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Abstract: As a generalization of Fuzzy sets introduced by Zadeh [21] in 1965 and Intuitionistic 

Fuzzy sets introduced by Atanassav [8] in 1983, the Neutrosophic set had been introduced and 

developed by Smarandache. A Neutrosophic set is characterized by a truth value (membership), an 

indeterminacy value and a falsity value (non-membership). Salama and Alblowi [17] introduced 

the new concept of neutrosophic topological space (NTS) in 2012, which had been investigated 

recently. In 2018, Parimala M et al. introduced and studied the concept of Neutrosophic 

homeomorphism and Neutrosophic αψ homeomorphism in Neutrosophic topological spaces. The 

impact of this article is to introduce and study the concepts of Ngpr homeomorphism and Nigpr 

homeomorphism in Neutrosophic topological space. Further, the work is extended to Ngpr open 

mappings, Ngpr closed mappings, Nigpr closed mappings and some of their properties are 

explored in Neutrosophic topological space.  

Keywords: Neutrosophic generalized pre regular closed set, Ngpr open mappings, Ngpr closed 

mappings, Ngpr homeomorphism and Nigpr homeomorphism. 

 

1. Introduction 

Zadeh [21] introduced the concept of fuzzy set in 1965 and Chang C. L. [9] introduced fuzzy 

topological spaces in 1968. Later, Atanassov [8] proposed the concept of intuitionistic fuzzy sets in 

1986, where the degree of membership and degree of non-membership are discussed. Intuitionistic 

fuzzy topological spaces was introduced by Coker [10] in 1997 using intuitionistic fuzzy sets. As a 

generalization of Fuzzy sets and Intuitionistic Fuzzy sets, Neutrosophic set have been introduced 

and developed by Florentin Smarandache [12]. He also defined the Neutrosophic set on three 

components, namely Truth (membership) (T), Indeterminacy (I) and Falsehood (non-membership) 

(F).   

Neutrosophic concept has wide range of real time applications in the fields of [1 - 6] Information 

Systems, Computer Science, Artificial Intelligence, Applied Mathematics and Decision Making, 

Uncertainty assessments of linear time-cost tradeoffs and solving the supply chain problem.  

In 2012, Salama A. A and Alblowi [17] introduced the concept of Neutrosophic topological 

space by using Neutrosophic sets. Salama A. A. [18] introduced Neutrosophic closed set and 

Neutrosophic continuous function in Neutrosophic topological spaces and their properties are 

studied by various authors [7 & 11]. Since, Neutrosophic homeomorphism plays an important role 

in Neutrosophic topology. Parimala M et al. [14] introduced and studied the concept of 

Neutrosophic homeomorphism and Neutrosophic αψ homeomorphism in Neutrosophic topological 

spaces. In this article, introduce and study few properties of Ngpr open mappings, Ngpr closed 

mappings, Nigpr closed mappings, Ngpr homeomorphism and Nigpr homeomorphism in 

Neutrosophic topological space. The present study demonstrates some of the related theorems, 

results and properties.  

2. Preliminaries  
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2.1. Definition: [17] Let X be a non-empty fixed set. A Neutrosophic set (NS for short) A in X is an 

object having the form A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} where the functions µA(x), σA(x) and νA(x) 

represent the degree of membership, degree of indeterminacy and the degree of non-membership 

respectively of each element x ∈ X to the set A. 

 

2.2 Remark: [17] A Neutrosophic set A = {〈x, µA(x), σA(x), νA(x) 〉: x ∈ X} can be identified to an 

ordered triple A = 〈x, µA(x), σA(x), νA(x)〉 in non-standard unit interval ]-0, 1+[ on X. 

 

2.3 Remark: [17] For the sake of simplicity, we shall use the symbol A = 〈x, µA, σA, νA〉 for the 

neutrosophic set A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X}. 

 

2.4 Example: [17] Every IFS A is a non-empty set in X is obviously on NS having the form                                  

A = {〈x, µA(x), 1 – (µA(x) + νA(x)), νA(x)〉: x ∈ X}. Since our main purpose is to construct the tools for 

developing Neutrosophic set and Neutrosophic topology, we must introduce the NS 0N and 1N in X 

as follows:    

0N may be defined as: 

(01) 0N = {〈x, 0, 0, 1〉: x ∈ X} 

(02) 0N = {〈x, 0, 1, 1〉: x ∈ X} 

(03) 0N = {〈x, 0, 1, 0〉: x ∈ X} 

(04) 0N = {〈x, 0, 0, 0〉: x ∈ X} 

1N may be defined as: 

(11) 1N = {〈x, 1, 0, 0〉: x ∈ X} 

(12) 1N = {〈x, 1, 0, 1〉: x ∈ X} 

(13) 1N = {〈x, 1, 1, 0〉: x ∈ X} 

(14) 1N = {〈x, 1, 1, 1〉: x ∈ X} 

 

2.5 Definition: [17] Let A = 〈µA, σA, νA〉 be a NS on X, then the complement of the set A [C(A) for 

short] may be defined as three kind of complements: 

(C1) C(A) = {〈x, 1-µA(x), 1-σA(x), 1-νA(x)〉: x ∈ X } 

(C2) C(A) = {〈x, νA(x), σA(x), µA(x)〉: x ∈ X} 

(C3) C(A) = {〈x, νA(x), 1-σA(x), µA(x)〉: x ∈ X} 

 

2.6 Definition: [17] Let X be a non-empty set and Neutrosophic sets A and B in the form A = {〈x, 

µA(x), σA(x), νA(x)〉: x ∈ X} and B = {〈x, µB(x), σB(x), νB(x)〉: x ∈ X}. Then we may consider two possible 

definitions for subsets (A ⊆ B). 

