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Abstract. The paper presents a novel strategy for solving bi-level linear programming problem based on goal programming in 
neutrosophic numbers environment. Bi-level linear programming problem comprises of two levels namely upper or first level 
and lower or second level with one objective at each level. The objective function of each level decision maker and the system 
constraints are considered as linear functions with neutrosophic numbers of the form [p + q I], where p, q are real numbers and 
I represents indeterminacy. In the decision making situation, we convert neutrosophic numbers into interval numbers and the 
original problem transforms into bi-level interval linear programming problem. Using interval programming technique, the tar-
get interval of the objective function of each level is identified and the goal achieving function is developed. Since, the objec-
tives of upper and lower level decision makers are generally conflicting in nature, a possible relaxation on the decision vari-
ables under the control of each level is taken into account for avoiding decision deadlock. Then, three novel goal programming 
models are presented in neutrosophic numbers environment. Finally, a numerical problem is solved to demonstrate the feasibil-
ity, applicability and novelty of the proposed strategy. 

Keywords: Neutrosophic set, neutrosophic number, bi-level linear programming, goal programming, preference bounds.

1 Introduction 

Bi-level programming [1, 2, 3, 4] consists of the objective of the upper level decision maker (UDM) at its 
upper or first level and that of the lower level decision maker (LDM) at the lower or second level where every 
decision maker (DM) independently controls a set of decision variables. Candler and Townsley [3] as well as 
Fortuny-Amat and McCarl [4] were credited to develop the traditional bi-level programming problem (BLPP) in 
crisp environment. Using Stackelberg solution concept, Anandalingam [5] proposed a new solution procedure 
for multi-level programming problem (MLPP) and extended the concept to decentralized BLPP (DBLPP). After 
the introduction of fuzzy sets by L. A. Zadeh [6], many important methodologies have been proposed for solving 
MLPPs, and DBLPPs  such as satisfactory solution concept [7], solution procedure based on non-compensatory 
max-min aggregation operator [8] and compensatory fuzzy operator [9], interactive fuzzy programming [10, 11], 
fuzzy mathematical programming [12, 13], fuzzy goal programming (FGP) [14], etc. 

Goal programming (GP) [15-21] is an significant and widely used mathematical apparatus for dealing with 
multi-objective mathematical programming problems with numerous and often conflicting objectives in 
computing optimal compromise solutions. In 1991, Inuguchi and Kume [22] introduced interval GP. GP in fuzzy 
setting is called fuzzy goal programming (FGP), where unity (one) is the maximum (highest) aspiration level.  In 
1980, Narasimhan [23] incorporated the concept of FGP by using deviational variables. Mohamed [24] 
established the relation between GP and FGP and applied the concept to multi-objective programming problems. 
After its inception, FGP received much attention to the researchers and has been applied to solve BLPPs [25, 26, 
27], multi-objective BLPPs [28], multi-objective decentralized BLPPs [29, 30], MLPPs [14, 31], multi-objective 
MLPPs [32, 33], fractional BLPP [34], multi-objective fractional BLPPs [35-39], decentralized fractional BLPP 
[40], fractional MLPPs [41], quadratic BLPPs [42, 43], multi-objective quadratic BLPP [44, 45], water quality 
management [46], project network [47], transportation [48, 49], etc.   

GP in intuitionistic fuzzy environment [50] is termed as an intuitionistic fuzzy GP (IFGP). IFGP has been 
employed to vector optimization [51], transportation [52], quality control [53], bi-level programming [54], multi-
objective optimization problems [55-57], etc. 
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 In 1998, Smarandache [58] incorporated a new set in mathematical philosophy called neutrosophic sets to 
cope with inconsistent, incomplete, indeterminate information where indeterminacy is an independent and 
important factor and it plays a pivotal role in decision making. In 2010, Wang et al. [59] defined single valued 
neutrosophic set (SVNS) by simplifying neutrosophic set for practical applications. SVNS has been widely 
employed to decision making problems [60-75].  
Smarandache [76] incorporated the idea of neutrosophic number (NN) and proved its fundamental properties. In 
2015, Smarandache [77] also defined neutrosophic interval function (thick function). Jiang and Ye [78] provided 
basic definition of NNs and NN functions for optimization model for solving optimal design of truss structures. 
Pramanik et al. [79] presented teacher selection strategy based on bidirectional projection measure in neutrosophic 
number environment. Mondal et al. [80] proposed score and accuracy functions of NNs for ranking. NNs. In the 
same study,  Modal et al. [80] defined neutrosophic number harmonic mean operator (NNHMO); Neutrosophic 
number weighted harmonic mean operator (NNWHMO) and proved thier basic properties. Mondal et al.[80] 
also developed two multi-attribute group decision making (MAGDM) startegies in NN environment.  

