University of New Mexico

On single-valued co-neutrosophic graphs

R.Dhavaseelan¹, S. Jafari², M. R. Farahani³, S. Broumi⁴

¹ Department of Mathematics, Sona College of Technology, Salem-636005, Tamil Nadu, India. E-mail

dhavaseelan.r@gmail.com

² Department of Mathematics, College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark. E-mail: jafaripersia@gmail.com

³ Department of Applied Mathematics, Iran University of Science and Technology, Iran. E-mail: mrfarahani88@gmail.com

⁴ Laboratory of Information Processing, Faculty of Science Ben MSik, University Hassan II, B.P 7955, Sidi Othman,

Casablanca, Morocco

E-mail: broumisaid78@gmail.com

Abstract: In this paper, we introduce the notion of a single-valued co-neutrosophic graphs and study some methods of construction of new single-valued co-neutrosophic graphs. We compute degree of a vertex, strong single-valued co-neutrosophic graphs. We also introduce and give properties of regular and totally regular single-valued co-neutrosophic graphs.

Keywords: Single-valued neutrosophic graphs; degree of a vertex; strong single-valued co-neutrosophic graphs; complete single-valued co-neutrosophic graphs; regular and totally regular single-valued co-neutrosophic graphs.

1 Introduction and preliminaries

Zadeh [21] introduced the concepts of fuzzy set theory as a generalized concept of crisp set theory. The concept of fuzzy graph theory as a generalization of Eulers graph theory was first introduced by Rosenfeld [17] in 1975. Later, Bhattacharya [5] gave some remarks on fuzzy graphs. The concept of cofuzzy graphs by M. Akram [1]. The concepts of intuitionistic cofuzzy graph by Dhavaseelan [9]. Smarandache [20] introduced the concept of neutrosophic sets. Certain types of neutrosophic graphs were introduced by R. Dhavaseelan et al. [10].Some more work in single valued neutrosophic set, interval valued neutrosophic set and their application may be found in Karaaslan, et .al., [13], Hamidi, et .al., [11, 14], Broumi, et.al., [6–8, 15] and Shimaa Fathi, et.al [18]. Kandasamy, et.al [12], introduced the new dimension of neutrosophic graph.

In this paper, we introduce the notion of a single-valued co-neutrosophic graphs and study some methods of construction of new single-valued co-neutrosophic graphs. We compute degree of a vertex, strong single-valued co-neutrosophic graphs and complete single-valued co-neutrosophic graphs. We also introduce and give properties of regular and totally regular single-valued co-neutrosophic graphs.

Definition 1.1. [19] Let X be a space of points. A neutrosophic set A in X is characterized by a truthmembership function $T_A(x)$, an indeterminacy membership function $I_A(x)$ and a falsity membership function $F_A(x)$. The functions $T_A(x)$, $I_A(x)$ and $F_A(x)$ are real standard or non standard subsets of $]0^-, 1^+[$. That is, $T_A(x): X \to]0^-, 1^+[, I_A(x): X \to]0^-, 1^+[, F_A(x): X \to]0^-, 1^+[$ and $0^- \le T_A(x) + I_A(x) + F_A(x) \le 3^+$. From philosophical point view, the neutrosophic set takes the value from real standard or non standard subsets of $]0^-, 1^+[$. In real life applications in scientific and engineering problems, it is difficult to use neutrosophic set with value from real standard or non standard subset of $]0^-, 1^+[$.

Definition 1.2. [2,4] A single-valued neutrosophic graph is a pair G = (A, B), where $A : V \to [0,1]$ is single-valued neutrosophic set in V and $B : V \times V \to [0,1]$ is single-valued neutrosophic relation on V such that

$$T_{\scriptscriptstyle B}(xy) \leq \min\{T_{\scriptscriptstyle A}(x), T_{\scriptscriptstyle A}(y)\} \ I_{\scriptscriptstyle B}(xy) \leq \min\{I_{\scriptscriptstyle A}(x), I_{\scriptscriptstyle A}(y)\} \ F_{\scriptscriptstyle B}(xy) \geq \max\{F_{\scriptscriptstyle A}(x), F_{\scriptscriptstyle A}(y)\} \ F_{\scriptscriptstyle B}(xy) \leq \max\{F_{\scriptscriptstyle A}(x), F_{\scriptscriptstyle A}(y)\} \ F_{\scriptscriptstyle B}(xy) \in \max\{F_{\scriptscriptstyle A}(x),$$

for all $x, y \in V$. A is called single-valued neutrosophic vertex set of G and B is called single-valued neutrosophic edge set of G, respectively. We note that B is symmetric single-valued neutrosophic relation on A. If B is not symmetric single-valued neutrosophic relation on A, then G = (A, B) is called a single-valued neutrosophic directed graph.