(1) A ⊆ B ⇔ µA(x) ≤ µB(x), σA(x) ≤ σB(x) and µA(x) ≥ µB(x) ∀ x ∈ X 

(2) A ⊆ B ⇔ µA(x) ≤ µB(x), σA(x) ≥ σB(x) and µA(x) ≥ µB(x) ∀ x ∈ X 

 

2.7 Proposition: [17] For any Neutrosophic set A, the following conditions hold: 

0N ⊆ A, 0N ⊆ 0N 

A ⊆ 1N, 1N ⊆1N 

 

2.8 Definition: [17] Let X be a non-empty set and A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X}, B = {〈x, µB(x), 

σB(x), νB(x)〉: x ∈ X} are NSs. Then A∩B may be defined as: 

(I1) A∩B = 〈x, µA(x)∧µB(x), σA(x)∧σB(x) and νA(x)∨νB(x)〉 

(I2) A∩B = 〈x, µA(x)∧µB(x), σA(x)∨σB(x) and νA(x)∨νB(x)〉 

A∪B may be defined as: 

(U1) A∪B = 〈x, µA(x)∨µB(x), σA(x)∨σB(x) and νA(x)∧νB(x)〉 

(U2) A∪B = 〈x, µA(x)∨µB(x), σA(x)∧σB(x) and νA(x)∧νB(x)〉 
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2.9 Definition: [17] A Neutrosophic topology [NT for short] is a non-empty set X is a family τ of 

Neutrosophic subsets in X satisfying the following axioms: 

(NT1)  0N, 1N ∈ τ, 

(NT2)  G1∩G2 ∈ τ for any G1, G2 ∈ τ, 

(NT3)  ∪Gi ∈ τ for every {Gi : i ∈ J} ⊆ τ. 

Throughout this paper, the pair (X, τ) is called a Neutrosophic topological space (NTS for short).  

The elements of  are called Neutrosophic open sets [NOS for short]. A complement C(A) of a NOS 

A in NTS (X, τ) is called a Neutrosophic closed set [NCS for short] in X. 

 

2.10 Definition: [17] Let (X, τ) be NTS and A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} be a NS in X. Then the 

Neutrosophic closure and Neutrosophic interior of A are defined by 

NCl(A) =∩{K : K is a NCS in X and A ⊆ K} 

NInt(A) =∪{G : G is a NOS in X and G ⊆ A} 

It can be also shown that NCl(A) is NCS and NInt(A) is a NOS in X. 

a) A is NOS if and only if A = NInt(A), 

b) A is NCS if and only if A = NCl(A). 

 

2.11 Definition: [13] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be 

(i) Neutrosophic regular closed set (NRCS for short) if A = NCl(NInt(A)), 

(ii) Neutrosophic regular open set (NROS for short) if A = NInt(NCl(A)), 

(iii) Neutrosophic pre closed set (NPCS for short) if NCl(NInt(A)) ⊆ A, 

(iv) Neutrosophic pre open set (NPOS for short) if A ⊆ NInt(NCl(A)), 

(v) Neutrosophic α- closed set (NSCS for short) if NCl(NInt(NCl(A))) ⊆ A, 

(vi) Neutrosophic α- open set (NSOS for short) if A ⊆ NInt(NCl(NInt(A))). 

 

2.12 Definition: [19] Let (X, τ) be NTS and A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} be a NS in X. Then the 

Neutrosophic pre closure and Neutrosophic pre interior of A are defined by 

NPCl(A) = ∩{K : K is a NPCS in X and A ⊆ K}, 

NPInt(A) = ∪{G : G is a NPOS in X and G ⊆ A}. 

 

2.13 Definition: [15] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic generalized closed set (NGCS for short) if NCl(A) ⊆ U whenever A ⊆ U and U is a 

NOS in (X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic generalized open set (NGOS for short) 

if C(A) is a NGCS in (X, τ). 

 

2.14 Definition: [20] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic generalized pre closed set (NGPCS for short) if NPCl(A) ⊆ U whenever A ⊆ U and U 

is a NOS in (X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic generalized pre open set (NGPOS 

for short) if C(A) is a NGPCS in (X, τ). 

 

2.15 Definition: [13] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic generalized pre regular closed set (NGPRCS for short) if NPCl(A) ⊆ U whenever A ⊆ 

U and U is a NROS in (X, τ). The family of all NGPRCSs of a NTS(X, τ) is denoted by NGPRC(X). A 

NS A of a NTS (X, τ) is called a Neutrosophic generalized pre regular open set (NGPROS for short) if 

C(A) is a NGPRCS in (X, τ). 

Every NRCS, NCS, NWCS, NαCS, NGCS, NPCS, NαGCS, NGPCS, NRαGCS, NRGCS is an 

NGPRCS but the converses are not true in general. 

 

2.16 Definition: [13] A Neutrosophic topological space (X, τ) is called a Neutrosophic pre regular T1/2 

(NPRT1/2 for short) space if every NGPRCS in (X, τ) is NPCS in (X, τ). 
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2.17 Definition: [13] A Neutrosophic topological space (X, τ) is called a Neutrosophic pre regular T*1/2 

(NPRT*1/2 for short) space if every NGPRCS in (X, τ) is NCS in (X, τ). 

 

2.18 Definition: [16] Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Ngpr 

continuous (resp. NG continuous, NGP continuous) mapping if f-1(B) is NGPRCS (resp. NGCS, 

NGPCS) in (X, τ) for every NCS B of (Y, σ). 

Every Neutrosophic continuous, NG continuous, NGP continuous is a Ngpr continuous 

mapping but the converses are not true in general. 

 

2.19 Definition: [16] Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Ngpr 

irresolute mapping if f-1(A) is NGPRCS in (X, τ) for every NGPRCS A of (Y, σ). 

 

2.20 Definition: [14] Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called 

Neutrosophic closed mapping (resp. Neutrosophic open mapping) (NCM (resp. NOM) for short) if 

the image of every Neutrosophic closed set (resp. Neutrosophic open set) in (X, τ) is a Neutrosophic 

closed set (resp. Neutrosophic open set) in (Y, σ). 

 

2.21 Definition: [14] Let (X, τ) and (Y, σ) be two NTSs. A bijection f: (X, τ) → (Y, σ) is called a 

Neutrosophic homeomorphism if f and f-1 are Neutrosophic continuous mapping. 