Ye [81] proposed a neutrosophic number linear programming method for solving neutrosophic number 
optimization. Recently, Ye et al. [82] introduced some basic operations of NNs and concepts of NN nonlinear 
functions and inequalities and formulated a NN- nonlinear programming method. 

Pramanik and Banerjee and [83] suggested a goal programming strategy for single-objective linear 
programming problem involving neutrosophic coefficients where the coefficients of objective functions and the 
system constraints are neutrosophic numbers of the form p + q I , p, q are real numbers and I denotes 
indeterminacy. Pramanik and Banerjee [84] extended the concept of Pramanik and Banerjee [83] to develop goal 
programming strategy for multi-objective linear programming problem in neutrosophic number environment.  

Research gap:  
GP strategy for BLPP with neutrosophic  numbers. 

In order to fill the gap, we propose a novel strategy for BLPP through GP with neutrosophic  numbers. 
At the beginning, we convert the BLPP with neutrosophic numbersinto interval BLPP by interval 

programming technique. Then, the goal achieving function is developed by defining target interval of the 
objective function of each level. A possible relaxation on the decision variables is considered for both level DMs 
to find the compromise optimal solution of the bi-level system. Then, three novel GP models are developed for 
BLPP in indeterminate environments. Finally, a BLPP is solved to demonstrate applicability and effectiveness of 
the developed strategy. 

The remainder of the article is organized as follows: Section 2 presents some basic concepts regarding inter-
val numbers, neutrosophic numbers. Section 3 provides the formulation of BLPP with neutrosophic numbers. GP 
strategy for BLPP with neutrosophic numbers is described in section 4. A numerical example is solved in the 
next section to show the proposed procedure. Finally, conclusions are given in the last section. 

2 Preliminaries 

In this section, we present several basic discussions concerning interval numbers and neutrosophic numbers 

2.1 Interval number [85] 

An interval number is represented by S = [SL, SU] = {s: SL  s  SU, s  }, where SL, SU are left and right 
limit of the interval S on the real line . 

Definition 2.1: Suppose m (S) and w (S) be the midpoint and the width of an interval number, respectively. 

Then, m (S) = 
2

1
[SL + SU] and w (S) = [SU - SL] 

The scalar multiplication of S by  is represented as follows: 

 S =
0],,[

,0],,[








LU

UL

SS

SS

The absolute value of S is defined as follows: 

| S| = 

0],,[

0}],,max{,0[

,0],,[







ULU

ULUL

LUL

SSS

SSSS

SSS

The binary operation * between S1 = [ LS1 , US1 ] and S2 = [ LS2 , US2 ] is presented as given below. 

S1* S2 = {s1* s2: 
LS1  s1 

US1 , LS2  s2 
US2  , s1, s2  }. 
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2.2 Neutrosophic number [76] 

A neutrosophic number is represented by N = p + q I, where p, q are real numbers where p is determinate 
part and q I is indeterminate part and I  [I L, I U ] denotes indeterminacy. 

Therefore, N = [p + q I L, p + q I U] = [NL, NU], (say) 

Example: Suppose a neutrosophic number N = 1+ 2I, where 1 is determinate part and 2 I is indeterminate 
part. Here, we consider I  [0.3, 0.5]. Then, N becomes an interval number of the form N = [1.6, 2]. 

Now, we present some properties of neutrosophic numbers as follows: 

Consider, N1 = [p1 + q1 I1] = [p1 + q1
LI1 , p1 + q1

UI1 ] = [ LN1 , UN1 ] and N2 = [p2 + q2 I2 ] = [p2 + q2
LI2 , p2 + 

q2
UI2 ] = [ LN2 , UN2 ] be two neutrosophic numberswhere I1  [ LI1 , UI1 ], I2  [ LI2 , UI2 ], then 

(i). N1 + N2 = [ LN1 + LN2 , UN1 + UN2 ], 

(ii). N1 - N2 = [ LN1 - UN2 , UN1 - LN2 ], 

(iii). N1   N2 = [Min { LN1  LN2 , LN1  UN2 , UN1  LN2 , UN1  UN2 }, Max 

{ LN1  LN2 , LN1  UN2 , UN1  LN2 , UN1  UN2 }] 
(iv). N1 / N2 = [Min { LN1 /

LN2 , LN1 /
UN2 , UN1 /

LN2 , UN1 /
UN2 }, Max 

{ LN1 /
LN2 , LN1 /

UN2 , UN1 /
LN2 , UN1 /

UN2 }], if 0  N2.. 

