it is claimed that the proposed AF Eq. (13) is simple but has restrictions in handling 

some special SVNNs, then such SVNNs can be ranked more appropriately by using the various 

other existing metric methods [67, 68], and the proposed SF Eq. (12) respectively. To validate the 

claim, Example 3 has been evaluated by using various other existing metric methods [67, 68], the 

proposed SF Eq. (12), and we conclude that in both the SVNSs, i.e., Example 3(i) and Example 3(ii), 

the desirable solution is 𝐴̃2
𝑁.  

Thus, the detailed comparative analysis of Example 3 has been made using various other 

existing metric methods [67, 68] and the proposed SF Eq. (12), as shown below in Table 4.  

Table 4. SF and AF values of various existing metric methods 

 

SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝈𝑨(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝉𝑨(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 𝝋𝑨(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈0.1,0.0,0.9〉 

𝐴̃2
𝑁 = 〈0.5,0.0,0.9〉 

 

0.1  

0.3  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

−0.8  

−0.4  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.1  

0.38  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

−0.8  

−0.4  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.1  

0.5  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

−0.8  

−0.8  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  
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𝐴̃1
𝑁 = 〈0.1,0.0,0.4〉 

𝐴̃2
𝑁 = 〈0.7,0.2,0.3〉 

0.35  

0.5  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

−0.3  

0.4  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.2750  

0.5  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵 

−0.3  

0.0  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.2333  

0.5  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.2  

0.2  

𝐴̃2
𝑁 = 𝐴̃1

𝑁  

  

 Hence, based on the existing metric methods [67, 68] for comparing any two SVNSs 𝐴̃1
𝑁 =

〈𝑇𝐴1
𝑁(𝑥), 𝐼𝐴1

𝑁(𝑥), 𝐹𝐴1
𝑁(𝑥)〉  and 𝐴̃2

𝑁 = 〈𝑇𝐴2
𝑁(𝑥), 𝐼𝐴2

𝑁(𝑥), 𝐹𝐴2
𝑁(𝑥)〉  using SF 𝜑𝑆(𝐴̃𝑁)  and AF 𝜑𝐴(𝐴̃𝑁) , a 

comparison method can be defined as follows: 

➢ If 𝜑𝑆(𝐴̃1
𝑁) > 𝜑𝑆(𝐴̃2

𝑁) then 𝐴̃1
𝑁 > 𝐴̃2

𝑁. 

➢ If 𝜑𝑆(𝐴̃1
𝑁) < 𝜑𝑆(𝐴̃2

𝑁) then 𝐴̃1
𝑁 < 𝐴̃2

𝑁. 

➢ If 𝜑𝑆(𝐴̃1
𝑁) = 𝜑𝑆(𝐴̃2

𝑁) then check 𝜑𝐴(𝐴̃𝑁) in the next step. 

✓ If 𝜑𝐴(𝐴̃1
𝑁) > 𝜑𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 > 𝐴̃2

𝑁. 

✓ If 𝜑𝐴(𝐴̃1
𝑁) < 𝜑𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 < 𝐴̃2

𝑁. 

✓ If 𝜑𝐴(𝐴̃1
𝑁) = 𝜑𝐴(𝐴̃2

𝑁) implies 𝐴̃1
𝑁 = 𝐴̃2

𝑁 for special SVNNs, then check 𝜎𝐴(𝐴̃𝑁) in 

the next step. 

• If 𝜎𝐴(𝐴̃1
𝑁) > 𝜎𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 > 𝐴̃2

𝑁. 

• If 𝜎𝐴(𝐴̃1
𝑁) < 𝜎𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 < 𝐴̃2

𝑁. 

• If 𝜎𝐴(𝐴̃1
𝑁) = 𝜎𝐴(𝐴̃2

𝑁) implies 𝐴̃1
𝑁 = 𝐴̃2

𝑁 . 

Thus, the proposed SF, Eq. (12) and the proposed AF, Eq. (13) can handle most of the SVNNs 

concerning its conditions and hence, are helpful in the DM process in a far better manner, and can 

give answers where the existing methods were having trouble in deriving the conclusions. 

To validate the claim of the proposed SF, Eq. (12) and the proposed AF, Eq. (13), a detailed 

analysis of its properties are presented as follows: 

Property 3.1. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉 the value of the proposed SF 𝜑𝑆(𝐴̃𝑁), Eq. (12) 

lies between [0,1] i.e., 𝜑𝑆(𝐴̃𝑁)  ∈ [0,1]. 

Property 3.2. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉 or SVNN 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉 (for convenience), if 

𝛼 + 𝛾 = 2, then on using proposed SF, Eq. (12) no conclusion can be drawn. 

Proof: Let us consider an example given below: 

Let 𝐴̃𝑁  =  〈1, 0.7, 1〉 be any SVNN, where 𝛼 + 𝛾 = 2, then from the proposed SF, Eq. (12), we 

have 

𝜑𝑆(𝐴̃𝑁) =
1+(𝛼−2(𝛽)−𝛾)

2 (2−(𝛼+𝛾))
=

1+(1−2(0.7)−1)

2 (2−1−1)
=

1−1.4

0
= ∞. 

Since 𝜑𝑆(𝐴̃𝑁)  ∈ [0,1], hence, no conclusion can be drawn. Thus, for any SVNN 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉, 

SF 𝜑𝑆(𝐴̃𝑁) holds if 𝛼 + 𝛾 ≠ 2 

Property 3.3. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉 or SVNN 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉 (for convenience), if 

𝛼 + 𝛾 = 1, then proposed SF, Eq. (12) reduces to SF, Eq. (5) i.e., 𝜑𝑆(𝐴̃𝑁) = 𝜎𝑆(𝐴̃𝑁). 

Proof: Let 𝛼 + 𝛾 = 1, then from the proposed SF, Eq. (12), we have 

𝜑𝑆(𝐴̃𝑁) =
1+(𝛼−2(𝛽)−𝛾)

2 (2−(𝛼+𝛾))
=

1+(𝛼−2(𝛽)−𝛾)

2 (2−1)
=

1+(𝛼−2(𝛽)−𝛾)

2 
= 𝜎𝑆(𝐴̃𝑁).  
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Property 3.4. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉 or SVNN 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉 (for convenience), the 

proposed SF, Eq. (12) is having a relationship with existing SF,𝜎𝑆(𝐴̃𝑁), and existing AF,𝜏𝐴(𝐴̃𝑁) as 

follows: 

 (i) 𝜑𝑆(𝐴̃𝑁) =
1+(𝛼−2(𝛽)−𝛾)

2 (2−𝛼−𝛾)
=

𝜎𝑆(𝐴𝑁)

 (2−𝛼−𝛾)
  

 (ii)  𝜑𝑆(𝐴̃𝑁) =
1+(𝛼−2(𝛽)−𝛾)

2 (2−𝛼−𝛾)
=

1+𝜏𝐴(𝐴𝑁)

2 (2−𝛼−𝛾)
.  

Property 3.5. One property: If SVNN 𝐴̃𝑁  =  〈1,0,0〉, then 𝜑𝑆(𝐴̃𝑁) = 1, i.e., the maximum value of 

SVNN 𝐴̃𝑁 is 1. 

Proof: Let 𝐴̃𝑁  =  〈1,0,0〉 be any SVNN, then from Eq. (12), we have 

 𝜑𝑆(𝐴̃𝑁) =
1+(1−2(0)−0)

2 (2−1−0)
 = 1.  

Property 3.6. Zero property: If SVNN 𝐴̃𝑁  =  〈0,0,1〉, then 𝜑𝑆(𝐴̃𝑁) = 0, i.e., the minimum value of 

SVNN 𝐴̃𝑁 is 0. 

Proof: Let 𝐴̃𝑁  =  〈0,0,1〉 be any SVNN, then from Eq. (12), we have 

 𝜑𝑆(𝐴̃𝑁) =
1+(0−2(0)−1)

2 (2−0−0)
 = 0.  

Property 3.7. For any subset of SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉  or 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉  (for 

convenience), the value of 𝜑𝑆(𝐴̃𝑁) = 𝛼 − 𝛽, if 𝛼 + 𝛾 = 1. 

Proof: Let 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉 be any subset of SVNS and 𝛼 + 𝛾 = 1.  

 (i)  Let 𝐴̃𝑁 = 〈𝛼, 𝛽, 1 − 𝛼〉, then from Eq. (12), we have   

𝜑𝑆(𝐴̃𝑁) =
1+(𝛼−2(𝛽)−(1−𝛼))

2 (2−𝛼−(1−𝛼))
  =

1+(2𝛼−2𝛽−1)

2
= 𝛼 − 𝛽.  

 (ii)  Let 𝐴̃𝑁 = 〈1 − 𝛾, 𝛽, 𝛾〉, then from Eq. (12), we have 

𝜑𝑆(𝐴̃𝑁) =
1+((1−𝛾)−2𝛽−𝛾)

2 (2−(1−𝛾)−𝛾)
  =

1+(1−2𝛽−2𝛾)

2
=

2(1−𝛽−𝛾)

2
= 𝛼 − 𝛽.  

Property 3.8. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉, the value of the proposed AF 𝜑𝐴(𝐴̃𝑁), Eq. (13) 

lies between [−1,1] i.e., 𝜑𝐴(𝐴̃𝑁) ∈ [−1,1], provided 𝛼 + 𝛾 = 1, and 𝛽 ≠ 0. 