3. Ngpr open mappings and Ngpr closed mappings  

   In this section introduce Ngpr open mapping, Ngpr closed mapping and Nigpr closed 

mapping in the Neutrosophic topological space and study some of their properties. Also established 

the relation between the newly introduced mappings and already existing mappings. 

 

3.1 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called  

(i) Neutrosophic generalized open mapping (NGOM for short) if f(A) is NGOS in (Y, σ) for 

every NOS A of (X, τ). 

(ii) Neutrosophic α open mapping (NαOM for short) if f(A) is NαOS in (Y, σ) for every NOS A 

of (X, τ). 

(iii) Neutrosophic pre-open mapping (NPOM for short) if f(A) is NPOS in (Y, σ) for every NOS 

A of (X, τ). 

(iv) Neutrosophic generalized pre-open mapping (NGPOM for short) if f(A) is NGPOS in (Y, σ) 

for every NOS A of (X, τ). 

 

3.2 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Ngpr open 

mapping (NGPROM for short) if f(A) is NGPROS in (Y, σ) for every NOS A of (X, τ). 

 

3.3 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called  

(i) Neutrosophic generalized closed mapping (NGCM for short) if f(A) is NGCS in (Y, σ) for 

every NCS A of (X, τ). 

(ii) Neutrosophic α closed mapping (NαCM for short) if f(A) is NαCS in (Y, σ) for every NCS 

A of (X, τ). 

(iii) Neutrosophic pre-closed mapping (NPCM for short) if f(A) is NPCS in (Y, σ) for every NCS 

A of (X, τ). 

(iv) Neutrosophic generalized pre-closed mapping (NGPCM for short) if f(A) is NGPCS in   

(Y, σ) for every NCS A of (X, τ). 

 

3.4 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Ngpr closed 

mapping (NGPRCM for short) if f(A) is NGPRCS in (Y, σ) for every NCS A of (X, τ). 
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3.5 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V1, V2, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.4, 0.4, 0.5), (0.6, 0.3, 0.4)〉 and V1 = 〈y, (0.7, 0.5, 

0.3), (0.8, 0.4, 0.2)〉 and V2 = 〈y, (0.6, 0.4, 0.4), (0.7, 0.3, 0.3)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = 

u and f(b) = v. Here the Neutrosophic set Uc = 〈x, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)〉 is a Neutrosophic closed 

set in X. Then f(Uc) = 〈y, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)〉 is a NGPRCS in (Y, σ) as f(Uc) ⊆1N implies 

Npcl(f(Uc)) = f(Uc) ⊆ 1N where 1N is a NROS in Y. Therefore f is a Ngpr closed mapping. 

 

3.6 Proposition: Every Neutrosophic closed mapping is Ngpr closed mapping but not conversely in 

general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Neutrosophic closed mapping. Let A be a NCS in X. Then f(A) is a 

NCS in Y. Since every NCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is a Ngpr closed 

mapping. 

 

3.7 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V1, V2, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.4, 0.4, 0.5), (0.6, 0.3, 0.4)〉 and V1 = 〈y, (0.7, 0.5, 

0.3), (0.8, 0.4, 0.2)〉 and V2 = 〈y, (0.6, 0.4, 0.4), (0.7, 0.3, 0.3)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = 

u and f(b) = v. Here the Neutrosophic set Uc = 〈x, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)〉 is a NCS in X. Then f(Uc) 

= 〈y, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)〉 is a NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = f(Uc) ⊆ 1N 

where 1N is a NROS in Y. Therefore f is a Ngpr closed mapping. But f is not a Neutrosophic closed 

mapping since Uc is NCS in X but f(Uc) is not a NCS in Y as Ncl(f (Uc)) = 1N ≠ f(Uc). 

 

3.8 Proposition: Every Neutrosophic generalized closed mapping is Ngpr closed mapping but not 

conversely in general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Neutrosophic generalized closed mapping. Let A be a NCS in X. 

Then f(A) is a NGCS in Y. Since every NGCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is a 

Ngpr closed mapping. 

 

3.9 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.3, 0.5, 0.4), (0.2, 0.5, 0.3) 〉 and V = 〈y, (0.6, 0.5, 

0.2), (0.4, 0.5, 0.2)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here the Neutrosophic 

set Uc = 〈x, (0.4, 0.5, 0.3), (0.3, 0.5, 0.2) 〉 is a NCS in X. Then f(Uc) = 〈y, (0.4, 0.5, 0.3), (0.3, 0.5, 0.2)〉 is a 

NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = f(Uc) ⊆ 1N where 1N is a NROS in Y. Therefore f is 

a Ngpr closed mapping. But f is not a Neutrosophic generalized closed mapping since Uc is NCS in X 

but f(Uc) is not a NGCS in Y as f(Uc) ⊆ V implies Ncl(f(Uc)) = 1N ⊈ V. 

 

3.10 Proposition: Every Neutrosophic α closed mapping is Ngpr closed mapping but not conversely 

in general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Neutrosophic α closed mapping. Let A be a NCS in X. Then f(A) is a 

NαCS in Y. Since every NαCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is a Ngpr closed 

mapping. 

 

3.11 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.4, 0.5, 0.4), (0.2, 0.5, 0.3)〉 and V = 〈y, (0.7, 0.5, 0.2), 

(0.3, 0.5, 0.2)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here the Neutrosophic set Uc 

= 〈x, (0.4, 0.5, 0.4), (0.3, 0.5, 0.2)〉 is a NCS in X. Then f(Uc) = 〈y, (0.4, 0.5, 0.4), (0.3, 0.5, 0.2)〉 is a 

NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = f(Uc) ⊆ 1N where 1N is a NROS in Y. Therefore f is 

a Ngpr closed mapping. But f is not a Neutrosophic α closed mapping since Uc is NCS in X but f(Uc) 

is not a NαCS in Y as Ncl(Nint(Ncl(f(Uc)))) = 1N ⊈ f(Uc). 
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3.12 Proposition: Every Neutrosophic pre-closed mapping is Ngpr closed mapping but not 

conversely in general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Neutrosophic pre-closed mapping. Let A be a NCS in X. Then f(A) is 

a NPCS in Y. Since every NPCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is a Ngpr closed 

mapping. 

