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Abstract. This paper aims to introduce a single valued 

neutrosophic soft approach to rough sets based on neu-

trosophic right minimal structure. Some of its properties 

are deduced and proved. A comparison between tradi-

tional rough model and suggested model, by using their 

properties is concluded to show that Pawlak’s approach 

to rough sets can be viewed as a special case of single 

valued neutrosophic soft approach to rough sets. Some of 

rough concepts are redefined and then some properties of 

these concepts are deduced, proved and illustrated by 

several examples. Finally, suggested model is applied in 

a decision making problem, supported with an algorithm.
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1 Introduction 

    Set theory is a basic branch of a classical mathematics, 

which requires that all input data must be precise, but 

almost, real life problems in biology, engineering, 
economics, environmental science, social science, medical 

science and many other fields, involve imprecise data. In 
1965, L.A. Zadeh [1] introduced the concept of fuzzy logic 

which extends classical logic by assigning a membership 

function ranging in degree between 0 and 1 to variables. 
As a generalization of fuzzy logic, F. Smarandache in 1995, 

initiated a neutrosophic logic which introduces a new 
component called indeterminacy and carries more 

information than fuzzy logic. In it, each proposition is 
estimated to have three components: the percentage of 

truth (t %), the percentage of indeterminacy (i %) and the 

percentage of falsity (f %), his work was published in [2]. 
From scientific or engineering point of view, neutrosophic 

set’s operators need to be specified. Otherwise, it will be 
difficult to apply in the real applications. Therefore, Wang 

et al.[3] defined a single valued neutrosophic set and 

various properties of it. This thinking is further extended to 
many applications in decision making problems such as [4, 

5]. 
    Rough set theory, proposed by Z. Pawlak [6], is an 

effective tool in solving many real life problems, based on 
imprecise data, as it does not need any additional data to 

discover a knowledge hidden in uncertain data. Recently, 

many papers have been appeared to development rough set 
model and then apply it in many real life applications such 

as [7-11]. In 1999, D. Molodtsov [12], suggested a soft set 
model. By using it, he created an information system from 

a collected data. This model has been successfully used in 
the decision making problems and it has been modified in 

many papers such as [13-17]. In 2011, F. Feng et al.[18] 

introduced a soft rough set model and proved its properties. 
E.A. Marei generalized this model in [19]. In 2013, P.K. 

Maji [20] introduced neutrosophic soft set, which can be 
viewed as a new path of thinking to engineers, 

mathematicians, computer scientists and many others in 

various tests. In 2014, Broumi et al. [21] introuduced the 
concept of rough neutrosophic sets. It is generalized and 

applied in many papers such as [22-31]. In 2015, E.A. 
Marei [32] introduced the notion of neutrosophic soft 

rough sets and its modification. 

    This paper aims to introduce a new approach to soft 

rough sets based on the neutrosophic logic, named single 
valued neutrosophic soft (VNS in short) rough set 

approximations. Properties of VNS-lower and VNS-upper 
approximations are included along with supported proofs 

and illustrated examples. A comparison between traditional 

rough and single valued neutrosophic soft rough 
approaches is concluded to show that Pawlak’s approach to 

rough sets can be viewed as a special case of single valued 
neutrosophic soft approach to rough sets. This paper delves 

into single valued neutrosophic soft rough set by defining 
some concepts on it as a generalization of rough concepts. 

Single valued neutrosophic soft rough concepts (NR-

concepts in short) include NR-definability, NR-
membership function, NR-membership relations, NR-

inclusion relations and NR-equality relations. Properties of 
these concepts are deduced, proved and illustrated by 
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several examples. Finally, suggested model is applied in a 

decision making problem, supported with an algorithm. 

2 Preliminaries 

    In this section, we recall some definitions and properties 

regarding rough set approximations, neutrosophic set, soft 
set and neutrosophic soft set required in this paper. 

Definition 2.1 [6] Lower, upper and boundary 

approximations of a subset UX  , with respect to an 

equivalence relation, are defined as 
},][:]{[)(},,][:]{[)(  XxxXEX

E
x

E
xXE EE

whereXEXEXBNDE ),()()(   

)}.()(:{][ ,, xExEUxx E   

Definition 2.2 [6] Pawlak determined the degree of 

crispness of any subset UX  by a mathematical tool, 

named the accuracy measure of it, which is defined as 

.)(),(/)()(   XEXEXEX
E

 

Obviously, 1)(0  XE . If  )()( XEXE  , then X  is 

crisp (exact) set, with respect to E , otherwise X is rough 

set. 

Properties of Pawlak’s approximations are listed in the fol-

lowing proposition.        