Property 3.9. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉  or 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉  (for convenience), the 

proposed AF, 𝜑𝐴(𝐴̃𝑁) = 1 − 𝛽 − 2𝛾, is having a relation with SF Eq. (5) and AF, Eq. (6) as follows: 

i.e., 𝜑𝐴(𝐴̃𝑁) = 1 − (𝜎𝐴 − 𝜎𝑆) − 3𝛾 provided 𝛼 + 𝛾 = 1, and 𝛽 ≠ 0. 

Proof: Let 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉 be any SVNS, and 𝛼 + 𝛾 = 1, 𝛽 ≠ 0, then we have 

𝜑𝐴(𝐴̃𝑁) = 1 − (𝜎𝐴 − 𝜎𝑆) − 3𝛾  

= 1 − {(𝛼 − 𝛽(1 − 𝛼) − 𝛾(1 − 𝛽)) − (
1+𝛼−2𝛽−𝛾

2
)} − 3𝛾  

= 1 − {(𝛼 − 𝛽 + 𝛼𝛽 − 𝛾 + 𝛽𝛾) − (
1+1−𝛾−2𝛽−𝛾

2
)} − 3𝛾  

= 1 − {(1 − 𝛾 − 𝛽 + (1 − 𝛾)𝛽 − 𝛾 + 𝛽𝛾) − (
2−2𝛾−2𝛽

2
)} − 3𝛾  

= 1 − {(1 − 𝛾 − 𝛽 + 𝛽 − 𝛽𝛾 − 𝛾 + 𝛽𝛾) − (1 − 𝛾 − 𝛽)} − 3𝛾  

= 1 − (−𝛾 + 𝛽) − 3𝛾  
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= 1 − 𝛽 − 2𝛾. 

3.2 Proposed SF for IVNSs 

Let 𝐴̃𝑁  = {〈𝑥, [𝑇
𝐴𝑁
𝐿 (𝑥), 𝑇

𝐴𝑁
𝑈 (𝑥)], [𝐼

𝐴𝑁
𝐿 (𝑥), 𝐼

𝐴𝑁
𝑈 (𝑥)], [𝐹

𝐴̃𝑁
𝐿 (𝑥), 𝐹

𝐴𝑁
𝑈 (𝑥)]〉|𝑥 ∈ 𝑋} be an IVNS, then a new 

SF in terms of the degree of truth-membership, the degree of indeterminacy-membership, and the 

degree of falsity-membership respectively for IVNS are defined by: 

𝜔𝑆(𝐴̃𝑁) =
2+(𝑇

𝐴̃𝑁
𝐿 +𝑇

𝐴̃𝑁
𝑈 −2𝐼

𝐴̃𝑁
𝐿 −2𝐼

𝐴̃𝑁
𝑈 −𝐹

𝐴̃𝑁
𝐿 −𝐹

𝐴̃𝑁
𝑈 )

2 (4−𝑇
𝐴̃𝑁
𝐿 −𝑇

𝐴̃𝑁
𝑈 −𝐹

𝐴̃𝑁
𝐿 −𝐹

𝐴̃𝑁
𝑈 )

            (14) 

𝑤ℎ𝑒𝑟𝑒 𝜔𝑆(𝐴̃𝑁) ∈ [0,1] 𝑎𝑛𝑑 𝑇
𝐴𝑁
𝐿 + 𝑇

𝐴𝑁
𝑈 + 𝐹

𝐴𝑁
𝐿 + 𝐹

𝐴𝑁
𝑈 ≠ 4, as 0 ≤ T

ÃN
L (x) ≤ T

ÃN
U (x) ≤ 1, 0 ≤ F

ÃN
L (x) ≤

F
ÃN
U (x) ≤ 1.                               

Clearly, it is observed that if 𝑇
𝐴𝑁
𝐿 + 𝑇

𝐴𝑁
𝑈 + 𝐹

𝐴𝑁
𝐿 + 𝐹

𝐴𝑁
𝑈 = 2, then 𝜔𝑆(𝐴̃𝑁) = 𝜒𝑆(𝐴̃𝑁). 

To validate the claim of the proposed SF (Eq. (14)), some well-defined IVNNs are chosen and 

evaluated. Let us consider the following examples. 

Example 5. Let 𝐴̃1
𝑁 = 〈[𝑇

𝐴1
𝑁

𝐿 (𝑥), 𝑇
𝐴1

𝑁
𝑈 (𝑥)] , [𝐼

𝐴1
𝑁

𝐿 (𝑥), 𝐼
𝐴1

𝑁
𝑈 (𝑥)] , [𝐹

𝐴1
𝑁

𝐿 (𝑥), 𝐹
𝐴1

𝑁
𝑈 (𝑥)]〉  and 𝐴̃2

𝑁 =

〈[𝑇
𝐴2

𝑁
𝐿 (𝑥), 𝑇

𝐴2
𝑁

𝑈 (𝑥)] , [𝐼
𝐴2

𝑁
𝐿 (𝑥), 𝐼

𝐴2
𝑁

𝑈 (𝑥)] , [𝐹
𝐴2

𝑁
𝐿 (𝑥), 𝐹

𝐴2
𝑁

𝑈 (𝑥)]〉 be any two IVNNs, then the desirable alternative 

is selected according to the obtained value of SF using Eq. (14) among 𝐴̃1
𝑁 and 𝐴̃2

𝑁. 

 (i) Let 𝐴̃1
𝑁 = 〈[0.4,0.5], [0.1,0.2], [0.1,0.2]〉 and 𝐴̃2

𝑁 = 〈[0.48,0.52], [0.0,0.2], [0.2,0.4]〉 then 𝐴̃2
𝑁 > 𝐴̃1

𝑁 

in accordance with proposed SF (Eq. (14)). 

 (ii) Let 𝐴̃1
𝑁 = 〈[0.4,0.6], [0.125,0.125], [0.1,0.4]〉  and 𝐴̃2

𝑁 = 〈[0.23,0.67], [0.1125,0.1125], [0.05,0.4]〉 

then 𝐴̃1
𝑁 > 𝐴̃2

𝑁 in accordance with proposed SF (Eq. (14)).  

For a deliberate comparison among various existing metric methods, for finding the correct 

ranking order of Example 5, a systematic tabular representation of the function values of various 

metric methods is presented in Table 5. 

Table 5. SF (𝝎𝑺(𝑨̃𝑵)) values in comparison with various existing metric methods 

IVNNs 𝝌𝑺(𝑨̃𝑵) 𝝍𝑺(𝑨̃𝑵) 𝝎𝑺(𝑨̃𝑵) 𝝌𝑨(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈[0.4,0.5], [0.1,0.2], [0.1,0.2]〉 

𝐴̃2
𝑁 = 〈[0.48,0.52], [0.0,0.2], [0.2,0.4]〉 

 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.3571 

0.4167 

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵 

0.24 

0.27 

𝐴̃2
𝑁 > 𝐴̃1

𝑁 

𝐴̃1
𝑁 = 〈[0.4,0.6], [0.125,0.125], [0.1,0.4]〉 

𝐴̃2
𝑁 = 〈[0.23,0.67], [0.1125,0.1125], [0.05,0.4]〉 

 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.4 

0.3774 

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵 

0.2188 

0.1885 

𝐴̃1
𝑁 > 𝐴̃2

𝑁 

 

From Table 5, it is expressed that there may exist several ranking methods for IVNNs which can 

rank the alternatives, 𝐴̃1
𝑁, 𝐴̃2

𝑁 , and suggest which of the alternative is better among both. It has been 

observed that sometimes, the existing metric methods [67, 68] may or may not fail to rank, but the 

proposed SF (Eq. (14)) is providing desirable results. Hence, it claims the validity of the proposed 

SF (Eq. (14)), stating that it is reasonable.   
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  Also, it is observed that there may exist several IVNNs where, 𝑇
𝐴𝑁
𝐿 + 𝑇

𝐴𝑁
𝑈 + 𝐹

𝐴𝑁
𝐿 + 𝐹

𝐴𝑁
𝑈 = 2, then 

the proposed SF, Eq. (14) reduces to the existing SF (Eq. (9)) [67]. Some of IVNNs exhibiting such 

nature are considered as follows: 

Example 6. Let 𝐴̃𝑁 = 〈[0.22, 0.78], [0.1, 0.3], [0.3, 0.7]〉 , then 𝜔𝑆(𝐴̃𝑁) = 𝜒𝑆(𝐴̃𝑁) = 0.3000  in 

accordance with obtained value of SF on using (Eq. (14)) and (Eq. (9)). 

Example 7. Let 𝐴̃𝑁 = 〈[0.45, 0.55], [0.1, 0.2], [0.4, 0.6]〉 , then 𝜔𝑆(𝐴̃𝑁) = 𝜒𝑆(𝐴̃𝑁) = 0.3500  in 

accordance with obtained value of SF on using (Eq. (14)) and (Eq. (9)). 

For a deliberate comparison among various existing metric methods, for finding the correct 

score value of Example 6 and Example 7, a systematic tabular representation of the function values 

of various metric methods is presented in Table 6. 

