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Abstract: A new concept of neutrosophic overlap function is given, furthermore a neutrosophic 

residual implication derived from it is also introduced. Firstly, we give new concept of 

neutrosophic overlap function and some classical examples which are introduced on the lattice. 

Secondly, the concept of representable neutrosophic overlap function and its pertinent examples 

are given, meanwhile the general method of constructing representable neutrosophic overlap 

function by using intuitionistic overlap function is given. Finally, neutrosophic residual implication 

induced by neutrosophic overlap function and its basic properties are studied. 

Keywords: neutrosophic overlap function; lattice; representable neutrosophic overlap function; 

neutrosophic residual implication 

 

 

1. Introduction  

In 1998, smarandache added an independent membership degree of uncertainty to intuitionistic 

fuzzy set (IFS)[1], thus putting forward the neutrosophic set(NS) initially. NS is such a robust formal 

frame extending that concepts of typical set, fuzzy set, IFS and interval-valued IFS from 

philosophical viewpoint. Because IFS and interval-valued IFS that can solely address incomplete 

information, but can't address uncertainty and the lack of consistent information which exists in 

reality. Hence, NS is introduced. Its uncertainty can be explicitly quantified, and its true affiliation, 

uncertain affiliation and false affiliation are expressed independent. However, its application is hard 

to solve the actual problems, some scholars have brought forward that notion of single-valued 

NS[2], as one specific case of NS. And those relevant contents of using single-valued NS to address 

decision-making issues is as follows[3-8]. 

Since the triangular norm has a broad range of applications in solving pragmatic issues, it is 

also important to study the wide range of forms of the triangular norm in applications. The overlap 

function is a generalization of triangular norm that fulfils continuity[9]. Bustince et al. gave accurate 

definition of overlap(grouping) function in[10,11]. Over the past period of time, overlap function 

and grouping function evolved rapidly in theory and practice. See the following literature[12-16] for 

the rich achievements in the field of theoretical research about overlap function and grouping 

function. In decision problems, image processing and other fields of wide application see the 

following literature[17-20]. In an effort to better handle inconclusive information, some scholars 

extend the overlap function [12,21] into the IFS, while introducing the method at [22]. 
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Fuzzy implication and fuzzy residual implication play an integral part in traditional fuzzy 

logic. Fuzzy implication [23] generalizes classical implication into fuzzy logic via the consideration 

of truth values varying in [0, 1] as opposed to {0, 1}. Fuzzy implication is one of the important 

components of fuzzy logic and acts as a very crucial part in some fields, such as image processing, 

fuzzy control, data mining see the following literature [24-26], etc. Based on the wide application of 

fuzzy implication, it is necessary to research it from the theoretical viewpoint [19]. There are a few 

various models of fuzzy implication for example the R-implication induced by triangular norm[27], 

(S-N)-implication induced by triangular conorm and fuzzy negation[28], etc. Because overlap 

function is closely related to triangular norm, in view of the research of neutrosophic triangular 

norm on neutrosophic fuzzy residual implication, and referring to the research of neutrosophic 

triangular norm derived residual implication in Hu and Zhang [18], it is natural to consider the 

neutrosophic residual implication(NRI) induced by neutrosophic overlap function. 

The second section mainly introduces the basic knowledge that needs to be used, such as 

overlap function, grouping function and NS etc. And in the third section, the new concept and 

related examples of neutrosophic overlap function are given. In addition, the notions and relevant 

examples of representable neutrosophic overlap function and non-representable neutrosophic 

overlap function are presented, respectively. Furthermore, the new concept of neutrosophic 

negation and De Morgan neutrosophic triple which can express the dual relationship between 

neutrosophic overlap function and neutrosophic grouping function is introduced. The general 

method of constructing representable neutrosophic overlap functions by intuitionistic overlap 

functions is given. The fourth section focuses on NRI induced by neutrosophic overlap function, 

and concludes that every NRI induced by neutrosophic overlap function must be a neutrosophic 

implication. The final section summarizes the research content. 

2. Preliminaries 

Definition 2.1 ([29]) O is referred to as an overlap function, if the binary map O: [0, 1]  [0, 1]→[0, 1] 

fulfils prerequisites below, s, t [0, 1]: 

(a) O fulfils exchangeability; 

(b) O(s, t) = 0 when and only when st = 0; 

(c) O(s, t) = 1 when and only when st = 1; 

(d) O(s, t) 1 O(u, v) if s 1 u, t 1 v; 

(e) O fulfils continuity. 

Example 2.1 The bivariate functions below are overlap functions, s, t [0, 1]: 

(a) ( ) ( ) ( )=O s t s t s t2 2
mM , min , max , ; 

(b) ( ) =
p p

pO s t s t, , for  0 and 1p p ; 

(c) 

2

( )

.




= 
 =

st
s t

O s t s t

s t
DB

, if +  0,
, +

0 , if +  0

; 

(d) ( ) { }=O s t s tmin , min , . 

Definition 2.2 ([30]) The bivariate function G: [0, 1]  [0, 1]→[0, 1] is referred to as the grouping 

function, when it fulfils prerequisites below,  s, t [0, 1]: 
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(a) G fulfils exchangeability; 

(b) G(s, t) = 0 when and only when s= 0 and t= 0; 

(c) G(s, t) = 1 when and only when s=1 or t = 1; 

(d) G(s, t) 1 G(u, v) if s 1 u, t 1 v; 

(e) G fulfils continuity. 

Example 2.2 The bivariate functions below are grouping functions, s, t [0, 1]: 

(a) ( ) ( ) (( ) ( ) )= − − − − −G s t s t s t2 2
mM , 1 min 1 ,1 max 1 , 1 ; 

(b) ( ) ( ) ( )= − − −
p p

pG s t s t, 1 1 1 , for  0 and 1p p ; 

(c) ( )

.