2 Single-valued co-neutrosophic graphs

Definition 2.1. A single-valued co-neutrosophic graph is a pair G = (A, B), where $A : V \to [0, 1]$ is a single-valued co-neutrosophic set in V and $B : V \times V \to [0, 1]$ is a single-valued co-neutrosophic relation on V such that

$$\begin{split} T_{\scriptscriptstyle B}(xy) &\geq \max\{T_{\scriptscriptstyle A}(x), T_{\scriptscriptstyle A}(y)\}\\ I_{\scriptscriptstyle B}(xy) &\geq \max\{I_{\scriptscriptstyle A}(x), I_{\scriptscriptstyle A}(y)\}\\ F_{\scriptscriptstyle B}(xy) &\leq \min\{F_{\scriptscriptstyle A}(x), F_{\scriptscriptstyle A}(y)\} \end{split}$$

for all $x, y \in V$. A and B are called the single-valued co-neutrosophic vertex set of G and the single-valued co-neutrosophic edge set of G, respectively. We note that B is a symmetric single-valued co-neutrosophic relation on A. If B is not a symmetric single-valued co-neutrosophic relation on A, then G = (A, B) is called a single-valued co-neutrosophic directed graph.

Notation 2.1. The triples $\langle T_A(x), I_A(x), F_A(x) \rangle$ denotes the degree of membership, an indeterminacy membership and nonmembership of vertex x. The triples $\langle T_B(xy), I_B(xy), F_B(xy) \rangle$ denote the degree of membership, an indeterminacy membership and nonmembership of edge relation xy = (x, y) on V.

Definition 2.2. A partial single-valued co-neutrosophic subgraph of single-valued co-neutrosophic graph G = (A, B) is a single-valued co-neutrosophic graph H = (V', E') such that

(i) $V' \subseteq V$, where $T'_A(v_i) \leq T_A(v_i), I'_A(v_i) \leq I_A(v_i), F'_A(v_i) \geq F_A(v_i)$ for all $v_i \in V$.

(ii) $T_B(xy)' \leq T_B(xy); I_B(xy)' \leq I_B(xy); F_B(xy)' \geq F_B(xy)$ for every x and y

Definition 2.3. A single-valued co-neutrosophic graph $H = \langle A', B' \rangle$ is said to be a single-valued co-neutrosophic subgraph of the single-valued co-neutrosophic graph $G = \langle A, B \rangle$ if $A' \subseteq A$ and $B' \subseteq B$. In other words if $T_A'(x) = T_A(x)$; $I_A'(x) = I_A(x)$; $F'_A(x) = F_A(x)$ and $T_B(xy)' = T_B(xy)$; $I_B(xy)' = I_B(xy)$; $F_B(xy)' = F_B(xy)$ for every x and y

Figure 1: G : Single-valued co-neutrosophic graph

Figure 2: H : Single-valued co-neutrosophic partial subgraph ($H \subseteq G$)

Definition 2.4. A single-valued co-neutrosophic graph $G = \langle A, B \rangle$ is said to be strong single-valued coneutrosophic graph if $T_B(xy) = max(T_A(x), T_A(y)), I_B(xy) = max(I_A(x), I_A(y))$ and $F_B(xy) = min(F_A(x), F_A(y)),$ for all $(xy) \in E$.

Definition 2.5. A single-valued co-neutrosophic graph $G = \langle A, B \rangle$ is said to be complete single-valued coneutrosophic graph if $T_B(xy) = max(T_A(x), T_A(y)), I_B(xy) = max(I_A(x), I_A(y))$ and $F_B(xy) = min(F_A(x), F_A(y)),$ for every $x, y \in V$.