Table 6. Function values of some special IVNNs using various existing methods 

 

IVNNs 𝝌𝑺(𝑨̃𝑵) 𝝍𝑺(𝑨̃𝑵) 𝝎𝑺(𝑨̃𝑵) 𝝌𝑨(𝑨̃𝑵) 

𝐴̃𝑁 = 〈[0.22, 0.78], [0.1, 0.3], [0.3, 0.7]〉 0.3000 0.3000 0.3000 0.0080 

𝐴̃𝑁 = 〈[0.45, 0.55], [0.1, 0.2], [0.4, 0.6]〉 0.3500 0.3500 0.3500 −0.0025 

 

  Also, it is observed that there may exist several IVNNs where, 𝑇
𝐴𝑁
𝐿 + 𝑇

𝐴𝑁
𝑈 + 𝐹

𝐴𝑁
𝐿 + 𝐹

𝐴𝑁
𝑈 = 4, then 

the proposed score functions Eq. (14), have its limitation. Let us consider an example of IVNNs 

exhibiting such nature as follows:  

Example 8. Let 𝐴̃1
𝑁 = 〈[1, 1], [0.2, 0.7], [1, 1]〉 and 𝐴̃2

𝑁 = 〈[1, 1], [0.5, 0.9], [1, 1]〉 be any two IVNNs, 

then 𝐴̃1
𝑁 = 𝐴̃2

𝑁 = ∞  on using the proposed SF, Eq. (14), since it is violating the must condition for 

the proposed SF Eq. (14) hence, no conclusion can be drawn. 

 Furthermore, on analysis, it is observed that the existing AF 𝜒𝐴(𝐴̃𝑁) , (Eq. (10) )  [67] is 

successful in giving a desirable solution for such IVNNs, where sometimes all the existing [67, 68] 

and the proposed SF i.e., Eq. (9) , Eq. (11)  and Eq. (14)  may or may not be able to give an 

appropriate solution. To validate the claim, above stated Example 8 is evaluated using AF 𝜒𝐴(𝐴̃𝑁), 

(Eq. (10) ) [67]  which states that, 𝐴̃2
𝑁 > 𝐴̃1

𝑁  i.e., 𝐴̃2
𝑁  is the best alternative among 𝐴̃2

𝑁 and 𝐴̃1
𝑁  as 

shown in Table 7. 

For a deliberate comparison among various existing metric methods, for finding the correct 

ranking order of some special SVNN concerning an existing AF 𝜒𝐴(𝐴̃𝑁) , (Eq. (10) )  [67], is 

presented in Table 7 as follows: 

Table 7. Function values of some special IVNNs using various existing metric methods 

 

IVNNs 𝝌𝑺(𝑨̃𝑵) 𝝍𝑺(𝑨̃𝑵) 𝝎𝑺(𝑨̃𝑵) 𝝌𝑨(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈[1, 1], [0.2, 0.7], [1, 1]〉 

𝐴̃2
𝑁 = 〈[1, 1], [0.5, 0.9], [1, 1]〉 

0.05 

−0.2 

(𝛼𝑆(𝐴̃𝑁) ∉ [0, 1]) 

0.5 

0.5 

∞ 

∞ 

−0.05 

0.7 
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 Thus, from Table 7, it is concluded that there may or may not exists several such SVNNs for 

which sometimes all the existing [67, 68] and the proposed SF i.e., Eq. (9), Eq. (11) and Eq. (14) 

may not suggest an appropriate solution among 𝐴̃1
𝑁 and 𝐴̃2

𝑁 but the existing AF 𝜒𝐴(𝐴̃𝑁), (Eq. (10) ) 

[67] is successful in providing a satisfactory solution so far. 

 Hence, based on the existing metric methods [67, 68] for comparing any two IVNSs 𝐴̃1
𝑁 =

〈[𝑇
𝐴1

𝑁
𝐿 (𝑥), 𝑇

𝐴1
𝑁

𝑈 (𝑥)] , [𝐼
𝐴1

𝑁
𝐿 (𝑥), 𝐼

𝐴1
𝑁

𝑈 (𝑥)] , [𝐹
𝐴1

𝑁
𝐿 (𝑥), 𝐹

𝐴1
𝑁

𝑈 (𝑥)]〉  and 𝐴̃2
𝑁 =

〈[𝑇
𝐴2

𝑁
𝐿 (𝑥), 𝑇

𝐴2
𝑁

𝑈 (𝑥)] , [𝐼
𝐴2

𝑁
𝐿 (𝑥), 𝐼

𝐴2
𝑁

𝑈 (𝑥)] , [𝐹
𝐴2

𝑁
𝐿 (𝑥), 𝐹

𝐴2
𝑁

𝑈 (𝑥)]〉 using SF and AF, a comparison method can be 

defined as follows: 

➢ If 𝜔𝑆(𝐴̃1
𝑁) > 𝜔𝑆(𝐴̃2

𝑁) then 𝐴̃1
𝑁 > 𝐴̃2

𝑁. 

➢ If 𝜔𝑆(𝐴̃1
𝑁) < 𝜔𝑆(𝐴̃2

𝑁) then 𝐴̃1
𝑁 < 𝐴̃2

𝑁. 

➢ If 𝜔𝑆(𝐴̃1
𝑁) = 𝜔𝑆(𝐴̃2

𝑁) or no conclusion can be drawn, then check 𝜒𝐴(𝐴̃𝑁) in the next step. 

• If 𝜒𝐴(𝐴̃1
𝑁) > 𝜒𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 > 𝐴̃2

𝑁. 

• If 𝜒𝐴(𝐴̃1
𝑁) < 𝜒𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 < 𝐴̃2

𝑁. 

• If 𝜒𝐴(𝐴̃1
𝑁) = 𝜒𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 = 𝐴̃2

𝑁. 

Thus, the proposed SF, Eq. (14) can handle most of the IVNNs along with its conditions and 

hence, is helpful in the DM process in a much better way, also can give answers where the existing 

methods were not leading the solution to anywhere. 

To validate the claim of the proposed SF, Eq. (14), a detailed analysis of its properties are 

presented as follows: 

Property 3.10. For IVNS 𝐴̃𝑁 = 〈[𝑇
𝐴𝑁
𝐿 (𝑥), 𝑇

𝐴𝑁
𝑈 (𝑥)], [𝐼

𝐴𝑁
𝐿 (𝑥), 𝐼

𝐴𝑁
𝑈 (𝑥)], [𝐹

𝐴̃𝑁
𝐿 (𝑥), 𝐹

𝐴𝑁
𝑈 (𝑥)]〉 the value of the 

proposed SF 𝜔𝑆(𝐴̃𝑁), Eq. (14) lies between [0,1] i.e., 𝜔𝑆(𝐴̃𝑁)  ∈ [0,1]. 

Property 3.11. For IVNS 𝐴̃𝑁 = 〈[𝑇
𝐴𝑁
𝐿 (𝑥), 𝑇

𝐴𝑁
𝑈 (𝑥)], [𝐼

𝐴𝑁
𝐿 (𝑥), 𝐼

𝐴𝑁
𝑈 (𝑥)], [𝐹

𝐴̃𝑁
𝐿 (𝑥), 𝐹

𝐴𝑁
𝑈 (𝑥)]〉  or 𝐴̃𝑁  =

 〈[𝛼1, 𝛼2)], [𝛽1, 𝛽2], [𝛾1, 𝛾2]〉 (for convenience), if 𝛼1 + 𝛼2 + 𝛾1 + 𝛾2 = 4, then on using proposed SF, 

Eq. (14) no conclusion can be drawn. 

Proof: Let us consider an example given below: 

Let 𝐴̃𝑁  =  〈〈[1, 1], [0.25, 0.571], [1, 1]〉〉 be any IVNN, where 𝛼1 + 𝛼2 + 𝛾1 + 𝛾2 = 4, then from 

the proposed SF, Eq. (14), we have 

𝜔𝑆(𝐴̃𝑁) =
2+(1+1−2(0.25)−2(0.571)−1−1)

2 (4−1−1−1−1)
=

2+(−1.6420)

0
=

0.3580

0
= ∞.  

Since 𝜔𝑆(𝐴̃𝑁)  ∈ [0,1] , hence, no conclusion can be drawn. Thus, for any IVNN 𝐴̃𝑁  =

 〈[𝛼1, 𝛼2)], [𝛽1, 𝛽2], [𝛾1, 𝛾2]〉, SF 𝜔𝑆(𝐴̃𝑁) holds if 𝛼1 + 𝛼2 + 𝛾1 + 𝛾2 ≠ 4. 

Property 3.12. For IVNS 𝐴̃𝑁 = 〈[𝑇
𝐴𝑁
𝐿 (𝑥), 𝑇

𝐴𝑁
𝑈 (𝑥)], [𝐼

𝐴𝑁
𝐿 (𝑥), 𝐼

𝐴𝑁
𝑈 (𝑥)], [𝐹

𝐴̃𝑁
𝐿 (𝑥), 𝐹

𝐴𝑁
𝑈 (𝑥)]〉  or 𝐴̃𝑁  =

 〈[𝛼1, 𝛼2)], [𝛽1, 𝛽2], [𝛾1, 𝛾2]〉 (for convenience), if 𝛼1 + 𝛼2 + 𝛾1 + 𝛾2 = 2, , then proposed SF, Eq. (14) 

reduces to SF, Eq. (9) i.e., 𝜔𝑆(𝐴̃𝑁) = 𝜒𝑆(𝐴̃𝑁). 