 

3.13 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.4, 0.5, 0.6), (0.2, 0.5, 0.3)〉 and V = 〈y, (0.3, 0.5, 0.7), 

(0.3, 0.5, 0.4)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here the Neutrosophic set Uc 

= 〈x, (0.6, 0.5, 0.4), (0.3, 0.5, 0.2)〉 is a NCS in X. Then f(Uc) = 〈y, (0.6, 0.5, 0.4), (0.3, 0.5, 0.2)〉 is a 

NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = 〈y, (0.7, 0.5, 0.3), (0.4, 0.5, 0.2)〉 ⊆ 1N where 1N is a 

NROS in Y. Therefore f is a Ngpr closed mapping. But f is not a Neutrosophic pre-closed mapping 

since Uc is NCS in X but f(Uc) is not a NPCS in Y as Ncl(Nint(f(Uc))) = Vc ⊈ f(Uc). 

 

3.14 Proposition: Every Neutrosophic generalized pre-closed mapping is Ngpr closed mapping but 

not conversely in general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Neutrosophic generalized pre-closed mapping. Let A be a NCS in X. 

Then f(A) is a NGPCS in Y. Since every NGPCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is 

a Ngpr closed mapping. 

 

3.15 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.3, 0.8, 0.5), (0.4, 0.7, 0.6)〉 and V = 〈y, (0.5, 0.2, 0.3), 

(0.6, 0.3, 0.4)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here the Neutrosophic set Uc 

= 〈x, (0.5, 0.2, 0.3), (0.6, 0.3, 0.4)〉 is a NCS in X. Then f(Uc) = 〈y, (0.5, 0.2, 0.3), (0.6, 0.3, 0.4)〉 is a 

NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = 1N ⊆ 1N where 1N is a NROS in Y. Therefore f is a 

Ngpr closed mapping. But f is not a Neutrosophic generalized pre-closed mapping since Uc  is NCS 

in X but f (Uc) is not a NGPCS in Y as f(Uc) ⊆V implies Npcl(f (Uc)) = 1N ⊈ V where V is a NOS in Y. 

 

3.16 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Nigpr open 

mapping (NiGPROM for short) if f(A) is NGPROS in (Y, σ) for every NGPROS A of (X, τ). 

 

3.17 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Nigpr closed 

mapping (NiGPRCM for short) if f(A) is NGPRCS in (Y, σ) for every NGPRCS A of (X, τ). 

 

3.18 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.5, 0.4, 0.3), (0.7, 0.8, 0.2)〉 and V = 〈y, (0.7, 0.4, 0.5), 

(0.8, 0.5, 0.5)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Hence f(A) is NGPRCS in  

(Y, σ) for every NGPRCS A of (X, τ). Therefore f is a Nigpr closed mapping. 

 

3.19 Proposition: Every Nigpr closed mapping is Ngpr closed mapping but not conversely in 

general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Nigpr closed mapping. Let A be a NCS in X. Since every NCS is a 

NGPRCS in X, A is a NGPRCS in X. Then f(A) is a NGPRCS in Y. Hence f is a Ngpr closed mapping. 

 

3.20 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.2, 0.5, 0.7), (0.3, 0.5, 0.6)〉 and V = 〈y, (0.3, 0.5, 0.6), 

(0.4, 0.5, 0.5)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here the Neutrosophic set Uc 

= 〈x, (0.7, 0.5, 0.2), (0.6, 0.5, 0.3)〉 is a NCS in X. Then f(Uc) = 〈y, (0.7, 0.5, 0.2), (0.6, 0.5, 0.3)〉 is a 

NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = f(Uc) ⊆ 1N where 1N is a NROS in Y. Therefore f is 
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a Ngpr closed mapping. But f is not a Nigpr closed mapping since W = 〈x, (0.3, 0.5, 0.6), (0.4, 0.5, 0.5)〉 

is NGPRCS in X but f(W) is not a NGPRCS in Y as f(W) ⊆ V implies Npcl(f(W)) = Vc ⊈ V where V is a 

NROS in Y. Therefore f is not a Nigpr closed mapping. 

 

The relation between various types of Neutrosophic closed mappings is given by  

 

 

 

 

 

 

 

 

  

Fig.3.1.1 The reverse implications of Fig.3.1.1 are not true in general in the above diagram. 

 

3.21 Theorem: A mapping f: (X, τ) → (Y, σ) is Ngpr closed mapping if and only if Ngprcl(f(A)) ⊆ 

f(Ncl(A)). 

 

Proof: Let A ⊆ X and f: (X, τ) → (Y, σ) be a Ngpr closed mapping, then f(Ncl(A)) is NGPRCS in Y 

which implies Ngprcl(f(Ncl(A))) = f(Ncl(A)). Since f(A) ⊆ f(Ncl(A)), Ngprcl(f(A)) ⊆ Ngprcl(f(Ncl(A))) 

= f(Ncl(A)) for every NS A of X.  

Conversely, let A be any NCS in (X, τ). Then A = Ncl(A) and so f(A) = f(Ncl(A)) ⊇ Ngprcl(f(A)), by 

hypothesis. Since f(A) ⊆ Ngprcl(f(A)), therefore f(A) = Ngprcl(f(A)). i.e., f(A) is NGPRCS in Y and 

hence f is Ngpr closed mapping. 

 

3.22 Theorem: If f: (X, τ) → (Y, σ) is Ngpr open mapping iff for every NS A of (X, τ), f(Nint(A)) ⊆ 

Ngprint(f(A)). 

 

Proof: Necessity: Let A be a NOS in X and f: (X, τ) → (Y, σ) be a Ngpr open mapping then f(Nint(A)) 

is NGPROS in Y. Since f(Nint(A)) ⊆ f(A) which implies Ngprint(f(Nint(A))) ⊆ Ngprint(f(A)). Since 

f(Nint(A)) is NGPROS in Y, we have f(Nint(A)) ⊆ Ngprint(f(A)). 

Sufficiency: Assume A is a NOS of (X, τ). Then f(A) = f(Nint(A)) ⊆ Ngprint(f(A)). But Ngprint(f(A)) 

⊆ f(A). So f(A) = Ngprint(f(A)) which implies f(A) is a NGPROS in (Y, σ) and hence f is a Ngpr open 

mapping. 

