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Abstract: Single valued neutrosophic set is an important math-

ematical tool for tackling uncertainty in scientific and engineer-

ing problems because it can handle situation involving indeter-

minacy. In this research, we introduce new similarity measures 

for single valued neutrosophic sets based on binary logarithm 

function. We define two type of binary logarithm similarity 

measures and weighted binary logarithm similarity measures 

for single valued neutrosophic sets. Then we define hybrid 

binary logarithm similarity measure and weighted hybrid binary 

logarithm similarity measure for single valued neutrosophic 

sets. We prove the basic properties of the proposed measures. 

Then, we define a new entropy function for determining 

unknown attribute weights. We develop a novel multi attribute 

group decision making strategy for single valued neutrosophic 

sets based on the weighted hybrid binary logarithm similarity 

measure. We present an illustrative example to demonstrate the 

effectiveness of the proposed strategy. We conduct a sensitivity 

analysis of the developed strategy. We also present a 

comparison analysis between the obtained results from 

proposed strategy and different existing strategies in the 

literature.

Keywords: single valued neutrosophic set; binary logarithm function; similarity measure; entropy function; ideal solution; 

MAGDM 

1 Introduction 

Smarandache [1] introduced neutrosophic sets (NSs) to 
pave the way to deal with problems involving uncertainty, 

indeterminacy and inconsistency. Wang et al. [2] grounded 
the concept of single valued neutrosophic sets (SVNSs), a 

subclass of NSs to tackle engineering and scientific 

problems. SVNSs have been applied to solve various 
problems in different fields such as medical problems [3–

5], decision making problems [6–18], conflict resolution 
[19], social problems [20–21] engineering problems [22- 

23], image processing problems [24–26] and so on.   

The concept of similarity measure is very significant in 
studying almost every practical field. In the literature, few 

studies have addressed similarity measures for SNVSs 
[27–30]. Peng et al. [31] developed SVNSs based multi 

attribute decision making (MADM) strategy employing 
MABAC (Multi-Attributive Border Approximation area 

Comparison and similarity measure), TOPSIS (Technique 

for Order Preference by Similarity to an Ideal Solution) 
and a new similarity measure.  

Ye [32] proposed cosine similarity measure based 
neutrosophic multiple attribute decision making (MADM) 

strategy. In order to overcome some disadvantages in the 

definition of cosine similarity measure, Ye [33] proposed  

‘improved cosine similarity measures’ based on cosine 
function. Biswas et al. [34] studied cosine similarity  

measure based MCDM with trapezoidal fuzzy 

neutrosophic numbers. Pramanik and Mondal [35] 
proposed weighted fuzzy similarity measure based on 
tangent function. Mondal and Pramanik [36] proposed 
intuitionistic fuzzy similarity measure based on tangent 
function. Mondal and Pramanik [37] developed tangent 

similarity measure of SVNSs and applied it to MADM. 
Ye and Fu [38] studied medical diagnosis problem using a 

SVNSs similarity measure based on tangent function. Can 
and Ozguven [39] studied a MADM problem for adjusting 

the proportional-integral-derivative (PID) coefficients 
based on neutrosophic Hamming, Euclidean, set-theoretic, 

Dice, and Jaccard similarity measures.  
Several studies [40–42] have been reported in the literature 
for multi-attribute group decision making (MAGDM) in 

neutrosophic environment. Ye [43] studied the similarity 
measure based on distance function of SVNSs and applied 

it to MAGDM. Ye [44] developed several clustering 

methods using distance-based similarity measures for 
SVNSs. 
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Mondal et al. [45] proposed sine hyperbolic similarity 

measure for solving MADM problems. Mondal et al. [46] 
also proposed tangent similarity measure to deal with 

MADM problems for interval neutrosophic environment. 

Lu and Ye [47] proposed logarithmic similarity 
measure for interval valued fuzzy set [48] and applied it in 

fault diagnosis strategy. 

Research gap: 

MAGDM strategy using similarity measure based on 

binary logarithm function under single valued neutrosophic 
environment is yet to appear. 

Research questions: 

 Is it possible to define a new similarity measure

between single valued neutrosophic sets using binary

logarithm function?

 Is it possible to define a new entropy function for

single valued neutrosophic sets for determining un-

known attribute weights?