Definition 2.6. Let $G = \langle A, B \rangle$ be a single-valued co-neutrosophic graph. Then the degree of a vertex v is defined by $d(v) = (d_T(v), d_I(v), d_F(v))$, where $d_T(v) = \sum_{u \neq v} T_B(u, v)$, $d_I(v) = \sum_{u \neq v} I_B(u, v)$ and $d_F(v) = \sum_{u \neq v} F_B(u, v)$

Definition 2.7. The minimum degree of G is $\delta(G) = (\delta_T(G), \delta_I(G), \delta_F(G))$, where $\delta_T(G) = min\{d_T(v)|v \in V\}$, $\delta_I(G) = min\{d_I(v)|v \in V\}$ and $\delta_F(G) = max\{d_F(v)|v \in V\}$

Figure 3: H : Single-valued co-neutrosophic subgraph

Figure 4: Complete single-valued co-neutrosophic graph

Definition 2.8. The maximum degree of G is $\Delta(G) = (\Delta_T(G), \Delta_I(G), \Delta_F(G))$, where $\Delta_T(G) = max\{d_T(v)|v \in V\}$, $\Delta_I(G) = max\{d_I(v)|v \in V\}$ and $\Delta_F(G) = min\{d_F(v)|v \in V\}$

Example 2.1. Let $G = \langle A, B \rangle$ be a single-valued co-neutrosophic graph. Draw as below

The degrees are $d_T(a) = 1.6$, $d_I(a) = 1.6$, $d_F(a) = 1.0$, $d_T(c) = 1.3$, $d_I(c) = 1.3$, $d_F(c) = 0.5$, $d_T(d) = 1.7$, $d_I(d) = 1.7$, $d_F(d) = 1.1$, $d_T(b) = 1.0$, $d_I(b) = 1.0$, $d_F(b) = 0.8$. Minimum degree of a graph is $\delta_T(G) = 1.0$, $\delta_I(G) = 1.0$, $\delta_F(G) = 1.1$ Maximum degree of a graph is $\Delta_T(G) = 1.7$, $\Delta_I(G) = 1.7$, $\Delta_F(G) = 0.5$

Definition 2.9. Let $G = \langle A, B \rangle$ be a single-valued co-neutrosophic graph. The total degree of a vertex $v \in V$ is defined as :

 $Td(v) = Td_{T}(v) + Td_{I}(v) + Td_{F}(v), \text{ where } Td_{T}(v) = \sum_{(u,v)\in E} T_{B}(u,v) + T_{A}(v), Td_{I}(v) = \sum_{(u,v)\in E} I_{B}(u,v) + I_{A}(v) \text{ and } Td_{F}(v) = \sum_{(u,v)\in E} F_{B}(u,v) + F_{A}(v).$

If each vertex of G has the same total degree (r_1, r_2, r_3) , then G is said to be an (r_1, r_2, r_3) totally regular single-valued co-neutrosophic graph.

Definition 2.10. Let $G = \langle A, B \rangle$ be a single-valued co-neutrosophic graph. If each vertex has same degree (r, s, t), then G is called (r, s, t) regular single-valued co-neutrosophic graph. Thus $r = d_T(v), s = d_I(v), t = d_F(v)$; for $v \in V$.

Example 2.2. Let $G = \langle A, B \rangle$ be a single-valued co-neutrosophic graph. Draw as below

d(y) = (1.8, 1.8, 1.1), d(v) = (1.8, 1.8, 1.1), d(u) = (1.8, 1.8, 1.1), d(x) = (1.8, 1.8, 1.1). So, G is a regular single-valued co-neutrosophic graph. But G is not totally regular single-valued co-neutrosophic graph. Since $Td(y) = 5.8 \neq 6.1 = Td(v)$.

- **Remark 2.1.** (a) For a single-valued co-neutrosophic graph, H = (A,B) to be both regular & totally regular, the number of vertices in each edge must be same.
 - (b) And also each vertex lies in exactly same number of edges.

