
                                    Neutrosophic Sets and Systems, Vol. 55, 2023 
University of New Mexico  

 

 

Chalapathi T , Kumaraswamy Naidu K, Harish Babu D, F. Smarandache. Theory on Duplicity of Finite Neutrosophic Rings 

 
 

 

Theory on Duplicity of Finite Neutrosophic Rings 

 

T. Chalapathi1*, K. Kumaraswamy Naidu2, D. Harish Babu3, F. Smarandache4 

1,2,Dept. of Mathematics, Mohan Babu University, Tirupati-517 102, A.P, INDIA;  
3Dept. of Mathematics, SASL, VIT Bhopal University, Bhopal-466114, M P, INDIA; 

4Dept. Math and Sciences, University of New Mexico, Gallup, NM, USA; 

Emails: chalapathi.tekuri@gmail.com; kumarnaidu.kolla@gmail.com; harish225babu@gmail.com; 

smarand@unm.edu 

 

Abstract  

This article introduces the notion of duplex elements of the finite rings and corresponding neutrosophic 

rings. The authors establish duplex ring ( )Dup R and neutrosophic duplex ring   Dup R I  by way of various 

illustrations. The tables of different duplicities are constructed to reveal the comparison between rings 

 nDup Z ,   nDup Dup Z and    nDup Dup Dup Z  for the cyclic ring
nZ . The proposed duplicity 

structures have several algebraic systems with dissimilar consequences. Author’s characterize finite rings with 

R R  is different from the duplex ring  Dup R . However, this characterization supports that

 R R Dup R   for some well known rings, namely zero rings and finite fields.  

Keywords: Multiplicative function, Duplex form; Duplex ring, neutrosophic duplex element, neutrosophic 

duplex ring  

 

1. Introduction 

In the most general sense, elementary number theory deals with and manages the results and properties 

of different sets of numbers. In this paper, we will examine and discuss some significant sets of numbers in
nZ

, called duplexity. We will briefly present the notion of duplexity of
nZ  and enumerate how many number of 

duplex elements are there in
nZ . For the integer x , the element form x x  is called a duplex form of x . The 

most important problem in the elementary theory of integers is to determine the possible forms of duplexes 

among the integers. For instance, it is clear to see that any duplex form must be of form 2k , or 2 2k   in Z , 

because every even integer is a multiple of 2 . This illustration specifies that the ring of integers Z  satisfies the 

conditions: 2x x x  , 2 3x x x   and so on, but 2Z Z Z  , 2 3Z Z Z   and so on, where the operation 

addition ‘ ’defined on Z . In general, a duplex form x x  exists in the ring Z  of integers. Now, we shall 

study the enumeration of duplex elements in the finite commutative ring
nZ , and which are finitely many duplex 

forms x x  in
nZ , where the operation addition ‘ ’ defined on

nZ . 

First, we can generally describe a ring R  is an algebraic structure  , ,R    as an additive abelian group 

with a multiplicative binary operation such that the structure  , ,R    is associative and fulfils distributive 

axioms  a b c ab ac    and  b c a ba ca   . A ring R is finite commutative if R    and ab ba  

for all a , b  in R , see [1]. An element u  in a commutative ring with unity 1  is called a unit if there exists an 

element x  in R  such that 1xu ux  , and specifically x is called a multiplicative inverse of u , and vice versa. 
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All the elements in R  which are not multiplicative inverse elements are said to be zero divisors. Note that set 

of units and zero divisors of R  are usually denoted by R  and  Z R , respectively, and R can be partitioned by 

the disjoint sets  Z R  and R . For any subring R of, the set /R S  denotes the quotient ring. Now our attention 

is shifted to focus on the ring 
nZ which is isomorphic to the quotient ring /Z nZ , which are the main tools in 

this paper for various values of 1n   . For a , n Z  with 0n  , we represent the congruence class of 

modulo n by the notion   na , and the ring
nZ is the set   :na a Z , or equivalently         0 , 1 , 2 ,..., 1n . 

But there is a one-to-one correspondence between the complete residue systems         0 , 1 , 2 ,..., 1n and

 0,1,2,..., 1n  , and thus
nZ can be written simply as  0,1,2,..., 1nZ n  for complete residue systems modulo

n [2]. It is worth clarifying that the ring  0,1,2,..., 1nZ n   is a commutative ring with unity 1under addition 

and multiplication modulo n . We are happy to say that the ring
nZ has countably many applications in various 

fields such as algebraic number theory, algebraic coding theory, Cryptography, algebraic circuit theory, 

Antenna theory and algebraic design theory [3-8]. Further, the problem of enumeration of various types of 

elements in 
nZ  up to countably finite has received considerable attention in recent years; see for examples [9-

14]. 

Now starts the basic notions, definitions and results of classical rings. 

Let R be a finite commutative ring with nonzero identity and R be the set of group units of R . Given 

a finite commutative ring R , the ring  : ,R R r r r R r R     is known as duplex form of R . However, the 

problem of characterizing finite commutative rings up to isomorphism has established considerable attention in 

recent years [see 15 and 16] initiating from the research works of Eldridge [17]. In this chapter, authors 

characterize finite commutative rings in terms of their duplexes. First, write the notion  Char R to denote a 

positive integer n such that 0na  for every a in R , where ...na a a a    ( n copies). Recall that the ring 

nZ is a finite commutative ring with nonzero unity1under addition and multiplication modulo n . Also, the 

number of the form a ib , a ,
nb Z , is called Gaussian integer, and the set of Gaussian integers represented 

by  nZ i , and defined as    2: , , 1n nZ i a bi a b Z i     . Further, note that
nZ n and   2

nZ i n . 