Proposition 2.1 [6] Let ),( EU  be a Pawlak 

proximation space and let UYX , . Then, 

(a) )()( XEXXE  .           

(b) )(==)(  EE  and )(==)( UEUUE .        

(c) )()(=)( YEXEYXE  .          

(d) )()(=)( YEXEYXE  .                             

(e) YX  , then )()( YEXE   and )()( YEXE  .                

(f) )()()( YEXEYXE  .                                 

(g) )()()( YEXEYXE  .       

(h) cc

XEXE )]([=)( , 
C

X  is the complement of X .                       

(i) cc

XEXE )]([=)( .              

(j) )(=))((=))(( XEXEEXEE .                     

(k) )(=))((=))(( XEXEEXEE . 

Definition 2.3 [33] An information system is a quadruple 

),,,(= fVAUIS , where U is a non-empty finite set of 

objects, A  is a non-empty finite set of attributes, 

},{= Ae
e

VV  ,
e

V is the value set of attribute e , 

VAUf : is called an information (knowledge) 

function. 

Definition 2.4 [12] Let U  be an initial universe set, E be 

a set of parameters, EA  and let )(UP  denotes the 

power set of U . Then, a pair ),(= AFS  is called a soft set 

overU , where F  is a mapping given by )(: UPAF  . 
In other words, a soft set over U  is a parameterized family 

of subsets of U . For )(, eFAe may be considered as 

the set of e -approximate elements of S .  

Definition 2.5 [2] A neutrosophic set A on the universe of 
discourse U is defined as 

whereUxx
A

Fx
A

Ix
A

TxA },:)(),(),(,{= 





  1,0,,,3)()()(0 FITandx

A
Fx

A
Ix

A
T

Definition 2.6 [20] Let U  be an initial universe set and E  

be a set of parameters. Consider EA , and let 

)(UP denotes the set of all neutrosophic sets of U . The 

collection ),( AF is termed to be the neutrosophic soft set 
over U , where F is a mapping given by ).(: UPAF   

Definition 2.7 [3] Let X  be a space of points (objects), 

with a generic element in X denoted by x . A single 

valued  neutrosophic set A  in X  is characterized by 

truth-embership function ,AT  indeterminacy-membership 

function 
AI  and falsity-membership function .AF  For 

each point x  in X ,  1,0(X)(X),F(X),IT AAA
. When X  is 

continuous, a single valued neutrosophic set A  can be 

written as X/x,xF(x)T(x),I(x),A X  )( . When X  is 

discrete, A   can be written as .)(1 X,x/x)),F(x),I(xT(xA iiiii

n

i  
 

 3 Single valued neutrosophic soft rough set 

approximations  

    In this section, we give a definition of a single valued 
neutrosophic soft (VNS in short) set. VNS-lower and 

VNS-upper approximations are introduced and their 
properties are deduced, proved and illustrated by many 

counter examples.  

Definition 3.1  Let U be an initial universe set and E be a 
set of parameters. Consider EA  , and let 

)(UP denotes the set of all single valued neutrosophic sets 
ofU . The collection (G,A) is termed to be VNS set over 

U , where G is a mapping given by )(: UPAG  . 

    For more illustration the meaning of VNS set, we 

consider the following example 
Example 3.1 Let U be a set of cars under consideration 

and E  is the set of parameters (or qualities). Each 
parameter is a neutrosophic word. Consider E = {elegant,

trustworthy, sporty, comfortable, modern}. In this case, to 

define a VNS means to point out elegant cars, trustworthy 
cars and so on. Suppose that, there are five cars in the 

universe U , given by },,,,{ 54321 hhhhhU  and the set of 
parameters },,,{ 4321 eeeeA  , where EA   and each 

ie  is 

a specific criterion for cars: 
1e stands for elegant, 

2e stands 
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for trustworthy, 
3e stands for sporty and 

4e stands for 

comfortable. 
A VNS set can be represented in a tabular form as shown 

in Table 1. In this table, the entries are cij corresponding to

the car hi  and the parameter 
je , where

ijC  = (true 
membership value of hi , indeterminacy-membership value 

of hi , falsity membership value of hi ) in )(eiG .

Table1: Tabular representation of (G, A) of Example 3.1. 