3 Formulation of BLPP for minimization-type objective function with neutrosophic numbers 

We consider a BLPP for minimization-type objective function at each level. Mathematically, a BLPP with 
neutrosophic numbers can be presented as follows: 

UDM: 
1x

Min f1 (x) = [C11 + D11I11] x1 + [C12 + D12 I12] x2 + [E1 + F1I13]  (1) 

LDM: 
2x

Min f2 (x) = [C21 + D21 I21] x1 + [C22 + D22 I22] x2 + [E2 + F2I23]  (2) 

Subject to 

x  X ={x = (x1, x2)   RN |[A1 + B1 I1] x1 + [A2 + B2 I2] x2  + I3, x  0}.  (3) 

Here, x1 = (x11, x12, ..., 
11Nx )T: Decision vector under the control of UDM, 

x2 = (x21, x22, ..., 
22Nx )T: Decision vector under the control of LDM 

Ci1, Di1 (i = 1, 2) are N1- dimension row vectors; Ci2, Di2 (i = 1, 2) are N2 - dimension row vectors where N = 
N1 + N2; and Ei, Fi (i = 1, 2) are constants. Ai, Bi (i = 1, 2) are M Ni (i = 1, 2) constant matrix and  , are M 

dimensional constant column matrix. X (  ) is considered compact and convex in RN. Also, we have Iij 

 [ L
ijI , U

ijI ], i = 1, 2, 3; j = 1, 2 and Ii  [ L
iI , U

iI ], i = 1, 2, 3. Representation of a BLPP is shown in Fig. 1. 

Fig. 1. Depiction of a BLPP 

Upper (First) level 

Lower (Second) level 
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4 Goal programming formulation for BLPP with neutrosophic numbers 

The objective functions of both level DMs of the problem defined in section 3 can be written as: 

UDM: 

1x
Min f1 (x) = [C11 + D11I11] x1 + [C12 + D12 I12] x2 + [E1 + F1I13] = {[C11 + D11

LI11 ] x1 + [C12 + D12
LI12 ] x2 + [E1 

+ F1
LI13 ], [C11 + D11

UI11 ] x1 + [C12 + D12
UI12 ] x2 + [E1 + F1

UI13 ]} = [ LY1 (x), UY1 (x)] (say);  (4) 

LDM: 

2x
Min f2 (x) = [C21 + D21 I21] x1 + [C22 + D22 I22]  x2 + [E2 +    F2I23] = {[C21 + D21

LI21] x1 + [C22 + D22
LI22 ] x2 + 

[E2 + F2
LI23 ], [C21 + D21

UI21] x1 + [C22 + D22
UI22 ] x2 + [E2 + F2

UI23 ]} = [ LY2 (x), UY2  (x)] (say);  (5) 

and the system constrains  reduce to  
[A1 + B1 I1] x1 + [A2 + B2 I2] x2  + I3 

  {[A1 + B1
LI1 ] x1 + [A2 + B2

LI2 ] x2, [A1 + B1
UI1 ] x1 + [A2 + B2

UI2 ] x2}  [  + LI3 ,  + UI3 ] = [gL, gU] 

(say) 

 [ LZ (x), UZ (x)]  [g
L, gU].  (6) 

Proposition 6  1. [86] 

Suppose 
 j

jjn

j
zee ],[ 21

1
[f1, f2], then 

 j
jn

j
ze ][ 2

1
 f1, 

 j
jn

j
ze ][ 1

1
 f2 are the maximum and minimum value 

range  inequalities for the constraint condition, respectively. 

Now, from the proposition 1 due to Shaocheng [86], the interval inequality of the system constraints (6) 
reduce to the following inequalities as given below. 

