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Abstract: Saeid and Jun introduced the notion of neutrosophic
points, and studied neutrosophic subalgebras of several types in
BCK/BCI-algebras by using the notion of neutrosophic points
(see [4] and [6]). More general form of neutrosophic points is consid-
ered in this paper, and generalizations of Saeid and Jun’s results are

discussed. The concepts of (∈,∈ ∨q(kT ,kI ,kF ))-neutrosophic sub-
algebra, (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalge-
bra and (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra are introduced,
and several properties are investigated. Characterizations of (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra are discussed.

Keywords: (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra; (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra; (∈, q(kT ,kI ,kF ))-neutrosophic sub-
algebra.

1 Introduction
As a generalization of fuzzy sets, Atanassov [1] introduced the
degree of nonmembership/falsehood (f) in 1986 and defined the
intuitionistic fuzzy set. As a more general platform which ex-
tends the notions of the classic set and fuzzy set, intuitionistic
fuzzy set and interval valued (intuitionistic) fuzzy set, Smaran-
dache introduced the notion of neutrosophic sets (see [7, 8]),
which is useful mathematical tool for dealing with incomplete,
inconsistent and indeterminate information. For further particu-
lars on neutrosophic set theory, we refer the readers to the site

http://fs.gallup.unm.edu/FlorentinSmarandache.htm

Jun [4] introduced the notion of (Φ, Ψ)-neutrosophic subalgebra
of a BCK/BCI-algebra X for Φ, Ψ ∈ {∈, q, ∈ ∨ q}, and in-
vestigated related properties. He provided characterizations of an
(∈,∈)-neutrosophic subalgebra and an (∈,∈ ∨ q)-neutrosophic
subalgebra, and considered conditions for a neutrosophic set to
be a (q, ∈ ∨ q)-neutrosophic subalgebra. Saeid and Jun [6] gave
relations between an (∈, ∈ ∨ q)-neutrosophic subalgebra and a
(q, ∈ ∨ q)-neutrosophic subalgebra, and investigated properties
on neutrosophic q-subsets and neutrosophic ∈ ∨ q-subsets.

The purpose of this article is to give an algebraic tool of neu-
trosophic set theory which can be used in applied sciences, for
example, decision making problems, medical sciences etc. We
consider a general form of neutrosophic points, and then we
discuss generalizations of the papers [4] and [6]. As a gen-
eralization of (∈, ∈ ∨ q)-neutrosophic subalgebras, we intro-
duce the notions of (∈,∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra,
and (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra in BCK/BCI-
algebras, and investigate several properties. We discuss charac-

terizations of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra. We
consider relations between (∈,∈)-neutrosophic subalgebra, (∈,
q(kT ,kI ,kF ))-neutrosophic subalgebra and (∈, ∈ ∨q(kT ,kI ,kF ))-
neutrosophic subalgebra.

2 Preliminaries
By a BCI-algebra, we mean a set X with a binary operation ∗
and the special element 0 satisfying the conditions (see [3, 5]):

(a1) (∀x, y, z ∈ X)(((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(a2) (∀x, y ∈ X)((x ∗ (x ∗ y)) ∗ y = 0),

(a3) (∀x ∈ X)(x ∗ x = 0),

(a4) (∀x, y ∈ X)(x ∗ y = y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the axiom

(a5) 0 ∗ x = 0 for all x ∈ X,
then we say that X is a BCK-algebra (see [3, 5]). A nonempty
subset S of aBCK/BCI-algebraX is called a subalgebra ofX
(see [3, 5]) if x ∗ y ∈ S for all x, y ∈ S.

The collection of all BCK-algebras and all BCI-algebras are
denoted by BK(X) and BI(X), respectively. Also B(X) :=
BK(X) ∪ BI(X).

We refer the reader to the books [3] and [5] for further infor-
mation regarding BCK/BCI-algebras.

Let X be a non-empty set. A neutrosophic set (NS) in X (see
[7]) is a structure of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X} (2.1)

S.J. Kim, S.Z. Song, Y.B. Jun, Generalizations of neutrosophic subalgebras in BCK/BCI-algebras based on neutrosophic points

Neutrosophic Sets and Systems, Vol. 20, 2018  26 

University of New Mexico 



where AT , AI and AF are a truth membership function, an inde-
terminate membership function and a false membership function,
respectively, from X into the unit interval [0, 1]. The neutro-
sophic set (2.1) will be denoted by A = (AT , AI , AF ).

Given a neutrosophic setA = (AT , AI , AF ) in a setX , α, β ∈
(0, 1] and γ ∈ [0, 1), we consider the following sets (see [4]):

T∈(A;α) := {x ∈ X | AT (x) ≥ α},
I∈(A;β) := {x ∈ X | AI(x) ≥ β},
F∈(A; γ) := {x ∈ X | AF (x) ≤ γ},
Tq(A;α) := {x ∈ X | AT (x) + α > 1},
Iq(A;β) := {x ∈ X | AI(x) + β > 1},
Fq(A; γ) := {x ∈ X | AF (x) + γ < 1},
T∈∨ q(A;α) := {x ∈ X | AT (x) ≥ α or AT (x) + α > 1},
I∈∨ q(A;β) := {x ∈ X | AI(x) ≥ β or AI(x) + β > 1},
F∈∨ q(A; γ) := {x ∈ X | AF (x) ≤ γ or AF (x) + γ < 1}.