 Is it possible to develop a new MAGDM strategy

based on the proposed similarity measures in single

valued neutrosophic environment?

The objectives of the paper: 

 To define binary logarithm similarity measures for
SVNS environment and prove the basic properties.

 To define a new entropy function for determining
unknown weight of attributes.

 To develop a multi-attribute droup decision making
model based on proposed similarity measures.

 To present a numerical example for the efficiency

and effectiveness of the proposed strategy.

Having motivated from the above researches on 

neutrosophic similarity measures, we introduce the concept 
of binary logarithm similarity measures for SVNS 

environment. The properties of binary logarithm similarity 

measures are established. We also propose a new entropy 
function to determine unknown attribute weights. We 

develope a MAGDM strategy using the proposed hybrid 
binary logarithm similarity measures. The proposed 

similarity measure is applied to a MAGDM problem.  

The structure of the paper is as follows. Section 2 
presents basic concepts of NSs, operations on NSs, SVNSs 

and operations on SVNSs. Section 3 proposes binary 
logarithm similarity measures and weighted binary 

logarithm similarity measures, hybrid binary logarithm 
similarity measure (HBLSM), weighted hybrid binary 

logarithm similarity measure (WHBLSM) in SVNSs 

environment. Section 4 proposes a new entropy measure to 

calculate unknown attribute weights and proves basic 
properties of entropy function. Section 5 presents a 

MAGDM strategy based weighted hybrid binary logarithm 

similarity measure. Section 6 presents an illustrative 
example to demonstrate the applicability and feasibility of 

the proposed strategies. Section 7 presents a sensitivity 
analysis for the results of the numerical example. Section 8 

conducts a comparative analysis with the other existing 

strategies. Section 9 presents the key contribution of the 
paper. Section 10 summarizes the paper and discusses 

future scope of research.  

2 Preliminaries 

In this section, the concepts of NSs, SVNSs, operations on 

NSs and SVNSs and binary logarithm function are 

outlined. 

2.1 Neutrosophic set (NS) 

Assume that X be an universe of discourse. Then a 

neutrosophic sets [1] N can be defined as follows: 

N = {< x: TN(x), IN(x), FN(x) > | xX}. 

Here the functions T, I and F define respectively the 

membership degree, the indeterminacy degree, and the 

non-membership degree of the element xX to the set N. 

The three functions T, I and F satisfy the following the 

conditions: 

 T, I, F: X → ]−0,1+[

 −0 ≤ supTN(x) + supIN( x) + supFN(x) ≤ 3+

For two neutrosophic sets M = {< x: TM (x), IM(x), 

FM(x) > | x X} and N = {< x, TN(x), IN(x), FN(x) > | xX 

}, the two relations are defined as follows:  

 M   N  if and only if TM(x)  TN(x), IM(x)  IN(x),

FM(x )  FN(x)

 M = N if and only if TM(x) = TN(x), IM(x) = IN(x),

FM(x) = FN(x).

2.2. Single valued Neutrosophic sets (SVNSs) 

Assume that X be an universe of discourse. A SVNS 

[2] P in X is formed by a truth-membership function TP(x), 

an indeterminacy membership function IP(x), and a falsity 

membership function FP(x). For each point x in X, TP(x), 

IP(x), and FP(x)[0, 1].  

For continuous case, a SVNS P can be expressed as 

follows: 

Xx
x

xFxIxT
P

x

PPP 


 :
)(),(),(

, 
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For discrete case, a SVNS P can be expressed as 

follows: 

Xx
x

xxx
P i

n

i i

iPiPiP FIT



 



:
)(),(),(

1

For two SVNSs P = {< x: TP(x), IP(x), FP(x)> | xX} 

and Q = {< x: TQ(x), IQ(x), FQ(x)> | xX}, some definitions 

are stated below: 

 P  Q  if and only if TP(x)  TQ(x), IP(x)  IQ(x), and

FP(x)  FQ(x).

 P  Q  if and only if TP(x)  TQ(x), IP(x)  IQ(x), and

FP(x)  FQ(x).

 P = Q if and only if TP(x) = TQ(x), IP(x) = IQ(x),

and FP(x) = FQ(x) for any xX.

 Complement of P i.e. Pc ={< x: FP(x), 1− IP(x),

TP(x)> | xX }.

