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1. Introduction

Smarandache [1, 2] proposed a new branch of philosophy, called “Neutrosophy”. From neu-
trosophy, Smarandache [1, 2, 3, 4] defined neutrosophic set. Neutrosophic set consists of
three independent components 7, /, and F which represent the membership, indeterminacy,
and non membership values respectively. 7, 7, and F assumes the values from the non-standard
unit interval]0,1°[. Smarandache [1, 2] made the foundation of neutrosophic logic which
generalizes fuzzy logic [5] and intuitionistic fuzzy logic [6]. Salama, Smarandache proposed
the Neutrosophic Crisp Set Theory [16].

Alblowi, Salama and M. Eisa [7, 8] defined studied on neutrosophic sets and defined normal
neutrosophic set, convex set, the concept of a-cut and neutrosophic ideals. Hanafy, Salama
and Mahfouz [9] considered some possible definitions for basic concepts of the Neutrosophic
Crisp Data And Its Operations.

Salama and Alblowi [10] defined neutrosophic topological spaces and established some of its
properties. Salama and Alblowi 11] defined generalized neutrosophic set and defined
generalized neutrosophic topological spaces. In the same study, Salama and Alblowi [11] es-
tablished some properties of generalized neutrosophic topological spaces. Salama and
Elagamy [12] introduced the notion of filters on neutrosophic sets and studied several relations
between different neutrosophic filters and neutrosophic topologies. Salama and Smarandache
[13] studied several relations between different neutrosophic crisp filters and neutroso-
phic topologies.

Salama, Smarandache and Kroumov [14] generalized the crisp topological spaces to the no-
tion of neutrosophic crisp topological space. In the same study, Salama, Smarandache and
Kroumov [14] introduced the definitions of neutrosophic crisp continuous function and neu-
trosophic crisp compact spaces.

In this paper we introduce the concept of neutrosophic crisp bi-topological spaces as generali-
zation of neutrosophic crisp topological spaces. We introduce few new types of open and
closed sets as neutrosophic crisp bi-open sets, neutrosophic crisp bi-closed sets, neutrosophic
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crisp S-open sets and neutrosophic crisp S-closed sets. We investigate the properties of these
new four types of neutrosophic crisp sets.

Rest of the paper is organized as follows: Section 2 presents preliminaries of neutrosophic
crisp set, neutrosophic crisp topology. Section 3 presents Neutrosophic crisp bi-topological
spaces. Section 4 devotes the closure and the interior via neutrosophic crisp bi-open sets (Bi-
NCOS) and neutrosophic crisp bi-closed (Bi-NCCS). Section 5 devotes the neutrosophic crisp
S-open sets (S-NCOS) and neutrosophic crisp S-closed sets (S-NCOS). Section r presents
conclusion of the paper.

2. Preliminaries Of Neutrosophic Crisp Sets:

Definition 2.1. [14] Let X be a non-empty fixed set. A neutrosophic crisp set (NCS) A is
an object having the form 4 ={4,, 4,, 4,}, where 4, A, and 4, are subsets of X satisfy-

ing 4 N4, =¢, A N4 =¢ andd, N4 =¢.
Definition 2.2. [14, 15] Types of NCSs ¢, and X, in X

1. ¢, may be defined in many ways as a N CS as follows:
1. ¢, =(¢,¢,X)or
2. ¢, =(¢,X,X)0r
3.9, =(¢,X,¢)0r
4.4, =(4.4.9).
2. X, may be defined in many ways as a NCS, asfollows:
1. X, =(X,¢,¢)or
2. X, =(X,X,¢)or
3.X, =(X,X,X).
Definition 2.3. [14] A neutrosophic set A is a subset of a neutrosophic set B denoted by
A < B , may be defined as:
1.A cBo A <B,A < B,and B, C 4,.
22AcBs A4 <B,B, c4,and B, C 4,.

Definition 2.4. [14] Let X be a non-empty set, and the NCSs A and B in the form
A = {4, 4,, 4}, B = {B,, B,, B;}. Then:

1. AN B may be defined in two ways:

i) ANB = (AlﬂBl’AZ N BzaAz. U B3)

i) ANB = (4 NB,A4 UB, 4 UB,).