−


= − −
 =

s t st
s t

G s t s t

s t
DB

+ 2
, if + 2,

, 2

1, if + 2

; 

(d) ( ) { }= − − −G s t s tmin , 1 min 1 , 1 . 

Definition 2.3 ([31]) An affiliation function μE(s) and a non-affiliation function νE(s) portray an IFS E 

in S. S is a set that is not empty. And the IFS E be denoted as 

{( | }E  = E Es s s s S, ( ), ( )) . 

In which μE(s), νE(s) [0, 1] and satisfies the term of 0≤ μE(s)+νE(s)≤ 1. 

Definition 2.4 ([2]) Truth-affiliation function TE(s), uncertainty-affiliation function UE(s) and falsity 

-affiliation function FE(s) portray the single-valued NS E in S. S is a set that is not empty. And the 

single-valued NS E is defined as 

{ ( ) ( ) | }= E E EE s T s U s F s s S, ( ), , . 

In which TE(s), UE(s), FE(s) [0, 1] and satisfies the term of 0 ≤ TE(s)+UE(s)+FE(s) ≤ 3. 

Definition 2.5 ([32]) The overlap function is a map O: L2→L on (L; L) which fulfils monotonicity, 

commutative and continuity, while it fulfils O(s, 0L)= 0L, s L; the grouping function is a map G: 

L2→L on (L; L) which fulfils monotonicity, commutative and continuity, while it fulfils G(s, 1L)= 1L, 

s L. 

Definition 2.6 ([18]) Define the set D in the following way, 
* { ( ) | [ ]}.= = D s s s s s s s1 2 3 1 2 3, , , , 0,1  

If s D, as above, then s has three components s1, s2 and s3. 

s, t D, where s= (s1, s2, s3), t is analogous to s. 1 on D is defined as the order relation below, 

s1 t iff s1 t1, s2 t2, s3 t3. 

Proposition 2.1 ([18]) (D; 1) is a complete lattice. 

Definition 2.7 ([18]) The supplement of z is written as below, s D, 

sc= (s3, 1-s2, s1). 

In particular, 1D*= (1, 0, 0) and 0D*= (0, 1, 1) represent the maximum and minimum in (D; 1), 

respectively. 
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Proposition 2.2 ([18]) s1 t is defined as maximum lower bound of s, t, and expressed as inf(s, t); s1 t 

is defined as minimum upper bound of s, t, and expressed as sup(s, t), s, tD*.  

3. Neutrosophic overlap function  

This section proposes new concept of neutrosophic overlap function and provides relevant 

examples, giving the concept and examples of representable and non-representable neutrosophic 

overlap function. Finally, a new method for constructing representable neutrosophic overlap 

functions through intuitionistic fuzzy overlap function(IFO) is proposed. 

Definition 3.1 A neutrosophic overlap function is a map O: D D→D which fulfils prerequisites 

below, s, t, u, v D: 

(NO1) O fulfils exchangeability; 

(NO2) O(s, t) 1 O(u, v) if s 1 u, t 1 v; 

(NO3) O(0D*, t) =0D* or O(s, 0D*) = 0D*; 

(NO4) O(1D*, 1D*) = 1D*; 

(NO5) O fulfils continuity. 

Definition 3.2 A neutrosophic grouping function is a map G: D D→D which fulfils prerequisites 

below, s, t, u, v  D: 

(NG1) G fulfils exchangeability; 

(NG2) G(s, t) 1 G(u, v) if s 1 u, t 1 v; 

(NG3) G(1D*, t) = 1D* or G(s, 1D*) = 1D*; 

(NG4) G(0D*, 0D*) = 0D*; 

(NG5) G fulfils continuity. 

Example 3.1 The following binary functions are neutrosophic overlap functions, s, t D 

(1) ( ) ( ( ) ( ) ( ))=s t O s t G s t G s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,O  

( ( ) ( ) ( ) (( ) ( ) ) ( ) (( ) ( ) ))= − − − − − − − − − −s t s t s t s t s t s t2 2 2 2 2 2
1 1 1 1 2 2 2 2 3 3 3 3min , max , ,1 min 1 ,1 max 1 , 1 ,1 min 1 ,1 max 1 , 1 ; 

(2) ( ) ( ( ) ( ) ( )) ( ( ) ( ) ( ) ( ) )= = − − − − − −
p p p p p p

p p p ps t O s t G s t G s t s t s t s t1 1 2 2 3 3 1 1 2 2 3 3, , , , , , ,1 1 1 ,1 1 1O , for p>0 and p1; 

(3) ( ) ( ( ) ( ) ( )) ( )
−−

= =
− − − −

s + t s ts t s t s t
s t O s t G s t G s t

s t s t s t
3 3 3 31 1 2 2 2 2

DB DB 1 1 DB 2 2 DB 3 3

1 1 2 2 3 3

22 + 2
, , , , , , , ,

+ 2 2
O , for  s t1 1 0 , 

 s t2 2 1  and  s t3 3 1 ; 

(4) ( ) ( ( ) ( ) ( ))=s t O s t G s t G s tmin min 1 1 min 2 2 min 3 3, , , , , ,O  

( { } { } { })= − − − − − −s t s t s t1 1 2 2 3 3min , ,1 min 1 , 1 ,1 min 1 , 1 . 