2.3. Some arithmetic operations on SVNSs 

Definition 1 [49] 

Let )(),(),( xFxIxTP PPP and )(),(),( xFxIxTQ QQQ be 

any two SVNSs in a universe of discourse then arithmetic 

operations are stated as follows. 













 


)()(

,)()(,)()()()(

xFxF

xIxIxTxTxTxT
QP

QP

QPQPQP




















)()()()(

,)()()()(,)()(

xFxFxFxF

xIxIxIxIxTxT
QP

QPQP

QPQPQP

       0;)(,)(,)(11   xFxIxTP PPP

         0;)(11,)(11,)(   xFxIxTP PPP

2.4. Binary logarithm function 

In mathematics, the logarithm of the form log2
x , x > 0 is 

called binary logarithm function [50]. For example, the 
binary logarithm of 1 is 0, the binary logarithm of 4 is 2, 

the binary logarithm of 16 is 4, and the binary logarithm 

of 64 is 6. 

3. Binary logarithm similarity measures for
SVNSs 

In this section, we define two types of binary logarithm 

similarity measures and their hybrid and weighted hybrid 

similarity measures. 

3.1. Binary logarithm similarity measures of SVNSs 

(type-I) 

Definition 2. Let A = <x(TA(xi), IP(xi), FP(xi))> and B = 

<x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. The binary 

logarithm similarity measure (type-I) between SVNSs A 

and B are defined as follows: 

),(BL1 BA = 



















































n

i iBiA

iBiAiBiA

xFxF

xIxIxTxT

n
1

2
)()(

)()()()(

3

1
2log

1

  (1) 

Theorem 1. The binary logarithm similarity 

measure ),(BL1 BA between any two SVNSs A and B 

satisfy the following properties: 

 1),(BL0.1P
1

 BA  

 
1),(BL.2P 1 BA , if and only if A = B 

),(BL),(BL.3P 11 ABBA   

  P4. If C is a SVNS in X and A B C then 

),(BL),(BL 11 BACA   and ),(BL),(BL 11 CBCA  . 

Proof 1.  

From the definition of SVNS, we write, 

0 ≤ TA(x) + IA( x) + FA(x) ≤ 3 and  

0 ≤ TB(x) + IB(x) + FB(x) ≤ 3      



,3)()()()()()(0  iBiAiBiAiBiA xFxFxIxIxTxT

1
)()(

,)()(,)()(
max0 




















iBiA

iBiAiBiA

xFxF

xIxIxTxT
 

 1),(BL0 1
 BA . 

Proof 2. 

For any two SVNSs A and B,  

A = B  

 TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) 

 0)()(  xTxT BA , 0)()(  xIxI BA , 

     0)()(  xFxF BA  

 1),(BL1 BA . 

Conversely, 

 for 1),(BL1 BA , we have, 

 0)()(  xTxT BA , 0)()(  xIxI BA , 
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     0)()(  xFxF BA

 )()( xTxT BA  , )()( xIxI BA  , )()( xFxF BA   

  A = B. 

Proof 3. 

We have, 

)()()()( xTxTxTxT ABBA  , 

)()()()( xIxIxIxI ABBA  , 

)()()()( xFxFxFxF ABBA 

 ),(BL),(BL 11 ABBA  . 

Proof 4. 

 For A B C, we have,

 TA(x)  TB(x)  TC(x), IA(x)  IB(x)  IC(x), 

FA(x)  FB(x)  FC(x) for xX. 

 )()()()( xTxTxTxT CABA  , 

)()()()( xTxTxTxT CACB  ; 

)()()()( xIxIxIxI CABA  , 

)()()()( xIxIxIxI CACB  ; 

)()()()( xFxFxFxF CABA  , 

)()()()( xFxFxFxF CACB  . 

 ),(BL),(BL 11 BACA   and ),(BL),(BL 11 CBCA  . 

3.2. Binary logarithm similarity measures of SVNSs ( 

type-II)

Definition 3. [51]  Let A = <x(TA(xi), IP(xi), FP(xi))> and B 

= <x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. The binary 

logarithm similarity measure (type-II) between SVNSs A 

and B are defined as follows: 

),(BL2 BA =





































n

i iBiA

iBiAiBiA

xFxF

xIxIxTxT

n
1

2
)()(

,)()(,)()(
max2log

1
(2) 

Theorem 2. The binary logarithm similarity 

measure ),(BL 2 BA between any two SVNSs A and B 

satisfy the following properties: 

 1),(BL0.1P
2

 BA  

 
1),(BL.2P 2 BA , if and only if A = B 

),(BL),(BL.3P 22 ABBA   

  P4. If C is a SVNS in X and A B C then 

),(BL),(BL 22 BACA   and ),(BL),(BL 22 CBCA  . 