Proof: Let 𝛼1 + 𝛼2 + 𝛾1 + 𝛾2 = 2, then from the proposed SF, Eq. (14), we have 

𝜔𝑆(𝐴̃𝑁) =
2+(𝛼1+𝛼2−2𝛽1−𝛽2−𝛾1−𝛾2)

2 (4−𝛼1−𝛼2−𝛾1−𝛾2)
=

2+(𝛼1+𝛼2−2𝛽1−𝛽2−𝛾1−𝛾2)

2 (4−(𝛼1+𝛼2+𝛾1+𝛾2))
=

2+(𝛼1+𝛼2−2𝛽1−𝛽2−𝛾1−𝛾2)

2 (4−2)
  

=
2+(𝛼1+𝛼2−2𝛽1−𝛽2−𝛾1−𝛾2)

4
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= 𝜒𝑆(𝐴̃𝑁).  

Property 3.13. For IVNS 𝐴̃𝑁 = 〈[𝑇
𝐴𝑁
𝐿 (𝑥), 𝑇

𝐴𝑁
𝑈 (𝑥)], [𝐼

𝐴𝑁
𝐿 (𝑥), 𝐼

𝐴𝑁
𝑈 (𝑥)], [𝐹

𝐴̃𝑁
𝐿 (𝑥), 𝐹

𝐴𝑁
𝑈 (𝑥)]〉  or 𝐴̃𝑁  =

 〈[𝛼1, 𝛼2)], [𝛽1, 𝛽2], [𝛾1, 𝛾2]〉 (for convenience), the proposed SF 𝜔𝑆(𝐴̃𝑁), Eq. (14) is having a relation 

with SF 𝜒𝑆(𝐴̃𝑁), Eq. (9) as follows: i.e., 𝜔𝑆(𝐴̃𝑁) =
𝜒𝑆

(4−𝛼1−𝛼2−𝛾1−𝛾2)
. 

Property 3.14. One property: If IVNN 𝐴̃𝑁  =  〈[1, 1], [0, 0], [0,0]〉, then 𝜔𝑆(𝐴̃𝑁) = 1, i.e., the maximum 

value of IVNN 𝐴̃𝑁 is 1. 

Proof: Let 𝐴̃𝑁  =  〈[1, 1], [0, 0], [0,0]〉 be any IVNN, then from Eq. (14), we have 

 𝜔𝑆(𝐴̃𝑁) =
2+(1+1−0−0−0−0)

2 (4−1−1−0−0)
=

4

4
= 1.  

Property 3.15. Zero property: If IVNN 𝐴̃𝑁  =  〈[0, 0], [0, 0], [1,1]〉, then 𝜔𝑆(𝐴̃𝑁) = 0, i.e., the minimum 

value of IVNN 𝐴̃𝑁 is 0. 

Proof: Let 𝐴̃𝑁  =  〈[0, 0], [0, 0], [1,1]〉 be any IVNN, then from Eq. (14), we have 

 𝜔𝑆(𝐴̃𝑁) =
2+(0+0−0−0−1−1)

2 (4−0−0−1−1)
=

0

4
= 0.  

4. MCDM method based on proposed SF and AF under neutrosophic environment  

 In this section MCDM method is proposed for both SVNSs and IVNSs using proposed SF and 

proposed AF, which is pictorially presented in Figure 1. 

4.1. MCDM method based on proposed SF and AF under SVNSs 

 Let us consider an MCDM problem having 𝑚 number of alternatives i.e., 𝐴̃𝑁 = {𝐴̃1
𝑁 , 𝐴̃2

𝑁 , … , 𝐴̃𝑚
𝑁 } 

which are evaluated on 𝑛 number of criteria i.e., 𝐺̃𝑁 = {𝐺̃1
𝑁 , 𝐺̃2

𝑁 , … , 𝐺̃𝑛
𝑁}. Suppose that the weight 

allotted to each criterion by the decision-maker is 𝑤𝑗 ∈ [0,1]  and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . Also, the 

characteristics of an alternatives 𝐴̃𝑖
𝑁(𝑖 = 1,2, … , 𝑚)  per criterion 𝐺̃𝑗

𝑁(𝑗 = 1,2, … , 𝑛)  can be 

represented by an SVNS i.e., 𝐴̃𝑖
𝑁  = {〈𝐺̃𝑗

𝑁 , 𝑇𝐴𝑖
𝑁(𝐺̃𝑗

𝑁), 𝐼𝐴𝑖
𝑁(𝐺̃𝑗

𝑁), 𝐹𝐴𝑖
𝑁(𝐺̃𝑗

𝑁)〉 |𝐺̃𝑗
𝑁 ∈ 𝐺̃𝑁}, where 𝑇𝐴𝑖

𝑁(𝐺̃𝑗
𝑁) +

 𝐼𝐴𝑖
𝑁(𝐺̃𝑗

𝑁) + 𝐹𝐴𝑖
𝑁(𝐺̃𝑗

𝑁) ≤ 3  and 𝑇𝐴𝑖
𝑁(𝐺̃𝑗

𝑁) ≥ 0, 𝐼𝐴𝑖
𝑁(𝐺̃𝑗

𝑁) ≥ 0, 𝐹𝐴𝑖
𝑁(𝐺̃𝑗

𝑁) ≥ 0 , for all 𝑖 = 1 𝑡𝑜 𝑚  and 𝑗 =

1 𝑡𝑜 𝑛, for convenience it is denoted as Ψ𝑖𝑗 = 〈𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛾𝑖𝑗〉. The single-valued neutrosophic decision 

matrix (SVNDM) derived from the collected single-valued neutrosophic data available for 𝑚 

number of alternatives with respect to 𝑛 number of the criterion is represented as 

 

𝐷 = (Ψ𝑖𝑗)
𝑚×𝑛

= (〈𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛾𝑖𝑗  〉)
𝑚×𝑛 

i.e., 

 

 

(Ψ𝑖𝑗)
𝑚×𝑛

=       

𝐴1

𝐴2

⋮
𝐴𝑚

[

〈𝛼11, 𝛽11, 𝛾11〉 〈𝛼12, 𝛽12, 𝛾12〉

〈𝛼21, 𝛽21, 𝛾21〉 〈𝛼22, 𝛽22, 𝛾22〉
⋮ ⋮

〈𝛼𝑚1, 𝛽𝑚1, 𝛾𝑚1〉 〈𝛼𝑚2, 𝛽𝑚2, 𝛾𝑚2〉

    

⋯ 〈𝛼1𝑛, 𝛽1𝑛 , 𝛾1𝑛〉

⋯ 〈𝛼2𝑛, 𝛽2𝑛 , 𝛾2𝑛〉
⋱ ⋮
⋯ 〈𝛼𝑚𝑛 , 𝛽𝑚𝑛 , 𝛾𝑚𝑛〉

].  

 

For evaluating the MCDM problem for SVNSs we need a step-wise procedure which is 

summarized as follows: 

Step 1: Check that all the criteria of the SVNDM, 𝐷 are of the same type or not.  

𝐺1 𝐺2 𝐺𝑛 
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Case (i)    If all the criteria are of the same type then go to Step 2. 

Case (ii) If some criteria are of benefit type and others are of cost types then normalize the 

SVNDM by transforming the cost criterion into benefit criterion, in the following manner: If the 

𝑝𝑡ℎ criterion is cost criterion then replace all the elements 〈𝛼𝑖𝑝, 𝛽𝑖𝑝 , 𝛾𝑖𝑝 〉 of the 𝑝𝑡ℎ column of 

the decision matrix,  𝐷 with 〈𝛾𝑖𝑝, 1 − 𝛽𝑖𝑝, 𝛼𝑖𝑝 〉. 

Step 2: Evaluate the SVNSs Ψ𝑖𝑗  for each 𝐴̃𝑖
𝑁 into an SVNN Ψ𝑖 using WAM, Eq. (1), or the WGM, 

Eq. (2).  

Step 3: After aggregating (by applying either of the approaches i.e., WAM or WGM) according to 

Step 2, now obtain the crisp value of  Ψ𝑖  (𝑖 = 1,2, … , 𝑚) by using SF 𝜑𝑆(𝐴̃𝑁), Eq. (12)  or AF 

𝜑𝐴(𝐴̃𝑁), Eq. (13). 

Step 4: After Step 3, rank all the alternatives as per the obtained value of 𝜑𝑆(𝐴̃𝑁) or 𝜑𝐴(𝐴̃𝑁) and 

choose the best alternative. 