Example 3.2 The following binary functions are neutrosophic grouping functions, s, t D 

(1) ( ) ( ( ) ( ) ( ))=s t G s t O s t O s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,G  

( ( ) (( ) ( ) ( ) ( ) ( ) ( ))= − − − − −s t s t s t s t s t s t2 2 2 2 2 2
1 1 1 1 2 2 2 2 3 3 3 31 min 1 ,1 max 1 , 1 ,min , max , ,min , max , ; 

(2) ( ) ( ( ) ( ) ( )) ( ( ) ( ) )= = − − −
p p p p p p

p p p ps t G s t O s t O s t s t s t s t1 1 2 2 3 3 1 1 2 2 3 3, , , , , , 1 1 1 , ,G , for p>0 and p1; 
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(3) ( ) ( ( ) ( ) ( )) ( )
−

= =
− −

s ts t s t s t
s t G s t O s t O s t

s t s t s + t
3 31 1 1 1 2 2

DB DB 1 1 DB 2 2 DB 3 3

1 1 2 2 3 3

2+ 2 2
, , , , , , , ,

2 +
G , for  s t1 1 1 , 

 s t2 2 0  and  s t3 3 0 ;
 

(4) ( ) ( ( ) ( ) ( ))=s t G s t O s t O s tmin min 1 1 min 2 2 min 3 3, , , , , ,G  

( { } { } { })= − − −s t s t s t1 1 2 2 3 31 min 1 , 1 ,min , ,min , .
 

Theorem 3.1 Let O is a bivariate operation on D, s, t D

 
( ) ( ( ) ( ) ( ))=s t O s t G s t G s t1 1 1 2 2 2 3 3, , , , , ,O . 

Thus O is a neutrosophic overlap function, where O is the overlap function, G1 and G2 are grouping 

functions on [0, 1]. 
Proof. s, u, c, v D in which s= (s1, s2, s3), t, u and v are analogous to s.  

(NO1) Since G1 and G2 are grouping functions, O is the overlap function, then O(s1, t1) = O(t1, s1), 

G1(t2, s2) = G1(s2, t2) and G2(t3, s3) = G2(s3, t3), thus O fulfils exchangeability. 

(NO2) Let s1 u and t1 v, then O(s1, t1)  O(u1, v1), G1(s2, t2)  G1(u2, v2), G2(s3, t3)  G2(u3, v3). 

Therefore, O(s, t) 1 O(u, v). 

(NO3) O(0D*, t)= (O(0, t1), G1(1, t2), G2(1, t3))=(0, 1, 1)= 0D
, and O(s, 0D*)= (O(s1, 0), G1(s2, 1), G2(s3, 

1))=(0, 1, 1)= 0D*. 

(NO4)O(1D*, 1D*)= (O(1, 1), G1(0, 0), G2(0, 0))= (1, 0, 0)= 1D*. 

(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. Because the overlap function and the grouping function are continuous, so O(s, ˅iIti)= 

˅iIO(s, ti), G1(s, ˅iIti)= ˅iIG1(s, ti) and G2(s, ˅iIti)= ˅iIG2(s, ti) is valid. 

So we can get  

( ) ( ( ) ( ) ( ))

( ( ) ( ) ( ))

( )

   

  



 =   

=   

= 

i i i i i i i i

i i i i i i

i i

s t O s s G s t G s t

O s t G s t G s t

s t

I 1 I 1 1 2 I 2 2 3 I 3

I 1 1 I 1 2 2 I 2 3 3

I

, , , , , ,

, , , , ,

,

O

O

 

In this way, show that O is left continuous. 

Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 

sum up, O is shown to be a neutrosophic overlap function. 

Theorem 3.2 G is a bivariate operation on D, s, t D 

( ) ( ( ) ( ) ( ))=s t G s t O s t O s t1 1 1 2 2 2 3 3, , , , , ,G . 

Then G can be called the neutrosophic grouping function, where G is the grouping function, O1 and 

O2 are overlap functions on [0, 1]. 

Proof. The procedure for proving analogy Theorem 3.1. 

Above Theorem 3.1 supplies the measure for constructing neutrosophic overlap functions 

using overlap function O and grouping functions G1, G2 which are defined on [0, 1]. But it requires a 

condition that O= (O, G1, G2) holds. According to this condition, we bring in the concept of 

representable neutrosophic overlap function.  

Definition 3.3 A neutrosophic overlap function O is referred to as representable, when and only 

when, there exists O which is an overlap function on [0, 1] and G1, G2 which are grouping functions 

on [0, 1] satisfying, s, t D 

( ) ( ( ) ( ) ( ))=s t O s t G s t G s t1 1 1 2 2 2 3 3, , , , , ,O . 
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Example 3.3 The representable neutrosophic overlap function is shown below, s, t D 

( ) ( ( ) ( ) ( ))= ps t O s t G s t G s tDB 1 1 2 2 mM 3 3, , , , , ,O .
 

Proof. The first step verifies that O is a neutrosophic overlap function holds. s, u, t, v D in which 

s= (s1, s2, s3), t, u and v are analogous to s. 

(NO1) Let G1= Gp, G2= GmM (p=2) are grouping functions, O= ODB is an overlap function on [0, 1]. 

Since ODB(s1, t1)= ODB(t1, s1), Gp(s2, t2)= Gp(t2, s2), GmM(s3, t3)= GmM(s3, t3), thus O fulfils exchangeability. 

(NO2) Let s1 u and t1 v, then ODB(s1, t1) ODB(u1, v1), Gp(s2, t2) Gp(u2, v2), GmM(s3, t3)  GmM(u3, 

v3). Therefore,O(s, t) 1 O(u, v). 

(NO3) O(0D*, t)= (ODB(0, t1), Gp(1, t2), GmM(1, t3))= (0, 1, 1)= 0D*, and O(s, 0D*)= (ODB(s1, 0), Gp(s2, 1), 

GmM(s3, 1))= (0, 1, 1)= 0D*. 

(NO4)O(1D*, 1D*)= (ODB(1, 1), Gp(0, 0), GmM(0, 0))= (1, 0, 0)= 1D*. 

(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. Because of an overlap function ODB and grouping functions Gp and GmM are continuous, so 

ODB(s, ˅iIti)= ˅iIODB(s, ti), Gp(s, ˅iIti)= ˅iIGp(s, ti) and GmM(s, ˅iIti)= ˅iIGmM(s, ti) is valid. 