Neutrosophic Duplex elements are the solutions of some specific neutrosophic equation, and which 

are main mathematical tools for studying additive elements and their additive reciprocals of an object and their 

mutual symmetries, which are logically related to neutrosophic systems and their automorphisms. The 

characterizations of the duplex elements of any finite commutative ring have not been done in general theory 

of neutrosophic mathematics. But in recent years, the interplay between additive self inverses and group units 

of a classical ring and its corresponding neutrosophic ring was studied by Chalapathi and co-authors [18-20]. 

 Now reconsider some notations, preliminaries and results of neutrosophic ring theory. 

 Let 0 ,1 and I be three distinct components of any neutrosophic logical system with 20 0 , 21 1 and

2I I . Then the component I is called the indeterminate of a system with some specific algebraic axioms:

0 0I  , 1I I , 2I I I  , and 1I  does not exists under usual neutrosophic addition and neutrosophic 

Multiplication defined on the required system. The component I is a concrete mathematical tool to deal with 

inconsistent, incomplete and indeterminate information which exist in the real world systems. A nonempty set
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N  together with I is denoted by ( )N I and defined as  2( ) : , ,N I a bI a b N I I    , which is called 

neutrosophic set. Neutrosophic is an innovative research field of philosophy with the composition of 

indeterminacy founded by Smarandache to develop and deal indeterminacy of a system in nature and science 

[21]. In addition, the neutrosophic set and their interactions play an important role in classical and modern 

algebra, and generate a specific theory in modern mathematics called neutrosophic algebraic theory, and it 

contains many algebraic structures, like neutrosophic groups, neutrosophic rings, neutrosophic Boolean rings, 

neutrosophic zero rings and neutrosophic field [22-25 ].First, classical rings and their useful results are standard 

and follow those from [26]. Next, the other neutrosophic concepts and further terminology with corresponding 

notions will be explained in detail as follows. For any finite commutative ring R ,  the nonempty neutrosophic 

set  2( ) : , ,R I a bI a b R I I    is called a Neutrosophic ring generated by R and I under the following 

neutrosophic binary operations: 

 ( ) ( ) ( ) ( )a bI c dI a c b d I       , ( )( ) ( ) ( )a bI c dI ac ad bc bd I      . 

Particularly, 0 0 0I  , 1 1 0I  , 0 1I I  are main components of the neutrosophic ring ( )R I with

( )R I R RI R I      . Note that, if R is finite, and then R denotes the number of elements in R , 

consequently that
2

( )R I R . 

The contributions of this manuscript are three folds. 

First, we propose the use of modular arithmetic to determine the duplex elements for the finite ring
nZ . The 

number of duplex elements  D n over
nZ is distributed in

m nZ Z . Thus, the enumeration of this procedure is 

suitable for enumerating the number of duplex elements in
m nZ Z . Second, we thoroughly characterize finite 

rings over their duplicities. We provide necessary constructive conditions on various finite rings and weights to 

achieve their related consequences. Third and finally, we establish systematic procedure to construct 

neutrosophic duplex rings over given classical rings. We prove that neutrosophic duplex rings generated by our 

basic neutrosophic rule ( )R I R RI R I      exhibit a specific structure, and maintain the basic neutrosophic 

properties of ( )R I . 

 

2. Enumeration of Duplex Elements in
nZ   

As the heading suggests, the present section has as its goal is another simple contribution of
nZ , called 

duplex of
nZ . For those who consider the theory of integers and basic number theory. The intrinsic beauty of 

the duplex of
nZ  has a strange fascination for modern mathematicians. Generally speaking, the duplex of 

nZ  

deals with the characterization of
nZ  with 2n n nZ Z Z  , or 2n n nZ Z Z  . 

This section enumerates all duplex elements which are in
nZ , and also demonstrate a number-theoretic 

connection between the finite number of positive integers and duplex elements in
nZ . Also, this section 

generates the function  D n  which is a multiplicative function but not complete. Additionally, prove that

 
 2,

n

n
D Z

n
  and  

  2, 2,
m n

mn
D Z Z

m n
  . 

Before moving on to the other important concepts and results of the duplex of
nZ , let us define duplex 

elements of
nZ  with different illustrations. 

First, we prove that  D n  is a multiplicative function but not complete with an illustration.  
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Definition 2.1. 

An element 𝑎 in 
nZ  is called a duplex element in 

nZ  if and only if the equation x x a    has a solution 

in
nZ .  

The set of all duplex elements in   𝑍𝑛   is denoted by 𝐷(𝑍𝑛), and 𝐷(𝑛) denotes the number of 

duplex elements in  𝑍𝑛 with 𝐷(𝑛) ≠ 0, since 𝑥 + 𝑥 = 0 is solvable in  𝑍𝑛. The function 𝐷(𝑛) is called 

the duplex function of 𝑛. 