Definition 3.2 Let ),( AG  be a VNS set on a universe U . 
For any element Uh  , a neutrosophic right 

neighborhood, with respect to Ae is defined as follows  

= { :e ih h U

( ) ( ), ( ) ( ), ( ) ( )}.e i e e i e e i eT h T h I h I h F h F h    

Definition 3.3 Let (G,A) be a VNS set on U. Neutrosophic 

right minimal structure is defined as follows 

},:,,{ AeUhheU    

Illustration of Definitions 3.2 and 3.3 is introduced in the 

following example

Example 3.2 According Example 3.1, we can deduce the 

following results: 
1

1e
h 

2
1e

h
3

1e
h 

4
1e

h }{
1

h , 
1

2 e
h 

3
2e

h  

},{
21

hh , 
2

2e
h  },,,{

5421
hhhh , 

4
2e

h ,{
1

h },
32

hh , 
1

3e
h 

4
3e

h },{
31

hh ,


2

3e
h ,,{

31
hh  },

54
hh , 

3
3e

h },,{
531

hhh , 
1

4e
h ,,{ 3

1
hh  }

4
h , 

2
4e

h },{
54

hh ,

Uh
e


3
4

, 
4

4e
h },,,{

4321
hhhh , 

1
5 e

h 
2

5e
h 

4
5e

h }{
5

h , 
3

5e
h },{

51
hh .

It follows that, 

},},,,,{},,,,{,

},,,{},,,{},,,{},,,{

},,{},,{},,{},,{},{},{{

54315421

4321531431321

5451312151





Uhhhhhhhh

hhhhhhhhhhhhh

hhhhhhhhhh

Proposition 3.1 Let ),( AG  be a VNS set on a universe U , 

  is the family of all neutrosophic right neighborhoods on 

it, and let  

eee hhRUR =)(,: 

Then,         

(a) 
eR is reflexive relation. 

(b) 
eR is transitive relation.             

(c) 
eR may be not symmetric relation. 

Proof  Let  )(),(),(,
1111

hFhIhTh
eee

,  )(),(),(,
2222

hFhIhTh
eee

 

and ,
3

h  ),(
3

hT
e

 ),(
3

hI
e

)()(
3

AGhF
e

 . Then, 

(a) Obviously, )(=)(
11

hThT
ee

, )(=)(
11

hIhI
ee

and )(
1

hF
e

)(=
1

hF
e

.  For every Ae , 
1h    

eh1
. Then 

1h eR 1h   and 

then 
eR is reflexive relation. 

(b) Let 
1

h
e

R
2

h  and 
2

h
e

R
3

h ,  then 
2

h 
e

h
1

and 
3

h 

e
h

2

. Hence, )(
2

hT
e

   )(
1

hT
e

, )(
2

hI
e

   )(
1

hI
e

, )(
2

hF
e

 

  )(
1

hF
e

, )(
3

hT
e

   )(
2

hT
e

, )(
3

hI
e

   )(
2

hI
e

 and 

)(
3

hF
e

   )(
2

hF
e

. Consequently, we have )(
3

hT
e

   

)(
1

hT
e

, )(
3

hI
e

   )(
1

hI
e

 and )(
3

hF
e

   )(
1

hF
e

. It 

follows that, 
3

h    
e

h
1

. Then 
1

h  
e

R  
3

h  and then 
e

R  is 

transitive relation. 

The following example proves (c) of Proposition 3.1. 

Example 3.3 From Example 3.2, we have, 
1

1e
h }{ 1h  and 


1

3e
h },{

31
hh . Hence, ),( 12 hh

1eR  but ),(
31

hh
1eR . 

Then, 
eR  isn’t symmetric relation. 

Definition 3.4 Let (G,A) be a VNS set on U , and let  be 

a neutrosophic right minimal structure on it. Then, VNS-
lower and VNS-upper approximations of any subset X

based on  , respectively, are 

},:{ XYYXS    

}.:{ XYYXS    

Remark 3.1 For any considered set X in a VNS set (G,A), 

the sets  

,XSXNRP   ,][
c

XSXNRN




XPNRXSXNRb 




are called single valued neutrosophic positive, single 
valued neutrosophic negative and single valued 

neutrosophic boundary regions of a considered set X , 

respectively. The real meaning of single valued 
neutrosophic positive of X  is the set of all elements which 

are surely belonging to X, single valued neutrosophic 
negative of X is the set of all elements which are surely not 

belonging to X and single valued neutrosophic boundary of 

X is the elements of X which are not determined by (G,A). 
Consequently, the single valued neutrosophic boundary 

region of any considered set is the initial problem of any 
real life application. 

VNS rough set approximations properties are introduced in 

the following proposition. 