 

3.23 Theorem: If f: (X, τ) → (Y, σ) is a Ngpr open mapping then Nint(f-1(A)) ⊆ f-1(Ngprint(A)) for 

every NS A of (Y, σ). 

 

Proof: Let A be a NS in (Y, σ). Then Nint(f-1(A)) is a NOS of (X, τ). Since f is Ngpr open mapping 

which implies f(Nint(f-1(A))) is Neutrosophic gpr open in (Y, σ) and hence f(Nint(f-1(A))) ⊆ 

Ngprint(f(f-1(A))) ⊆ Ngprint(A). Thus Nint(f-1(A)) ⊆ f-1(Ngprint(A)). 

 

3.24 Theorem: A mapping f: (X, τ) → (Y, σ) is Ngpr open mapping iff for each NS A of (Y, σ) and for 

each NCS B of (X, τ) containing f-1(A) there is a NGPRCS C of (Y, σ) such that A ⊆ C and f-1(C) ⊆ B. 

 

Proof: Necessity: Assume f: (X, τ) → (Y, σ) is Ngpr open mapping. Let A be the NS of (Y, σ) and B be 

a NCS of (X, τ) such that f-1(A) ⊆ B. Then C = (f(Bc))c is NGPRCS of (Y, σ) such that f-1(C) ⊆ B. 

Sufficiency: Assume D is a NOS of (X, τ). Then f-1((f(D))c ⊆ Dc and Dc is NCS in (X, τ). By hypothesis 

there is a NGPRCS C of (Y, σ) such that (f(D))c ⊆C and f-1(C) ⊆ Dc. Therefore D ⊆ (f-1(C))c. Hence Cc ⊆ 

NαCM 

NGPRCM 
 

NGPCM 

 

NGCM NPCM 

NCM NiGPRCM 
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f(D) ⊆ f((f-1(C))c) ⊆ Cc which implies f(D) = Cc. Since Cc is NGPROS of (Y, σ). Hence f(D) is 

Neutrosophic gpr open in (Y, σ) and thus f is Ngpr open mapping. 

 

3.25 Theorem: A mapping f: (X, τ) → (Y, σ) is Ngpr open mapping iff f-1(Ngprcl(A)) ⊆ Ncl(f-1(A)) for 

every NS A of (Y, σ). 

 

Proof: Necessity: Assume f is a Ngpr open mapping. For any NS A of (Y, σ), f-1(A) ⊆ Ncl(f-1(A)). 

Therefore by Theorem 3.24., there exists a NGPRCS C in (Y, σ) such that A ⊆ C and f-1(C) ⊆ 

Ncl(f-1(A)). Therefore we obtain f-1(Ngprcl(A)) ⊆ f-1(C) ⊆ Ncl(f-1(A)). 

Sufficiency: Assume A is a NS of (Y, σ) and B is a NCS of (X, τ) containing f-1(A). Put C = Ncl(A), 

then A ⊆ C and C is NGPRCS, since f-1(C) ⊆ Ncl(f-1(A)) ⊆ B. Then by Theorem 3.24., f is Ngpr open 

mapping. 

 

3.26 Theorem: If f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, η) be two Neutrosophic mappings and gof: (X, τ) 

→ (Z, η) Ngpr open mapping. If g is Ngpr irresolute mapping then f is Ngpr open mapping. 

 

Proof: Let A be a NOS of (X, τ). Then gof(A) is NGPROS in (Z, η) because gof is Ngpr open mapping. 

Since g is Ngpr irresolute mapping and gof(A) is NGPROS of (Z, η) therefore g-1(gof(A)) = f(A) is 

NGPROS in (Y, σ). Hence f is Ngpr open mapping. 

 

3.27 Theorem: If f: (X, τ) → (Y, σ) is Neutrosophic open mapping and g: (Y, σ) → (Z, η) is Ngpr open 

mapping then gof: (X, τ) → (Z, η) is Ngpr open mapping. 

 

Proof: Let A be a NOS of (X, τ). Then f(A) is a NOS in (Y, σ) because f is a Neutrosophic open 

mapping. Since g is Ngpr open mapping, g(f(A)) = gof(A) is NGPROS in (Z, η). Hence gof is Ngpr 

open mapping. 

 

3.28 Theorem: Let f: (X, τ) → (Y, σ) be a bijective mapping then the following statements are 

equivalent: 

(i) f is a Ngpr open mapping. 

(ii) f is a Ngpr closed mapping. 

(iii) f-1 is Neutrosophic continuous mapping. 

 

Proof: (i) ⇒ (ii): Let us assume that f is a Ngpr open mapping. By definition, A is a NOS in (X, τ), 

then f(A) is a NGPROS in (Y, σ). Here A is NCS of (X, τ), then X-A is a NOS of (X, τ). By assumption, 

f(X-A) is a NGPROS in (Y, σ). Hence, Y-f(X-A) is a NGPRCS in (Y, σ). Therefore, f is a Ngpr closed 

mapping. 

(ii) ⇒ (iii): Let A be a NCS in (X, τ). By (ii), f(A) is a NGPRCS in (Y, σ). Hence, f(A) = (f-1)-1(A), so f-1 is a 

NGPRCS in (Y, σ). Therefore, f-1 is Neutrosophic continuous mapping. 

(iii) ⇒ (iv): Let A be a NOS in (X, τ). By (iii), (f-1)-1(A) = f(A) is a Ngpr open mapping. 

 

3.29 Theorem: Let f: (X, τ) → (Y, σ) be a mapping. Then the following statements are equivalent if Y is 

a NPRT1/2 space: 

(i) f is a Ngpr closed mapping. 

(ii) Npcl(f(A)) ⊆ f(Ncl(A)) for each NS A of X. 