Proof. 

Proofs of the properties are shown in [51]. 

3.3. Weighted binary logarithm similarity measures of 

SVNSs for type-I 

Definition 4.  Let A = <x(TA(xi), IP(xi), FP(xi))> and 

B = <x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. Then the 

weighted binary logarithm similarity measure for type-I 

between SVNSs A and B are defined as follows: 

),(BL1 BAw = 



















































n

1i
iBiA

iBiAiBiA

2i
)x(F)x(F

)x(I)x(I)x(T)x(T

3

1
2logw

 (3) 

Here, 10  iw and 1
1




n

i
iw . 

Theorem 3. The weighted binary logarithm similarity 

measures ),(BL1 BAw  between SVNSs A and B satisfy the 

following properties: 

1),(BL0.1P 1  BAw  

1),(BL.2P 1 BAw , if and only if A = B 

),(BL),(BL.3P 11 ABBA ww   

P4. If C is a SVNS in X and A B C, then 

),(BL),(BL 11 BACA ww   and ),(BL),(BL 11 CBCA ww  ; 

1
1




n

i
iw . 

Proof 1. 

From the definition of SVNSs A and B, we write, 

0 ≤ TA(x) + IA( x) + FA(x) ≤ 3 and  

0 ≤ TB(x) + IB( x) + FB(x) ≤ 3 

 1
)()(

,)()(,)()(
max0 




















iBiA

iBiAiBiA

xFxF

xIxIxTxT
         

 3)()()()()()(0  iBiAiBiAiBiA xFxFxIxIxTxT , 

 1),(BL0 1
 BA

w . since, 1
1




n

i
iw . 

Proof 2. 

For any two SVNSs A and B if A = B, then we have, 

TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) 

 0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA
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 1),(BL1 BAw , (t = 1, 2), since 1
1




n

i
iw .

Conversely, 

For 1),(BL1 BAw , then we have, 

 0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA

 )()( xTxT BA  , )()( xIxI BA  , )()( xFxF BA   

  A = B, since 1
1




n

i
iw . 

Proof 3.  

For any two SVNSs A and B, we have,

)()()()( xTxTxTxT ABBA  , 

)()()()( xIxIxIxI ABBA  , 

)()()()( xFxFxFxF ABBA 

 ),(BL),(BL 11 ABBA ww 
 
for. 

Proof 4. 

For A B C, we have,

 TA(x)  TB(x)  TC(x), IA(x)   IB(x)   IC(x), 

FA(x)   FB(x)  FC(x) for xX. 

 )()()()( xTxTxTxT CABA  , 

)()()()( xTxTxTxT CACB  ; 

)()()()( xIxIxIxI CABA  , 

)()()()( xIxIxIxI CACB  ; 

)()()()( xFxFxFxF CABA  , 

)()()()( xFxFxFxF CACB  . 

 ),(BL),(BL 11 BACA ww   and ),(BL),(BL 11 CBCA ww 

since 11  
n
i iw . 

3.4. Weighted binary logarithm similarity measures of 

SVNSs for type-II 

Definition 5. [51]  Let A = <x(TA(xi), IP(xi), FP(xi))> and 

B = <x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. Then the 

weighted binary logarithm similarity measure (type-II 

between SVNSs A and B is defined as follows: 

),(BL2 BAw = 





































n

i iBiA

iBiAiBiA

i
xFxF

xIxIxTxT
w

1

2
)()(

,)()(,)()(
max2log

(4) 

Here, 10  iw and 1
1




n

i
iw . 

Proof. 

For proof, see [51]. 

3.3. Hybrid binary logarithm similarity measures 

(HBLSM) for SVNSs 

Definition 6. Let A = <x(TA(xi), IP(xi), FP(xi))> and B = 

<x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. The hybrid 

binary logarithm similarity measure between SVNSs A and 

B is defined as follows:

 BAHyb ,BL = 


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
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









n

i

iBiA

iBiA

iBiA

n

i

iBiA

iBiA

iBiA

xFxF

xIxI

xTxT

xFxF
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xTxT

n

1

2

1

2

)()(

,)()(

,)()(

max2log)1(

)()(

)()(

)()(

3

1
2log

1
        (5) 

Here, 10  . 