4.2. MCDM method based on proposed SF and AF under IVNSs 

 Let us consider an MCDM problem having 𝑚 number of alternatives i.e., 𝐴̃𝑁 = {𝐴̃1
𝑁 , 𝐴̃2

𝑁 , … , 𝐴̃𝑚
𝑁 } 

which are evaluated on 𝑛 number of criteria i.e., 𝐺̃𝑁 = {𝐺̃1
𝑁 , 𝐺̃2

𝑁 , … , 𝐺̃𝑛
𝑁}. Suppose that the weight 

allotted to each criterion by the decision-maker is 𝑤𝑗 ∈ [0,1]  and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . Also, the 

characteristics of an alternatives 𝐴̃𝑖
𝑁(𝑖 = 1,2, … , 𝑚)  as per criterion 𝐺̃𝑗

𝑁(𝑗 = 1,2, … , 𝑛)  can be 

represented by an IVNS i.e., 𝐴̃𝑖
𝑁  =

{〈𝐺̃𝑗
𝑁 , [𝑇

𝐴𝑖
𝑁

𝐿 (𝐺̃𝑗
𝑁), 𝑇

𝐴𝑖
𝑁

𝑈 (𝐺̃𝑗
𝑁)] , [𝐼

𝐴𝑖
𝑁

𝐿 (𝐺̃𝑗
𝑁), 𝐼

𝐴𝑖
𝑁

𝑈 (𝐺̃𝑗
𝑁)] , [𝐹

𝐴𝑖
𝑁

𝐿 (𝐺̃𝑗
𝑁), 𝐹

𝐴𝑖
𝑁

𝑈 (𝐺̃𝑗
𝑁)]〉 |𝐺̃𝑗

𝑁 ∈ 𝐺̃𝑁} , where 𝑇
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) +

𝐼
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) + 𝐹
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) ≤ 3  and 0 ≤ 𝑇
𝐴𝑖

𝑁
𝐿 (𝐺̃𝑗

𝑁) ≤ 𝑇
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) ≤ 1, 0 ≤ 𝐼
𝐴𝑖

𝑁
𝐿 (𝐺̃𝑗

𝑁) ≤ 𝐼
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) ≤ 1, 0 ≤

𝐹
𝐴𝑖

𝑁
𝐿 (𝐺̃𝑗

𝑁) ≤ 𝐹
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) ≤ 1, for all 𝑖 = 1 𝑡𝑜 𝑚 and 𝑗 = 1 𝑡𝑜 𝑛, for convenience it is denoted as Ψ𝑖𝑗 =

〈𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛾𝑖𝑗〉 =  〈[𝛼𝑖𝑗
𝐿 , 𝛼𝑖𝑗

𝑈)], [𝛽𝑖𝑗
𝐿 , 𝛽𝑖𝑗

𝑈 ], [𝛾𝑖𝑗
𝐿 , 𝛾𝑖𝑗

𝑈]〉 . The interval-valued neutrosophic decision-matrix 

(IVNDM) derived from the collected interval-valued neutrosophic data available for 𝑚 number of 

alternatives for 𝑛 number of the criterion is represented as 

 

𝐷 = (Ψ𝑖𝑗)
𝑚×𝑛

= (〈𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛾𝑖𝑗  〉)
𝑚×𝑛 

= (〈[𝛼𝑖𝑗
𝐿 , 𝛼𝑖𝑗

𝑈)], [𝛽𝑖𝑗
𝐿 , 𝛽𝑖𝑗

𝑈  ], [𝛾𝑖𝑗
𝐿 , 𝛾𝑖𝑗

𝑈]〉)
𝑚×𝑛 

i.e., 

 

(Ψ𝑖𝑗)
𝑚×𝑛

=       

𝐴1

𝐴2

⋮
𝐴𝑚

[

〈𝛼11, 𝛽11, 𝛾11〉 〈𝛼12, 𝛽12, 𝛾12〉

〈𝛼21, 𝛽21, 𝛾21〉 〈𝛼22, 𝛽22, 𝛾22〉
⋮ ⋮

〈𝛼𝑚1, 𝛽𝑚1, 𝛾𝑚1〉 〈𝛼𝑚2, 𝛽𝑚2, 𝛾𝑚2〉

    

⋯ 〈𝛼1𝑛, 𝛽1𝑛 , 𝛾1𝑛〉

⋯ 〈𝛼2𝑛, 𝛽2𝑛 , 𝛾2𝑛〉
⋱ ⋮
⋯ 〈𝛼𝑚𝑛 , 𝛽𝑚𝑛 , 𝛾𝑚𝑛〉

].  

 

For evaluating the MCDM problem for IVNSs we need a step-wise procedure which is 

summarized as follows: 

Step 1: Check that all the criteria of the IVNDM, 𝐷 are of the same type or not.  

Case (i)    If all the criteria are of the same type then go to Step 2. 

Case (ii) If some criteria are of benefit types and others are of cost types then normalize the 

IVNDM by transforming the cost criterion into benefit criterion, in the following manner: If the 

𝐺1 𝐺2 𝐺𝑛 
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𝑝𝑡ℎ criterion is of cost type then replace all the elements 〈𝛼𝑖𝑝 , 𝛽𝑖𝑝, 𝛾𝑖𝑝  〉 of the 𝑝𝑡ℎ column of the 

decision matrix,  𝐷 with 〈𝛾𝑖𝑝 , 1 − 𝛽𝑖𝑝 , 𝛼𝑖𝑝  〉. 

Step 2: Evaluate the IVNSs Ψ𝑖𝑗  for each 𝐴̃𝑖
𝑁 into an IVNN Ψ𝑖 using WAM, Eq. (3) or the WGM, 

Eq. (4).  

Step 3: After aggregating (by applying either of the approaches i.e., WAM or WGM) according to 

Step 2, now obtain the crisp value of  Ψ𝑖  (𝑖 = 1,2, … , 𝑚) by using SF 𝜔𝑆(𝐴̃𝑁), Eq. (14)  or AF 

𝜒𝐴(𝐴̃𝑁), Eq. (10). 

Step 4: After Step 3, rank all the alternatives as per the obtained value of 𝜔𝑆(𝐴̃𝑁) or 𝜒𝐴(𝐴̃𝑁) and 

choose the best alternative.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The flowchart of the proposed MCDM method  

5. Real-world problem on SVNSs and IVNSs 

In this section, a very common example is taken from a real-life which helps in validating the 

proposed approach. 

Start the process 

 

Set the goal, criteria and alternatives 

 

Check that all the criteria of the Neutrosophic DM, are of the same type or not 

 
If all are of same type then go to next Step, if not then normalize the  Neutrosophic DM 

 

Evaluate the SVNSs/IVNSs Ψij for each Ãi
N into an SVNN/IVNN Ψi using WAM or the WGM 

SVNNs IVNNs 

Rank all alternatives as per value of  𝜑𝑆(𝐴̃𝑁) or 𝜑𝐴(𝐴̃𝑁) 𝑜𝑟 𝜔𝑆(𝐴̃𝑁) or 𝜒𝐴(𝐴̃𝑁) and choose the best 

alternative. 

Obtain the crisp value of  Ψi (i = 1,2, … , m) by 

using SF φS(ÃN) or AF φA(ÃN) 

 

Obtain the crisp value of  Ψi (i = 1,2, … , m) by 

using SF ωS(ÃN) or AF χA(ÃN) 

 

END 

Collect the data and construct Neutrosophic DM of m-alternatives with respect to n-criterion 
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Example 5.1. Consider an MCDM problem of selecting a pre-school for the first time, by the parents 

of a kindergarten child. To make the best selection, parents have collected the data in terms of the 

neutrosophic set (SVNSs or IVNSs) of 05 possible pre-schools, as per their liking, which are their 

prospective alternatives 𝐴̃𝑁 = {𝐴̃1
𝑁 , 𝐴̃2

𝑁, 𝐴̃3
𝑁 ,  𝐴̃4

𝑁 ,  𝐴̃5
𝑁}  respectively. The data of these 05  possible 

alternatives are based on 03 different criteria 𝐺̃𝑁 = {𝐺̃1
𝑁 ,  𝐺̃2

𝑁 , 𝐺̃3
𝑁} where 𝐺̃1

𝑁 represents “near to the 

house, and safety of the child”, 𝐺̃2
𝑁 represents “fee, infrastructure, and rapport” and 𝐺̃3

𝑁 represents 

“teaching methods in terms of effective learning concerning, cognitive, conative, affective, and 

physical activity” and the weight vectors are chosen for each criterion is 𝑤𝑗 = (
1

3
,

1

3
,

1

3
)

𝑇

. Thus, when 

these five schools w.r.t the above-stated criteria are assessed by the parents (decision-maker), using 

the above-mentioned procedure stated in Section 4.1 and Section 4.2 as represented pictorially in 

Figure 2, the best alternative is obtained.  

 

 

Figure 2. A Framework of Proposed MCDM approach for a real-life problem 

 

5.1 Real-world problem on SVNSs  

On applying the procedure mentioned in Section 4.1 on Example 5.1, where the collected data by 

the decision-maker is in terms of SVNSs, the best solution is derived as follows:  

Step 1: Using the Step 1 of Section 4.1, the obtained SVNDM, 𝐷  as per the collected SVNS 

information is presented in Table 8. 
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Table 8. SVNDM 

 𝐺̃1
𝑁 𝐺̃2

𝑁 𝐺̃3
𝑁 

𝐴̃1
𝑁 〈0.6,0.3,0.0〉 〈0.6,0.1,0.4〉 〈0.4,0.3,0.8〉 

𝐴̃2
𝑁 〈0.2,0.1,0.0〉 〈0.8,0.3,0.2〉 〈0.9,0.2,0.6〉 

𝐴̃3
𝑁 〈0.4,0.2,0.3〉 〈0.4,0.2,0.3〉 〈0.2,0.2,0.5〉 

𝐴̃4
𝑁 〈0.3,0.2,0.3〉 〈0.5,0.2,0.3〉 〈0.5,0.3,0.2〉 

𝐴̃5
𝑁 〈0.7,0.0,0.1〉 〈0.6,0.1,0.2〉 〈0.4,0.3,0.2〉 

 

Step 2: Using the Step 2 of Section 4.1, the obtained aggregated SVNN Ψ𝑖, for SVNSs Ψ𝑖𝑗 , for each 

𝐴̃𝑖
𝑁 using WAM, Eq. (1) and the WGM, Eq. (2) are shown in Table 9.  