Proposition 3.2 Let (G,A) be a VNS set on U, and let 

UZX , . Then the following properties hold 

U  
1e  

2e  
3e 4e

h1  
 (.6, .6, .2) (.8, .4, .3) (.7, .4, .3) (.8, .6, .4) 

h2  
(.4, .6, .6)  (.6, .2, .4)  (.6, .4, .3)  (.7, .6, .6) 

h3  
(.6, .4, .2)  (.8, .1, .3)  (.7, .2, .5)  (.7, .6, .4) 

h4  
(.6, .3, .3) (.8, .2, .2)  (.5, .2, .6)  (.7, .5, .6) 

h5  
(.8, .2, .3) (.8, .3, .2) (.7, .3, .4) (.9, .5, .7)
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(a) XSXXS 

  . 

(b)  

 == SS . 

(c) UUSUS == 


. 

(d) ZX     ZSXS   . 

(e) ZX     ZSXS   . 

(f) ZSXSZXS   )( . 

(g) ZSXSZXS   )( . 

(h) ZSXSZXS   )(

(i) ZSXSZXS   )( . 

Proof   

(a) From Definition 3.3, obviously, we can deduce that,  

XSXXS 

  . 

(b) From Definition 3.4, we can deduce that  S  and 

  }:{ YYS . 

 (c) From Property (a), we have  USU   but U  is the 

universe set, then UUS  . Also, from Definition 3.4, we 

have US
}:{ UYY   , but U . Then, US U

(d) Let ZX   and XSh  , then there exists Y such 

that XYh  . But ZX  , then ZYh  . Hence, 

ZSh  . Consequently .ZSXS    

(e) Let ZX  and ZSh  . But  ZS  YY :{ 

. Yh and ZY   such that U  there exists Then.  }Z

But ZX  , then XY 
 
and Yh . Hence ZSh  . 

Thus ZSXS   . 

(f) Let }:{)( ZXYYZXSh    . So, there 

exists Y such that, ZXYh  , then XYh 

and ZYh  . Consequently, XSh  and ZSh  , 

then ZSXSh   . Thus .)( ZSXSZXS    

(g) Let )( ZXSh  
}:{ ZXYY   . So, for all 

YhY  , , we have ZXY  , then XY   and 

ZY  . Consequently, XSh  and ZSh  . So

ZSXSh   . Thus  )( ZXS ZSXS   . 

 (h) Let ZSXSh   . Then, XSh  or ZSh  and 

then there exists Y such that YhXY  , or ,XY   

Yh . Consequently )( ZXSh   . Thus 

 )( ZXS ZSXS   . 

(i) Let )( ZXSh   . But  )( ZXS  YY :{   

}ZX  . Then, there exists Y such that ZXY   

and Yh . Then, XY  , Yh  and ZY  , Yh . 

It follows that, ZSXSh   . Thus  )( ZXS XS 

ZS  . 

The following example illustrates that the converse of 

Property (a) doesn’t hold 
Example 3.4 From Example 3.1, if }{ 3hX  , then  XS  

 . XSX   and XXS 
 Hence. },{ 31 hhXS  and    

The following example illustrates that the converse of 

Property (d) doesn’t hold 
Example 3.5 From Example 3.1, if }{ 2hX   and Z  

},{ 21 hh , then XS , ZS },{ 21 hh . Thus ZSXS   . 

The following example illustrates that the converse of 

Property (e) doesn’t hold 

Example 3.6 From Example 3.1, if }{ 5hX  and 

},{ 52 hhZ  , then, }{ 5hXS  and ,,{ 21 hhZS   

}, 54 hh . Hence, ZSXS   . 

The following example illustrates that the converse of 

Property (f) doesn’t hold 

 Example 3.7 From Example 3.1, If },,{ 431 hhhX   

and },,{ 541 hhhZ  , then },,{ 431 hhhXS 
,  ,{ 1hZS 

 

 XSZXS   )(  Hence. }{)( 1hZXS 
 and }, 54 hh

. ZS

The following example illustrates that the converse of 

Property (g) doesn’t hold 

 Example 3.8 From Example 3.1, if }{ 1hX  and Z  

}{ 2h then }{ 1hXS 
, ZS and  )( ZXS },{ 21 hh . 

Hence  )( ZXS  ZSXS   . 

The following example illustrates that the converse of 

Property (h) doesn’t hold 

 Example 3.9 From Example 3.1, if },,{ 421 hhhX   and 

},,{ 521 hhhZ  then },,{ 421 hhhXS  , 

},,,{ 5421 hhhhZS   and },{)( 21 hhZXS  . Hence 

ZSXSZXS   )(

The following example illustrates that the converse of 

Property (i) doesn’t hold 

 Example 3.10 From Example 3.1, if },{ 32 hhX   and 
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}{ 5hZ  then },,{ 321 hhhXS  , }{ 5hZS  and 

UZXS  )( . Hence ZSXSZXS   )( . 