[A1 + B1
LI1 ] x1 + [A2 + B2

LI2 ] x2  gU, [A1 + B1
UI1 ] x1 + [A2 + B2

UI2 ] x2  gL, xi0, i = 1, 2, 

i.e. LZ (x)   gU, UZ (x)   gL, x0. 
The minimization-type BLPP can be re-stated as follows: 

UDM: 
1x

Min f1 (x) = [ LY1 (x), UY1 (x)], 

LDM: 
2x

Min f2 (x) = [ LY2 (x), UY2  (x)] 

Subject to 

[ LZ (x), UZ (x)]  [g
L, gU], x0. 

For obtaining the best optimal solution of fi, (i = 1, 2), we solve the following problem due to Ramadan [87] 
as follows: 

Xx
Min


fi (x) = L
iY (x), i = 1, 2 

UZ (x)   gL, x 0, i = 1, 2. 

Suppose b
ix = ( b

i1x , b
i2x , ..., b

IiNx , b

1IiNx


, ..., b
iNx ), (i = 1, 2)  be the individual best solution of i-th level DM 

subject to the given constraints and L
iY ( b

ix ), (i = 1, 2) be the  individual best objective value of i-th level DM. 

Now for determining the worst optimal solution of fi, (i = 1, 2), we solve the following problem due to 
Ramadan [85] as given below. 

Xx
Min


fi (x) = U
iY (x), i = 1, 2 

ZL (x)   gU, x0. 
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Let w
ix = ( w

i1x , w
i2x , ..., w

IiNx , w

1IiNx


, ..., w
iNx ), (i = 1, 2)  be the individual best solution of i-th level DM subject 

to the given constraints and U
iY ( w

ix ), (i = 1, 2) be the  individual best objective value of i-th level DM. 

 Therefore, [ L
iY ( b

ix ), U
iY ( w

ix )] be the optimal value of i-th level DM in the interval form. 

Suppose that [ *
iY , 

iY ] be the target interval of i-th objective functions set by level DMs. 

Now the target level of i-th objective function can be written as follows: 
U

iY (x) 
*

iY , (i = 1, 2) 
L

iY (x) 


iY , (i = 1, 2). 

Hence, the goal achievement functions are presented in the following form: 

- U
iY (x) + U

iD = - *
iY , (i = 1, 2) 

L
iY (x) +

L
iD = 

iY , (i = 1, 2) 

where U
iD , L

iD , (i = 1, 2) are deviational variables. 

However, since the individual best solutions of the level DMs are not same, cooperation between the two 
level DMs is necessary to arrive at a compromise optimal solution. For more details see [27, 30, 31, 36, 37, 42, 
44, 45, 55, 88].  

Let, )x,...,x,x,...,x,x( b
iN

b
1iN

b
iN

b
i2

b
i1 ii b

ix , (i = 1, 2) be the individual best solution of i-th level DM. Suppose 

( b
1ix - l1i ) and ( b

1ix + u1i), (i = 1, 2, ..., N1) be the lower and upper bounds of decision vector provided by UDM 

where l1i and u1i, (i = 1, 2, ..., N1) are the negative and positive tolerance variables which are not essentially same. 

Also, suppose that ( b
2ix - l2i ) and ( b

2ix + u2i), (i = 1, 2, ..., N2) be the lower and upper bounds of decision vector 

provided by LDM where l2i and u2i, (i = 1, 2, ..., N2) are the negative and positive tolerance variables which are 
not same in general. Therefore, we can write 

( b
1ix - l1i ) x1i  ( b

1ix + u1i), (i = 1, 2, ..., N1) 

( b
2ix - l2i) x2i  ( b

2ix + u2i), (i = 1, 2, ..., N2) 

Finally, we develop three new GP models (see the flowchart of GP model in Fig.2) for solving BLPP with 
neutrosophic numbers as follows: 

GP Model I. 

Min 


2

1i
( U

iD + L
iD ) 

Subject to 

- U
iY (x) + U

iD = - *
iY , (i = 1, 2) 

L
iY (x) +

L
iD = 

iY , (i = 1, 2) 
LZ (x)   gU, 

UZ (x)  gL, 

( b
1ix - l1i ) x1i  ( b

1ix + u1i), (i = 1, 2, ..., N1) 

( b
2ix - l2i) x2i  ( b

2ix + u2i), (i = 1, 2, ..., N2) 
L
iD , U

iD , x0, (i = 1, 2). 

GP Model II. 