So we can get 
 

( ) ( ( ) ( ) ( ))

( ( ) ( ) ( ))

( )

   

  



 =   

=   

= 

i i DB i i p i i i i

i DB i i p i i i

i i

s t O s t G s t G s t

O s t G s t G s t

s t

I 1 I 1 2 I 2 mM 3 I 3

I 1 1 I 2 2 I mM 3 3

I

, , , , , ,

, , , , ,

,

O

O

 

In this way, show that O is left continuous. 

Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 

sum up, O is shown to be the neutrosophic overlap function. 

Finally, it is simple to show that fulfils O(s, t)= (ODB(s1, t1), Gp(s2, t2), GmM(s3, t3)), so it must be the 

representable neutrosophic overlap function. 

Definition 3.4 The neutrosophic overlap function O is known as standard representable, when and 

only when, there exists G which is a grouping function on [0, 1] and O which is an overlap function 

on [0, 1] satisfying, s, t D 

( ) ( ( ) ( ) ( ))=s t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 

Example 3.4 The standard representable neutrosophic overlap function is as follows, s, t D 

DB( ) ( ( ) ( ) ( ))p p=s t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 

Proof. This procedure for proving analogy Example 3.3. 

Definition 3.5 The N-dual representable neutrosophic overlap function O by the following being 

defined by, s, t D

 
( ) ( ( ) ( ) ( ))=s t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 

O and G has dual relation as follows, 
( ) ( )= − − −O s t G s t, 1 1 ,1 . 

Example 3.5 The N-dual representable neutrosophic overlap function is as follows, s, t D 

( ) ( ( ) ( ) ( ))= p p ps t O s t G s t G s t1 1 2 2 3 3, , , , , ,O . 

Proof. This procedure for proving analogy Example 3.3. 

Definition 3.6 G is referred to as representable neutrosophic grouping function, when and only 

when, there obtains the grouping function G and the overlap functions O1, O2 on [0, 1] satisfying, s, 

t D 

1 2( ) ( ( ) ( ) ( ))=s t G s t O s t O s t1 1 2 2 3 3, , , , , ,G . 
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Other concepts can be derived from the analogy of the neutrosophic overlap function.  

In recent years, there have been many extensions of overlap functions. However, due to the 

limitations of existing definitions in addressing practical issues by using intuitionistic fuzzy 

information, scholars have proposed IFO. In the preceding paragraphs, the representable 

neutrosophic overlap function is proposed and further the below propositions propose a method to 

construct new representable neutrosophic overlap function(grouping function) with IFO 

(intuitionistic fuzzy grouping function). 

Proposition 3.1 Where s= (s1, s3), t= (t1, t3),s, t L. O is an IFO while satisfying O(s, t)= (O(s1, t1), 

G2(s3, t3)), with O being an overlap function on [0, 1], G2 being a grouping function on [0, 1]. Suppose 

G1 is a grouping function on [0, 1] satisfying 

( ) ( ) ( ) + + O s t G s t G s t1 1 1 2 2 2 3 30 , , , 3 . 

Then O(s, t)= (O(s1, t1), G1(s2, t2), G2(s3, t3)) is called the representable neutrosophic overlap function, 

s, t D. 

Proof. First, we can get O(s, t)= (O(s1, t1), G2(s3, t3)) which is an IFO, and then we add another 

grouping function G1, satisfying 0  O(s1, t1)+ G1(s2, t2)+ G2(s3, t3)  3.  

s, u, t, v D in which s= (s1, s2, s3), t, u and v are analogous to s. 

(NO1) Since O(s1, t1)= O(t1, s1), G2(s3, t3)= G2(t3, s3), G1(s2, t2)= G1(s2, t2), then O(s, t)= O(t, s), thus it 

shown that O fulfils exchangeability. 

(NO2) Let s1 u and t1 v, then O(s1, t1) O(u1, v1), G2(s3, t3) G2(u3, v3), G1(s2, t2) G1(u2, v2). 

Therefore,O(s, t)1 O(u, v). 

(NO3) O(0D*, t)= (O(0, t1), G1(1, t2), G2(1, t3))= (0, 1, 1)= 0D*, and O(s, 0D*)= (O(s1, 0), G1(s2, 1), G2(s3, 

1))=(0, 1, 1)= 0D*. 

(NO4) O(1D*, 1D*)= (O(1, 1), G1(0, 0), G2(0, 0))= (1, 0, 0)= 1D*. 

(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. Because the overlap function O and the grouping functions G2, G1 are continuous, O(s, ˅iIti)= 

˅iIO(s, ti), G2(s, ˅iIti)= ˅iIG2(s, ti) and G1(s, ˅iIti)= ˅iIG1(s, ti) is holding. 

So we can get  

( ) ( ( ) ( ) ( ))

( ( ) ( ) ( ))

( )

   

  



 =   

=   

= 

i i i i i i i i

i i i i i i

i i

s t O s t G s t G s t

O s t G s t G s t

s t

I 1 I 1 1 2 I 2 2 3 I 3

I 1 1 I 1 2 2 I 2 3 3

I

, , , , , ,

, , , , ,

,

 

In this way, show that O is left continuous. 

Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 

sum up, O is shown to be the neutrosophic overlap function. 

It is simple to show that satisfies O(s, t)= (O(s1, t1), G1(s2, t2), G2(s3, t3)), so O is a representable 

neutrosophic overlap function. 

Proposition 3.2 Where s= (s1, s3), t= (t1, t3),s, t L. G is an intuitionistic fuzzy grouping function, 

while satisfying the fact that G(s, t)= (G(s1, t1), O2(s3, t3)), with G being a grouping function on [0, 1], 

O2 being an overlap function on [0, 1]. Suppose O1 is an overlap function on [0, 1] satisfying,  

1 2( ) ( ) ( ) + + G s t O s t O s t1 1 2 2 3 30 , , , 3 . 