Proposition 3.3  Let ),( AG  be a neutrosophic soft set on 

a unverse U , and let UZX , . Then the following 

properties hold. 

(a) XSXSS  

(b) XSXSS  

(c) XSXSS 

 

(d) XSXSS 

 

 Proof 

(a) Let XSW =  and Wh }:{ XYY   . Then, for 

some Ae , we have .WYh 
 
So WSh  . Hence W

WS . Thus, WS WSS 
. Also, from Property (a) of 

Proposition 3.2, we have XXS 
and by using Property 

(d) of Proposition 3.2, we get XSXSS   . 

Consequently. XS
= XSS 

(b) Let XSW   and
 

Wh , from Definition 3.4, we 

have }.:{ XYYW    Then there exists Y , such 

that XY   and Yh . Hence, there exists Y , such 

that WY   and Yh , it follows that .WSh   

Consequently WSW  . Also, by using Property (a) of 

Proposition 3.2, we have WSW  . Thus WSWSS  

Properties (c) and (d) can be proved directly from 

Proposition 3.2. 

The following example illustrates that the converse of 

Property (c) doesn’t hold. 
Example 3.11 From Example 3.1, if }{ 4hX  . Then 

XS 
}{ 4h and 

 XSS . Hence, .XSXSS 

   

The following example illustrates that the converse of 
Property (c) doesn’t hold.        

Example 3.12 From Example 3.1, if },,{ 521 hhhX  , then 

},,{ 521 hhhXS 
and },,,{ 5421 hhhhXSS 

 . Hence 

XSXSS 

 

Proposition 3.4 Let ),( AG  be a VNS set on U and let 

UZX , . Then 

ZSXSZXS   )(

Proof  

Let h )}(:{)( ZXYYZXS   . So, there
exists Y  such that )( ZXYh  , then XYh 

and ZYh  . Consequently, h XS
 and h ZS , then 

h ZSXS   . Therefore ZSXSZXS   )( . 

The following example illustrates that the converse of 

Proposition 3.4 doesn’t hold.
Example 3.13 From Example 3.1, if },,{ 531 hhhX   

and },{ 51 hhZ  , then },,{ 531 hhhXS 
, },{ 51 hhZS 

, 

 )( ZXS and }{ 3hZSXS  
. Hence,  )( ZXS  

ZSXS  

Proposition 3.5 Let ),( AG  be a VNS set on U and let 

UZX , . Then the following properties don’t hold 

(a) cc XSXS ][ 

   

(b) cc XSXS ][ 

 

(c) ZSXSZXS   )(

The following example proves Properties (a) and (b) of 
Proposition 3.5. 

Example 3.14 From Example 3.1, if }{ 1hX  . Then, 

}{ 1hXSXS  


, },{ 54 hhXS c 

and .UXS c   Thus 
cc XSXS ][ 

  and cc XSXS ][ 

 

The following example proves Property (c) of Proposition 

3.5. 
Example 3.15 From Example 3.1, if },{ 21 hhX  and 

}{ 1hZ  . Then },{ 21 hhXS  , }{ 1hZS  ,  )( ZXS  

},{ 21 hh . Hence .)( ZSXSZXS    

Remark 3.2 A comparison between traditional rough and 
single valued neutrosophic soft rough approaches, by using 

their properties, is concluded in Table 2, as follows 

4 Single valued neutrosophic soft rough concepts 

     In this section, some of single valued neutrosophic soft 

rough concepts (NR-concepts in short) are defined as a 

generalization of traditional rough concepts. 

Definition 4.1 Let ),( AG  be a VNS set on U . A subset 

UX   is called 

(a) NR-definable (NR-exact) set if XXSXS  



(b) Internally NR-definable set if XXS 
and XXS 

(c) Externally NR-definable set if XXS 
and XXS 

(d) NR-rough set if XXS 
and XXS 

The following example illustrates Definition 4.1. 

Example 4.1 From Example 3.1, we can deduce that }{ 1h , 

},{},,{},,{},,{},{ 545131215 hhhhhhhhh , ,{},,,{},,,{ 1431321 hhhhhhh

},,,{},,,{},, 432154153 hhhhhhhhh , },,,{},,,,{ 54315421 hhhhhhhh are 

NR-definable sets, },,,{},,,{ 5321521 hhhhhhh are internally 
NR-definable sets, },,{},,{},{ 421414 hhhhhh are externally 

NR-definable sets and the rest of proper subsets of U are 
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NR-rough sets. 