2. AU B may be defined in two ways as a N CSs.

i) AUB = (A1UB1a Az N Bza A3 N B3)

ii) A U B = (41 U Bl, 42 U B2, 43 1 B3).

Definition 2.5. [14] A neutrosophic crisp topology (NCT) on a non-empty set X is a fami-
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ly I' of neutrosophic crisp subsetsin X satisfying the following axioms:
1. ¢,,X, €l
2. 4N 4, €T, forany 4, and 4, T
3.U4, eT,V{4,: jeJicT.
The pair (X, I') is said to be a neutrosophic crisp topological space (NCTS) in X, a set of

elements in I" is said to be a neutrosophic crisp open set (NCOS), neutrosophic crisp set F is
closed (NCCS) if and only if its complement F®is an open neutrosophic crisp set.

Definition 2.6. [14] Let X be a non-empty set, and the NCS A in the form 4 = {4, 4,, 4,}.
Then A° may be defined in three ways as an N CS, as follows:

A" =< A4’,4;,4; >or

ii)A° =< 4;,4,, 4, >or

i) A° =< A4;, 45, 4, >.

3. Neutrosophic Crisp Bi-Topological Space

In this section, we introduce neutrosophic bi-topological crisp spaces. Moreover we intro-
duce new types of open and closed sets in neutrosophic bi-topological crisp spaces.

Definition 3.1. Let I, I', be any two neutrosophic crisp topology (NCT) on a nonempty
set X .Then (X,I'|,I",)is a neutrosophic crisp bi-topological space (Bi-NCTS for short).

Example 3.1. Let X ={1,2,3,4},

1_‘1 = {¢N7XN: Da C}a rz = {¢N’XN> Aa B}>
A =<{1},{2,4},{3} >=C, B =< {1}, {2{,{2,3} >, D=<{1},{2{,{3} >.
Then (X,I,),(X,I’,)are two neutrosophic crisp spaces. Therefore(.X,I',,I,)is a neutro-
sophic crisp bi-topological space (Bi-NCTS).
Definition 3.2. Let (X,I',,T',) beaneutrosophic crisp Bi-topological space (Bi-NCTS) .

The elements inI", UT', are said to be neutrosophic crisp bi-open sets (Bi-NCOS for short ).
A neutrosophic crisp set F is closed (Bi-NCCS for short ) if and only if its complement F¢ is
an neutrosophic crisp bi-open set.

- the family of all neutrosophic crisp bi-open sets is denoted by ( Bi-NCOS(X) ).

- the family of all neutrosophic crisp bi-closed sets is denoted by ( Bi-NCCS(X) ).

Example 3.2. In Example 3.1, the neutrosophic crisp bi-open sets (Bi-NCOS) are :
Bi-NCOS(X) = I',UTl", ={¢,,X,,4,B,C,D}

the neutrosophic crisp bi-closed sets (Bi-NCCS) are :

Bi-NCCS(X) = I'UT, =1{4,,X.4,,B ,C ,D,} where: 4,=<1{2,3,4},{1,3},{1,2,4} >=C,,

B, =<{2,3,4},{1,3,4},{L,2} >,
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D, =<{2,3,4},{1,3,4},{1,2,4} >
Remark 3.1.

1) Every neutrosophic crisp open set in(X ,Fl)or (X ,Fz) is a neutrosophic crisp bi-
open set.

2) Every neutrosophic crisp closed set in (X ,I';)or (X ,T',) is a neutrosophic crisp bi-
closed set.
Remark 3.2.
Every neutrosophic crisp bi-topological space (X ,Fl,Fz) induces two neutrosophic crisp

topological spaces as (X ,Fl) , (X ,Fz).
Remark 3.3.

If (X ,T')be a neutrosophic crisp topological space then (X ,I',T')is a neutrosophic crisp

Bi-topological space.

Theorem 3.1. Let (X ,FI,FZ) be a neutrosophic crisp bi-topological space (Bi-NCTS).

Then, the union of two neutrosophic crisp bi-open (bi-closed) sets is not a neutrosophic
crisp bi-open (bi-closed) set.

The proof of the theorem 3.1 follows from the example 3.3.

Example 3.3.