Then G(s, t)= (G(s1, t1), O1(s2, t2), O2(s3, t3)) is a representable neutrosophic grouping function, s, t 

D. 

Proof. This procedure for proving analogy Proposition 3.1. 

The dual relation between triangular norm and triangular conorm in relation to fuzzy negation 

can be characterized by De Morgan triple, which is a proper expression for the relationship between 

triangular norm, triangular conorm and fuzzy negation [18]. There are also corresponding studies 
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on NS. Based on the close connection between triangular norm and overlap function, one can 

naturally consider De Morgan neutrosophic triple about neutrosophic overlap function, 

neutrosophic grouping function and neutrosophic fuzzy negation. First, neutrosophic fuzzy 

negation as an extension of fuzzy negation can be denoted by the method below. 

Definition 3.7 ([18]) A neutrosophic fuzzy negaton is a map N: D→D that fulfils prerequisites 

below: 

(a) N(t)1 N(s), s, t D such as t 1 s; 

(b) N(0D*) = 1D*; 

(c) N(1D*) = 0D*. 

N is referred to as the involutive neutrosophic negaton when and only when that fulfils 

N(N(s))= s, s D. 

A neutrosophic negaton Ng: D→D satisfies the following is said to be the involutive 

neutrosophic negaton, where s= (s1, s2, s3), s D, 

Ng(s1, s2, s3)= (s3, 1-s2, s1) 

Further, we define such Ng as the standard neutrosophic negaton. 

Definition 3.8 O, G and N are a neutrosophic overlap function, a neutrosophic grouping function, 

and a neutrosophic negation, respectively. 

For this triple (O, N, G) if the conditions below holding true, s, t D, 

N(O(s, t))= G(N(s), N(t)); 

N(G(s, t))=O(N(s), N(t)). 

Then such the triple is referred to as De Morgan neutrosophic triple. In addition, O and G have a 

dual relationship in relation to N. 

Theorem 3.3 Suppose neutrosophic negaton N is involutory, that it fulfils N(N(s))= s, s D.  

(a) Assume G is the neutrosophic grouping function, O is expressed in the following form 

O(s, t)=N(G(N(s), N(t))). 

Then O is the neutrosophic overlap function. Moreover, (O, N, G) is De Morgan neutrosophic triple. 

(b) Assume O is the neutrosophic overlap function, G is expressed in the following form 

G(s, t)=N(O(N(s), N(t))). 

Then G is the neutrosophic grouping function. Moreover, (O, N, G) is De Morgan neutrosophic 

triple. 

Proof. (a) Suppose N, G are the involutory neutrosophic negaton and the neutrosophic grouping 

function, respectively. s, u, t, v D in which s= (s1, s2, s3), t, u and v are analogous to s. 

(NO1) It is pretty simple to justify that O(s, t)=N(G(N(s), N(t))) =N(G(N(t), N(s)))= O(t, s), O 

fulfils exchangeability. 

(NO2) Let s1 u and t1 v, O(s, t)=N(G(N(s), N(t))), O(u, v)=N(G(N(u), N(v))), because N is 

non-increasing, then N(s) 1 N(u), N(t) 1 N(v). Moreover G(s, t) 1 G(u, v) and when s 1 u, t 1 v, then 

G(N(s), N(t)) 1 G(N(u), N(v)). Hence N(G(N(s), N(t))) 1 N(G(N(u), N(v))), then O(s, t) 1 O(u, v). 

(NO3) O(0D*, t)= N(G(N(0D*), N(t)))=N(G(1D*, N(t)))=N(1D*)= 0D*, similarly O(s, 0D*)= N(G(N(s), 

N(0D*)))= 0D*. 

(NO4) O(1D*, 1D*)=N(G(N(1D*), N(1D*)))= N(G(0D*, 0D*))= N(0D*)= 1D*. 

(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. As a result of O(s, ˅iIti)= N(G(N(s), N(˅iIti)))= N(G(N(s), ˄iIN(ti)))= N(˄iIG(N(s), N(ti))) = 

˅iIN(G(N(s), N(ti))) = ˅iIO(s, ti). Then we could get O(s, ˅iIti)= ˅iIO(s, ti). In this way, show that 

O is left continuous. 

Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 

sum up, O(s, t) is shown to be the neutrosophic overlap function. 

Moreover, (O, N, G) is the De Morgan neutrosophic triple. 
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(b) Likewise, suppose O is the neutrosophic overlap function and that G can be shown to be the 

neutrosophic grouping function, (O, N, G) would be the De Morgan neutrosophic triple. 

Example 3.6 The following functions are the neutrosophic overlap(grouping) functions, which are 

dual in relation to Ng, s, t D, 

(1) ( ) ( ( ) ( ) ( ))=s t O s t G s t G s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))=s t G s t O s t O s tmM mM 1 1 mM 2 2 mM 3 3, , , , , ,G ; 

In fact, OmM(N(s), N(t))= OmM((s3, 1-s2, s1), (t3, 1- t2, t1))= (OmM(s3, t3), GmM(1- s2, 1- t2), GmM(s1, t1)), then 

N(OmM(N(s), N(t)))= N(OmM(s3, t3), GmM(1- s2, 1- t2), GmM(s1, t1))= (GmM(s1, t1), 1-GmM(1- s2, 1- t2), OmM(s3, 

t3))= (GmM(s1, t1), OmM(s2, t2), OmM(s3, t3))= GmM(s, t). Thus, OmM and GmM are dual with respect to Ng. 