Proposition 2.1. Let $G = \langle A, B \rangle$ be a single-valued co-neutrosophic graph. Then $T_A : V \to [0, 1], I_A : V \to [0, 1], F_A : V \to [0, 1]$ is a constant function iff following are equivalent.

- (1) G is a regular single-valued co-neutrosophic graph,
- (2) G is a totally regular single-valued co-neutrosophic graph.

Proof. suppose that (T_A, I_A, F_A) is a constant function. Let $T_A(v_i) = k_1, I_A(v_i) = k_2, F_A(v_i) = k_3$ for all $v_i \in V$. Assume that G is a (r_1, r_2, r_3) regular single-valued co-neutrosophic graph. Then $d_T(v_i) = r_1, d_I(v_i) = r_2, d_F(v_i) = r_3$ for all $v_i \in V$. So $Td(v_i) = Td_T(v_i) + Td_F(v_i)$ $Td_T(v_i) = d_T(v_i) + T_A(v_i)$, for all $v_i \in V$ $= r_1 + k_1 = c_1$. $Td_I(v_i) = d_I(v_i) + I_A(v_i)$, for all $v_i \in V$ $= r_2 + k_2 = c_2$. $Td_F(v_i) = d_F(v_i) + F_A(v_i)$, for all $v_i \in V$ $= r_3 + k_3 = c_3$.

Hence G is totally regular single-valued co-neutrosophic graph. Thus $(1) \Rightarrow (2)$ is proved.

Now, suppose that G is a (t_1, t_2, t_3) totally regular single-valued co-neutrosophic graph, then $Td_T(v_i) = t_1, Td_T(v_i) = t_2, Td_F(v_i) = t_3$ for all $v_i \in V$.

$$Td_T(v_i) = d_T(v_i) + T_A(v_i) = t_1, \Rightarrow d_T(v_i) = t_1 - T_A(v_i) = t_1 - k_1, \text{ for all } v_i \in V.$$

Similarly, $Td_I(v_i) = d_I(v_i) + I_A(v_i) = t_2$, $\Rightarrow d_I(v_i) = t_2 - I_A(v_i) = t_2 - k_2$, for all $v_i \in V$.

 $Td_F(v_i) = d_F(v_i) + F_A(v_i) = t_3,$ $\Rightarrow d_F(v_i) = t_3 - F_A(v_i) = t_3 - k_3,$ for all $v_i \in V$. So, G is a regular single-valued co-neutrosophic graph. Thus $(2) \Rightarrow (1)$ is proved. Hence (1) and (2) are equivalent.

Proposition 2.2. If a single-valued co-neutrosophic graph is both regular and totally regular, then (T_A, I_A, F_A) is constant function.

Proof. Let G be a (r, s, t) regular and (k_1, k_2, k_3) totally regular single-valued co-neutrosophic graphs. So, $d_T(v_1) = r, d_I(v_1) = s, d_F(v_1) = t$ for $v_1 \in V$ and $Td_T(v_1) = k_1, Td_I(v_1) = k_2, Td_F(v_1) = k_3$ for all $v_1 \in V$. Now,

 $Td_{T}(v_{1}) = k_{1}, \text{ for all } v_{1} \in V,$ $d_{T}(v_{1}) + T_{A} = k_{1}, \text{ for all } v_{1} \in V,$ $r + T_{A}(v_{1}) = k_{1}, \text{ for all } v_{1} \in V,$ $T_{A}(v_{1}) = k_{1} - r, \text{ for all } v_{1} \in V.$

Hence $T_A(v_1)$ is a constant function.

Similarly, $I_A(v_1) = k_2 - s$ for all $v_1 \in V$ and $F_A(v_1) = k_3 - t$ for all $v_1 \in V$. Hence (T_A, I_A, F_A) is a constant.

3 Conclusion

In this paper, we introduced the notion of a single-valued co-neutrosophic graphs and study some methods of construction of new single-valued co-neutrosophic graphs. We computed degree of a vertex, strong single-valued co-neutrosophic graphs and complete single-valued co-neutrosophic graphs. Properties of regular and

totally regular single-valued co-neutrosophic graphs are discussed. In future, we are introduce and discuss the energy of Single-valued co-neutrosophic graphs.