X:{13233’4}7 rl :{¢N5XN: D> C}, Fz :{¢N,XN, A> B}>

A =<{3},{2,4},{1} >, D =<{1},{2},{3} >, C =<{1},{2,4},{3} >

It is clear that (X ,I')),(X,I,) are neutrosophic crisp topological spaces. Therefore
(X,I,,T,) is a neutrosophic crisp bi-topological space

A,D are two neutrosophic crisp bi-open sets but4 UD =<{1,3},{2,4},¢ >is not neutro-
sophic crisp bi-open set. 4 =<{1,2,4},{1,3},{2,3,4} >, D =<{2,3,4},{1,3,4},{1,2,4} >

are two neutrosophic crisp bi-closed sets but4° U D =< X ,{1,3},{2,4} > is not a neutro-
sophic crisp bi-closed set.

Theorem 3.2. Let (X,I',,T,)be a neutrosophic crisp bi-topological space (Bi-NCTS).

Then, the intersection of two neutrosophic crisp bi-open (bi-closed) sets is a neutrosophic
crisp bi-open (bi-closed) set.

The proof of the theorem 3.2 follows from the example 3.4

Example 3.4. In example 3.3, A4,D are two neutrosophic crisp bi-open sets
but 4 "D =<J,{2},{1,3} > is not a neutrosophic crisp bi-open set.

A =<{1,2,4},{1,3},{2,3,4} >,
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D =<{2,3,4},{1,3,4},{1,2,4} >, are two neutrosophic crisp bi-closed sets but

A°ND° =<{2,4},{1,3},X >1is not a neutrosophic crisp bi-closed set.

4. The closure and the interior via neutrosophic crisp bi-open sets (Bi-NCOS) and
neutrosophic crisp bi-closed (Bi-NCCS)

In this section, we use this new concept of open and closed sets in the definition of closure and interior neu-
trosophic crisp set, where we define the closure and interior neutrosophic crisp set based on these new varieties
of open and closed neutrosophic crisp sets. Also we introduce the basic properties of closure and the interior.

Definition 4. 1. Let (X ,Fl,Fz) be a neutrosophic crisp bi-topological space (Bi-NCTS)

and A is a neutrosophic crisp set. Then, the union of neutrosophic crisp bi-open sets
containing A is called neutrosophic crisp bi-interior of A (NC*'Int(A) for short ).

NCBiInt(A) = W{B :BcA ; B is neutrosophic crisp bi-open set}.
Theorem 4.1. Let (X ,FI,FZ) be neutrosophic crisp bi-topological space (Bi-NCTS), A is
neutrosophic crisp set then:
1. NCPInt(A) c A.
2. NCBiInt(A) is not neutrosophic crisp bi-open set .
Proof :

1. It follows from the definition of NC®'Int(A) as a union of neutrosophic crisp bi-open
sets contains A.

2. Follow from Theorem 3.2.

Theorem 4.2. Let (X,I",T,) beaneutrosophic crisp bi-topological space (Bi-NCTS), A and

B are neutrosophic crisp sets. Then,
AcB = NCPInt(A) = NC*Int(B) .
Proof: The Proof is obvious.

Definition 42. Let (X ,Fl,Fz) be a neutrosophic crisp bi-topological space (Bi-NCTS), A is

neutrosophic crisp set. Then, the intersection of neutrosophic crisp bi-open sets, contained
A is called neutrosophic crisp Bi-closure of A ( NCPL-CI(A)for short ).

NCP-Cl(4)= n{B :BoA ; B is a neutrosophic bi-closed set}.
Theorem 4. 3. Let (X ,Fl,Fz) be a neutrosophic crisp bi-topological space (Bi-NCTS), and A

is neutrosophic crisp set. Then

1. A SNCP%clA) .

2. NCPI(A) is not a neutrosophic crisp bi-closed set.
Proof :

1. It follow from the definition of NCBicl(A) as an intersection of neutrosophic crisp bi-
closed sets, contained in A.

2. It follows from the Theorem 3.2.
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5. The neutrosophic crisp S-open sets (S-NCOS) and neutrosophic crisp S-closed sets (S-
NCOS):

We introduce new concept of open and closed sets in neutrosophic crisp bi-topological
space in this section, as neutrosophic crisp S-open sets (S-NCOS) and neutrosophic crisp S-
closed sets (S-NCCS). Also we introduce the basic properties of this new concept of open
and closed sets in bi-NCTS, and their relationship with neutrosophic crisp bi-open sets and
neutrosophic crisp bi-closed sets.