We say T∈(A;α), I∈(A;β) and F∈(A; γ) are neutrosophic
∈-subsets; Tq(A;α), Iq(A;β) and Fq(A; γ) are neutrosophic q-
subsets; and T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ) are neu-
trosophic ∈ ∨ q-subsets. It is clear that

T∈∨ q(A;α) = T∈(A;α) ∪ Tq(A;α), (2.2)
I∈∨ q(A;β) = I∈(A;β) ∪ Iq(A;β), (2.3)
F∈∨ q(A; γ) = F∈(A; γ) ∪ Fq(A; γ). (2.4)

Given Φ,Ψ ∈ {∈, q,∈ ∨ q}, a neutrosophic set A = (AT , AI ,
AF ) in X ∈ B(X) is called a (Φ, Ψ)-neutrosophic subalgebra
of X (see [4]) if the following assertions are valid.

x ∈ TΦ(A;αx), y ∈ TΦ(A;αy)
⇒ x ∗ y ∈ TΨ(A;αx ∧ αy),

x ∈ IΦ(A;βx), y ∈ IΦ(A;βy)
⇒ x ∗ y ∈ IΨ(A;βx ∧ βy),

x ∈ FΦ(A; γx), y ∈ FΦ(A; γy)
⇒ x ∗ y ∈ FΨ(A; γx ∨ γy)

(2.5)

for all x, y ∈ X , αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

3 Generalizations of (∈, ∈∨q)-neutroso-
phic subalgebras

In what follows, let kT , kI and kF denote arbitrary elements of
[0, 1) unless otherwise specified. If kT , kI and kF are the same
number in [0, 1), then it is denoted by k, i.e., k = kT = kI = kF .

Given a neutrosophic setA = (AT , AI , AF ) in a setX , α, β ∈

(0, 1] and γ ∈ [0, 1), we consider the following sets:

TqkT
(A;α) := {x ∈ X | AT (x) + α+ kT > 1},

IqkI
(A;β) := {x ∈ X | AI(x) + β + kI > 1},

FqkF
(A; γ) := {x ∈ X | AF (x) + γ + kF < 1},

T∈∨ qkT
(A;α) := {x ∈ X | AT (x) ≥ α or

AT (x) + α+ kT > 1},
I∈∨ qkI

(A;β) := {x ∈ X | AI(x) ≥ β or
AI(x) + β + kI > 1},

F∈∨ qkF
(A; γ) := {x ∈ X | AF (x) ≤ γ or

AF (x) + γ + kF < 1}.

We say TqkT
(A;α), IqkI

(A;β) and FqkF
(A; γ) are neu-

trosophic qk-subsets; and T∈∨ qkT
(A;α), I∈∨ qkI

(A;β) and
F∈∨ qkF

(A; γ) are neutrosophic (∈ ∨ qk)-subsets. For Φ ∈ {∈,
q, qk, qkT

, qkI
, qkF

, ∈ ∨ q, ∈ ∨ qk, ∈ ∨ qkT
, ∈ ∨ qkI

, ∈ ∨ qkF
},

the element of TΦ(A;α) (resp., IΦ(A;β) and FΦ(A; γ)) is called
a neutrosophic TΦ-point (resp., neutrosophic IΦ-point and neu-
trosophic FΦ-point) with value α (resp., β and γ).

It is clear that

T∈∨ qkT
(A;α) = T∈(A;α) ∪ TqkT

(A;α), (3.1)

I∈∨ qkI
(A;β) = I∈(A;β) ∪ IqkI

(A;β), (3.2)

F∈∨ qkF
(A; γ) = F∈(A; γ) ∪ FqkF

(A; γ). (3.3)

Given a neutrosophic setA = (AT , AI , AF ) in a setX , α, β ∈
(0, 1] and γ ∈ [0, 1), we consider the following sets:

T ∗∈(A;α) := {x ∈ X | AT (x) > α}, (3.4)
I∗∈(A;β) := {x ∈ X | AI(x) > β}, (3.5)
F ∗∈(A; γ) := {x ∈ X | AF (x) < γ}. (3.6)

Proposition 3.1. For any neutrosophic set A = (AT , AI , AF )
in a set X , α, β ∈ (0, 1] and γ ∈ [0, 1), we have

α ≤ 1−k
2 ⇒ Tqk(A;α) ⊆ T ∗∈(A;α), (3.7)

β ≤ 1−k
2 ⇒ Iqk(A;β) ⊆ I∗∈(A;β), (3.8)

γ ≥ 1−k
2 ⇒ Fqk(A; γ) ⊆ F ∗∈(A; γ), (3.9)

α > 1−k
2 ⇒ T∈(A;α) ⊆ Tqk(A;α), (3.10)

β > 1−k
2 ⇒ I∈(A;β) ⊆ Iqk(A;β), (3.11)

γ < 1−k
2 ⇒ F∈(A; γ) ⊆ Fqk(A; γ). (3.12)

Proof. If α ≤ 1−k
2 , then 1− α ≥ 1+k

2 and α ≤ 1− α. Assume
that x ∈ Tqk(A;α). Then AT (x) + k > 1 − α ≥ 1+k

2 , and
so AT (x) > 1+k

2 − k = 1−k
2 ≥ α. Hence x ∈ T ∗∈(A;α).

Similarly, we have the result (3.8). Suppose that γ ≥ 1−k
2 and let

x ∈ Fqk(A; γ). Then AF (x) + γ + k < 1, and thus

AF (x) < 1− γ − k ≤ 1− 1−k
2 − k = 1−k

2 ≤ γ.

Hence x ∈ F ∗∈(A; γ). Suppose that α > 1−k
2 . If x ∈ T∈(A;α),
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then

AT (x) + α+ k ≥ 2α+ k > 2 · 1−k
2 + k = 1

and so x ∈ Tqk(A;α). Hence T∈(A;α) ⊆ Tqk(A;α). Similarly,
we can verify that if β > 1−k

2 , then I∈(A;β) ⊆ Iqk(A;β). Sup-
pose that γ < 1−k

2 . If x ∈ F∈(A; γ), then AF (x) ≤ γ, and
thus

AF (x) + γ + k ≤ 2γ + k < 2 · 1−k
2 + k = 1,

that is, x ∈ Fqk(A; γ). Hence F∈(A; γ) ⊆ Fqk(A; γ).