 

Proof: (i) ⇒ (ii): Let A be a NS in X. Then Ncl(A) is a NCS in X. By (i) implies that f(Ncl(A)) is a 

NGPRCS in Y. Since Y is a NPRT1/2 space, f(Ncl(A)) is a NPCS in Y. Therefore Npcl(f(Ncl(A))) = 

f(Ncl(A)). Now Npcl(f(A)) ⊆  Npcl(f(Ncl(A))) = f(Ncl(A)). Hence Npcl(f(A)) ⊆ f(Ncl(A)) for each NS 

A of X. 
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(ii) ⇒ (i): Let A be any NCS in X. Then Ncl(A) = A. By (ii) implies that Npcl(f(A)) ⊆ f(Ncl(A)) = f(A). 

But f(A) ⊆ Npcl(f(A)). Therefore Npcl(f(A)) = f(A). This implies f(A) is a NPCS in Y. Since every 

NPCS is NGPRCS in Y, f(A) is NGPRCS in Y. Hence f is a Ngpr closed mapping. 

 

3.30 Theorem: If f: (X, τ) → (Y, σ) is a mapping where X and Y are NPRT1/2 space. Then the following 

statements are equivalent: 

(i) f is a Nigpr closed mapping. 

(ii) f(A) is a NGPROS in Y for every NGPROS A in X. 

(iii) f(Npint(B)) ⊆ Npint(f(B)) for each NS B of X. 

(iv) Npcl(f(B)) ⊆ f(Npcl(B)) for each NS B of X. 

 

Proof: (i) ⇒ (ii): is obvious by definition of Nigpr closed mapping. 

(ii) ⇒ (iii): Let B be any NS in X. Since Npint(B) is a NPOS, it is a NGPROS in X. Then by hypothesis, 

f(Npint(B)) is a NGPROS in Y. Since Y is NPRT1/2 space, f(Npint(B)) is a NPOS in Y. Therefore, 

f(Npint(B)) = Npint(f(Npint(B))) ⊆ Npint(f(B)). 

(iii) ⇒ (iv) is obvious by taking complement in (iii). 

(iv) ⇒ (i) Let B be a NGPRCS in X. By Hypothesis, Npcl(f(B)) ⊆ f(Npcl(B)). Since X is a NPRT1/2 space, 

B is a NPCS in X. Therefore, Npcl(f(B)) ⊆ f(Npcl(B)) = f(B) ⊆ Npcl(f(B)) implies f(B) is NPCS in Y and 

hence f(B) is a NGPRCS in Y. Thus f is Nigpr closed mapping. 

4. Ngpr homeomorphism and Nigpr homeomorphism 

4.1 Definition: A bijection f: (X, τ) → (Y, σ) is called Ngpr homeomorphism (resp. NG 

homeomorphism, NGP homeomorphism) if f and f-1 are Ngpr continuous (resp. NG continuous, 

NGP continuous) mapping. 

4.2 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U1, U2, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U1 = 〈x, (0.3, 0.5, 0.6), (0.5, 0.5, 0.5)〉, U2 = 〈x, (0.2, 0.4, 0.7), 

(0.4, 0.5, 0.6)〉 and V = 〈y, (0.2, 0.4, 0.7), (0.4, 0.3, 0.6)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u 

and f(b) = v. Here Vc = 〈y, (0.7, 0.6, 0.2), (0.6, 0.7, 0.4)〉 is a Neutrosophic closed set in (Y, σ). Then 

f-1(Vc) is a NGPRCS in (X, τ). Therefore f is Ngpr continuous mapping. Here U1c = 〈x, (0.6, 0.5, 0.3), 

(0.5, 0.5, 0.5)〉 is a Neutrosophic closed set in (X, τ). Then f(U1c) is a NGPRCS in (Y, σ). Therefore f-1 is 

a Ngpr continuous mapping. Hence, f and f-1 are Ngpr continuous mapping then it is a Ngpr 

homeomorphism. 

4.3 Theorem: Each Neutrosophic homeomorphism is Ngpr homeomorphism but not conversely in 

general. 

Proof: Let a bijection mapping f: (X, τ) → (Y, σ) be Neutrosophic homeomorphism, in which f and f-1 

are Neutrosophic continuous mapping. Since every Neutrosophic continuous mapping is Ngpr 

continuous mapping. Hence f and f-1 are Ngpr continuous mapping. Therefore, f is Ngpr 

homeomorphism. 

4.4 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U1, U2, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U1 = 〈x, (0.2, 0.5, 0.7), (0.5, 0.5, 0.5)〉, U2 = 〈x, (0.1, 0.4, 0.7), 

(0.4, 0.5, 0.6)〉 and V = 〈y, (0.4, 0.3, 0.5), (0.3, 0.4, 0.7)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u 

and f(b) = v. Here Vc = 〈y, (0.5, 0.7, 0.4), (0.7, 0.6, 0.3)〉 is a NCS in (Y, σ). Then f-1(Vc) is a NGPRCS in 

(X, τ). Therefore f is Ngpr continuous mapping. Here U1c = 〈x, (0.7, 0.5, 0.2), (0.5, 0.5, 0.5)〉 is a NCS in 

(X, τ). Then f(U1c) is a NGPRCS in (Y, σ). Therefore f-1 is a Ngpr continuous. Hence, f and f-1 are Ngpr 

continuous mapping then it is a Ngpr homeomorphism. However, here Vc is a NCS in (Y, σ) but it is 

not a NCS in (X, τ). Hence, f is not Neutrosophic continuous mapping. Therefore, f is not a 

Neutrosophic homeomorphism. 
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4.5 Theorem: Each NG homeomorphism is Ngpr homeomorphism but not conversely in general. 

Proof: Let a bijection mapping f: (X, τ) → (Y, σ) be NG homeomorphism, in which f and f-1 are NG 

continuous mapping. Since every NG continuous mapping is Ngpr continuous mapping. Hence f 

and f-1 are Ngpr continuous mapping. Therefore, f is Ngpr homeomorphism. 