Theorem 4. The hybrid binary logarithm similarity 

measure  BAHyb ,BL between any two SVNSs A and B 

satisfy the following properties: 

1),(.1P BL0  BAHyb  

1),(.2P BL BAHyb , if and only if A = B 

),(),(.3P BLBL ABBA HybHyb   

  P4.  If C is a SVNS in X and A B C then 

),(BL),(BL BACA HybHyb 

and ),(BL),(BL CBCA HybHyb  .

Proof 1.  

From the definition of SVNS, we write, 

0 ≤ TA(x)+ IA( x)+ FA(x) ≤ 3 and 

0 ≤ TB(x) + IB(x) + FB(x) ≤ 3  
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 1
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xFxF

xIxIxTxT
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 1),(BL0  BA
Hyb

. 

Proof 2.  

For any two SVNSs A and B,  

for A = B, we have,   

 TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) 

 0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA

 1),(BL BAHyb . 

Conversely, 

for 1),(BL BAHyb , we have, 

0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA

 )()( xTxT BA  , )()( xIxI BA  , )()( xFxF BA   

  A = B.  

Proof 3. 

For any two SVNSs A and B, we have, 

)()()()( xTxTxTxT ABBA  , 

)()()()( xIxIxIxI ABBA  , 

)()()()( xFxFxFxF ABBA 

 ),(BL),(BL ABBA HybHyb  . 

Proof 4.  

For A B C, we have,

 TA(x)  TB(x)  TC(x), IA(x)  IB(x)  IC(x), 

FA(x)  FB(x)  FC(x) for xX. 

 )()()()( xTxTxTxT CABA  ,

)()()()( xTxTxTxT CACB  ; 

)()()()( xIxIxIxI CABA  , 

)()()()( xIxIxIxI CACB  ; 

)()()()( xFxFxFxF CABA  , 

)()()()( xFxFxFxF CACB  . 

 ),(BL),(BL BACA HybHyb 

and ),(BL),(BL CBCA HybHyb  . 

3.4. Weighted hybrid binary logarithm similarity 

measures (WHBLSM) for SVNSs 

Definition 7. Let A = <x(TA(xi), IP(xi), FP(xi))> and B = 

<x(TB(xi), IB(xi), FB(xi))> be any two SVNSs. The 

weighted hybrid binary logarithm similarity measure 

between SVNSs A and B is defined as follows: 

 BAwHyb ,BL = 
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Here, 10  . 

Theorem 5. The weighted hybrid binary logarithm 

similarity measure ),(BL BAwHyb  between any two SVNSs 

A and B satisfy the following properties: 

1),(BL0.1P  BA
wHyb  

1),(BL.2P BAwHyb , if and only if A = B 

),(BL),(BL.3P ABBA wHybwHyb   

 P4. If C is a SVNS in X and A B C, 

then ),(BL),(BL BACA wHybwHyb 

 and ),(BL),(BL CBCA wHybwHyb  . 

Proof 1. 

From the definition of SVNS, we write, 

0 ≤ TA(x)+ IA( x)+ FA(x) ≤ 3 and 

 0 ≤ TB(x) + IB(x) + FB(x) ≤ 3 

 1
)()(

,)()(,)()(
max0 
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)()()()(0





iBiA

iBiAiBiA

xFxF

xIxIxTxT
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 1),(BL0  BA
wHyb . 

Proof 2.  

For any two SVNSs A and B, 
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for A = B, we have,   

 TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) 

 0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA

 1),(BL BAwHyb . 

Conversely, 

for 1),(BL BAwHyb , we have, 

0)()(  xTxT BA , 0)()(  xIxI BA , 

0)()(  xFxF BA

 )()( xTxT BA  , )()( xIxI BA  , )()( xFxF BA   

  A = B.  

Proof 3.  

For any two SVNSs A and B, we have, 

)()()()( xTxTxTxT ABBA  , 

)()()()( xIxIxIxI ABBA  , 

)()()()( xFxFxFxF ABBA 

 ),(BL),(BL ABBA wHybwHyb  . 