Definition 3.2. A neutrosophic set A = (AT , AI , AF ) in X ∈
B(X) is called an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra
of X if

x ∈ T∈(A;αx), y ∈ T∈(A;αy)
⇒ x ∗ y ∈ T∈∨qkT

(A;αx ∧ αy),
x ∈ I∈(A;βx), y ∈ I∈(A;βy)

⇒ x ∗ y ∈ I∈∨qkI
(A;βx ∧ βy),

x ∈ F∈(A; γx), y ∈ F∈(A; γy)
⇒ x ∗ y ∈ F∈∨qkF

(A; γx ∨ γy)

(3.13)

for all x, y ∈ X , αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

An (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra with kT =
kI = kF = k is called an (∈, ∈ ∨qk)-neutrosophic subalgebra.

Lemma 3.3 ([4]). A neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X) is an (∈, ∈)-neutrosophic subalgebra of X if and
only if it satisfies:

(∀x, y ∈ X)

 AT (x ∗ y) ≥ AT (x) ∧AT (y)

AI(x ∗ y) ≥ AI(x) ∧AI(y)

AF (x ∗ y) ≤ AF (x) ∨AF (y)

 . (3.14)

Theorem 3.4. If A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic
subalgebra of X ∈ B(X), then neutrosophic qk-subsets
TqkT

(A;α), IqkI
(A;β) and FqkF

(A; γ) are subalgebras of X
for all α, β ∈ (0, 1] and γ ∈ [0, 1) whenever they are nonempty.

Proof. Let x, y ∈ TqkT
(A;α). Then AT (x) + α + kT > 1 and

AT (y) + α+ kT > 1. It follows from Lemma 3.3 that

AT (x ∗ y) + α+ kT ≥ (AT (x) ∧AT (y)) + α+ kT

= (AT (x) + α+ kT ) ∧ (AT (y) + α+ kT ) > 1

and so that x∗y ∈ TqkT
(A;α). Hence TqkT

(A;α) is a subalgebra
of X . Similarly, we can prove that IqkI

(A;β) is a subalgebra of
X . Now let x, y ∈ FqkF

(A; γ). Then AF (x) + γ + kF < 1 and
AF (y) + γ + kF < 1, which imply from Lemma 3.3 that

AF (x ∗ y) + γ + kF ≤ (AF (x) ∨AF (y)) + γ + kF

= (AF (x) + γ + kF ) ∨ (AF (y) + γ + kF ) < 1.

Hence x ∗ y ∈ FqkF
(A; γ) and so FqkF

(A; γ) is a subalgebra of
X .

Corollary 3.5. If A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic
subalgebra of X ∈ B(X), then neutrosophic qk-subsets
Tqk(A;α), Iqk(A;β) and Fqk(A; γ) are subalgebras of X for
all α, β ∈ (0, 1] and γ ∈ [0, 1) whenever they are nonempty.

If we take kT = kI = kF = 0 in Theorem 3.4, then we have
the following corollary.

Corollary 3.6 ([4]). If A = (AT , AI , AF ) is an (∈, ∈)-
neutrosophic subalgebra of X ∈ B(X), then neutrosophic q-
subsets Tq(A;α), Iq(A;β) and Fq(A; γ) are subalgebras of X
for all α, β ∈ (0, 1] and γ ∈ [0, 1) whenever they are nonempty.

Definition 3.7. A neutrosophic set A = (AT , AI , AF ) in X ∈
B(X) is called a (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic sub-
algebra of X if

x ∈ TqkT
(A;αx), y ∈ TqkT

(A;αy)

⇒ x ∗ y ∈ T∈∨qkT
(A;αx ∧ αy),

x ∈ IqkI
(A;βx), y ∈ IqkI

(A;βy)

⇒ x ∗ y ∈ I∈∨qkI
(A;βx ∧ βy),

x ∈ FqkF
(A; γx), y ∈ FqkF

(A; γy)

⇒ x ∗ y ∈ F∈∨qkF
(A; γx ∨ γy)

(3.15)

for all x, y ∈ X , αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

A (q(kT ,kI ,kF ), ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra with
kT = kI = kF = k is called a (qk, ∈ ∨qk)-neutrosophic subal-
gebra.

Theorem 3.8. If A = (AT , AI , AF ) is a (q(kT ,kI ,kF ), ∈
∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X ∈ B(X), then neu-
trosophic qk-subsets TqkT

(A;α), IqkI
(A;β) and FqkF

(A; γ) are
subalgebras of X for all α ∈ ( 1−kT

2 , 1], β ∈ ( 1−kI

2 , 1] and
γ ∈ [0, 1−kF

2 ) whenever they are nonempty.

Proof. Let x, y ∈ TqkT
(A;α) for α ∈ ( 1−kT

2 , 1]. Then x ∗ y ∈
T∈∨ qkT

(A;α), that is, x ∗ y ∈ T∈(A;α) or x ∗ y ∈ TqkT
(A;α).

If x ∗ y ∈ T∈(A;α), then x ∗ y ∈ TqkT
(A;α) by (3.10).

Therefore TqkT
(A;α) is a subalgebra of X . Similarly, we prove

that IqkI
(A;β) is a subalgebra of X . Let x, y ∈ FqkF

(A; γ)

for γ ∈ [0, 1−kF

2 ). Then x ∗ y ∈ F∈∨ qkF
(A; γ), and so

x∗y ∈ F∈(A; γ) or x∗y ∈ FqkF
(A; γ). If x∗y ∈ F∈(A; γ), then

x ∗ y ∈ FqkF
(A; γ) by (3.12). Hence FqkF

(A; γ) is a subalgebra
of X .

Taking kT = kI = kF = 0 in Theorem 3.8 induces the fol-
lowing corollary.

Corollary 3.9 ([4]). If A = (AT , AI , AF ) is a (q, ∈ ∨ q)-
neutrosophic subalgebra of X ∈ B(X), then neutrosophic q-
subsets Tq(A;α), Iq(A;β) and Fq(A; γ) are subalgebras of X
for all α, β ∈ (0.5, 1] and γ ∈ [0, 0, 5) whenever they are
nonempty.