References

- [1] M. Akram, Cofuzzy graphs, The Journal of Fuzzy Mathematics, 3(4)(2011), 877-888.
- [2] M. Akram and S. Shahzadi, Neutrosophic soft graphs with application, *Journal of Intelligent & Fuzzy Systems*, 32(1)(2017), 841-858.
- [3] M. Akram, Single-valued neutrosophic planar graphs, *International Journal of Algebra and Statistics*, 5(2)(2016), 157-167.
- [4] M. Akram and G. Shahzadi, Operations on single-valued neutrosophic graphs, *Journal of Uncertain System*, 11(2)(2017), 1-26.
- [5] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognition Letter, 6(1987), 297-302.
- [6] Broumi, S., Smarandache, F., Talea, M., Bakali, A. Operations on Interval Valued Neutrosophic Graphs. In F. Smarandache, & S. Pramanik (Eds., vol.2), New trends in neutrosophic theory and applications (pp. 231-254). Brussels: Pons Editions.
- [7] Broumi, S., Talea, M., Bakkali, A., Samarandache, F.: Single valued neutrosophic graph. *Journal of New Theory* 10, 86101 (2016).
- [8] Broumi, S., Mohamed Talea, Assia Bakali, Florentin Smarandache. Single Valued Neutrosophic Graphs. In F. Smarandache, & S. Pramanik (Eds., vol.2), *New trends in neutrosophic theory and applications* (pp. 187-202). Brussels: Pons Editions.
- [9] R. Dhavaseelan, Intuitionistic cofuzzy graphs, *International Research Journal Of Mathematics, Engineering & IT*, 1(6)(2014), 1-6.
- [10] R. Dhavaseelan, R. Vikramaprasad and V. Krishnaraj, Certain types of neutrosophic graphs, International Journal of Mathematical Sciences and Applications, 5(2)(2015), 333-339.
- [11] M. Hamidi, A. Borumand Saeid. Accessible single-valued neutrosophic graphs. *Journal of Applied Mathematics and Computing* 57, Issue 12, pp 121146, 2018.
- [12] Kandasamy, W.B.V, Ilanthenral, K., Smarandache, F.: Neutrosophic graphs: a new dimension to graph theory, Europo Nova, Belgium. (2015).
- [13] Karaaslan, Faruk, Davvaz, Bijan. Properties of single-valued neutrosophic graphs. *Journal of Intelligent* & *Fuzzy Systems*, vol. 34, no. 1, pp. 57-79, 2018.
- [14] Mohammad Hamidi, and Arsham Borumand Saeid. Achievable Single-Valued Neutrosophic Graphs in Wireless Sensor Networks. *New Mathematics and Natural Computation* VOL. 14, NO. 02 https://doi.org/10.1142/S1793005718500114
- R. Dhavaseelan, S. Jafari, M. R. Farahani, S. Broumi: On single-valued co-neutrosophic graphs

- [15] Nasir Shah, Said Broumi: Irregular Neutrosophic Graphs, *Neutrosophic Sets and Systems*, vol. 13, 2016, pp. 47-55. doi.org/10.5281/zenodo.570846
- [16] A. Nagoorgani and K. Radha, The degree of a vertex in some fuzzy graphs, *International journal of Algorithm, Computing and Mathematics*, 2(3)(2009), 107-116.
- [17] A. Rosenfeld, Fuzzy graphs, Fuzzy sets and their applications (L. A. Zadeh, K. S. Fu, M. Shimura, Eds.), Academic Press, New York, (1975), 77-95.
- [18] Shimaa Fathi, Hewayda ElGhawalby, A.A. Salama. A Neutrosophic Graph Similarity Measures. In F. Smarandache, & S. Pramanik (Eds., vol.2), *New trends in neutrosophic theory and applications* (pp. 203-230). Brussels: Pons Editions.
- [19] Smarandache, F., A Unifying field in logics neutrosophy:Neutrosophic Probability, set and logic, Rehoboth: American Research Press, 1998.
- [20] F. Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability and Statistics University of New Mexico, Gallup, NM 87301, USA (2002).
- [21] L. A. Zadeh, Fuzzy sets, Information and control, 8(1965), 338-353.

Received: October 15, 2018. Accepted: November 20, 2018