4.6 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.4, 0.5, 0.6), (0.3, 0.4, 0.5)〉 and V = 〈y, (0.8, 0.5, 0.2), 

(0.7, 0.7, 0.3)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here Vc = 〈y, (0.2, 0.5, 0.8), 

(0.3, 0.3, 0.7)〉 is a NCS in (Y, σ). Then f-1(Vc) is a NGPRCS in (X, τ). Therefore f is Ngpr continuous 

mapping. Here Uc = 〈x, (0.6, 0.5, 0.4), (0.5, 0.6, 0.3)〉 is a NCS in (X, τ). Then f(Uc) is a NGPRCS in (Y, σ). 

Therefore f-1 is a Ngpr continuous mapping. Hence, f and f-1 are Ngpr continuous mapping then it is 

Ngpr homeomorphism. However, here Vc is a NCS in (Y, σ) but it is not a NGCS in (X, τ). Hence, f is 

not Neutrosophic continuous mapping. Therefore, f is not a NG homeomorphism. 

4.7 Theorem: Each NGP homeomorphism is a Ngpr homeomorphism but not conversely in general. 

Proof: Let a bijection mapping f: (X, τ) → (Y, σ) be NGP homeomorphism, in which f and f-1 are NGP 

continuous mapping. Since every NGP continuous mapping is Ngpr continuous mapping. Hence f 

and f-1 are Ngpr continuous mapping. Therefore, f is Ngpr homeomorphism. 

4.8 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U1, U2, U3, 1N} and σ = {0N, V, 1N} are 

Neutrosophic topologies on X and Y respectively, where U1 = 〈x, (0.3, 0.5, 0.7), (0.2, 0.5, 0.6)〉, U2 = 〈x, 

(0.6, 0.5, 0.5), (0.7, 0.5, 0.5)〉, U3 = 〈x, (0.8, 0.5, 0.2), (0.7, 0.5, 0.1)〉 and V = 〈y, (0.3, 0.5, 0.7), (0.3, 0.5, 0.7)〉. 

Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here Vc = 〈y, (0.7, 0.5, 0.3), (0.7, 0.5, 0.3)〉 is a 

NCS in (Y, σ). Then f-1(Vc) is a NGPRCS in (X, τ). Therefore f is Ngpr continuous mapping. Here U1c = 

〈x, (0.7, 0.5, 0.3), (0.6, 0.5, 0.2)〉 is a NCS in (X, τ). Then f(Uc) is a NGPRCS in (Y, σ). Therefore f-1 is a 

Ngpr continuous mapping. Hence, f and f-1 are Ngpr continuous mapping then it is a Ngpr 

homeomorphism. However, here Vc is a NCS in (Y, σ) but it is not a NGPCS in (X, τ). Hence, it is not 

NGP continuous mapping. Therefore, it is not a NGP homeomorphism. 

The relation between various types of Neutrosophic homeomorphisms is given by 

  

   

 

 

                 

 

 

 

 

 
Fig.4.1.1 The reverse implications of Fig.4.1.1 are not true in general in the above diagram. 

4.9 Theorem: Let f:(X, τ) → (Y, σ) be a Ngpr homeomorphism, then f is a Neutrosophic 

homeomorphism if X and Y are NPRT*1/2 space. 

Proof: Let A be a NCS in (Y, σ), then f-1(A) is a NGPRCS in (X, τ). Since X is NPRT*1/2 space, f-1(A) is a 

NCS in (X, τ). Therefore, f is Neutrosophic continuous mapping. By hypothesis, f-1 is Ngpr 

continuous mapping. Let B be a NCS in (X, τ). Then (f-1)-1 (B) = f(B) is a NGPRCS in Y. Since Y is 

NPRT*1/2 space, f(B) is NCS in Y. Hence f-1 is Neutrosophic continuous mapping. Hence f is a 

Neutrosophic homeomorphism. 

N homeomorphism 

NGPR homeomorphism 
 

NGP homeomorphism 

 

NG homeomorphism 
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4.10 Theorem: Let f:(X, τ) → (Y, σ) be a bijective mapping. If f is Ngpr continuous mapping then the 

following statements are equivalent: 

(i) f is a Ngpr closed mapping. 

(ii) f is a Ngpr open mapping. 

(iii) f is a Ngpr homeomorphism. 

Proof: (i) ⇒ (ii): Let us assume that f be a bijective mapping and a Ngpr closed mapping. Hence f-1 is 

Ngpr continuous mapping. Since each NOS in (X, τ) is a NGPROS in (Y, σ). Hence, f is a Ngpr open 

mapping.  

(ii) ⇒ (iii): Let f be a bijective mapping and a Ngpr open mapping. Furthermore, f-1 is a Ngpr 

continuous mapping. Hence f and f-1 are Ngpr continuous mapping. Therefore, f is a Ngpr 

homeomorphism. 

(iii) ⇒ (i): Let f be a Ngpr homeomorphism. Then f and f-1 are Ngpr continuous mapping. Since each 

NCS in (X, τ) is a NGPRCS in (Y, σ). Hence f is a Ngpr closed mapping. 

4.11 Theorem: The composition of two Ngpr homeomorphisms need not be a Ngpr homeomorphism 

in general. 

4.12 Example: Let X = {a, b}, Y = {c, d} and Z = {e, f}.  Then τ = {0N, U, 1N}, σ = {0N, V, 1N} and ɳ = {0N, W, 

1N} are Neutrosophic topologies on X and Y respectively, where U = 〈x, (0.2, 0.5, 0.8), (0.3, 0.3, 0.7)〉, V 

= 〈y, (0.4, 0.5, 0.6), (0.3, 0.4, 0.5)〉, W = 〈z, (0.8, 0.5, 0.2), (0.7, 0.7, 0.3)〉. Define a mapping f: (X, τ) → (Y, 

σ) by f(a) = c and f(b) = d and g: (Y, σ) → (Z, ɳ) by g(c) = e and g(d) = f.  Then f and g are Ngpr 

homeomorphisms but their composition g∘f: (X, τ) → (Z, ɳ) is not a Ngpr homeomorphism. Since Wc 

is NCS in (Z, ɳ) but it is not NGPRCS in (X, τ).  

4.13 Definition: A bijection f: (X, τ) → (Y, σ) is called Nigpr homeomorphism if f and f-1 are Ngpr 

irresolute mappings. 

4.14 Theorem: Each Nigpr homeomorphism is a Ngpr homeomorphism but not conversely in 

general. 