We provide characterizations of an (∈, ∈ ∨q(kT ,kI ,kF ))-neu-
trosophic subalgebra.
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Theorem 3.10. Given a neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X), the following are equivalent.

(1) A = (AT , AI , AF ) is an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic
subalgebra of X .

(2) A = (AT , AI , AF ) satisfies the following assertion.

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 1−kT

2 }
AI(x ∗ y) ≥

∧
{AI(x), AI(y), 1−kI

2 }
AF (x ∗ y) ≤

∨
{AF (x), AF (y), 1−kF

2 }
(3.16)

for all x, y ∈ X .

Proof. Let A = (AT , AI , AF ) be an (∈, ∈ ∨q(kT ,kI ,kF ))-
neutrosophic subalgebra of X . Assume that there exist a, b ∈ X
such that

AT (a ∗ b) <
∧
{AT (a), AT (b), 1−kT

2 }.

If AT (a) ∧ AT (b) < 1−kT

2 , then AT (a ∗ b) < AT (a) ∧ AT (b).
Hence

AT (a ∗ b) < αt ≤ AT (a) ∧AT (b)

for some αt ∈ (0, 1]. It follows that a ∈ T∈(A;αt) and b ∈
T∈(A;αt) but a ∗ b /∈ T∈(A;αt). Moreover,

AT (a ∗ b) + αt < 2αt < 1− kT ,

and so a ∗ b /∈ TqkT
(A;αt). Thus a ∗ b /∈ T∈∨ qkT

(A;αt), a con-
tradiction. If AT (a) ∧ AT (b) ≥ 1−kT

2 , then a ∈ T∈(A; 1−kT

2 ),
b ∈ T∈(A; 1−kT

2 ) and a ∗ b /∈ T∈(A; 1−kT

2 ). Also,

AT (a ∗ b) + 1−kT

2 < 1−kT

2 + 1−kT

2 = 1− kT ,

i.e., a ∗ b /∈ TqkT
(A; 1−kT

2 ). Hence a ∗ b /∈ T∈∨ qkT
(A; 1−kT

2 ), a
contradiction. Consequently,

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 1−kT

2 }

for all x, y ∈ X . Similarly, we know that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

for all x, y ∈ X . Suppose that there exist a, b ∈ X such that

AF (a ∗ b) >
∨
{AF (a), AF (b), 1−kF

2 }.

Then AF (a ∗ b) > γF ≥
∨
{AF (a), AF (b), 1−kF

2 } for some
γF ∈ [0, 1). If AF (a) ∨AF (b) ≥ 1−kF

2 , then

AF (a ∗ b) > γF ≥ AF (a) ∨AF (b)

which implies that a, b ∈ F∈(A; γF ) and a ∗ b /∈ F∈(A; γF ).
Also,

AF (a ∗ b) + γF > 2γF ≥ 1− kF ,

that is, a ∗ b /∈ FqkF
(A; γF ). Thus a ∗ b /∈ F∈∨ qkF

(A; γF ),

which is a contradiction. If AF (a) ∨AF (b) < 1−kF

2 , then a, b ∈
F∈(A; 1−kF

2 ) and a ∗ b /∈ F∈(A; 1−kF

2 ). Also,

AF (a ∗ b) + 1−kF

2 > 1−kF

2 + 1−kF

2 = 1− kF

and so a∗b /∈ FqkF
(A; 1−kF

2 ). Hence a∗b /∈ F∈∨ qkF
(A; 1−kF

2 ),
a contradiction. Therefore

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

for all x, y ∈ X .
Conversely, let A = (AT , AI , AF ) be a neutrosophic set in X

which satisfies the condition (3.16). Let x, y ∈ X and βx, βy ∈
(0, 1] be such that x ∈ I∈(A;βx) and y ∈ I∈(A;βy). Then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 } ≥
∧
{βx, βy, 1−kI

2 }.

Suppose that βx ≤ 1−kI

2 or βy ≤ 1−kI

2 . Then AI(x ∗ y) ≥
βx ∧ βy , and so x ∗ y ∈ I∈(A;βx ∧ βy). Now, assume that
βx >

1−kI

2 and βy > 1−kI

2 . Then AI(x ∗ y) ≥ 1−kI

2 , and so

AI(x ∗ y) + βx ∧ βy > 1−kI

2 + 1−kI

2 = 1− kI ,

that is, x ∗ y ∈ IqkI
(A;βx ∧ βy). Hence

x ∗ y ∈ I∈∨ qkI
(A;βx ∧ βy).

Similarly, we can verify that if x ∈ T∈(A;αx) and y ∈
T∈(A;αy), then x ∗ y ∈ T∈∨ qkT

(A;αx ∧ αy). Finally, let
x, y ∈ X and γx, γy ∈ [0, 1) be such that x ∈ F∈(A; γx) and
y ∈ F∈(A; γy). Then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 } ≤
∨
{γx, γy, 1−kF

2 }.

If γx ≥ 1−kF

2 or γy ≥ 1−kF

2 , then AF (x ∗ y) ≤ γx ∨ γy and thus
x ∗ y ∈ F∈(A; γx ∨ γy). If γx < 1−kF

2 and γy < 1−kF

2 , then
AF (x ∗ y) ≤ 1−kF

2 . Hence

AF (x ∗ y) + γx ∨ γy < 1−kF

2 + 1−kF

2 = 1− kF ,

that is, x ∗ y ∈ FqkF
(A; γx ∨ γy). Thus

x ∗ y ∈ F∈∨ qkF
(A; γx ∨ γy).

Therefore A = (AT , AI , AF ) is an (∈, ∈ ∨ qkF
)-neutrosophic

subalgebra of X .

Corollary 3.11 ([4]). A neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X) is an (∈, ∈ ∨ q)-neutrosophic subalgebra ofX if and
only if it satisfies:

(∀x, y ∈ X)

 AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5}

AI(x ∗ y) ≥
∧
{AI(x), AI(y).0.5}

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5}

 .
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Proof. It follows from taking kT = kI = kF = 0 in Theorem
3.10.