For any 𝑛 > 1, we have 𝐷(𝑍2𝑛) ≠ 𝑍2𝑛 but 𝐷(𝑍2𝑛−1) = 𝑍2𝑛−1. This means that the units of  𝑍2𝑛 

are not the duplex elements in  𝑍2𝑛 . For example 𝐷(8) = 4 since the equations 𝑥 + 𝑥 = 0,  𝑥 + 𝑥 = 2, 

𝑥 + 𝑥 = 4 and 𝑥 + 𝑥 = 6 have an individual solution in  𝑍8 , but 𝑥 + 𝑥 = 1, 𝑥 + 𝑥 = 3, 𝑥 + 𝑥 = 5 and 

𝑥 + 𝑥 = 7 do not have a solution in  𝑍8 .  

The following table illustrates the number of duplex elements in  𝑍1 ,  𝑍2 ,  𝑍3 ,...,   𝑍10  , 

respectively. 

𝑛 1 2 3 4 5 6 7 8 9 10 

𝐷(𝑛) 1 1 3 2 5 3 7 4 9 5  

 

 For any positive integers 𝑚 and 𝑛, the notation 𝑔𝑐𝑑(𝑚, 𝑛), or (𝑚, 𝑛) denotes the greatest common divisor 

of 𝑚  and 𝑛  . Particularly, 𝑔𝑐𝑑(𝑚, 𝑛) = 1  if and only if 𝑚  and 𝑛  are called relatively prime. 

Suppose 𝑔𝑐𝑑(𝑚, 𝑛) = 1. Then the function 𝑓: 𝑁 → ℝ is called a Number-Theoretic function, and it is called 

multiplicative if 𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛) . Naturally, many number-theoretic functions exist in the theory of 

numbers [2], and which are completely characterized by its value of  𝑛 when 𝑛 ≥ 1. Now we show that the 

duplex function 𝐷(𝑛) is a multiplicative function. 

 

Theorem 2.2. Let 𝑔𝑐𝑑(𝑚, 𝑛) = 1. Then the number theoretic relation is 𝐷(𝑚𝑛) = 𝐷(𝑚)𝐷(𝑛). 

Proof: First of all we adopt the notation:  𝐷(𝑚𝑛) is the number of duplex elements in 𝑍𝑚𝑛 and 𝐷(𝑚)𝐷(𝑛) 

is the number of duplex elements in 𝑍𝑚 × 𝑍𝑛. Because 𝑔𝑐𝑑(𝑚, 𝑛) = 1, the ring 𝑍𝑚𝑛 is isomorphic to the ring 

𝑍𝑚 × 𝑍𝑛  by the ring isomorphism ψ: 𝑍𝑚𝑛 → 𝑍𝑚 × 𝑍𝑛  related by 𝜓(𝑡) = (𝑡 𝑚𝑜𝑑 𝑚, 𝑡 𝑚𝑜𝑑 𝑛 )  for 

every element 𝑡 in 𝑍𝑚𝑛 (see [1]). 

First, we prove that 𝐷(𝑚𝑛) ≤ 𝐷(𝑚)𝐷(𝑛). For this let 𝑎 be a duplex element in 𝑍𝑚𝑛 , then the 

equation 𝑥 + 𝑥 = 𝑎 is solvable in 𝑍𝑚𝑛. Consequently, there is an element 𝑏 in 𝑍𝑚𝑛 such that 𝑏 + 𝑏 = 𝑎 is 

solvable in 𝑍𝑚𝑛.  Since 𝜓 is an injective map from 𝑍𝑚𝑛 onto 𝑍𝑚 × 𝑍𝑛, so there exists an element (𝑥, 𝑦) in 

𝑍𝑚 × 𝑍𝑛 such that 𝜓(𝑏) = (𝑥, 𝑦). Therefore,  

 𝜓(𝑎) = 𝜓(𝑏 + 𝑏) = 𝜓(𝑏) + 𝜓(𝑏)= (𝑥, 𝑦) + (𝑥, 𝑦) = (𝑥 + 𝑥, 𝑦 + 𝑦) 

 is solvable in 𝑍𝑚 × 𝑍𝑛 . This implies that 𝜓(𝑎) is also a duplex element in 𝑍𝑚 × 𝑍𝑛 . Hence, 𝐷(𝑚𝑛) ≤

𝐷(𝑚)𝐷(𝑛). On the other hand, we can show that 𝐷(𝑚𝑛) ≥ 𝐷(𝑚)𝐷(𝑛). Suppose 𝑐 is a duplex element in 𝑍𝑚 

and 𝑑 is a duplex element in  𝑍𝑛. Then there exists 𝑢 in 𝑍𝑚 and  𝑣 in  𝑍𝑛 such that 

 (𝑢 + 𝑢, 𝑣 + 𝑣) = (𝑐, 𝑑) in 𝑍𝑚 × 𝑍𝑛.  

So, we have 

 𝜓−1[(𝑐, 𝑑)] = 𝜓−1[(𝑢 + 𝑢, 𝑣 + 𝑣)] = 𝜓−1[(𝑢, 𝑣) + (𝑢, 𝑣)]= 𝜓−1[(𝑢, 𝑣)] + 𝜓−1[(𝑢, 𝑣)] is solvable in 

𝑍𝑚𝑛. This implies that the element 𝜓−1[(𝑐, 𝑑)] is also a duplex element in 𝑍𝑚𝑛. This shows that 𝐷(𝑚𝑛) ≥
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𝐷(𝑚)𝐷(𝑛) . Combination of inequalities 𝐷(𝑚𝑛) ≤ 𝐷(𝑚)𝐷(𝑛)  and 𝐷(𝑚𝑛) ≥ 𝐷(𝑚)𝐷(𝑛)  yields that the 

equality 𝐷(𝑚𝑛) = 𝐷(𝑚)𝐷(𝑛), and this shows that 𝐷(𝑛) is a number-theoretic multiplicative function.  