Min 


2

1i
( U

i
U
i Dw + L

i
L
i Dw ) 

Subject to 

- U
iY (x) + U

iD = - *
iY , (i = 1, 2) 

L
iY (x) +

L
iD = 

iY , (i = 1, 2) 
LZ (x)   gU, 

UZ (x)  gL, 

( b
1ix - l1i ) x1i  ( b

1ix + u1i), (i = 1, 2, ..., N1) 

( b
2ix - l2i) x2i  ( b

2ix + u2i), (i = 1, 2, ..., N2) 
U
iw 0, L

iw 0, (i = 1, 2), L
iD , U

iD , x0, (i = 1, 2). 
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Here, U L

i i
w and w are the negative deviational variables. 

GP Model III. 
Min  
Subject to 

- U
iY (x) + U

iD = - *
iY , (i = 1, 2) 

L
iY (x) +

L
iD = 

iY , (i = 1, 2) 
LZ (x)   gU, 

UZ (x)  gL, 

( b
1ix - l1i ) x1i  ( b

1ix + u1i), (i = 1, 2, ..., N1) 

( b
2ix - l2i) x2i  ( b

2ix + u2i), (i = 1, 2, ..., N2) 

  U
iD ,  L

iD , (i = 1, 2), L
iD , U

iD , x 0, (i = 1, 2). 

Fig. 2.  Flowchart of the GP strategy for BLPP 

                                         

                                 

 Each level DM presents his/ her linear objective 
function with Smarandache numbers 

System constraints with 
Smarandache numbers are given 

Step-1 

Convert the original problem into 
the BLPP with interval numbers 
and goal achievement functions 
are constructed  

Preference upper and lower bounds 
are assigned by the DMs  

Step- 2 

Step- 3 

GP Models are constructed Step-4 

End 

Start 

GP Models are solved Step-5 
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5 Numerical Example 

Consider the following BLPP with neutrosophic numbers to show the efficiency of the proposed strategy. 
We consider I [0, 1]. 

UDM: 
1x

Min f1 (x) = [1 + 2I] x1 + [4 + 5I] x2 + [1 + 2I], 

LDM: 
1x

Min f1 (x) = [3 + 4I] x1 + [2 + 3I] x2 + [3 + 2I], 

Subject to  
[4+ 2I] x1 + [3 + 7I] x2 [15+ 10I],  
[6+ I] x1 + [-2 + 4I] x2 [5+ 3I], 
x1, x20. 
The transformed problem of UDM is shown Table 1. 

Table 1. UDM’s problem for best and worst solutions 
UDM’s problem to find best solution UDM’s problem to find worst solution 

Min LY1 (x) = x1 + 4x2 + 1 

Subject to 
6 x1 + 10 x215, 
7 x1 + 2 x25, 

x1, x20. 

Min UY1 (x) = 3x1 + 9x2 + 3 

Subject to 
4 x1 + 3x225, 
6 x1 - 2 x28, 

x1, x20. 

The best and worst solutions of UDM are computed as given below (see Table 2) 

Table 2. UDM’s best and worst solutions 
The best solution of 

UDM 
The worst solution of 

UDM 
*

1Y = 3.5 at (2.5, 0) 
1Y = 21.75 at (6.25, 0) 

The transformed problem of LDM can be presented as follows (see Table 3). 

Table 3. LDM’s problem for best and worst solutions 
LDM’s problem to find best solution LDM’s problem to find worst solution 

Min LY2 (x) = 3x1 + 2x2 + 3 

Subject to 
6 x1 + 10 x215, 
7 x1 + 2 x25, 

x1, x20. 

Min UY2 (x) = 7x1 + 5x2 + 5 

Subject to 
4 x1 + 3x225, 
6 x1 - 2 x28, 

x1, x20. 

The best and worst solutions of LDM are determined as given below (see Table 4) 

Table 4. LDM’s best and worst solutions 
The best solution of 

LDM 
The worst solution of 

LDM 
*

2Y = 6.621 at (0.345, 

1.293) 


2Y = 47.615 at (2.846, 

4.538) 

The objective function of UDM with specified targets can be presented as given below. 
x1 + 4x2 + 121.5, 3x1 + 9x2 + 34, 
The goal achievement functions of UDM with specified targets can be presented as 

x1 + 4x2 + 1+ LD1  =21.5, -3x1 - 9x2 – 3+ UD1 = -4, 

The objective function of LDM with specified targets can be presented as given below. 
3x1 + 2x2 + 347, 7x1 + 5x2 + 57, 
Also, the goal achievement functions of LDM with specified targets can be written as follows: 

3x1 + 2x2 + 3+ LD2  = 47, -7x1 - 5x2 - 5+ UD2 = -7. 
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Suppose, the UDM provides preference bounds on the decision variable x1 as 2.5 - 1.5  x12.5 + 2 and the 
LDM offers preference bounds on the decision variable x2 as 1.293 – 0.793  x21.293 + 1.207 to reach optimal 
compromise solution.  