Theorem 3.12. Let A = (AT , AI , AF ) be a neutrosophic set in
X ∈ B(X). Then A = (AT , AI , AF ) is an (∈, ∈ ∨q(kT ,kI ,kF ))-
neutrosophic subalgebra of X if and only if neutrosophic ∈-
subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras of X
for all α ∈ (0, 1−kT

2 ], β ∈ (0, 1−kI

2 ] and γ ∈ [ 1−kF

2 , 1) when-
ever they are nonempty.

Proof. Assume that A = (AT , AI , AF ) is an (∈, ∈
∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X . Let β ∈ (0, 1−kI

2 ]
and x, y ∈ I∈(A;β). Then AI(x) ≥ β and AI(y) ≥ β. It
follows from Theorem 3.10 that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 } ≥ β ∧
1−kI

2 = β

and so that x ∗ y ∈ I∈(A;β). Hence I∈(A;β) is a subalgebra
of X for all β ∈ (0, 1−kI

2 ]. Similarly, we know that T∈(A;α)

is a subalgebra of X for all α ∈ (0, 1−kT

2 ]. Let γ ∈ [ 1−kF

2 , 1)
and x, y ∈ F∈(A; γ). Then AF (x) ≤ γ and AF (y) ≤ γ. Using
Theorem 3.10 implies that

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 } ≤ γ ∨ 1−kF

2 = γ.

Hence x ∗ y ∈ F∈(A; γ), and therefore F∈(A; γ) is a subalgebra
of X for all γ ∈ [ 1−kF

2 , 1).
Conversely, suppose that the nonempty neutrosophic∈-subsets

T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras of X for all
α ∈ (0, 1−kT

2 ], β ∈ (0, 1−kI

2 ] and γ ∈ [ 1−kF

2 , 1). If there exist
a, b ∈ X such that

AT (a ∗ b) <
∧
{AT (a), AT (b), 1−kT

2 },

then a, b ∈ T∈(A;αT ) by taking

αT :=
∧
{AT (a), AT (b), 1−kT

2 }.

Since T∈(A;αT ) is a subalgebra of X , it follows that a ∗ b ∈
T∈(A;αT ), that is, AT (a ∗ b) ≥ αT . This is a contradiction, and
hence

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 1−kT

2 }

for all x, y ∈ X . Similarly, we can verify that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

for all x, y ∈ X . Now, assume that there exist a, b ∈ X such that

AF (a ∗ b) >
∨
{AF (a), AF (b), 1−kF

2 }.

Then AF (a ∗ b) > γF ≥
∨
{AF (a), AF (b), 1−kF

2 } for some
γF ∈ [ 1−kF

2 , 1). Hence a, b ∈ F∈(A; γF ), and so a ∗ b ∈
F∈(A; γF ) since F∈(A; γF ) is a subalgebra of X . It follows that

AF (a ∗ b) ≤ γF which is a contradiction. Thus

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

for all x, y ∈ X . Therefore A = (AT , AI , AF ) is an (∈, ∈
∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X by Theorem 3.10.

Corollary 3.13. Let A = (AT , AI , AF ) be a neutrosophic set
in X ∈ B(X). Then A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-
neutrosophic subalgebra of X if and only if neutrosophic ∈-
subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras of
X for all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1) whenever they are
nonempty.

Proof. It follows from taking kT = kI = kF = 0 in Theorem
3.12.

Theorem 3.14. Every (∈, ∈)-neutrosophic subalgebra is an (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra.

Proof. Straightforward.

The converse of Theorem 3.14 is not true as seen in the fol-
lowing example.

Example 3.15. Consider a BCI-algebra X = {0, a, b, c} with
the binary operation ∗ which is given in Table 1 (see [5]).

Table 1: Cayley table for the binary operation “∗”

∗ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Let A = (AT , AI , AF ) be a neutrosophic set in X ∈ BI(X)
defined by Table 2

Table 2: Tabular representation of “A = (AT , AI , AF )”

X AT (x) AI(x) AF (x)
0 0.6 0.5 0.2
a 0.7 0.3 0.6
b 0.3 0.6 0.6
c 0.3 0.3 0.4

If kT = 0.36, then

T∈(A;α) =

{
X if α ∈ (0, 0.3],
{0, a} if α ∈ (0.3, 0.32].
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If kI = 0.32, then

I∈(A;β) =

{
X if β ∈ (0, 0.3],
{0, b} if β ∈ (0.3, 0.34].

If kF = 0.36, then

F∈(A; γ) =

 {0} if γ ∈ [0.32, 0.4),
{0, c} if γ ∈ [0.4, 0.6),
X if γ ∈ [0.6, 1].

We know that T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras
of X for all α ∈ (0, 0.32], β ∈ (0, 0.34] and γ ∈ [0.32, 1). It
follows from Theorem 3.12 that A = (AT , AI , AF ) is an (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X for kT = 0.36,
kI = 0.32 and kF = 0.36. Since

AT (0) = 0.6 < 0.7 = AT (a) ∧AT (a)

and/or
AI(0) = 0.5 > 0.3 = AI(c) ∨AI(c),

we know that A = (AT , AI , AF ) is not an (∈, ∈)-neutrosophic
subalgebra of X by Lemma 3.3.

Definition 3.16. A neutrosophic set A = (AT , AI , AF ) in X ∈
B(X) is called an (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra of
X if

x ∈ T∈(A;αx), y ∈ T∈(A;αy)
⇒ x ∗ y ∈ TqkT

(A;αx ∧ αy),
x ∈ I∈(A;βx), y ∈ I∈(A;βy)

⇒ x ∗ y ∈ IqkI
(A;βx ∧ βy),

x ∈ F∈(A; γx), y ∈ F∈(A; γy)
⇒ x ∗ y ∈ FqkF

(A; γx ∨ γy)

(3.17)

for all x, y ∈ X , αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

An (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra with kT = kI =
kF = k is called an (∈, qk)-neutrosophic subalgebra.