 

Table 9. SVNN using 𝑨𝑶𝑾𝑨 and 𝑨𝑶𝑾𝑮 

 𝐴𝑂𝑊𝐴 𝐴𝑂𝑊𝐺  

Ψ1 〈 0.5421, 0.2080, 0.0〉 〈0.5241, 0.2388, 0.5068〉 

Ψ2 〈 0.7480, 0.1817, 0.0〉 〈0.5241, 0.2042, 0.3160〉 

Ψ3 〈0.3396, 0.2, 0.3557〉 〈0.3175, 0.2, 0.3743〉 

Ψ4 〈0.4407, 0.2289, 0.2621〉 〈0.4217, 0.2348, 0.2681〉 

Ψ5 〈0.5840, 0.0, 0.1587〉 〈0.5518, 0.1427, 0.1680〉 

 

Step 3: After Step 2, using the Step 3 of Section 4.1, the score value, 𝜑𝑆 for each Ψ𝑖 (𝑖 = 1,2, … , 𝑚) 

are obtained by using Eq. (12) as follows:  

Approach 1 (Using WAM). Aggregated SVNN Ψ𝑖  (𝑖 = 1,2, … , 𝑚)  on using, WAM Eq. (1) , the 

obtained score values 𝜑𝑆(𝐴̃𝑖
𝑁) are as follows: 

𝜑𝑆(Ψ1) = 0.3862, 𝜑𝑆(Ψ2) = 0.5530, 𝜑𝑆(Ψ3) = 0.2238, 𝜑𝑆(Ψ4) = 0.2778, 𝜑𝑆(Ψ5) = 0.5668. 

Approach 2 (Using WGM). Aggregated SVNN  Ψ𝑖  (𝑖 = 1,2, … , 𝑚) on using, WGM Eq. (2) , the 

obtained score values 𝜑𝑆(𝐴̃𝑖
𝑁) are as follows: 

𝜑𝑆(Ψ1) = 0.2785, 𝜑𝑆(Ψ2) = 0.3448, 𝜑𝑆(Ψ3) = 0.2076, 𝜑𝑆(Ψ4) = 0.2610, 𝜑𝑆(Ψ5) = 0.4290. 

Step 4: According to the obtained values of SF in Step 3, the following results are deduced, i.e.,  

 (i) For approach 1, the obtained ranking order of the alternatives is 𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 > 𝐴̃4

𝑁 > 𝐴̃3
𝑁, 

hence, 𝐴̃5
𝑁  is the best alternative according to the obtained score value 𝜑𝑆(𝐴̃𝑁) for each Ψ𝑖 

(𝑖 = 1,2, … , 𝑚). 

 (ii)  For approach 2, the obtained ranking order of the alternatives is 𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 > 𝐴̃4

𝑁 >

𝐴̃3
𝑁, hence, 𝐴̃5

𝑁  is the best alternative according to the obtained score value 𝜑𝑆(𝐴̃𝑁) for each 

Ψ𝑖 (𝑖 = 1,2, … , 𝑚). 

Furthermore, to validate the above results obtained from the proposed method 𝜑𝑆(𝐴̃𝑁), a 

detailed comparative analysis of given data in Table 9 is done with the existing methods 𝜎𝑆(𝐴̃𝑁) 

[67], and 𝜏𝑆(𝐴̃𝑁) [68], and the obtained values of their respective score functions are represented in 

Table 10 and Table 11, on applying both the approaches of aggregation i.e., WAM and WGM 

respectively.    
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According to the obtained values of the SF on using the existing methods 𝜎𝑆(𝐴̃𝑁) [67], 𝜏𝑆(𝐴̃𝑁) 

[68], and the proposed method 𝜑𝑆(𝐴̃𝑁) for WAM, the obtained ranking order of all the alternatives 

is the same, i.e., 𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 > 𝐴̃4

𝑁 > 𝐴̃3
𝑁, as shown in Table 10, hence we conclude that 𝐴̃5

𝑁  is the 

best alternative.  

Table 10. Comparative analysis of SF of various methods for WAM 

 

 
SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 

𝜑𝑆(Ψ1) 〈 0.5421, 0.2080, 0.0〉 0.5631 0.5919 0.3862 

𝜑𝑆(Ψ2) 〈 0.7480, 0.1817, 0.0〉 0.6923 0.7408 0.5530 

𝜑𝑆(Ψ3) 〈0.3396, 0.2, 0.3557〉 0.2919 0.2286 0.2238 

𝜑𝑆(Ψ4) 〈0.4407, 0.2289, 0.2621〉 0.3604 0.3189 0.2778 

𝜑𝑆(Ψ5) 〈0.5840, 0.0, 0.1587〉 𝟎. 𝟕𝟏𝟐𝟕 𝟎. 𝟕𝟔𝟕𝟒 𝟎. 𝟓𝟔𝟔𝟖 

Ranking 

order 

 𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 >

𝐴̃4
𝑁 > 𝐴̃3

𝑁  

𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 >

𝐴̃4
𝑁 > 𝐴̃3

𝑁  

𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 >

𝐴̃4
𝑁 > 𝐴̃3

𝑁  

 

Similarly, according to the obtained values of the SF on using the existing methods 𝜎𝑆(𝐴̃𝑁) [67], 

𝜏𝑆(𝐴̃𝑁) [68] and the proposed method 𝜑𝑆(𝐴̃𝑁) for WGM, the obtained ranking order of the best and 

the second-best alternatives is the same as shown in Table 11, thus we conclude that 𝐴̃5
𝑁  is the best 

alternative.  

Table 11. Comparative analysis of SF of various methods for WGM 

 
SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 

𝜑𝑆(Ψ1) 〈 0.5241, 0.2388, 0.5068〉 0.2699 0.2770 0.2785 

𝜑𝑆(Ψ2) 〈 0.5241, 0.2042, 0.3160〉 0.3999 0.3838 0.3448 

𝜑𝑆(Ψ3) 〈0.3175, 0.2, 0.3743〉 0.2716 0.2012 0.2076 

𝜑𝑆(Ψ4) 〈0.4217, 0.2348, 0.2681〉 0.3420 0.2930 0.2610 

𝜑𝑆(Ψ5) 〈0.5518, 0.1427, 0.1680〉 𝟎. 𝟓𝟒𝟗𝟐 𝟎. 𝟓𝟔𝟑𝟎 𝟎. 𝟒𝟐𝟗𝟎 

Ranking 

order 

 𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃4
𝑁 >

𝐴̃3
𝑁 > 𝐴̃1

𝑁  

𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃4
𝑁 >

𝐴̃1
𝑁 > 𝐴̃3

𝑁  

𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 >

𝐴̃4
𝑁 > 𝐴̃3

𝑁  

 

Hence, we can conclude that the proposed score function 𝜑𝑆(𝐴̃𝑁) is justified and is giving 

reasonable results on applying in real-world applications. 
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5.2 Real-world problem on IVNSs  

On applying the procedure mentioned in Section 4.2 on Example 5.1, where the rating value of 

the collected data by the decision-maker is in terms of IVNSs, the best solution is derived as follows:  

Step 1: Using the Step 1 of Section 4.2, the obtained IVNDM, 𝐷  as per the collected IVNS 

information is presented in Table 12. 

 

Table 12. IVNDM 

 𝐺̃1
𝑁 𝐺̃2

𝑁 𝐺̃3
𝑁 

𝐴̃1
𝑁 〈[0.1, 0.5], [0.1, 0.2], [0, 0]〉  〈[0.1, 0.5], [0, 0.1], [0.2, 0.2]〉  〈[0.1, 0.3], [0.1, 0.2], [0.3, 0.5]〉  

𝐴̃2
𝑁 〈[0.1, 0.1], [0.05, 0.95], [0,0]〉  〈[0.1, 0.7], [0.1, 0.2], [0.5, 0.15]〉  〈[0.1, 0.8], [0.1, 0.1], [0.3, 0.3]〉  

𝐴̃3
𝑁 〈[0.1, 0.3], [0.1, 0.1], [0.15,0.15]〉  〈[0.1, 0.3], [0.1, 0.1], [0, 0.3]〉  〈[0.1, 0.1], [0.1, 0.1], [0.2, 0.3]〉  

𝐴̃4
𝑁 〈[0.11, 0.19], [0.05, 0.15], [0, 0.27]〉  〈[0.1, 0.4], [0.1, 0.1], [0.15, 0.15]〉  〈[0.1, 0.4], [0.1, 0.2], [0.05, 0.15]〉  

𝐴̃5
𝑁 〈[0.1, 0.6], [0, 0], [0.02, .08]〉  〈[0.1, 0.5], [0, 0.1], [0.1, 0.1]〉  〈[0.1, 0.3], [0.1, 0.2], [0.1, 0.1]〉  

 

Step 2: Using the Step 2 of Section 4.2, the obtained aggregated IVNN Ψ𝑖, for IVNSs Ψ𝑖𝑗 , for each 𝐴̃𝑖
𝑁 

using WAM, Eq. (3) and the WGM, Eq. (4) are shown in Table 13.  