Proof 4.  

For A B C, we have,

 TA(x)  TB(x)  TC(x), IA(x)  IB(x)  IC(x), 

FA(x)  FB(x)  FC(x) for all xX. 

 )()()()( xTxTxTxT CABA  , 

)()()()( xTxTxTxT CACB  ; 

)()()()( xIxIxIxI CABA  , 

)()()()( xIxIxIxI CACB  ; 

)()()()( xFxFxFxF CABA  , 

)()()()( xFxFxFxF CACB  . 

 ),(BL),(BL BACA wHybwHyb  and 

),(BL),(BL CBCA wHybwHyb  . 

4. A new entropy measure for SVNSs

Entropy strategy [52] is an important contribution for 

determining indeterminate information. Zhang et al. [53] 

introduced the fuzzy entropy. Vlachos and Sergiadis [54] 

proposed entropy function for intuitionistic fuzzy sets. 

Majumder and Samanta [55] developed some entropy 

measures for SVNSs. When attribute weights are 

completely unknown to decision makers, the entropy 

measure is used to calculate attribute weights. In this 

paper, we define an entropy measure for determining 

unknown attribute weights.  

Definition 8. The entropy function of a SVNS P 

= )(),(),( xFxIxT
P
ij

P
ij

P
ij (i = 1, 2, ..., m; j = 1, 2, ..., n) is

defined as follows: 
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5. MAGDM strategy based on weighted hybrid bi-
nary logarithm similarity measure for SVNSs 

Assume that (P1, P2, ..., Pm) be the alternatives, (C1, C2, ..., 

Cn) be the attributes of each alternative, and {D1, D2, ..., 

Dr} be the decision makers. Decision makers provide the 

rating of alternatives based on the predefined attribute. 

Each decision maker constructs a neutrosophic decision 

matrix associated with the alternatives based on each at-

tribute shown in Equation (9). Using the following steps, 

we present the MAGDM strategy (see figure 1) based on 

weighted hybrid binary logarithm similarity measure 

(WHBLSM).  

Step 1: Determine the relation between the alternatives 

and the attributes 

At first, each decision maker prepares decision matrix. The 

relation between alternatives Pi (i = 1, 2, ..., m) and the at-

tribute Cj (j = 1, 2, ..., n) corresponding to each decision 

maker is presented in the Equation (9).
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Here, FIT rD
ij

rD
ij

rD
ij ,, (i = 1, 2, ..., m; j = 1, 2, ..., n) is the 

single valued neutrosophic rating value of the alternative Pi 

with respect to the attribute Cj corresponding to the deci-

sion maker Dr. 

Step 2: Determine the core decision matrix 

We form a new decision matrix, called core decision 

matrix to combine all the decision maker’s opinions into a 

group opinion. Core decision matrix minimizes the 

biasness which is imposed by different decision makers 

and hence credibility to the final decision increases. The 

core decision matrix is presented in Equation (10). 
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Step 3: Determine the ideal solution 

The evaluation of attributes can be categorized into benefit 

attribute and cost attribute. An ideal alternative can be de-

termined by using a maximum operator for the benefit at-

tributes and a minimum operator for the cost attributes for 

determining the best value of each attribute among all the 

alternatives. An ideal alternative [42] is presented as fol-

lows: 

P* = {C1*, C2*, … , Cm*}. 

where the benefit attribute is 

)()()(* min,min,max Pi
C ji

Pi
C ji

Pi
C ji

j FITC  (11) 

and the cost attribute is 

)()()(* max,max,min Pi
C ji

Pi
C ji

Pi
C ji

j FITC  (12) 

Step 4: Determine the attribute weights 

Using Equation (8), determine the weights of the attribute. 

Step 5:  Determine the WHBLSM values 

Using Equation (6), calculate the weighted similarity 

measures for each alternative. 

Step 6:  Ranking the priority 

All the alternatives are preference ranked based on the de-

creasing order of calculated measure values. The highest 

value reflects the best alternative. 

Step 7: End. 

6. An illustrative example

Suppose that a state government wants to construct an eco-

tourism park for the development of state tourism and 

especially for mental refreshment of children. After initial 

screening, three potential spots namely, spot-1 (P1), spot-2 

(P2), and spot-3 (P3) remain for further selection. A team 
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of three decision makers, namely, D1, D2, and D3 has been 

constructed for selecting the most suitable spot with 

respect to the following attributes. 