Theorem 3.17. Every (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra
is an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra.

Proof. Straightforward.

The converse of Theorem 3.17 is not true as seen in the fol-
lowing example.

Example 3.18. Consider the BCI-algebra X = {0, a, b, c} and
the neutrosophic set A = (AT , AI , AF ) which are given in Ex-
ample 3.15. Taking kT = 0.2, kI = 0.3 and kF = 0.24 imply
that

T∈(A;α) =

{
X if α ∈ (0, 0.3],
{0, a} if α ∈ (0.3, 0.4],

I∈(A;β) =

{
X if β ∈ (0, 0.3],
{0, b} if β ∈ (0.3, 0.35],

and

F∈(A; γ) =

 {0} if β ∈ [0.38, 0.4),
{0, c} if β ∈ [0.4, 0.6),
X if β ∈ [0.6, 1).

Since X , {0}, {0, a}, {0, b} and {0, c} are subalgebras of X ,
we know from Theorem 3.12 that A = (AT , AI , AF ) is an (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X for kT = 0.2,
kI = 0.3 and kF = 0.24. Note that

a ∗ b /∈ Tq0.2(A; 0.25 ∧ 0.4)

for a ∈ T∈(A; 0.4) and b ∈ T∈(A; 0.25),

b ∗ c /∈ Iq0.3(A; 0.5 ∧ 0.27)

for b ∈ I∈(A; 0.5) and c ∈ I∈(A; 0.27), and/or

a ∗ c /∈ Fq0.24(A; 0.6 ∨ 0.44)

for a ∈ F∈(A; 0.6) and c ∈ F∈(A; 0.44). Hence A = (AT , AI ,
AF ) is not an (∈, q(0.2,0.3,0.24))-neutrosophic subalgebra of X .

Theorem 3.19. If 0 ≤ kT < jT < 1, 0 ≤ kI < jI < 1 and
0 ≤ jF < kF < 1, then every (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic
subalgebra is an (∈, ∈ ∨q(jT ,jI ,jF ))-neutrosophic subalgebra.

Proof. Straightforward.

The following example shows that if 0 ≤ kT < jT < 1,
0 ≤ kI < jI < 1 and 0 ≤ jF < kF < 1, then an
(∈, ∈ ∨q(jT ,jI ,jF ))-neutrosophic subalgebra may not be an (∈,
∈∨q(kT ,kI ,kF ))-neutrosophic subalgebra.

Example 3.20. Let X be the BCI-algebra given in Example
3.15 and let A = (AT , AI , AF ) be a neutrosophic set in X
defined by Table 3

Table 3: Tabular representation of “A = (AT , AI , AF )”

X AT (x) AI(x) AF (x)
0 0.42 0.40 0.44
a 0.40 0.44 0.66
b 0.48 0.36 0.66
c 0.40 0.36 0.33

If kT = 0.04, then

T∈(A;α) =

 X if α ∈ (0, 0.40],
{0, b} if α ∈ (0.40, 0.42],
{b} if α ∈ (0.42, 0.48].

Note that T∈(A;α) is not a subalgebra ofX for α ∈ (0.42, 0.48].
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If kI = 0.08, then

I∈(A;β) =


X if β ∈ (0, 0.36],
{0, a} if β ∈ (0.36, 0.40],
{a} if β ∈ (0.40, 0.44],
∅ if β ∈ (0.44, 0.46].

Note that I∈(A;β) is not a subalgebra of X for β ∈ (0.40, 0.44].
If kF = 0.42, then

F∈(A; γ) =


∅ if γ ∈ [0.29, 0.33),
{c} if γ ∈ [0.33, 0.44),
{0, c} if γ ∈ [0.44, 0.66),
X if γ ∈ [0.66, 1).

Note that F∈(A; γ) is not a subalgebra of X for γ ∈ [0.33, 0.44).
Therefore A = (AT , AI , AF ) is not an (∈, ∈ ∨q(kT ,kI ,kF ))-
neutrosophic subalgebra of X for kT = 0.04, kI = 0.08 and
kF = 0.42.

If jT = 0.16, then

T∈(A;α) =

{
X if α ∈ (0, 0.40],
{0, b} if α ∈ (0.40, 0.42].

If jI = 0.20, then

I∈(A;β) =

{
X if β ∈ (0, 0.36],
{0, a} if β ∈ (0.36, 0.40].

If jF = 0.12, then

F∈(A; γ) =

{
{0, c} if γ ∈ [0.44, 0.66),
X if γ ∈ [0.66, 1).

Therefore A = (AT , AI , AF ) is an (∈, ∈ ∨q(jT ,jI ,jF ))-
neutrosophic subalgebra of X for jT = 0.16, jI = 0.20 and
jF = 0.12.

Given a subset S of X , consider a neutrosophic set AS =
(AST , ASI , ASF ) in X defined by

AS(x) :=

{
(1, 1, 0) if x ∈ S,
(0, 0, 1) otherwise,

that is,

AST (x) :=

{
1 if x ∈ S,
0 otherwise,

ASI(x) :=

{
1 if x ∈ S,
0 otherwise,

and

ASF (x) :=

{
0 if x ∈ S,
1 otherwise.

Theorem 3.21. A nonempty subset S of X ∈ B(X) is a

subalgebra of X if and only if the neutrosophic set AS =
(AST , ASI , ASF ) is an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic sub-
algebra of X .

Proof. Let S be a subalgebra of X . Then neutrosophic ∈-
subsets T∈(AST ;α), I∈(AST ;β) and F∈(AST ; γ) are obviously
subalgebras of X for all α ∈ (0, 1−kT

2 ], β ∈ (0, 1−kI

2 ] and
γ ∈ [ 1−kF

2 , 1). Hence AS = (AST , ASI , ASF ) is an (∈,
∈∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X by Theorem 3.12.