Therefore, the GP models are developed as given below. 

GP Model I. 

Min ( LD1 + UD1 + LD2 + UD2 ) 

Subject to 

x1 + 4x2 + 1+ LD1  =21.5, 

-3x1 - 9x2 – 3+ UD1 = -4, 

3x1 + 2x2 + 3+ LD2  = 47, 

 -7x1 - 5x2 - 5+ UD2 = -7, 

6 x1 + 10 x215, 
7 x1 + 2 x25, 
 4 x1 + 3x225,  
6 x1 - 2 x28, 
2.5 - 1.5  x12.5 + 2, 
1.293 – 0.793  x21.293 + 1.207, 

L
iD , U

iD 0, (i = 1, 2) 

x1, x20. 

GP Model II. 

Min 4
1 ( LD1 + UD1 + LD2 + UD2 ) 

Subject to 

x1 + 4x2 + 1+ LD1  =21.5, 

-3x1 - 9x2 – 3+ UD1 = -4, 

3x1 + 2x2 + 3+ LD2  = 47, 

 -7x1 - 5x2 - 5+ UD2 = -7, 

6 x1 + 10 x215, 
7 x1 + 2 x25, 
 4 x1 + 3x225,  
6 x1 - 2 x28, 
2.5 - 1.5  x12.5 + 2, 
1.293 – 0.793  x21.293 + 1.207, 
x1, x20. 

GP Model III. 
Min   
Subject to  

x1 + 4x2 + 1+ LD1  =21.5, 

-3x1 - 9x2 – 3+ UD1 = -4, 

3x1 + 2x2 + 3+ LD2  = 47, 

 -7x1 - 5x2 - 5+ UD2 = -7, 

6 x1 + 10 x215, 
7 x1 + 2 x25, 
 4 x1 + 3x225,  
6 x1 - 2 x28, 
2.5 - 1.5  x12.5 + 2, 
1.293 – 0.793  x21.293 + 1.207, 

  L
iD ,  U

iD , (i = 1, 2) 
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L
iD , U

iD 0, (i = 1, 2) 

x1, x20. 

The solutions of the proposed GP models are shown in the Table 5 as given below. 

Table 5. The solutions of the BLPP 
Solution point Objective values of UDM Objective values of 

LDM 
GP Model I (4.5, 2.333) [14.832, 37.497] [21.166, 37.497] 
GP Model II (4.5, 2.333) [14.832, 37.497] [21.166, 37.497] 

GP Model 
III 

(4.375, 2.5) [15.375, 38.625] [21.125, 48.125] 

Conclusion 

The paper presented three new goal programming models for bi-level linear programming problem where the 
objective functions of both level decision makers and the system constraints are linear functions with 
neutrosophic  numbers. Using interval programming technique, we transform the bi-level linear programming 
problem into interval programming problem and calculated the best and the worst solutions for both level 
decision makers. Both decision makers assign preference upper and lower bounds on the decision variables 
under their control to obtain optimal compromise solution of the hierarchical organization. Finally, a new goal 
programming strategy has been developed to solve bi-level linear programming problem by minimizing 
deviational variables. We obtain the optimal compromise solution of the system in interval form which is more 
realistic. A numerical problem involving neutrosophic numbersis is solved to demonstrate the applicability and 
efficiency of the proposed procedure. 

We hope that the bi-level linear programming technique in neutrosophic number environment will open up a 
new avenue of research for future neutrosophic researchers. Furthermore, we believe that the proposed strategy 
can be effective for dealing with multi-objective bi-level linear programming, multi-objective decentralized bi-
level linear programming, multi-objective decentralized multi-level linear programming, priority based multi-
objective linear programming problems, real world decision making problems such as agriculture, bio-fuel pro-
duction, portfolio selection, transportation, etc. with neutrosophic numbers information. 
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