 

Now we continue our study by verifying other generalizations of duplex function. This requires the 

following:  

Example 2.3. Consider 𝑚 = 2, 𝑛 = 4 , we find that 𝐷(2) = 1, 𝐷(4) = 2  and 𝐷(8) = 4  with 𝐷(8) ≠

𝐷(2)𝐷(4). 

Corollary 2.4. Prove that  𝐷(1) = 1. 

Proof: Because of  0 + 0 = 0, the element 0 is a duplex element in 𝑍𝑛. So there exists an 𝑛 such that 𝐷(𝑛) ≠

0. But by the Theorem [2.2], 

  𝐷(𝑛) = 𝐷(𝑛1) = 𝐷(𝑛)𝐷(1).  

Being 𝐷(𝑛) non-zero, 𝐷(𝑛) may be cancelled from both sides of the above equation to give 𝐷(1) = 1. ∎ 

The following theorem plays an important role in studying the duplexity of the ring 𝑍𝑛. 

Theorem 2.5. For every 𝑛 ≥ 1, the units of 𝑍2𝑛 are not the duplex elements in 𝑍2𝑛. 

Proof: Suppose 𝑢 ∈ 𝑍2𝑛
×  be a duplex element in 𝑍2𝑛. Then there exists an element 𝑥 in 𝑍2𝑛 such that 𝑥 +

𝑥 = 𝑢 is solvable in 𝑍2𝑛 . By the basic celebrations of 𝑍2𝑛, the number 2𝑛 divides the element 𝑥 + 𝑥 − 𝑢. 

So, there exists 𝑞 in 𝑍 such that 𝑥 + 𝑥 − 𝑢 = 2𝑛𝑞. But 𝑢𝜖𝑍2𝑛
×  implies that 𝑔𝑐𝑑(𝑢, 2𝑛) = 1, and it implies 

that 𝑔𝑐𝑑(𝑥 + 𝑥 − 2𝑛𝑞, 2𝑛) = 1, which is not true because 𝑔𝑐𝑑(𝑥 + 𝑥 − 2𝑛𝑞, 2𝑛) > 1 for every 𝑥 in 𝑍2𝑛. 

Hence every unit in 𝑍2𝑛 is not a duplex element in 𝑍2𝑛. Particularly, 𝐷(𝑍2𝑛
× ) = ∅. ∎ 

Our next goal is to establish a formula for enumerating the number of duplex elements in 𝑍𝑛. Once 

this is established, enumerating formulas in a simple form for the different values of 𝑛 will complete our 

enumerating procedure. We start with the trivial observation that the duplex element in 𝑍1 is 0, so that 𝐷(1) =

1 because 𝑥 + 𝑥 = 0 is solvable in 𝑍1. We are now ready to prove that 𝐷(2𝑛) = 2𝑛−1, where 𝑛 ≥ 2. Because 

𝑥 + 𝑥 = 2𝑥(𝑚𝑜𝑑 2𝑛) for all 𝑥 in 𝑍2𝑛, it follows that the duplex element in 𝑍2𝑛 is a multiple of 2 under 

multiplication modulo 2𝑛 , but the total number of multiples of 2 in 𝑍2𝑛 , is  2𝑛−1  since 2𝑛 + 2𝑛 ≡

0(𝑚𝑜𝑑 2𝑛)  and thus 𝐷(2𝑛) = 2𝑛−1. 

Further, we start with the simple observation that for every 𝑥 in 𝑍𝑝𝑛 , where 𝑝 > 2 is a prime. This 

concludes that every element in 𝑍𝑝𝑛  is a duplex element in 𝑍𝑝𝑛 , and thus  𝐷(𝑝𝑛) = 𝑝𝑛 . Finally, we aim to 

establish a formula for enumeration number of duplex elements in 𝑍𝑛 whenever 𝑛 ≥ 1. For every 𝑥 in 𝑍𝑛, 

we have 

  (2, 𝑛)𝑥 = (2𝑥, 𝑛𝑥) = 𝑎(2𝑥) + 𝑏(𝑛𝑥) for some 𝑎 and 𝑏 in 𝑍𝑛 

               = 2𝑎𝑥 in 𝑍𝑛= 𝑎𝑥 + 𝑎𝑥 in 𝑍𝑛. 

This observation shows that 𝑥 is a duplex element in 𝑍𝑛 if and only if (2, 𝑛)𝑥 is also a duplex element in 𝑍𝑛. 

As we explored duplex elements in 𝑍𝑛 we were led to specify how many there are. We found the 

answer in the following way. 

Theorem 2.6. The number of duplex elements in 𝑍𝑛 is 𝐷(𝑛) =
𝑛

(2,𝑛)
. 

Proof: Suppose there is an element 𝑥 in 𝑍𝑛 such that the duplex form 𝑥 + 𝑥 can be written as 𝑥 + 𝑥 = 𝑛𝑞 +

(2, 𝑛)𝑟 in 𝑍. By the Bezout’s Theorem (ref.[2]), 

    𝑥 + 𝑥 = 𝑛𝑞 + (2𝑥 + 𝑛𝑦)𝑟  for some 𝑥, 𝑦 in 𝑍. 