We can determine the degree of single valued neutrosophic 

soft-crispness (exactness) of any subset UX   by using 

NR-accuracy measure, denoted by XC
, which is defined 

as follows 

Definition 4.2 Let (G,A) be a VNS on U , and let UX  . 
Then  

 

 XXSXSXC ,  

Remark 4.1 Let (G,A) be a VNS onU . A subset UX   is 

NR-definable (NR-exact) if and only if 1XC . 

Definition 4.3 Let (G,A) be a VNS on U and let ,UX   

.Xx NR-membership function of an element x  to a set 

X denoted by xX  is defined as follows:

|,|/|| AAX xXxx   where }:{ Aexx eA   and 
ex  is a 

neutrosophic right neighborhood, defined in Definition 3.2. 

Proposition 4.1  Let (G,A) be a VNS on ,U UX   and let 

xX  be the membership function defined in Definition 4.3. 

Then 

]1,0[xX  

Proof 

Where
AA xXx  then 

AA xXx 0 and then 

10  xX . 

Proposition 4.2 Let (G,A) be a VNS on U and let ,UX   

then  

XxxX 1
Proof 

Let ,1xX then 
AA xXx  . Consequantly XxA  . 

From Proposition 3.1, we have 
eR  is a reflexive relation 

for all Ae . Hence Aexx e  . It follows that 
Axx . 

Thus Xx

The following example illustrates that the converse of 

Proposition 4.2 doesn’t hold. 
Example 4.2 From Example 3.2, we get },{ 313 hhh A  . If 

}
5

,
3

,
2

{ hhhX  , then 213 hX . Although Xh 3

Proposition 4.3 Let (G,A) be a VNS on U and let ZX ,  

.U  If ZX  , then the following properties hold 

(a) xx ZX  

(b) xx ZSXS 
   

(c) xx
ZSXS     

Proof     

(a) Where UX  , for any Ux   we can deduce that 

xx ZX   . Thus ZxXx AA  then ,ZxA  XxA 

We get the proof of Properties (b) and (c) of Proposition 

4.3, directly from property (a) of Proposition 4.3 and 
properties (d) and (e) of Proposition 3.2. 

Table 2: Comparison between traditional, VNS rough 

Proposition 4.4 Let (G,A) be a VNS on U and let XU, 

then the following properties hold 

 (a) xx XXS  


 

(b) xx
XSX    

(c) 


xXS x
XS

  

Proof can be obtained directly from Propositions 3.2 and 

property (a) of Proposition 4.3. 

Definition 4.4 Let (G,A) be a VNS set on ,U and let Ux , 

UX  . NR-membership relations, denoted by 
  and


are defined as follows  

Xx  if XSx  and Xx  if XSx 

Proposition 4.5 Let (G,A) be a VNS set on ,U and let x  

,U  UX  . Then  

(a) XxXx 

(b) XxXx 

Proof 

(a) Let Xx  , hence by using Definition 4.4, we get 

XSx  . 

But from Proposition 3.2, we have XXS 
, then 

Xx . 

(b) Let Xx , according to Proposition 3.2, we have 

XSX  , then XSx  , by using Definition 4.4, 
we can deduce that Xx  . 

Consequently XxXx 
. 

The following example illustrates that the converse of 

Proposition 4.5 doesn’t hold. 
Example 4.3 From Example 3.1, if },{ 52 hhX  , then 

XS }{ 5h and  XS },,,{ 5421 hhhh . Hence, Xh 2
, 

although Xh 2
 and Xh 4

, although Xh 4
. 

Proposition 4.6 Let (G,A) be a VNS on U and let .UX   
Then the following properties hold   

Traditional rough properties VNS rough properties 

ZEXEZXE  )( ZSXSZXS   )(
)()(=)( YEXEYXE   ZSXSZXS   )(

E )(=))(( XEXE XSXSS 

 

E )(=))(( XEXE  XSXSS 

 

E c
XE

c
X )]([=)(  cc XSXS ][ 

 

[=)( cXE E cX )]( cc XSXS ][ 

 
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(a) 1 xXx X  

(b) XxxX

 1

Proof can be obtained directly from Definition 4.4 and 

Propositions 4.2 and 4.5. 

The following example illustrates that the converse of 

property (a) does not hold. 
Example 4.4 From Example 3.1, if },{ 41 hhX  then 

}{ 1hXS 
and }{ 44 hh

A
 , it follows that 14 hX . 

Although  Xh 4

The following example illustrates that the converse of 
property (b) does not hold. 

Example 4.5 From Example 3.1, if }{ 2hX  , then 

},{ 21 hhXS  and },{ 212 hhh
A
 , it follows that Xh 2

, 

although 12 hX  

Proposition 4.7 Let (G,A) be a VNS on U and let 

UX  . Then  

(a) XxxX  0

(b) XxxX  0

Proof is straightforward and therefore is omitted. 