Proof: Let a bijection mapping f: (X, τ) → (Y, σ) be Nigpr homeomorphism. Assume that A is a NCS 

in (Y, σ) implies A is a NGPRCS in (Y, σ). Since f is Ngpr irresolute mapping, f-1(A) is a NGPRCS in 

(X, τ). Hence f is Ngpr continuous mapping. Therefore, f and f-1 are Ngpr continuous mapping. 

Hence, f is Ngpr homeomorphism. 

4.15 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U1, U2, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U1 = 〈x, (0.2, 0.5, 0.7), (0.4, 0.5, 0.6)〉, U2 = 〈x, (0.2, 0.4, 0.8), 

(0.3, 0.5, 0.7)〉 and V = 〈y, (0.5, 0.4, 0.5), (0.4, 0.5, 0.6)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u 

and f(b) = v. Here Vc = 〈y, (0.5, 0.6, 0.5), (0.6, 0.5, 0.4)〉 is a NCS in (Y, σ). Then f-1(Vc) is a NGPRCS in 

(X, τ). Therefore f is Ngpr continuous mapping. Here U1c = 〈x, (0.7, 0.5, 0.2), (0.6, 0.5, 0.4)〉 is a NCS in 

(X, τ). Then f(U1c) is a NGPRCS in (Y, σ). Therefore f-1 is a Ngpr continuous mapping. Hence, f and f-1 

are Ngpr continuous mapping then it is a Ngpr homeomorphism. However, here A = 〈y, (0.2, 0.4, 

0.7), (0.3, 0.5, 0.6)〉 is a NGPRCS in (Y, σ) but it is not a NGPRCS in (X, τ). Hence, f is not 

Neutrosophic irresolute mapping. Therefore, f is not a Nigpr homeomorphism. 

4.16 Theorem: If f: (X, τ) → (Y, σ) is a Nigpr homeomorphism then Ngprcl(f-1(A)) ⊆ f-1(Npcl(A)) for 

each NS A in (Y, σ). 

Proof: Let A be a NS in (Y, σ). Then Npcl(A) is NPCS in (Y, σ) and since every NPCS is NGPRCS in 

(Y, σ). Assuming f is Ngpr irresolute mapping, f-1(Npcl(A)) is a NGPRCS in (X, τ), then 

Ngprcl(f-1(Npcl(A))) = f-1(Npcl(A)). Here, Ngprcl(f-1(A)) ⊆ Ngprcl(f-1(Npcl(A))) = f-1(Npcl(A)). 

Therefore, Ngprcl(f-1(A)) ⊆ f-1(Npcl(A)) for each NS A in (Y, σ). 
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4.17 Theorem: If f: (X, τ) → (Y, σ) is a Nigpr homeomorphism then Npcl(f-1(A)) = f-1(Npcl(A)) for each 

NS A in (Y, σ). 

Proof: Given f is a Nigpr homeomorphism, then f is a Ngpr irresolute mapping. Let A be a NS in (Y, 

σ). Clearly, Npcl(A) is a NPCS in (Y, σ). This shows that Npcl(A) is a NGPRCS in (Y, σ). Since f-1(A) ⊆ 

f-1(Npcl(A)), then Npcl(f-1(A)) ⊆ Npcl(f-1(Npcl(A))) = f-1(Npcl(A)). Therefore, Npcl(f-1(A)) ⊆ 

f-1(Npcl(A)). 

Let f be a Nigpr homeomorphism, f-1 is a Ngpr irresolute mapping. Let us consider NS f-1(A) in (X, τ), 

which bring out that Npcl(f-1(A)) is a NGPRCS in (X, τ). Hence Ngprcl(f-1(A)) is a NGPRCS in (X, τ). 

This implies that (f-1)-1(Npcl(f-1(A))) = f(Npcl(f-1(A))) is a NPCS in (Y, σ). This proves A = (f-1)-1(f-1(A)) ⊆ 

(f-1)-1(Npcl(f-1(A))) = f(Npcl(f-1(A))). Therefore, Npcl(A) ⊆ Npcl(f(Npcl(f-1(A)))) = f(Npcl(f-1(A))), since 

f-1 is a Ngpr irresolute mapping. Hence f-1(Npcl(A)) ⊆ f-1(f(Npcl(f-1(A)))) = Npcl(f-1(A)). That is 

f-1(Npcl(A)) ⊆ Npcl(f-1(A)). Hence, Npcl(f-1(A)) = f-1(Npcl(A)). 

4.18 Theorem: If f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, ɳ) are Nigpr homeomorphisms, then the 

composition g∘f: (X, τ) → (Z, ɳ) is a Nigpr homeomorphism. 

Proof: Let f and g be two Nigpr homeomorphisms. Assume C is a NGPRCS in (Z, ɳ). Then g-1(C) is a 

NGPRCS in (Y, σ). Then by hypothesis, f-1(g-1(C)) is a NGPRCS in (X, τ). Hence g∘f is a Ngpr 

irresolute mapping. Now, let A be a NGPRCS in (X, τ). By assumption, f(A) is a NGPRCS in (Y, σ). 

Then by hypothesis, g(f(A)) is a NGPRCS in (Z, ɳ). This implies that g∘f is a Ngpr irresolute 

mapping. Hence, g∘f is a Nigpr homeomorphism. 

5. Conclusion  

 In this article, the new class of Neutrosophic homeomorphism namely, Ngpr homeomorphism 

and Nigpr homeomorphism was defined and studied some of their properties in Neutrosophic 

topological spaces. Furthermore, the work was extended as the Ngpr open mappings, Ngpr closed 

mappings and Nigpr closed mappings and discussed some of their properties. Many results have 

been established to show how far topological structures are preserved by this Ngpr 

homeomorphism. 

Also, the relation between Ngpr closed mappings and other existed Neutrosophic closed 

mappings in Neutrosophic topological spaces were established and derived some of their related 

attributes. Many examples are given to justify the results.  

This concept can be used to drive few more new results of Ngpr connectedness and Ngpr 

compactness in Neutrosophic topological spaces. 
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