Conversely, assume that AS = (AST , ASI , ASF ) is an (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X . Let x, y ∈ S.
Then

AST (x ∗ y) ≥
∧
{AST (x), AST (y), 1−kT

2 }

= 1 ∧ 1−kT

2 = 1−kT

2 ,

ASI(x ∗ y) ≥
∧
{ASI(x), ASI(y), 1−kI

2 }

= 1 ∧ 1−kI

2 = 1−kI

2

and

ASF (x ∗ y) ≤
∨
{ASF (x), ASF (y), 1−kF

2 }

= 0 ∨ 1−kF

2 = 1−kF

2 ,

which imply that

AST (x ∗ y) = 1, ASI(x ∗ y) = 1 and ASF (x ∗ y) = 0.

Hence x ∗ y ∈ S, and so S is a subalgebra of X .

Theorem 3.22. Let S be a subalgebra of X ∈ B(X). For every
α ∈ (0, 1−kT

2 ], β ∈ (0, 1−kI

2 ] and γ ∈ [ 1−kF

2 , 1), there ex-
ists an (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra A = (AT ,
AI , AF ) of X such that T∈(A;α) = S, I∈(A;β) = S and
F∈(A; γ) = S.

Proof. Let A = (AT , AI , AF ) be a neutrosophic set in X de-
fined by

A(x) :=

{
(α, β, γ) if x ∈ S,
(0, 0, 1) otherwise,

that is,

AT (x) :=

{
α if x ∈ S,
0 otherwise,

AI(x) :=

{
β if x ∈ S,
0 otherwise,

and

AF (x) :=

{
γ if x ∈ S,
1 otherwise.
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Obviously, T∈(A;α) = S, I∈(A;β) = S and F∈(A; γ) = S.
Suppose that

AT (a ∗ b) <
∧
{AT (a), AT (b), 1−kT

2 }

for some a, b ∈ X . Since #Im(AT ) = 2, it follows that∧
{AT (a), AT (b), 1−kT

2 } = α and AT (a ∗ b) = 0. Hence
AT (a) = α = AT (b), and so a, b ∈ S. Since S is a subalgebra
of X , we have a ∗ b ∈ S. Thus AT (a ∗ b) = α, a contradiction.
Therefore

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 1−kT

2 }

for all x, y ∈ X . Similarly, we can verify that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

for all x, y ∈ X . Assume that there exist a, b ∈ X such that

AF (a ∗ b) >
∨
{AF (a), AF (b), 1−kF

2 }.

Then AF (a ∗ b) = 1 and
∨
{AF (a), AF (b), 1−kF

2 } = γ since
#Im(AF ) = 2. It follows that AF (a) = γ = AF (b) and so that
a, b ∈ S. Hence a ∗ b ∈ S, and so AF (a ∗ b) = γ, which is a
contradiction. Thus

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

for all x, y ∈ X . Therefore A = (AT , AI , AF ) is an (∈, ∈
∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X by Theorem 3.10.

Corollary 3.23. Let S be a subalgebra of X ∈ B(X). For every
α ∈ (0, 0.5], β ∈ (0, 0.5] and γ ∈ [0.5, 1), there exists an (∈,
∈ ∨q)-neutrosophic subalgebra A = (AT , AI , AF ) of X such
that T∈(A;α) = S, I∈(A;β) = S and F∈(A; γ) = S.

Proof. It follows from taking kT = kI = kF = 0 in Theorem
3.22.

Theorem 3.24. Given a neutrosophic set A = (AT , AI , AF ) in
X ∈ B(X), the following are equivalent.

(1) A = (AT , AI , AF ) is an (∈, ∈∨q(kT ,kI ,kF ))-neutrosophic
subalgebra of X .

(2) The neutrosophic (∈ ∨ qk)-subsets T∈∨ qkT
(A;α),

I∈∨ qkI
(A;β) and F∈∨ qkF

(A; γ) are subalgebras of X for
all α, β ∈ (0, 1] and γ ∈ [0, 1).

Proof. Assume that A = (AT , AI , AF ) is an (∈, ∈
∨q(kT ,kI ,kF ))-neutrosophic subalgebra of X . Let x, y ∈
I∈∨ qkI

(A;β) for β ∈ (0, 1]. Then AI(x) ≥ β or AI(x) + β +
kI > 1, and AI(y) ≥ β or AI(y) + β + kI > 1. Using Theorem
3.10, we have

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }.

Case 1. AI(x) ≥ β and AI(y) ≥ β. If β > 1−kI

2 , then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 } = 1−kI

2 ,

and so AI(x ∗ y) + β > 1−kI

2 + 1−kI

2 = 1− kI . Hence x ∗ y ∈
IqkI

(A;β). If β ≤ 1−kI

2 , then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 } ≥ β,

and thus x ∗ y ∈ I∈(A;β). Hence

x ∗ y ∈ I∈(A;β) ∪ IqkI
(A;β) = I∈∨ qkI

(A;β).

Case 2. AI(x) ≥ β and AI(y) + β + kI > 1. If β > 1−kI

2 ,
then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

= AI(y) ∧ 1−kI

2 > (1− β − kI) ∧ 1−kI

2

= 1− β − kI ,

and so x ∗ y ∈ IqkI
(A;β). If β ≤ 1−kI

2 , then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

≥
∧
{β, 1− β − kI , 1−kI

2 } = β,

and thus x ∗ y ∈ I∈(A;β). Therefore x ∗ y ∈ I∈∨ qkI
(A;β).

Case 3. AI(x) + β + kI > 1 and AI(y) ≥ β. We have
x ∗ y ∈ I∈∨ qkI

(A;β) by the similar way to the Case 2.