Definition 5.1. Let (X ,FI,FZ) be a neutrosophic crisp bi-topological space (Bi-NCTS). Then,

a subset A of space X is said to be a neutrosophic crisp S-open set (S-NCOS for short ) if
Ael'yand A e¢l', or Ael',and A ¢I' and its complement is said to be neutrosophic

crisp S-closed set (S-NCCS for short ).
* the family of all neutrosophic crisp S-open sets is denoted by ( S-NCOS(X) ).
* the family of all neutrosophic crisp S-closed sets is denoted by ( S-NCCS(X) ).

Example 5.1. In Example 3.1, B, D are two neutrosophic crisp S-open sets.

Theorem 5.1 Let (X ,Fl,Fz) be a neutrosophic crisp bi-topological space (Bi-NCTS), then

1. Every S-NCOS is Bi-NCOS.
2. Every S-NCCS is Bi-NCCS.
Proof:

1. Let A be neutrosophic crisp S-open set ,then 4 €', and A ¢I', or
A el',and A ¢T'| therefore A is Bi-NCOS.

2. Let A be neutrosophic crisp S-closed set,then A° is neutrosophic crisp S-open set
therefore 4° €l and A ¢T', or A°el,and A°¢T, , so A° is Bi-NCOS
therefore A is a Bi-NCCS .

Remark 5.1. The converse of Theorem 5.1 is not true. It is shown in example 5.2.
Example 5.2. In any neutrosophic crisp bi-topo-logical space, ¢, ,X , are two neutrosophic

crisp bi-open sets, but ¢, ,.X , are not neutrosophic crisp bi-open sets.

Also ¢, ,X , are two neutrosophic crisp bi-closed sets, but ¢, ,X , are not neutrosophic
crisp bi-closed sets.

Theorem 5.2. Let (.X,T,,I,) be aneutrosophic crisp bi-topological space (Bi-NCTS). Then,

the union of two neutrosophic crisp S-open (S-closed) sets is not a neutrosophic crisp S-open
(S-closed) set.

Proof. The proof follows from the following example 5.3.
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Example 5.3. In example 3.4

X ={1,2,3,4}, T, ={¢,.X ,, A},
I, ={gy,.Xy,D,C},4 =<{3},{2,4},{1} >.
D =<{1},{2},{3} >,C =<{1},{2,4},{3} >.

It is clear that (X ,I),(X,I,) are neutrosophic crisp topological spaces, therefore

(X ,Fl,Fz) 1s a neutrosophic crisp bi-topological space.

A,D are two neutrosophic crisp S-open sets but 4 UD =<{1,3},{2,4}, > is not a neu-
trosophic crisp S-open set.

A =<{1,2,4},{1,3},{2,3,4} >, D =<{2,3,4},{1,3,4},{1,2,4} > are two neutrosophic crisp
S-closed setsbut 4 UD‘ =< X ,{1,3},{2,4} >is not a neutrosophic crisp S-closed set.

Theorem 5.3. Let (X ,Fl,Fz) be a neutrosophic crisp Bi-topological space (Bi-NCTS), then

the intersection of two neutrosophic crisp S-open (S-closed) sets is not a neutrosophic crisp
S-open (S-closed) set.

Proof. The proof follows from the following example 5.4.

Example5.4 In example 3.4, A,D are two neutrosophic crisp S-open sets
but A NnD =<J,{2},{1,3} > is not a neutrosophic crisp S-open set.

A =<{1,2,4},{1,3},{2,3,4} >, D =<{2,3,4},{1,3,4},{1,2,4} > are two neutrosophic crisp
S-closed sets but 4° "D =<{2,4},{1,3},X >1is not a neutrosophic crisp S-closed set.
6 Conclusion

In this paper we have introduced neutrosophic crisp bi-topological space, neutrosophic crisp
Bi-open, neutrosophic crisp bi-closed, neutrosophic crisp S-open, neutrosophic crisp S-open
set’s. Also we have studied some of their basic properties and their relationship with each
other. Finally, these new concepts are going to pave the way for new types of open and closed
sets as neutrosophic crisp bi-a-open sets, neutrosophic crisp bi-f-open sets, neutrosophic crisp
bi-pre-open sets, neutrosophic crisp bi-semi-open sets.
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