The following example illustrates that the converse of 

property (a), does not hold. 
Example 4.6 From Example 3.1, if },,{ 431 hhhX  and from 

Example 3.2, we get },{ 212 hhh
A
 , then 02 hX  , although 

Xh 2

The following example illustrates that the converse of 

property (b), does not hold. 

Example 4.7 From Example 3.1, if },,{ 541 hhhX  , then 

},,{ 541 hhhXS 
, from Example 3.2, we get ,{ 12 hh

A
 }2h , it 

follows that 02 hX , although Xh 2

Proposition 4.8 Let (G,A) be a VNS on U and let XU. 

The following property does not hold  

XxxX

 0

The following example proves Proposition 4.8. 
Example 4.8 From Example 3.1, if }{ 2hX  then XS 

},{ 21 hh , from Example 3.2, we get }{ 11 hh
A
 , it follows that 

Xh 1
, although 01 hX  

Definition 4.5 Let (G,A) be a VNS on U and let ZX ,  

.U  NR-inclusion relations, denoted by 
  and 

  which 

are defined as follows 

ZX  If   ZSXS  

ZX  If   ZSXS  

Proposition 4.9 Let (G,A) be a VNS on U and let ZX ,
.U  Then  

ZXZXZX 

 

Proof comes directly From Proposition 3.2. 

The following example illustrates that, the converse of 
Proposition 4.9 doesn’t hold. 

Example 4.9 In Example 3.1, if },{ 41 hhX   and ,,{ 21 hhZ   
}5h , then },{ 1hXS  },,{ 521 hhhZS 

, },{ 41 hhXS   and 

},,,{ 5421 hhhhZS  . Hence, ZX   and ZX  . 

Although ZX 

From Definition 4.5 and Proposition 4.3, the following 
remarks can be deduced 

Remark 4.2 Let (G,A) be a VNS on U and let UZX , . 

If ZX  , then the following properties hold  

(a) xx ZSXS 
   

(b) xx ZXS  


 

(c) xx
ZSXS 


   

Remark 4.3  Let (G,A) be a VNS on U and let UZX , . 

If ZX  , then the following properties hold 

(a) xx
ZSXS     

(b) xx
ZSX  

(c) xx
ZSXS 


   

Definition 4.6 Let (G,A) be a VNS onU and let ZX ,
.U  NR-equality relations are defined as follows  

ZX  If    ZSXS  

ZX  If    ZSXS  

   If ZX 

 ZX  ZX 

The following example illustrates Definition 4.6. 

Example 4.10 According to Example 3.1. Let }{ 1eA  , 
then }},,{},,{},,{},{},{,,{ 431312151 hhhhhhhhhU   . If },{ 21 hX   

},{},,{},{ 32421332 hhXhhXhX   and },{ 425 hhX  , then 
1XS

  2XS , 
31 XSXS    },{ 21 hh ,   54 XSXS and 

4XS  

UXS 

5
. Consequently 

21 XX  , 
31 XX  and 

54 XX 



Proposition 4.10 Let (G,A) be a VNS set on U and let 

UZX , .  Then 

(a) XSX 

(b) XSX 

(c) ZXZX 



(d)    XZZX ,  
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(e) UZUXZX  ,

(f)    XZZX ,  

(g) UZUXZX   ,

Proof. From Definition 4.6 and Propositions 3.2 and 3.3 

we get the proof, directly. 

From Definition 4.6 and Proposition 4.3, the following 
remarks can be deduced 

Remark 4.4 Let (G,A) be a VNS on U and let UZX , . 

If ZX  , then the following properties hold 

(a) xx ZSXS 
   

(b) xx ZXS  


 

(c) xx
ZSXS 


   

Remark 4.5 Let (G,A) be a VNS on U and let UZX , . 
If ZX  , then the following properties hold 

(a) xx
ZSXS     

(b) xx
ZSX    

(c) xx
ZSXS 


   

The following remark is introduced to show that Pawlak’s 

approach to rough sets can be viewed as a special case of 
proposed model. 

Remark 4.6  Let (G,A) be a VNS on U and let UZX , . 
If we consider the following case  

( If 5.0)( ie hT , then 1)( he , otherwise 0)( he ) 

and the neutrosophic right neighborhood of an element h is 

replaced by the following equivalence class  

Uhh ie {][  }.),()(: Aehehe i   

Then VNS-lower and VNS-upper approximations will be 

traditional Pawlak’s approximations. It follows that NR-

concepts will be Pawlak’s concepts. Therefor Pawlak’s 

approach to rough sets can be viewed as a special case of 

suggested single valued neutrosophic soft approach to 

rough sets.   