(2) ( ) ( ( ) ( ) ( ))=p p p ps t O s t G s t G s t1 1 2 2 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))=p p p ps t G s t O s t O s t1 1 2 2 3 3, , , , , ,G ;

 (3) ( ) ( ( ) ( ) ( ))=s t O s t G s t G s tDB DB 1 1 DB 2 2 DB 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))=s t G s t O s t O s tDB DB 1 1 DB 2 2 DB 3 3, , , , , ,G ; 

(4) ( ) ( ( ) ( ) ( ))=s t O s t G s t G s tmin min 1 1 min 2 2 min 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))=s t G s t O s t O s tmin min 1 1 min 2 2 min 3 3, , , , , ,G ; 

(5) ( ) ( ( ) ( ) ( ))= p ps t O s t G s t G s tDB 1 1 2 2 3 3, , , , , ,O and ( ) ( ( ) ( ) ( ))= p ps t G s t O s t O s t1 1 2 2 DB 3 3, , , , , ,G . 

We give the following theorem for non-representable neutrosophic overlap function. 

Theorem 3.4 Let O be a map on D below, s, t D, 

* * *

* *( )

( ) .

s = =


= = =



D D D

D D

t

s t s t

s t s t s t1 1 3 3 3 3

0 , if 0 or 0 ,

, 1 , if 1 ,

, , , otherwise

O

 

Then O is a non-representable neutrosophic overlap function. 

Proof. The first step is to verify that O is the neutrosophic overlap function. s, u, t, v D in which 

s= (s1, s2, s3), t, u and v are analogous to s. 

(NO1) The proof that O fulfils exchangeability is very straightforward. 

(NO2) Let s1 u, t1 v. The obvious one is O(s, t) 1 O(u, v). 

(NO3) O(0D*, t)= O(s, 0D*)= (0, 1, 1)= 0D*. 

(NO4) O(1D*, 1D*)= (1, 0, 0)= 1D*. 

(NO5) Firstly, we prove left continuous. That is, prove that this equation O(s, ˅iIti)= ˅iIO(s, ti) 

holds. As a result of O(s, ˅iIti)= (s1*max(ti), s3*max(ti), s3*max(ti)); ˅iI(s, ti)= (s1*t1, s3*t1, s3*t1)˅ 

(s1*t2, s3*t3, s3*t3)˅ (s1*t3, s3*t3, s3*t3)= (s1*max(ti), s3*max(ti), s3*max(ti)). We can get O(s, ˅iIti)= ˅iIO(s, 

ti). Therefore, it is show that O fulfils left continuity. 

Likewise, O(s, ˄iIti)= ˄iIO(s, ti) is simple to prove, state clearly that O is right continuous. To 

sum up, O(s, t) is shown to be the neutrosophic overlap function. 

And then, verify that for the representable neutrosophic overlap function O whether there has 

the overlap function O and grouping functions G1, G2 on [0, 1] fulfilling the form O= (O, G1, G2). 

Have s= (0.3, 0.5, 0.6), u= (0.3, 0.5, 0.2) and t= (0.4, 0.5, 0.8) respectively. From O(s, t)= (0.12, 0.48, 

0.48) and O(u, t)= (0.12, 0.16, 0.16). We get G1(s2, t2)= 0.48 and G1(u2, t2)= 0.16, so G1(u2, t2)≠ G1(s2, t2). 

Thus, G1(s, t) is not independent from s3, which suggests that O is non-representable. 

In addition, the neutrosophic grouping function G is the dual of O in relation to the standard 

neutrosophic negaton Ng, defined as below, s, t D, 

* *

* * *( )

( ( )( )( )( )) .

= =


= = =


− − − − − − − − −

D D

D D D

s t

s t s t

s t s t s t1 1 3 3 3 3

0 , if 0 ,

, 1 , if 1 or 1 ,

1 1 1 ),1 (1 1 ),1 (1 1 , otherwise

G  

Then G is a non-representable neutrosophic grouping function. 

4. NRI derived from neutrosophic overlap function  
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This section would bring in the concept of NRI on D and research fundamental properties of 

NRI. First, the notion of neutrosophic implication is introduced on D. 

Definition 4.1 ([18]) The map I: (D)2→D is known as the neutrosophic implication when it fulfils 

the prerequisites below, s, u, t, v  D: 

(a) I is non-increasing for the first variable component (in relation to the order relation 1), which 

means that when s1 u, there is I(s, t) 1 I(u, t); 

(b) I is non-decreasing for the second variable component (in relation to the order relation 1), 

which means that when t1 v, there is I(s, t) 1 I(s, v); 

(c) I(0D*, 0D*)= 1D*; 

(d) I(1D*, 1D*)= 1D*; 

(e) I(1D*, 0D*)= 0D*. 

Definition 4.2 Suppose I: (D)2→D is a binary map. A neutrosophic overlap function O exists which 

enables the following condition to hold,  
*

1( ) { | ( ) }=  s t h h D s h t, sup , ,I O . 

Thus such I: (D)2→D is referred to as the NRI. 

When I is a NRI derived from a neutrosophic overlap function O, it is written as IO. 

Additionally, a neutrosophic overlap function O fulfils the residual principle, s, t, h D: 

h 1 IO(s, t) iff O(s, h) 1 t. 

Example 4.1 The functions below are NRIs derived from neutrosophic overlap functions in Example 

3.1, s, t D, 

( )

( { } { })
( ) ( )

( { })
( )

( {

( )

  

− −− −
− − − −   

− − − −

− −
− −   

− −

=

s t s t s t

t tt t
s t s t s t

s s s s

t t
s t s t s t

s s

s t
mM

1 1 2 2 3 3

3 32 2
1 1 2 2 3 32 2

2 2 3 3

3 3
1 1 2 2 3 32

3 3

1,0,0 , if ,  and ,

1 11 1
1,max 1 ,1 ,max 1 ,1 , if ,  and ,

1 1 1 1

1 1
1,0,max 1 ,1 , if ,  and

1 1

1,max 1

,OI

} })
( )

( { } { } { })
( ) ( )

( { } )