 

Table 13. IVNN using 𝑨𝑶𝑾𝑨 and 𝑨𝑶𝑾𝑮 

 𝐴𝑂𝑊𝐴 𝐴𝑂𝑊𝐺  

Ψ1 〈[0.1, 0.4407], [0, 0.1587], [0,0]〉 〈[0.1, 0.4217], [0.0678, 0.1680], [0.1757, 0.2632]〉 

Ψ2 〈[0.1, 0.6220], [0.0794, 0.2668], [0,0]〉 〈[0.1, 0.3826], [0.0836, 0.6698], [0.1271, 0.1589]〉 

Ψ3 〈[0.1, 0.2388], [0.1, 0.1], [0, 0.2381]〉 〈[0.1, 0.2080], [0.1, 0.1], [0.1206, 0.2532]〉 

Ψ4 
〈
[0.1033, 0.3369], [0.0794, 0.1442],

[0, 0.1825]
〉 〈

[0.1032, 0.3121], [0.0836, 0.1510],
[0.0688, 0.1920]

〉 

Ψ5 〈[0.1, 0.4808], [0, 0], [0.0585, 0.0928]〉 〈[0.1, 0.4481], [0.0345, 0.1037], [0.0741, 0.0934]〉 

 

Step 3: After Step 2, using the Step 3 of Section 4.2, the score value, 𝜔𝑆(𝐴̃𝑁) for each Ψ𝑖  (𝑖 =

1,2, … , 𝑚) are obtained by using Eq. (14) as follows:  

Approach 1 (Using WAM). Aggregated IVNN  Ψ𝑖  (𝑖 = 1,2, … , 𝑚) on using, WAM Eq. (3) , the 

obtained score values 𝜔𝑆(𝐴̃𝑖
𝑁) are as follows:  

𝜔𝑆(Ψ1) = 0.3214, 𝜔𝑆(Ψ2) = 0.3096, 𝜔𝑆(Ψ3) = 0.2484, 𝜔𝑆(Ψ4) = 0.2680, 𝜔𝑆(Ψ5) = 0.3717. 

Approach 2 (Using WGM). Aggregated IVNN  Ψ𝑖  (𝑖 = 1,2, … , 𝑚)  on using, WGM Eq. (4) , the 

obtained score values 𝜔𝑆(𝐴̃𝑖
𝑁) are as follows: 

𝜔𝑆(Ψ1) = 0.2651, 𝜔𝑆(Ψ2) = 0.1067, 𝜔𝑆(Ψ3) = 0.2312, 𝜔𝑆(Ψ4) = 0.2535, 𝜔𝑆(Ψ5) = 0.3203. 

Step 4: According to the obtained values of SF in Step 3, the following results are deduced, i.e.,  

 (i) For approach 1, the obtained ranking order of the alternatives is  

𝐴̃5
𝑁 > 𝐴̃1

𝑁 > 𝐴̃2
𝑁 > 𝐴̃4

𝑁 > 𝐴̃3
𝑁 , hence, 𝐴̃5

𝑁  is the best alternative according to the obtained score 

value 𝜔𝑆(𝐴̃𝑁) for each Ψ𝑖 (𝑖 = 1,2, … , 𝑚). 
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 (ii)  For approach 2, the obtained ranking order of the alternatives is 𝐴̃5
𝑁 > 𝐴̃1

𝑁 > 𝐴̃4
𝑁 > 𝐴̃3

𝑁 >

𝐴̃2
𝑁 hence 𝐴̃5

𝑁  is the best alternative according to the obtained score value 𝜔𝑆(𝐴̃𝑁) for each 

Ψ𝑖 (𝑖 = 1,2, … , 𝑚). 

Furthermore, to validate the above-obtained results from the proposed method 𝜔𝑆(𝐴̃𝑁), a 

detailed comparative analysis of given data in Table 13 is done with the existing methods 𝜒𝑆(𝐴̃𝑁) 

[67], 𝜓𝑆(𝐴̃𝑁) [68], and the obtained values of their respective score functions are represented in 

Table 14 and Table 15, on applying both the approaches of aggregation i.e., WAM and WGM 

respectively.    

According to the obtained values of the SF on using the existing methods 𝜒𝑆(𝐴̃𝑁) [67], 𝜓𝑆(𝐴̃𝑁) 

[68] and the proposed method 𝜔𝑆(𝐴̃𝑁) for WAM, the obtained ranking order of the first three 

alternatives is the same, i.e., 𝐴̃5
𝑁 > 𝐴̃1

𝑁 > 𝐴̃2
𝑁, as shown in Table 14, we conclude that 𝐴̃5

𝑁  is the best 

alternative.  

Table 14. Comparative analysis of SF of various methods for WAM 

 

 
SVNNs 𝝌𝑺(𝑨̃𝑵) 𝝍𝑺(𝑨̃𝑵) 𝝎𝑺(𝑨̃𝑵) 

𝜔𝑆(Ψ1) 〈[0.1, 0.4407], [0, 0.1587], [0,0]〉 0.5558 0.5966 0.3214 

𝜔𝑆(Ψ2) 〈[0.1, 0.6220], [0.0794, 0.2668], [0,0]〉 0.5074 0.5121 0.3096 

𝜔𝑆(Ψ3) 〈[0.1, 0.2388], [0.1, 0.1], [0, 0.2381]〉 0.4252 0.3719 0.2484 

𝜔𝑆(Ψ4) 
〈
[0.1033, 0.3369], [0.0794, 0.1442],

[0, 0.1825]
〉 

0.4526 0.4200 0.2680 

𝜔𝑆(Ψ5) 〈[0.1, 0.4808], [0, 0], [0.0585, 0.0928]〉 𝟎. 𝟔𝟎𝟕𝟒 𝟎. 𝟔𝟕𝟓𝟒 𝟎. 𝟑𝟕𝟏𝟕 

 Ranking order 𝐴̃5
𝑁 > 𝐴̃1

𝑁 > 𝐴̃2
𝑁

> 𝐴̃4
𝑁 > 𝐴̃3

𝑁 

𝐴̃5
𝑁 > 𝐴̃1

𝑁

> 𝐴̃2
𝑁 > 𝐴̃4

𝑁

> 𝐴̃3
𝑁 

𝐴̃5
𝑁 > 𝐴̃1

𝑁 > 𝐴̃2
𝑁

> 𝐴̃4
𝑁 > 𝐴̃3

𝑁 

 

Similarly, according to the obtained values of the SF on using the existing methods 𝜒𝑆(𝐴̃𝑁) 

[67], 𝜓𝑆(𝐴̃𝑁) [68] and the proposed method 𝜔𝑆(𝐴̃𝑁) for WGM, the obtained ranking order suggests 

that 𝐴̃5
𝑁  is the best alternative by all the existing and the proposed method, as shown below in 

Table 15, hence, we conclude that 𝐴̃5
𝑁  is the best alternative.  

Table 15. Comparative analysis of SF of various methods for WGM 

 
SVNNs 𝝌𝑺(𝑨̃𝑵) 𝝍𝑺(𝑨̃𝑵) 𝝎𝑺(𝑨̃𝑵) 

𝜔𝑆(Ψ1) 〈[0.1, 0.4217], [0.0678, 0.1680], [0.1757, 0.2632]〉 0.4028 0.3523 0.2651 

𝜔𝑆(Ψ2) 〈[0.1, 0.3826], [0.0836, 0.6698], [0.1271, 0.1589]〉 0.1724 −0.0292 0.1067 

𝜔𝑆(Ψ3) 〈[0.1, 0.2080], [0.1, 0.1], [0.1206, 0.2532]〉 0.3836 0.3068 0.2312 
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𝜔𝑆(Ψ4) 
〈
[0.1032, 0.3121], [0.0836, 0.1510],

[0.0688, 0.1920]
〉 

0.4213 0.3692 0.2535 

𝜔𝑆(Ψ5) 〈[0.1, 0.4481], [0.0345, 0.1037], [0.0741, 0.0934]〉 𝟎. 𝟓𝟐𝟔𝟏 𝟎. 𝟓𝟒𝟐𝟖 𝟎. 𝟑𝟐𝟎𝟑 

 Ranking order 𝐴̃5
𝑁 > 𝐴̃4

𝑁

> 𝐴̃1
𝑁 > 𝐴̃3

𝑁

> 𝐴̃2
𝑁 

𝐴̃5
𝑁 > 𝐴̃4

𝑁

> 𝐴̃1
𝑁 > 𝐴̃3

𝑁

> 𝐴̃2
𝑁 

𝐴̃5
𝑁 > 𝐴̃1

𝑁

> 𝐴̃4
𝑁

> 𝐴̃3
𝑁

> 𝐴̃2
𝑁 

 

Hence, we can conclude that the proposed score function 𝜔𝑆(𝐴̃𝑁) is justified and is giving 

reasonable results on applying in real-world applications. 