5   A decision making problem 

     In this section, suggested single valued neutrosophic 
soft rough model is applied in a decision making problem. 

We consider the problem to select the most suitable car 

which a person X  is going to choose from n cars ,...,,( 21 hh  

)nh  by using m  parameters (
meee ,..,, 21

). 

Since these data are not crisp but neutrosophic, the 
selection is not straightforward. Hence our problem in this 

section is to select the most suitable car with the choice 

parameters of the person X. To solve this problem, we need 

the following definitions 

Definition 5.1 Let (G,A) be a VNS set on ,...,,{ 21 hhU   
}nh as the objects and },..,,{ 21 meeeA   is the set of 

parameters. The value matrix is a matrix whose rows are 

labeled by the objects, its columns are labeled by the 
parameters and the entries 

ijC  are calculated by 

)),()()(( iejiejiejij hFhIhTC   mjni  1,1

Definition 5.2 Let (G,A) be a VNS set on ,...,,{ 21 hhU   
}nh , where A  },..,,{ 21 meee . The score of an object jh  is 

defined as follows 




m
j ijCihS 1)(

Remark 5.1 Let (G, A) be a VNS set on U and 

,,{ 21 eeA  then   is the set of parameters.  }.., me  

(a) ,21  ijC  mjni  1,1

(b) ,2)( mhSm i   Uhi 

The real meaning of AC
 is the degree of crispness of A . 

Hence, if 1AC , then A  is NR-definable set. It means 

that the collected data are sufficient to determine the set A . 
Also, from the meaning of the neutrosophic right 

neighborhood, we can deduce the most suitable choice by 
using the following algorithm. 

Algorithm 

1. Input VNS set (G,A)

2. Compute the accuracy measures of all singleton sets

3. Consider the objects of NR-definable singleton sets

4. Compute the value matrix of  the considered objects

5. Compute the score of all considered objects in a tabular
form

6. Find the maximum score of the considered objects

7. If there are more than one object has the maximum

scare, then any object of them could be the suitable
choice

8. If there is no NR-definable singleton set, then we
consider the objects of all NR-definable sets consisting

two elements and then repeat steps (4-7), else, consider
the objects of all NR-definable sets consisting three

elements and then repeat steps (4-7),and so on...

For illustration the previous technique, the following 

example is introduced. 
Example 5.1 According to Example 3.1, we can create 

Tables 3, as follows 
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Singleton sets  }{ 1h  }{ 2h   }{ 3h  }{ 4h  }{ 5h  

XC
1 0 0 0 1 

Table 3: Accuracy measures of all singleton sets. 

Hence 1}{}{ 51   hChC . It follows that 
1h and

5h  are the 

NR-definable singleton sets. Consequently 1h and 5h are 
concidered objects. Therefore Table 4 can be created as 

follows 

Object 1e 2e 3e
4e

1h (.6,.6,.2) (.8,.4,.3) (.7,.4,.3) (.8,.6,.4) 

5h (.8,.2,.3) (.8,.3,.2) (.7,.3,.4) (.9,.5,.7) 

Table 4: Tabular representation of considered objects. 

The value matrix of considered objects can be viewed as 
Table 5. 

Object 1e 2e 3e
4e

1h 1 0.9 0.8 1 

5h 0.7 0.9 0.6 0.7 

Table 5: Value matrix of considered objects. 

Finally, the scores of considered objects are concluded in 

Table 6, as follows 

Object  Score of the object 

1h 3.7 

5h 2.9 

Table 6: The scores of considered objects. 

Clearly, the maximum score is 3.7, which is scored by the 

car 
1h . Hence, our decision in this case study is that a car 

1h is the most suitable car for a person X , under his choice 
parameters. Also, the second suitable car for him is a car 

.5h
Obviously, the selection is dependent on the choice 

parameters of the buyer. Consequently, the most suitable 
car for a person X  need not be suitable car for another 

person Y . 

Conclusion 

This paper introduces the notion of single valued 

neutrosophic soft rough set approximations by using a new 
neighborhood named neutrosophic right neighborhood. 

Suggested model is more realistic than the other traditional 

models, as each proposition is estimated to have three 
components: the percentage of truth, the percentage of 

indeterminacy and the percentage of falsity. Several 
properties of single valued neutrosophic soft rough sets 

have been defined and propositions and illustrative 
examples have been presented. It has been shown that 

Pawlak’s approach to rough sets can be viewed as a special 

case of single valued neutrosophic soft approach to rough 

sets. Finally, proposed model is applied in a decision 

making problem, supported with algorithm. 
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