              = 𝑛𝑞 + 2𝑥𝑟 + 𝑛𝑦𝑟 = 𝑛(𝑞 + 𝑦𝑟) + 2𝑥𝑟. 
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Now 𝑥 + 𝑥 < 𝑛, so 𝑥 + 𝑥 = 2𝑥𝑟 is a duplex in 𝑍𝑛. Conversely, suppose that there is an element 𝑦 in 𝑍𝑛 

such that 𝑦 + 𝑦 = 𝑚𝑛 + (2, 𝑛)𝑠 in 𝑍. Then the number  (2, 𝑛) divides 𝑦. Thus there is an element 𝑡 such 

that 𝑦 = (2, 𝑛)𝑡, and hence an element  (2, 𝑛)𝑡 is a duplex element in 𝑍𝑛. Therefore the number of duplex 

elements in  𝑍𝑛 is 

 𝐷(𝑛) =
|𝑍𝑛|

(2,𝑛)
=

𝑛

(2,𝑛)
∙ ∎ 

The following example demonstrates the preceding theorem. 

 

Example 2.7. Because (2, 𝑛) = 1 𝑜𝑟 2, the number of duplex elements in 𝑍9 is 9 and the number of duplex 

elements in 𝑍10 is 5. 

Our next aim is to enumerate the number of duplex elements in the ring 𝑍𝑚 × 𝑍𝑛 for every positive 

integer 𝑚  and  𝑛 . We recall that 𝑍𝑚 × 𝑍𝑛 ≅ 𝑍𝑚𝑛  if and only if (𝑚, 𝑛) = 1 . This relation explores 

that 𝐷(𝑚𝑛) = 𝐷(𝑚)𝐷(𝑛). Further, if (𝑚, 𝑛) ≠ 1, then by the Theorem [2.2], the number of duplex elements 

in 𝑍𝑚 × 𝑍𝑛 is  

 𝐷(𝑚)𝐷(𝑛) =
𝑚

(2,𝑚)
⋅

𝑛

(2,𝑛)
=

𝑚𝑛

(2,𝑚)(2,𝑛)
⋅ 

However, we observe that 

  𝐷(𝑍𝑚 × 𝑍𝑛) = 𝐷(𝑍𝑚) × 𝐷(𝑍𝑛) ≠ 𝐷(𝑍𝑚𝑛) whenever(𝑚, 𝑛) ≠ 1. 

Subsequently,  𝐷(𝑚)𝐷(𝑛) =
𝑚𝑛

(2,𝑚)(2,𝑛)
 is not equal to 𝐷(𝑚𝑛) =

𝑚𝑛

(2,𝑚𝑛)
. For instance, 𝐷(2) =

2

(2,2)
= 1 , 

𝐷(4) =
4

(2,4)
= 2, 𝐷(8) =

8

(2,8)
= 4 but 𝐷(2 ⋅ 4) ≠ 𝐷(2)𝐷(4). 

Theorem 2.8. Let 𝑚, 𝑛 ∈ 𝑁.  Then  𝐷(𝑍𝑚 × 𝑍𝑛) = 𝐷(𝑍𝑚) × 𝐷(𝑍𝑛).  Particularly, we have  |𝐷(𝑍𝑚 ×

𝑍𝑛)| =
𝑚𝑛

(2,𝑚)(2,𝑛)
. 

Proof: Because of Definition [2.1], the duplex of 𝑍𝑚 × 𝑍𝑛 is defined as 

𝐷(𝑍𝑚 × 𝑍𝑛) = {(𝑎, 𝑏)𝜖 𝑍𝑚 × 𝑍𝑛 ∶ (𝑥, y) + (𝑥, y) = (a, b) is solvable in  𝑍𝑚 × 𝑍𝑛} 

  = {(𝑎, 𝑏)𝜖 𝑍𝑚 × 𝑍𝑛 ∶ (𝑥 + 𝑥, y + y) = (a, b) is solvable in  𝑍𝑚 × 𝑍𝑛} 

 = {(𝑎, 𝑏)𝜖 𝑍𝑚 ∶ 𝑥 + 𝑥 = 𝑎 is solvable in  𝑍𝑚} × {(𝑎, 𝑏)𝜖 𝑍𝑛 ∶ 𝑦 + 𝑦 = 𝑏 is solvable in  𝑍𝑛} 

 =  𝐷(𝑍𝑚) × 𝐷(𝑍𝑛). 

This result has summarized the cardinality of 𝐷(𝑍𝑚) × 𝐷(𝑍𝑛). So, we have 

 |𝐷(𝑍𝑚 × 𝑍𝑛)| = |𝐷(𝑍𝑚) × 𝐷(𝑍𝑛)| = |𝐷(𝑍𝑚)||𝐷(𝑍𝑛)| =
𝑚

(2,𝑚)
⋅

𝑛

(2,𝑛)
=

𝑚𝑛

(2,𝑚)(2,𝑛)
⋅ 

 

3. Duplicity of finite Rings 

A ring R is cyclic if the structure  ,R  is a cyclic group, where the additive operation  is defined over 

the ring R . In [27], the author Buck introduced a special ring structure, called cyclic ring. This algebraic 

structure establishes various results and it explore different algebraic concepts. Generally, every cyclic ring is 

commutative but it is a ring with unity or without unity. For instance, 
9Z is a cyclic ring with unity but

 0 0,3,6R  is also a cyclic ring without unity under addition and multiplication modulo 9 . Further, if R is a 

cyclic ring then obviously the Cartesian product ring R R  is not a cyclic ring. For instance, 
9 9Z Z is not a 



Neutrosophic Sets and Systems, Vol. 55, 2023 209  

 

 

Chalapathi T , Kumaraswamy Naidu K and Harish Babu D. Algebraic Properties of Finite Neutrosophic Fields 

 

cyclic ring, in view of the fact that the structure  9 9 ,Z Z  is not a cyclic group under addition modulo 9 . 