− −
− −   

− −

− −− −
− − − −   

− − − −

  

t t
s t s t s t

s s

t tt t t t
s t s t s t

s s s s s s

t t
s t s t s

s s

2 2
1 1 2 2 3 32

2 2

3 31 1 2 2
1 1 2 2 3 32 2 2

1 1 2 2 3 3

1 1
1 1 2 2 32

1 1

1 1
,1 ,0 , if ,  and ,

1 1

1 11 1
min , ,max 1 ,1 ,max 1 ,1 ,if ,  and ,

1 1 1 1

min , ,0,0 , if , and 

( { } { } )
( )

( { } { }) .
( )





















− −
− −   

 − −

 − −

− −   
− −

t

t t t t
s t s t s t

s s s s

t tt t
s t s t s t

s s s s

3

1 1 2 2
1 1 2 2 3 32 2

1 1 2 2

3 31 1
1 1 2 2 3 32 2

1 1 3 3

,

1 1
min , ,max 1 ,1 ,0 , if ,  and ,

1 1

1 1
min , ,0,max 1 ,1 , if ,  and 

1 1
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( )

( 0 0) 1 1

( 0) 1 1

( 0 )
( )

=

−−
− −   − −  − −

− −

  − −  − −

−
−   − −  − −

−

−
− 

−=
p

tt t
s t s t s t

s s s

t
s t s t s t

s

t t
s t s t s t

s s

tt
s t s

s ss t
2

31 2
1 1 2 2 3 3

1 2 3

1
1 1 2 2 3 3

1

1 2
1 1 2 2 3 3

1 2

31
1 1

1 3

11
,1 ,1 , if , 1 1  and 1 1 ,

1 1

, , , if , 1 1  and ,

1
,1 , , if , 1 1  and ,

1

1
, ,1 , if ,

1,OI

( )

( 0 0) 1 1

( 0 )

( 0)

 − −  − −

−−
− −   − −  − −

− −

  − −  − −

−
−   − −  − −

−

−
− 

−

t s t

tt
s t s t s t

s s

s t s t s t

t
s t s t s t

s

t
s t s

s

2 2 3 3

32
1 1 2 2 3 3

2 3

1 1 2 2 3 3

3

1 1 2 2 3 3

3

2
1 1

2

1 1  and 1 1 ,

11
1,1 ,1 , if , 1 1  and 1 1 ,

1 1

1, , , if , 1 1  and ,

1
1, ,1 , if , 1 1  and 1 1 ,

1

1
1,1 , , if ,

1
1 1 .

























  − −  − −


t s t2 2 3 31 1  and 

( ) ( ) ( )

( ( ) ) ( ) ( )

( ( ) ) ( ) ( )

( ( ) ( ) )
( )

  − −  − −

− −   − −  − −

− −   − −  − −

− − − −
=

s t s t s t

t x y s t s t

t x y s t s t

t t x
s t

min

2 2 2
1 1 2 2 3 3

2 2 2 2
2 1 1 2 2 3 3

2 2 2 2
3 1 1 2 2 3 3

2 2
2 3 1

1,0,0 , if , 1 1  and 1 1 ,

1,1 1 ,0 , if , 1 1  and 1 1 ,

1,0,1 1 , if , 1 1  and 1 1 ,

1,1 1 ,1 1 , if
,OI

( ) ( )

( ) ( ) ( )

( ( ) ) ( ) ( )

( ( ) ) ( ) ( )

  − −  − −

  − −  − −

− −   − −  − −

− −   − −  − −

y s t s t

t s t s t s t

t t x y s t s t

t t x y s t s t

2 2 2
1 2 2 3 3

2 2 2 2
1 1 1 2 2 3 3

2 2 2 2 2
1 2 1 1 2 2 3 3

2 2 2 2 2
1 3 1 1 2 2 3 3

, 1 1  and 1 1 ,

,0,0 , if , 1 1  and 1 1 ,

,1 1 ,0 , if , 1 1  and 1 1 ,

,0,1 1 , if , 1 1  and 1 1

( ( ) ( ) ) ( ) ( ) .














 − − − −   − −  − − t t t x y s t s t2 2 2 2 2 2

1 2 3 1 1 2 2 3 3

,

,1 1 ,1 1 , if , 1 1  and 1 1

( { } )

( { } )

( {

( )

− −− −
  +  +

− − + − +

− −
  +  +

− − +

=

t s t ss t t s t s
s t s t s t

s t s t s t

t s t ss t
s t s t s t

s t s t

s t

s t
DB

3 3 3 31 1 2 2 2 2
1 1 2 2 3 3

1 1 2 2 3 3

3 3 3 31 1
1 1 2 2 3 3

1 1 3 3

1 1

22 1 1 1 1 1
min 1, , , , if , and ,

2 1 2 1 2 2 2 2 2 2

2 1 1 1 1 1
min 1, ,0, , if ,1 > and ,

2 1 2 2 2 2 2 2

min 1,
2

,OI

} )

( { } )

( )

− −
  +  +

− − +

  +  +
−

− −− −
  +

− + − +

t s t s
s t s t s t

s t s t

s t
s t s t s t

s t

t s t st s t s
s t s t

s t s t

2 2 2 2
1 1 2 2 3 3

1 1 2 2

1 1
1 1 2 2 3 3

1 1

3 3 3 32 2 2 2
1 1 2

2 2 3 3

2 1 1 1 1 1
, ,0 , if , and 1 > ,

1 2 2 2 2 2 2

1 1 1 1 1
min 1, ,0,0 , if ,1 > and 1 > ,

2 2 2 2 2 2

22 1 1 1
1, , , if 0 < ,

1 2 1 2 2 2 2

( )

( )

( )

 +

− −
  +  +

− +

− −
  +  +

− +

  +  +

s t

t s t s
s t s t s t

s t

t s t s
s t s t s t

s t

s t s t s t

2 3 3

3 3 3 3
1 1 2 2 3 3

3 3

2 2 2 2
1 1 2 2 3 3

2 2

1 1 2 2 3

1 1
and ,

2 2

2 1 1 1 1 1
1,0, , if 0 < ,1 > and ,

1 2 2 2 2 2 2

2 1 1 1 1 1
1, ,0 , if 0 < , and 1 > ,

1 2 2 2 2 2 2

1 1 1 1 1
1,0,0 , if 0 < ,1 > and 1 >

2 2 2 2 2
( ) .


