Case 4. AI(x) + β + kI > 1 and AI(y) + β + kI > 1. If
β > 1−kI

2 , then 1− β − kI < 1−kI

2 , and so

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 } > 1− β − kI ,

i.e., x ∗ y ∈ IqkI
(A;β). If β ≤ 1−kI

2 , then

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

≥ (1− β − kI) ∧ 1−kI

2

= 1−kI

2 ≥ β,

i.e., x ∗ y ∈ I∈(A;β). Hence x ∗ y ∈ I∈∨ qkI
(A;β). Con-

sequently, I∈∨ qkI
(A;β) is a subalgebra of X . Similarly, we

can prove that if x, y ∈ T∈∨ qkT
(A;α) for α ∈ (0, 1], then

x ∗ y ∈ T∈∨ qkT
(A;α), that is, T∈∨ qkT

(A;α) is a subalgebra
of X . Let x, y ∈ F∈∨ qkF

(A; γ) for γ ∈ [0, 1). Then AF (x) ≤ γ
orAF (x)+γ+kF < 1, andAF (y) ≤ γ orAF (y)+γ+kF < 1.
Using Theorem 3.10, we have

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }.
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Case 1. AF (x) ≤ γ and AF (y) ≤ γ. If γ < 1−kF

2 , then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 } = 1−kF

2 ,

and so AF (x ∗ y) + γ < 1−kF

2 + 1−kF

2 = 1 − kF . Hence
x ∗ y ∈ FqkF

(A; γ). If γ ≥ 1−kF

2 , then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 } ≤ γ,

and thus x ∗ y ∈ F∈(A; γ). Hence

x ∗ y ∈ F∈(A; γ) ∪ FqkF
(A; γ) = F∈∨ qkF

(A; γ).

Case 2. AF (x) ≤ γ and AF (y) + γ + kF < 1. If γ < 1−kF

2 ,
then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

= AF (y) ∨ 1−kF

2 < (1− γ − kF ) ∨ 1−kF

2

= 1− γ − kF ,

and so x ∗ y ∈ FqkF
(A; γ). If γ ≥ 1−kF

2 , then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

≤
∨
{γ, 1− γ − kF , 1−kF

2 } = γ,

and thus x ∗ y ∈ F∈(A; γ). Therefore x ∗ y ∈ F∈∨ qkF
(A; γ).

Similarly, if AI(x) +β+ kI < 1 and AI(y) ≤ β, then x ∗ y ∈
F∈∨ qkF

(A; γ).

Finally, assume that AF (x) + γ + kF < 1 and AF (y) + γ +
kF < 1. If γ < 1−kF

2 , then 1− γ − kF > 1−kF

2 , and so

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 } < 1− γ − kF ,

i.e., x ∗ y ∈ FqkF
(A; γ). If γ ≥ 1−kF

2 , then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 1−kF

2 }

≤ (1− γ − kF ) ∨ 1−kF

2

= 1−kF

2 ≤ γ,

i.e., x ∗ y ∈ F∈(A; γ). Hence x ∗ y ∈ F∈∨ qkF
(A; γ). Therefore

F∈∨ qkF
(A; γ) is a subalgebra of X .

Conversely, suppose that (2) is valid. If it is possible, let

AT (x ∗ y) < α ≤
∧
{AT (x), AT (y), 1−kT

2 }

for some α ∈ (0, 1−kT

2 ). Then

x, y ∈ T∈(A;α) ⊆ T∈∨ qkT
(A;α),

which implies that x ∗ y ∈ T∈∨ qkT
(A;α). Thus AT (x ∗ y) ≥ α

or AT (x ∗ y) + α+ kT > 1, a contradiction. Hence

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 1−kT

2 }

for all x, y ∈ X . Similarly, we can verify that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 1−kI

2 }

for all x, y ∈ X . Now assume that there exist a, b ∈ X and
γ ∈ ( 1−kF

2 , 1) such that

AF (a ∗ b) > γ ≥
∨
{AF (a), AF (b), 1−kF

2 }.

Then a, b ∈ F∈(A; γ) ⊆ F∈∨ qkF
(A; γ), which implies that

a ∗ b ∈ F∈∨ qkF
(A; γ).

Thus AF (a ∗ b) ≤ γ or AF (a ∗ b) + γ + kF < 1, which is a
contradiction. Hence

AF (x ∗ y) ≥
∨
{AF (x), AF (y), 1−kF

2 }

for all x, y ∈ X . Using Theorem 3.10, we conclude that A =
(AT , AI , AF ) is an (∈, ∈∨q(kT ,kI ,kF ))-neutrosophic subalgebra
of X .

4 Conclusions

Neutrosophic set theory is a nice mathematical tool which can
be applied to several fields. The aim of this paper is to consider
a general form of neutrosophic points, and to discuss general-
izations of the papers [4] and [6]. We have introduce the no-
tions of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra, and (∈,
q(kT ,kI ,kF ))-neutrosophic subalgebra in BCK/BCI-algebras,
and have investigated several properties. We have discussed
characterizations of (∈, ∈ ∨q(kT ,kI ,kF ))-neutrosophic subalge-
bra. We have considered relations between (∈,∈)-neutrosophic
subalgebra, (∈, q(kT ,kI ,kF ))-neutrosophic subalgebra and (∈,
∈ ∨q(kT ,kI ,kF ))-neutrosophic subalgebra. We hope the idea and
result in this paper can be a mathematical tool for dealing with
several informations containing uncertainty such as medical diag-
nosis, decision making, graph theory, etc. So, based on the results
in this article, our future research will be focused to solve real-life
problems under the opinions of experts in a neutrosophic set envi-
ronment such as medical diagnosis, decision making, graph the-
ory etc. In particular, Bucolo et al. [2] suggested a generalization
of the synchronization principles for the class of array of fuzzy
logic chaotic based dynamical systems and evaluated as alterna-
tive approach to build locally connected fuzzy complex systems
by manipulating both the rules driving the cells and the architec-
ture of the system. We will also try to study complex dynamics
through neutrosophic environment. The future works also may
use the study neutrosophic set environment on several related al-
gebraic structures, for example,MV -algebras,BL-algebras,R0-
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algebras, EQ-algebras, equality algebras, MTL-algebras etc.
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