Throughout the paper, authors consider the ring
nZ as a cyclic ring of order n . 

 Recall that the element x x is called duplex form an element in
nZ under addition and multiplication 

defined over
nZ . Under this duplex form, we explore the following connections over

nZ : 2x x x  ,

3x x x x   and so on, but 2n n nZ Z Z  , 3n n n nZ Z Z Z   ,and so on, where the addition‘ ’defined over 

the ring nZ . Now summarize these concepts in the following definitions. 

Definition 3.1. An element a in a ring R is called duplex element in R  if the equation x x a   has a solution 

in R . 

For instance, the element 0 is a duplex element in every ring R , since 0x x  is solvable in R . 

Definition 3.2. The duplex ring of a ring R is denoted by  Dup R and defined as 

     : is solvable inDup R a x x a R   . 

For instance, the following short table illustrates the duplex rings of the rings
1Z ,

2Z ,…,
10Z . 

R  1Z  
2Z  

3Z  
4Z  

5Z  
6Z  

7Z  
8Z  

9Z  
10Z  

 Dup R  
1Z   0  

3Z   0,2  
5Z   0,2,4  

7Z   0, 2, 4,6  
9Z   0,2,4,6,8  

 

With this information available, it is an easy task to prove the following result. 

Theorem 3.3. The duplicity of R is a subring of R . 

Proof. Let a and b be any two elements in  Dup R . Then there exists x and y in R such that a x x  and

b y y  . It is clear that 

 ( ) (y y) ( ) ( )a b x x x y x y         , ( )(y y) ( ) ( )ab x x xy xy xy xy xy xy xy xy           , 

which shows that a b and ab are both elements in ( )Dup R , and thus ( )Dup R is a subring of R . ∎ 

 With the support of the preceding theorem, let us define duplex of duplex. 

Definition 3.4. The duplex of duplex of a ring R is denoted by  ( )Dup Dup R and defined as 

     ( ) ( ) : is solvable in ( )Dup Dup R d Dup R x x d Dup R    . 

Similarly, define   ( )Dup Dup Dup R as follows. 

         ( ) ( ) : is solvable in ( )Dup Dup Dup R y Dup Dup R x x y Dup Dup R    . 

These notions lead directly to the following tabular information. 

 

R  1Z  
2Z  3Z  

4Z  5Z  
6Z  7Z  

8Z  
9Z  

10Z  

 Dup R  
1Z   0  

3Z   0,2  
5Z   0,2,4  

7Z   0, 2, 4,6  
9Z   0,2,4,6,8  

  Dup Dup R  1Z   0  
3Z   0  

5Z   0,2,4  
7Z   0,4  

9Z   0,2,4,6,8  

   Dup Dup Dup R  1Z   0  
3Z   0  

5Z   0,2,4  
7Z   0  9Z   0,2,4,6,8  

 

 In vision of the preceding table, authors conclude the following. 

1.   ( )n nDup Dup Dup Z Z n  is odd. 
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2.     ( )n nDup Dup Dup Z Dup Z n  is a perfect square. 

3.     ( ) 0 2k

nDup Dup Dup Z n   for some positive integer k . 

Under this information, the following theorem provides the structure of duplex ring of the ring
nZ . 

Theorem 3.5. For any positive integer n , there exists duplex ring ( )nDup Z  of the ring
nZ such that

 ( ) 2,n nDup Z n Z , where  2,n is the greatest common divisor of the numbers 2 and n . 

Proof. It is well known that 2n n nZ Z Z  but the duplex equation x x a  is solvable in the ring
nZ for every 

positive integer n . So, the calculations 

   
 

2
( ) 2,

2,
n nDup Z n Z

n

 
   

 
 2, nn Z  

conform that the first set inclusion  ( ) 2,n nDup Z n Z is true. Before proving another way of this result, 

consider Bezout’s Theorem [2], the number  2,n can be written as  2, 2n x ny  for some integers x and y . 

Applying this Bezout’s result, 

    2, 2n nn Z x ny Z   2 nxZ , since  0 modny n  

  nx x Z   nDup Z . 

Two set inclusions  ( ) 2,n nDup Z n Z and    2, n nn Z Dup Z finalize that the duplicity of the ring
nZ as

 ( ) 2,n nDup Z n Z .∎ 

 As an immediate application of preceding theorem, authors deduce the following results. 

Corollary 3.6. ( )n nDup Z Z if and only if n is odd. 

Proof. Noting that  2, 1n  if and only if n is odd, so may write  ( ) 2,n nDup Z n Z 1 n nZ Z  .∎ 

 In the same way, the relation  ( ) 2,n nDup Z n Z yields the following corollary, and it is another basic fact 

regarding the order of the duplex ring ( )nDup Z . 

Corollary 3.7. Let n N . Then the cardinality of the duplex ring ( )nDup Z is
 

( )
2,

n

n
Dup Z

n
 . 