 = = = = = =



s t s t s t

3

1 1 2 2 3 3

,

0,1,1 if 0, 1 and 1

Theorem 4.1 Suppose O is the neutrosophic overlap function on D, s, t D, 
*

1( ) { | ( ) }=  s t h h D s h t, sup , ,OI O . 

Thus IO is a neutrosophic implication. 
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Proof. s, u, t, h, v D with s= (s1, s2, s3), t, h, u and v are analogous to s.  

(a) Let s1 u and since O is non-decreasing, {h|h D, O(s, h)1 t} 1 {h|h D, O(u, h)1 t} then 

sup{h|h D, h1 IO(s, t)}1 sup{h|h D, h1 IO(u, t)}. Thus IO(s, t) 1 IO(u, t). In other words, the first 

variable of IO regarding 1 is non-increasing. 

(b) Let t1 v and since O is non-decreasing, {h|h D, O(s, h)1 t} 1 {h|h D, O(s, h)1 v } then 

sup{h|h D, h1 IO(s, t)} 1 sup{h|h D, h1 IO(s, v)}. Thus IO(s, t) 1 IO(s, v). In other words, the 

second variable of IO regarding 1 is non-decreasing. 

(c) IO(0D*, 0D*)= sup{h|h D,O(0D*, h)1 0D*} = 1D*; 

(d) IO(1D*, 1D*)= sup{h|h D,O(1D*, h)1 1D*}= sup{h|h D, h1 1D*} = 1D*;  

(e) IO(1D*, 0D*)= sup{h|h D, O(1D*, h)1 0D*}= sup{h|h D, h1 0D*} = 0D*. 

The NRI has the following important properties. 

Theorem 4.2 Assume that IO is NRI, O is neutrosophic overlap function on D. s, t, h D, the 

follows properties are valid, 

(1) IO(0D*, t)= 1D* ; 

(2) IO(s, 1D*)= 1D*; 

(3) IO(s, s)= 1D*; 

(4) IO(1D*, t)= t; 

(5) IO(s, t) 1 t; 

(6) IO(s, t) = 1D* iff s 1 t; 

(7) s 1 IO(t, h) iff t 1 IO(s, h); 

(8) s 1 IO(t, IO(s, t)). 

Proof. s, t, h D in which s= (s1, s2, s3), t and h are analogous to s. 
(1) IO(0D*, t)= 1D* is the same thing as IO(0D*, t)= sup{h|h D,O(0D*, h)1 t}= 1D*, then h= 1D* for 

O(0D*, h) 1 t. Then this formula is proved. 

The proofs of (2)–(4) is similar to the proof of (1). 

(5) I is non-increasing for the first variable component (in relation to the order relation 1), 

thenIO(s, t) 1 IO(1D*, t) = t. 

(6) IO(s, t)= 1D* iff s1 t. Let s1 t, O(1D*, s)1 t, then IO(s, t)= 1D*. In contrast, let IO(s, t)= 1D*,thus 

O(1D*, s) 1 t, hence s 1 t. 

(7) s1 IO(t, h)
 
iff t1 IO(s, h). Since s1 IO(t, h),O(t, s)1 h. Thus, t1 IO(s, h). Likewise, s1 IO(t, h) 

can be proved from t 1 IO(s, h). 

(8) s 1 IO(t, IO(s, t)). Since O(t, s) 1 O(s, t), then s 1 IO(t, IO(s, t)). 

Example 4.2 These concrete cases about NRI deduced from neutrosophic overlap function as shown 

in Example 4.1 are given. And it is readily proved that NRI deduced from neutrosophic overlap 

functions satisfy the properties characterised by Theorem 4.2.
 

Furthermore, for the non-representable neutrosophic overlap function, using the neutrosophic 

overlap function got from Theorem 3.4 as an example, s, t D, 

* *

( ) ( [0 ] max{ })

( [0 ] max{ })


 = = = =



= 






D D D D
s t s t

t t
s t s t

s s

t tt
s t

s s s

* *

3 3
1 1

2 3

3 31
1 1

1 2 3

1 , if 0 or 0 ;or 1 ,

, 1, ,1 , , , if ,

, ,1 , , , if .

OI

 

Then it follows that IO(s, t) is a neutrosophic implication, while the properties from Theorem 

4.2 is satisfied. 
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5. Conclusions  

As an important part of NS theory, neutrosophic logic plays an significant part in it. 

Neutrosophic overlap function, neutrosophic grouping function and neutrosophic implication 

which are crucial neutrosophic logic operators. For the first kind of inclusion relationship, the 

definitions of neutrosophic overlap function (neutrosophic grouping function) on (D; 1) are 

defined and related examples are given. At the same time, new definitions of representable and 

non-representable neutrosophic overlap function are proposed. In the next place, based on the close 

relationship between overlap function and triangular norm, a new description of neutrosophic 

negation is offered through analogy research, then the dual relationship between neutrosophic 

overlap function and neutrosophic grouping function on neutrosophic negation is described. 

Moreover, we show that definition of neutrosophic implication is given based on (D; 1) and the 

basic properties of NRI are studied. Finally, the result that NRI induced by neutrosophic overlap 

function must be neutrosophic implication is proved. Based on these results and some new results 

[33-42], we consider applying them to generalized neutrosophic overlap function and neutrosophic 

inference systems of the future. 
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