6. Discussion and Comparative Analysis  

In this section, the SVNSs and IVNSs from the existing literature [67-69] are considered and 

solved by the existing and the proposed method, and the obtained solutions are presented in Table 

16 given below. The obtained Table 16 argues well that the proposed methods are giving the same or 

the better results for all the considered problems reasonably and also it highlights, that the existing 

methods [67, 68] are behaving well for some particular SVNSs or IVNSs but fails under certain 

restrictions, then to deal with such SVNSs or IVNSs the proposed approaches works well and a 

desirable conclusion can be drawn respectively. Hence, it is claimed that the proposed SF and AF are 

better to evaluate MCDM problems and can be easily applied in solving real-life problems.   

 

Table 16. A comparative analysis of SVNSs and IVNSs with various existing metric methods 

 

SVNNs 

 𝛔𝐒(𝐀̃𝐍) 𝛔𝐀(𝐀̃𝐍) 𝛕𝐒(𝐀̃𝐍) 𝛕𝐀(𝐀̃𝐍) 𝛗𝐒(𝐀̃𝐍) 𝛗𝐀(𝐀̃𝐍) 

Ã1
N = 〈0.5,0.2,0.6〉 

Ã2
N = 〈0.6,0.4,0.2〉 

(Adopted from 

[67]) 

0.25  

0.3  

Ã2
N > Ã1

N  

−0.08  

0.32  

Ã2
N > Ã1

N  

0.2750  

0.2600  

Ã1
N > Ã2

N  

−0.5  

−0.4  

Ã2
N > Ã1

N 

0.2778  

0.25  

Ã1
N > Ã2

N  

−0.4  

0.2  

Ã2
N > Ã1

N  

Ã1
N = 〈0.5,0.2,0.6〉 

Ã2
N = 〈0.2,0.2,0.3〉 

(Adopted from 

[68]) 

0.25  

0.25  

Ã1
N = Ã2

N   

−0.08  

−0.2  

Ã1
N > Ã2

N  

0.2750  

0.1250  

Ã1
N > Ã2

N  

−0.5  

−0.5  

Ã1
N = Ã2

N 

0.2778  

0.1667  

Ã1
N > Ã2

N  

−0.4  

0.2  

Ã2
N > Ã1

N  

Ã1
N = 〈0.5,0.0,0.2〉 

Ã2
N = 〈0.4,0.0,0.1〉 

(Adopted from 

[68]) 

0.65  

0.65  

Ã1
N = Ã2

N  

0.3  

0.3  

Ã1
N = Ã2

N  

0.6950  

0.7250  

Ã2
N > Ã1

N  

0.3  

0.3  

Ã1
N = Ã2

N  

0.5  

0.433  

Ã1
N > Ã2

N  

0.6  

0.8  

Ã2
N > Ã1

N  

Ã1
N = 〈0.8,0.1,0.6〉 

Ã2
N = 〈0.8,0.2,0.4〉 

0.5  0.24  0.5  0.0  0.8333  −0.3  
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(Adopted from 

[69]) 

0.5  

Ã1
N = Ã2

N  

0.44  

Ã2
N > Ã1

N  

0.5  

Ã1
N = Ã2

N  

0.0  

Ã1
N = Ã2

N  

0.625  

Ã1
N > Ã2

N  

0.0  

Ã2
N > Ã1

N  

Ã1
N = 〈0.1,0.0,0.1〉 

Ã2
N = 〈0.3,0.0,0.3〉 

(Adopted from 

[69]) 

0.5  

0.5  

Ã1
N = Ã2

N  

0.0  

0.0  

Ã1
N = Ã2

N  

0.5  

0.5  

Ã1
N = Ã2

N  

0.0  

0.0  

Ã1
N = Ã2

N  

0.2778  

0.3571  

Ã2
N > Ã1

N  

0.8  

0.4  

Ã1
N > Ã2

N  

IVNNs 

 𝛘𝐒(𝐀̃𝐍) 𝛙𝐒(𝐀̃𝐍) 𝛚𝐒(𝐀̃𝐍) 𝛘𝐀(𝐀̃𝐍) 

Ã1
N = 〈[0.6,0 .4], [0.3, 0.1], [0.1, 0.3]〉   

Ã2
N = 〈[0.1, 0.6], [0.2, 0.3], [0.1, 0.4]〉  

(Adopted from [67]) 

0.45  

0.3  

Ã1
N > Ã2

N  

0.4375  

0.22  

Ã1
N > Ã2

N  

0.3462  

0.2143  

Ã1
N > Ã2

N  

0.26  

0.005  

Ã1
N > Ã2

N  

Ã1
N = 〈[0.4,0 .6], [0.2, 0.3], [0.5, 0.7]〉  

Ã2
N = 〈[0.2, 0.7], [0.1, 0.2], [0.1, 0.3]〉  

(Adopted from [68])  

0.2  

0.4750  

Ã2
N > Ã1

N  

0.23  

0.4663  

Ã2
N > Ã1

N  

0.2222  

0.3519  

Ã2
N > Ã1

N  

−0.0750  

0.2050  

Ã2
N > Ã1

N  

Ã1
N = 〈[0.1,0 .7], [0.05, 0.15], [0.1, 0.3]〉  

Ã2
N = 〈[0.2, 0.8], [0.05, 0.15], [0.2, 0.4]〉  

(Adopted from [69])   

0.5  

0.5  

Ã1
N = Ã2

N  

0.5  

0.5  

Ã1
N = Ã2

N  

0.2857  

0.4167  

Ã2
N > Ã1

N  

0.17  

0.19  

Ã2
N > Ã1

N  

Ã1
N = 〈[0.1,0 .7], [0.1, 0.1], [0.1, 0.3]〉  

Ã2
N = 〈[0.2, 0.8], [0.1, 0.1], [0.2, 0.4]〉  

(Adopted from [69])  

0.5  

0.5  

Ã1
N = Ã2

N  

0.5  

0.5  

Ã1
N = Ã2

N  

0.3571  

0.4167  

Ã2
N > Ã1

N  

0.16  

0.18  

Ã2
N > Ã1

N  

Ã1
N = 〈[0.1,0 .7], [0.0, 0.2], [0.1, 0.3]〉  

Ã2
N = 〈[0.2, 0.8], [0.0, 0.2], [0.2, 0.4]〉  

(Adopted from [69])  

0.5  

0.5  

Ã1
N = Ã2

N  

0.5  

0.5  

Ã1
N = Ã2

N  

0.3571  

0.4167  

Ã2
N > Ã1

N  

0.18  

0.2  

Ã2
N > Ã1

N  

Ã1
N = 〈[0.1,0 .2], [0.0, 0.0], [0.1, 0.2]〉  

Ã2
N = 〈[0.4, 0.5], [0.0, 0.0], [0.4, 0.5]〉  

(Adopted from [69])  

0.5  

0.5  

Ã1
N = Ã2

N  

0.5  

0.5  

Ã1
N = Ã2

N  

0.2941  

0.4545  

Ã2
N > Ã1

N  

0.0  

0.0  

Ã1
N = Ã2

N  

 

7. Managerial insights 

The study adopted DM when multiple criteria are involved and the decision-maker is supposed 

to find the best alternative among all the present alternatives on the basis of their corresponding 

criteria. The data involved indeterminacy and inconsistent sets of information, since neutrosophic 

sets deal with such data in the best possible manner, so the neutrosophic environment has been 

chosen to deal with the real-life problem. On using the proposed MCDM methodology all the 

available alternatives are evaluated under the neutrosophic environment, by the proposed SF and 

AF which lead to the best option available in the alternative based on their criteria. The application 

of the proposed MCDM methodology based on SF and AF provides a judicious solution to the 

decision-maker by considering all the available information in real-world applications in 

comparison to all the existing metric methods. Hence, the proposed MCDM methodology is more 

reliable in terms of its derived solutions.   
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8. Conclusions 

In this paper, a new SF and AF for SVNSs and IVNSs are proposed, also, an MCDM method is 

developed based on the new ranking tools for SVNSs and IVNSs. In the proposed MCDM method, 

the score value of the aggregated SVNSs or IVNSs is obtained by applying the proposed SF or AF. 

According to the obtained results on applying the proposed SF or AF, the alternatives are ordered 

and the most desirable alternative i.e., the alternative with the highest value of SF or AF is chosen in 

the DM problem. To illustrate the efficiency and the validity of the proposed SF and AF for SVNSs 

and IVNSs a real-life application is solved successfully and the obtained results sync completely 

with the existing methods [67, 68]. Since neutrosophic sets are efficient enough to consider 

indeterminate and inconsistent information/data, hence, our proposed method would play an 

effective role in dealing with MCDM problems in several real-life applications like personnel 

selection, enterprises, signal processing, pattern recognition, medical diagnosis, engineering, 

management, DM, etc. having indeterminacy and inconsistent set of data. The only limitations of the 

proposed method would be that the data must be analyzed properly and all the restrictions should 

be followed in order to derive an accurate solution to the problem on applying the proposed SF and 

AF. Moreover, neutrosophic sets are still being in their prime have a lot to reveal concerning real-life 

applications. In the future, these proposed SF and AF for SVNSs and IVNSs will be expanded and 

will be generalized to the other domains of the neutrosophic sets like-refined neutrosophic sets, 

neutrosophic soft sets, neutrosophic cubic fuzzy sets, and their applications. 
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