Proof.  It is clear from the Theorem [section2], and additionally there is a one to one correspondence 

 
 2,

n
a a a

n
 for every element a in

nZ .∎ 

Theorem 3.8. Let ,m n N . Then    (Z ) 2, 2,m n m nDup Z m n Z Z   . 

Proof. By the Theorem [3.5], we have  ( ) 2,m mDup Z m Z and  ( ) 2,n nDup Z n Z . So, it is clear from the 

calculations        (Z ) (Z ) ( ) 2, 2, 2, 2,m n m n m n m nDup Z Dup Dup Z m Z n Z m n Z Z       .∎ 

 There is an attractive illustration of the finite fields. First, notice that
2 2( )Dup Z Z . For any odd prime, it 

is well known that ( )p pDup Z Z . Particularly, if  3 mod 4p   then  pZ i is a field of Gaussian integers and

    p pDup Z i Z i . Even if R is not a field then there exists R such that  Dup R R . For instance, p pZ Z
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is not a field but  p p p pDup Z Z Z Z   . Further, there is another attractive ring R with  Dup R R , those 

types of rings are called zero rings and it is denoted by 0R R . Now, we show that  0 0Dup R R . 

Theorem 3.9. The duplex ring of any zero rings is itself a zero ring. 

Proof. The theorem is certainly true for 0 1R  , because
0 1R  if and only if  0 0R  . Thus we may hereafter 

restrict our attention to nontrivial zero ring  0 0R  . Let 0 1R  . Then we have to prove that  0 0Dup R R . 

By virtue of the first theorem of this section,  0 0Dup R R .we makes a start by showing that  0 0R Dup R

. For a proof by contradiction, assume that  0 0R Dup RÚ . Then the element a is in 0R  and the equation

a x x  is not solvable in 0R . Accordingly, x x a  for some x is in 0R . Squaring on both sides of x x a 

, it gives  
2 2 2 2 2 2 2 0 0x x a x x x x a         , it is not true in 0R , and thus our assumption is not 

true. Hence,
 

 0 0R Dup R . So, we finish that  0 0Dup R R . 

 

4.Duplicity of Neutrosophic Rings 

In this section, we establish duplex rings and their corresponding neutrosophic duplex rings. On the 

other hand, first we prove some results of this duplicity and which are useful for subsequent results as well as 

for the next concepts. 

 Now, this study is going to define duplicity of R and ( )R I , and study their properties with different 

illustrations. We notice that 2R R R  , 3R R R R   , and so on. 

 

Definition 4.1. Let R be a finite commutative ring. Then the structure ( )Dup R is called duplex ring, and it is 

defined as  ( ) : issolvableinDup R a x x a R   . 

For any ring R , there is a neutrosophic duplex ring ( ( ))Dup R I of the neutrosophic ring ( )R I , and it is defined 

as  ( ( )) : issolvablein ( )Dup R I R I      , where a Ib   and c Id   are neutrosophic elements 

in ( )R I . 

For example,  2(Z ( )) 0 0Dup I I  ,
5 5(Z ( )) Z ( )Dup I I  but 

5 5(Z ( , )) Z ( , )Dup i I i I  where  
5Z ( )i  is the 

ring of Gaussian integers and
5Z ( , )i I is the neutrosophic ring of Gaussian integers. 

 The following is a basic result to the preceding analysis of duplicity. 

 

Theorem 4.2. The duplicity of ( )R I is a neutrosophic subring of ( )R I . 

Proof. By the Theorem [3.3],
 

( )Dup R  is a subring of R . Further, we have ( )R I R RI  , and therefore, 

( (I)) ( ) ( )Dup R Dup R Dup R I  . This relation explore that ( ( ))Dup R I is generated by ( )Dup R and I , and 

hence ( ( ))Dup R I is a neutrosophic subring of ( )R I .∎ 
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Corollary 4.3. The duplicity of ( )R I is a neutrosophic ideal of ( )R I . 

Proof. It is clear from the observation that ( )Dup R is an ideal R , and thus ( ( ))Dup R I is a neutrosophic ideal of

( )R I .∎ 

 The following examples are interesting illustrations of the preceding results. Here note that

 2( ( )) 0 0Dup Z I I  . 

Example 4.4. For any odd prime p , the neutrosophic duplex ring of ( )pZ I is again ( )pZ I , that is

( ( )) ( )p pDup Z I Z I . 

Example 4.5.  4( ( )) 0,2,2 ,2 2Dup Z I I I  ,  9 9( ( ))Dup Z I Z I . 

In this illustration we observed a connection of duplicity of rings and some fundamental concepts of rings. 

Under this observation, the following theorem provides a necessary and sufficient condition for the 

characteristic and duplicity of rings. 

Theorem 4.6. Let  ( )Char R I be the characteristic of ( )R I with  ( ) 0R I  . Then,  ( (I)) 0Dup R  if and only 

if  ( ) 2Char R I  . 

Proof. It is well known that 1R  if and only if ( ) 4R I  . So, we have  0R  if and only if  ( ) 0R I  , and 

additionally  Char R  ( )Char R I . Thus we finish that 

 ( (I)) 0Dup R   ( ) ( ) 0Dup R Dup R I    ( ) 0Dup R  0r r   is solvable in the ring R  

  2 0r  for every r in R   2Char R  .∎ 

The following example explores this theorem.  