 Ecology (C1),

 Costs (C2),

 Technical facility (C3),

 Transport (C4),

 Risk factors (C5)

The steps of decision-making strategy to select the 

best potential spot to construct an eco-tourism park based 

on the proposed strategy are stated below:  

6.1. Steps of MAGDM strategy 

We present MAGDM strategy based on the proposed 

WHBLSM using the following steps. 

Step 1:  Determine the relation between alternatives and 

attributes 

The relation between alternatives P1, P2 and P3 and the at-

tribute set {C1, C2, C3, C4, C5} corresponding to the set of 

decision makers {D1, D2, D3} are presented in Equations 

(13), (14), and (15). 









































2.0

,3.0

,7.0

2.0

,2.0

,5.0

4.0

,4.0

,5.0

3.0

,1.0

,8.0

3.0

,2.0

,4.0

4.0

,3.0

,4.0

3.0

,3.0

,7.0

2.0

,2.0

,6.0

5.0

,2.0

,5.0

6.0

,3.0

,4.0

5.0

,5.0

,6.0

1,0

,2.0

,7.0

1.0

,1.0

,8.0

3.0

,4.0

,7.0

4.0

,4.0

,7.0

]|[

3

2

1

54321

1

P

P

P

CCCCC

CPD

 (13) 









































2.0

,4.0

,7.0

2.0

,2.0

,7.0

3.0

,3.0

,5.0

2.0

,2.0

,8.0

5.0

,2.0

,4.0

4.0

,1.0

,4.0

3.0

,3.0

,8.0

3.0

,3.0

,5.0

4.0

,2.0

,5.0

4.0

,4.0

,5.0

4.0

,5.0

,5.0

2,0

,2.0

,5.0

2.0

,2.0

,8.0

4.0

,4.0

,7.0

3.0

,2.0

,5.0

]|[

3

2

1

54321

2

P

P

P

CCCCC

CPD

         (14) 









































4.0

,6.0

,5.0

2.0

,4.0

,7.0

3.0

,3.0

,5.0

2.0

,4.0

,6.0

3.0

,2.0

,6.0

4.0

,4.0

,3.0

4.0

,3.0

,5.0

4.0

,4.0

,7.0

3.0

,1.0

,5.0

3.0

,2.0

,6.0

5.0

,6.0

,5.0

5,0

,2.0

,7.0

3.0

,3.0

,6.0

1.0

,2.0

,8.0

3.0

,4.0

,7.0

]|[

3

2

1

54321

3

P

P

P

CCCCC

CPD

 

(15) 

Step 2:  Determine the core decision matrix 

Using Equation (10), we construct the core decision matrix 

for all decision makers shown in Equation (16). 
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,956.0

420.0

,292.0

,938.0

219.0

,452.0

,961.0

219.0

,203.0

,956.0

184.0

,184.0

,989.0

232.0

,324.0

,988.0

332.0

,324.0

,984.0

]|[

3

2

1

54321

P

P

P

CCCCC

CPD

(16) 

Step 3:  Determine the ideal solution 

Here, C3 and C4 denote benefit attributes and C1, C2 and C5 

denote cost attributes. Using Equations (11) and (12), we 

calculate the ideal solutions as follows: 





















404.0,452.0,908.0

,203.0,203.0,989.0,184.0,184.0,989.0

,395.0,324.0,956.0,420.0,324.0,938.0

*P .

Step 4: Determine the attribute weights 

Using Equation (8), we calculate the attribute weights as 

follows: 

[w1, w2, w3, w4, w5] = 

[0.1680, 0.3300, 0.2285, 0.2485, 0.0250] 

Step 5: Determine the weighted hybrid binary logarithm 

similarity measures 

Using Equation (6), we calculate similarity values for 

alternatives shown in Table 1. 
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Step 6:  Ranking the alternatives 

Ranking order of alternatives is prepared as the descending 

order of similarity values. Highest value indicates the best 

alternative. Ranking results are shown in Table 1 for dif-

ferent values of  . 

Step 7. End. 

7. Sensitivity analysis

In this section, we discuss the variation of ranking results 

(see Table 1) for different values of  . From the results 

shown in Tables 1, we observe that the proposed strategy 

provides the same ranking order for different values of  .  