Example 4.7.    2 0Dup Z  ;     2 0Dup Z I  ,     2 0Dup Z i  ;     2 , 0Dup Z i I  ,     

    2 0Dup Z x  ;     2 , 0Dup Z x I  , where  2Z i and  2Z x are both rings of Gaussian integers and 

polynomials under addition and multiplication modulo 2 , respectively. 

 The following theorem plays a significant role in characterizing finite neutrosophic rings and neutrosophic 

fields in terms of their corresponding duplicity of systems. Given a finite field F , there exists a neutrosophic 

field ( )F I with ( )F I F FI  . For instance, 
2 ( )Z I ,

3( )Z I ,
5 ( )Z I are all finite neutrosophic fields. Make a note 

of that ( ) ( ) 2 ( )F I F I F I  . 

Theorem 4.8. For any finite field F , the system ( ) ( )F I F I is also equal to itself the neutrosophic field ( )F I , 

where ( ) ( )F I F I is defined as  ( ) ( ) : ( ), ( )F I F I F I F I        . 

Proof. Because the element 0x  in F F , we have 0x x  , which is in F . This implies that F F F  . To 

go the other way, let us suppose that F F F  . Then, x F implies that x F F  . So, there is an element a

in F such that x a a  . It is not true for any finite field F , because the structure  ,F  is an abelian group and 

the equation x a a  is solvable in  ,F  . Thus our point of view F F F  is also true. Hence, F F F 

. Suppose that F has the duplex form. We end up with the computations 

( ) ( )F I F I ( ) ( )F FI F FI    ( ) ( )F F IF FI    ( ) ( ) IF F F F    F FI   F I ,where

IF FI .∎ 

Corollary 4.9.  Dup F F and  ( ) ( )Dup F I F I whenever   2Char F  . 

Proof. It is simply proved from Theorem [above] and Theorem [above].
 
∎ 



Neutrosophic Sets and Systems, Vol. 55, 2023 213  

 

 

Chalapathi T , Kumaraswamy Naidu K and Harish Babu D. Algebraic Properties of Finite Neutrosophic Fields 

 

 The following is an example to the preceding analysis of the duplex of F and ( )F I . 

Example 4.10. 
2 2 2Z Z Z  but  2 2Dup Z Z . However,    2 0Dup Z  . 

              2 2 2Z I Z I Z I  but     2 2Dup Z I Z I . However,     2 0 0Dup Z I I  . 

With these results among our tools, we know that the necessary information to now carry out a proof 

of the fact that duplicity of a zero ring is again itself zero ring. For more information about zero rings, redder 

refer [24, 27].  A ring  0 0 , ,R R   is called a zero ring if 0ab  for every a and b in 0R . Every finite zero 

rings is commutative, and also zero ring is a ring without unity. For instance, the ring 0R  0,5,10,15,20 is a 

finite commutative ring without unity under addition and multiplication modulo 25 . Additionally, the authors 

Chalapathi and Madhavi introduced and studied the extended structure of zero rings, called, neutrosophic zero 

rings [24]. For any zero ring 0R , there exists corresponding neutrosophic zero ring  0R I , which is also 

commutative and without unity. 

Theorem 4.11. Let 0R be a finite zero ring. Then,      0 0 0R I R I R I  . 

Proof. The theorem is certainly true for  0 0R  , because  0 0R  if and only if    0 0R I  . Thus we may 

here after restrict our attention to nontrivial zero ring  0 0R  . Suppose 0 1R  be the positive integer such that

 0 4R I  . Then, first of all we prove that 0 0 0R R R  for any finite zero ring 0R . By virtue of addition of 

two rings,  0 0 0:R R a a a R    . The crux of our argument is that 0 0R R is a subring of 0R , and this fact 

fallows that 0 0 0R R R  . For a proof by a contradiction, assume that 0 0 0R R R  .For some a in 0R , there 

exists 0x R such that x a a  . Now squaring on both sides of x a a  , we calculate 

       
22x a a   

2
0 a a   , since 2 0x   2 2 0a a a a      

0a a   , since 2 0a   

a a  . 

This means that every element in a finite zero ring 0R has not mutually additive inverse. This violates the basic 

condition of the zero rings [24], that means that every nonzero element in nontrivial zero ring has mutually 

additive inverse, giving us our contradiction. Thus, we have 0 0 0R R R  , and hence 0 0 0R R R  . Finally, 

the theorem follows the following calculations. 

        0 0 0 0 0 0R I R I R R I R R I        0 0 0 0R R R I R I       0 0 0 0R R R R I      

   0 0 0R R I R I   .∎
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Remark 4.12. From Theorem [4.11],      0 0 0R I R I R I  but       0 0 0R I R I Dup R I  . This 

explores that the neutrosophic equation    is solvable in  0R I for every neutrosophic elements and

 in  0R I . 

Corollary 4.13. For any zero rings 0R , we have     0 0Dup R I R I . 

Proof. It is full fill from the following calculations. 

          0 0 0 0 0 0Dup R I Dup R Dup R I R R I R I     . 

5. Conclusions   

In this paper,  we have determined and counted all duplex elements in the finite cyclic ring
nZ . We have 

established that there is a number theoretic connection between the duplex function  D n and elements in
nZ , 

and also prove that  
 2,

n
D n

n
 . More importantly, we have shown that  

  2, 2,
m n

mn
D Z Z

m n
  . We have 

also discussed duplicity of finite rings and neutrosophic rings. A short discussion about how this duplex ring 

could be applied to the neutrosophic rings. 
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