8. Comparison analysis

In this section, we solve the problem with different 

existing strategies [33, 37, 38, 56]. Outcomes are furnished 

in the Table 2 and figure 2. 

9. Contributions of the proposed strategy

 We propose two types of binary logarithm similarity

measures and their hybrid similarity measure for

SVNS environment. We have proved their basic

properties.

 To calculate unknown weights structure of attributes

in SVNS environment, we have proposed a new en-

tropy function.

 We develop a decision making strategy based on the

proposed weighted hybrid binary logarithm similarity

measure (WHBLSM).

 We have solved a illustrative example to show the

feasibility, applicability, and effectiveness of the

proposed strategy.

10. Conclusion

Conclusions in the paper are concise as follows: 

1. We have proposed hybrid binary logarithm similarity

measure and weighted hybrid binary logarithm

similarity measure for dealing indeterminacy in

decision making situation.

2. We have defined a new entropy function to determine

unknown attribute weights.

3. We have developed a new MAGDM strategy based

on the proposed weighted hybrid binary logarithm

similarity measure.

4. We have presented a numerical example to illustrate

the proposed strategy.

5. We have conducted a sensitivity analysis

6. We have presented comparative analyses between the

obtained results from the proposed strategies and

different existing strategies in the literature. The

proposed weighted hybrid binary logarithm similarity

measure can be applied to solve MAGDM problems

in clustering analysis, pattern recognition, personnel

selection, etc.

7. Future research can be continued to investigate the

proposed similarity measures in neutrosophic hybrid

environment for tackling uncertainty, inconsistency

and indeterminacy in decision making. The concept

of the paper can be applied in practical decision-

making, supply chain management, data mining, clus-

ter analysis, teacher selection etc.

Table 1 Ranking order for different values of  . 

Similarity 

measures 

(  ) Measure values Ranking 

order 

)*,(BL PP iwHyb 0.10 ;9426.0)*,(BL 1 PPwHyb ;9233.0)*,(BL 2 PPwHyb 9101.0)*,(BL 3 PPwHyb P1 P2 P3 

)*,(BL PP iwHyb 0.25 ;9479.0)*,(BL 1 PPwHyb ;9296.0)*,(BL 2 PPwHyb 9153.0)*,(BL 3 PPwHyb P1 P2 P3

)*,(BL PP iwHyb 0.40 ;9532.0)*,(BL 1 PPwHyb ;9357.0)*,(BL 2 PPwHyb 9207.0)*,(BL 3 PPwHyb P1 P2 P3 

)*,(BL PP iwHyb 0.55 ;9585.0)*,(BL 1 PPwHyb ;9419.0)*,(BL 2 PPwHyb 9260.0)*,(BL 3 PPwHyb P1 P2 P3 

)*,(BL PP iwHyb 0.70 ;9638.0)*,(BL 1 PPwHyb ;9482.0)*,(BL 2 PPwHyb 9313.0)*,(BL 3 PPwHyb P1 P2 P3 

)*,(BL PP iwHyb 0.90 ;9708.0)*,(BL 1 PPwHyb ;9565.0)*,(BL 2 PPwHyb 9384.0)*,(BL 3 PPwHyb  P1 P2 P3
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Table 2 Ranking order for different existing strategies 

Similarity measures Measure values for P1, P2 and P3 Ranking order 

Mondal and Pramanik [37] 0.8901, 0.8679, 0.8093 P1 P2 P3 

Ye [33]  0.8409, 0.8189, 0.7766 P1 P2 P3 

Biswas et al. [56] )55.0(  0.9511, 0.9219, 0.9007 P1 P2 P3 

Ye and Fu [38] 0.9161, 0.8758, 0.7900 P1 P2 P3 

Proposed strategy )55.0(  0.9585, 0.9419, 0.9260 P1 P2 P3 

Fig. 1: Decision making phases of the proposed approach 

 WHBLSM based decision making strategy 

Determination of the relation between 

alternatives and attributes Step-1 

Determine the core decision matrix 
Step- 2 

Step- 3 Determine ideal solution 

Determine the attribute weights Step-4 

Step-5 
Calculate the WHBLSM values 

Ranking the alternatives Step- 6 

  Decision making analysis phase 
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Fig. 2: Ranking order of different strategies 
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