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1. Introduction

Classical mathematics may not always be the solution for practical situations in econom-
ics, medical sciences, engineering, social sciences, and environmental sciences, which involves
various uncertainties, imprecise and incomplete information. The limitation of classical math-
ematics that is unable to deal with uncertainties and fuzziness motivated the introduction
of mathematical theory such as probability theory, fuzzy set theory [1], rough set theory [2],
vague set theory [3], interval mathematics [4], and soft set theory [5]. However, these theories
were insufficient and have limitations in dealing with uncertainties. Probability theory can
only deal with stochastically stable problems, which may not apply to many problems in the

field of economic, environmental, and social sciences. Interval mathematics takes calculation
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errors into account by constructing an interval estimate for the solution that is useful in many
areas, but it is not appropriately adaptable for problems that arise from unreliable, inade-
quate, and change of information. On the other hand, the fuzzy set theory introduced by
Zadeh [1] is most appropriate for dealing with uncertainties and vagueness. Membership of
an element in a fuzzy set is a single value between the interval, but in real-life problems, the
degree of non-membership may not always be equal to 1 minus the degree of membership as
there may be some degree of hesitation. Works on fuzzy set theory are progressing rapidly
and have resulted in the conception of many hybrid fuzzy models. In 1983, Atanasov [6]
proposed intuitionistic fuzzy sets as a generalization of the notion of fuzzy set, which incor-
porated the degree of hesitation. Later, Zhang [7] introduced bipolar fuzzy sets in which the
membership function is mapped to intervals, thereby allowing it to deal with complex prob-
lems in both positive and negative aspects. Later, Zhang [8] proposed that bipolar fuzzy logic
should combine both fuzziness and polarity by introducing the (Yin) (Yang) bipolar fuzzy sets.
Lee [9] introduced the operation in bipolar-valued fuzzy sets, whereas Lee |10] discovered that
bipolar-valued fuzzy sets can represent the degree of satisfaction to counter property but fail
to express uncertainties in assigning membership degree. These concepts have been widely
applied to handle incomplete information arising from practical situations. However, these
were still unable to address uncertainties such as indeterminate and inconsistent information.

In 1999, Smarandache [11] proposed the neutrosophic theory that deals with ”the origin,
nature, and scope of neutralities, as well as their interactions with different ideational spec-
tra”. The idea of neutrosophic logic is a logic that states that each proposition is estimated
to have a degree of trust, degree of indeterminacy, and degree of falsity. Smarandache [12]
further generalized the theory of intuitionistic fuzzy sets to the neutrosophic model, and in-
troduced the truth, indeterminacy, and falsity components that represent the membership,
indeterminacy, and non-membership values of a neutrosophic set, respectively. In contrast
to intuitionistic fuzzy sets, neutrosophic sets used indeterminacy as a completely indepen-
dent measure of the membership and non-membership information, and thus it can effectively
describe uncertain and inconsistent information and overcome the limitation of the existing
approaches in handling uncertain information.

The original neutrosophic theory was introduced from a philosophical standpoint. Hence, it
may be difficult to be applied in practical problems. Subsequently, Wang et al. [13]| generalized
the neutrosophic set from a technical point of view and specified the set-theoretic operators on
an instance of a neutrosophic set, called the single-valued neutrosophic set, which takes values
from the subset of [0, 1], thereby enabling it to be used feasibly for real-world problems. Over
the years, subsequent developments and extensions of the neutrosophic set were proposed. Deli

et al. [14] proposed bipolar neutrosophic sets as an extension of bipolar fuzzy sets [7]. Ye [15]
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introduced the concept of simplified neutrosophic sets. Peng et al. [16] introduced multi-valued
neutrosophic sets that allow the truth, indeterminacy, and falsity membership degrees to have
a set of crisp values between zero and one, respectively. Das et al. [17] introduced the notion
of neutrosophic fuzzy sets by combining fuzzy sets with neutrosophic fuzzy sets to overcome
the difficulties in handling the non-standard interval of neutrosophic components.

On the other hand, the fuzzy set theory had been applied and contributed to the general-
ization of many fundamental concepts in algebra. Extensive research has been done on the
fuzzy algebraic structure of semirings introduced by Vandiver [18], which is a generalization
of a ring by relaxing the conditions on the additive structure requiring just a monoid rather
than a group and have been proven useful for dealing with problems in various areas. The
application of semirings had been studied extensively by Golan [19] and Glazek [20].

Ahsan, Saifullah and Farid Khan |21] initiated the study of fuzzy semirings, while Feng, Jun
and Zhao [22], and Yousafzai et al. [23] studied semigroups and semirings using fuzzy set and
soft sets, respectively. Furthermore, Mockor [24] introduced the notion of a semiring-valued
fuzzy set for special commutative partially pre-ordered semiring and introduced F-transform
and inverse F-transform for these fuzzy-type structures. Other than that, palanikumar et
al. [25-30] studied the algebraic structure of various semirings that constitute a natural gen-
eralization of semirings.

Recently, many studies applied bipolar fuzzy information in various algebraic structures,
for instance, semigroups [31-33] and BCK/BCI-algebras [34-37|. Zararsz et al. [38] discussed
the notion of bipolar fuzzy metric spaces with application. Selvachandran and Salleh [39] in-
troduced vague soft hyperrings and vague soft hyperideals. Jun, Kim and Lee [40] introduced
bipolar fuzzy translation in BCK/BCI-algebra and investigated its properties, whereas Jun and
Park [41] introduced bipolar fuzzy regularity, bipolar fuzzy regular subalgebra, bipolar fuzzy
filter, and bipolar fuzzy closed quasi filter in BCH-algebras. Apart from that, Sen, Ghosh and
Ghosh [42] extended the study of semirings and proposed the concept of bisemiring in 2004.
Later, Hussain [43] defined the congruence relation between bisemiring and bisemiring homo-
morphisms, followed by the factor bisemiring. Hussain et al. |[44] further generalized bisemiring
to a new algebraic structure called -semiring and congruence relations on homomorphisms and
n-semirings.

To the best of our knowledge, studies on bisemiring theory using bipolar valued neutro-
sophic sets have not been studied extensively, and further generalization for bisemiring is still
needed for various practical problems. In this paper, we introduce the notion of bipolar valued
neutrosophic subbisemiring (BVNSBS), level sets of BVNSBS, and bipolar valued neutro-
sophic normal subbisemiring (BVNNSBS) of a bisemiring. The concept of BVNSBS is a new

generalization of subbisemiring over bisemirings. We discussed the theory for (£, 7)-BVNSBS

M.Palanikumar, K.Arulmozhi, Ganeshsree Selvachandran and Sher Lyn Tan, New approach
to bisemiring theory via the bipolar valued neutrosophic normal sets



Neutrosophic Sets and Systems, Vol. 55, 2023 @

and (&, 7)-BVNNSBS over bisemiring theory and presented several illustrative examples. The
rest of the paper is organized as follows: Section 2 outlines the preliminary definitions and
results, Section 3 introduces the notion of BVNSBS, Section 4 discusses the (£, 7)-BVNSBS
and Section 5 discusses the (£, 7)-BVNNSBS.

2. Preliminaries

Definition 2.1. [9] Let U be the universe set. A bipolar valued fuzzy set ¥ in U is an
object having the form ¥ = {(u, 9" (u),9" (u))|lu € U}, where 9~ : U — [-1,0] and 97T :
U — [0,1] are mappings. The positive membership degree 97 (u) denoted the satisfaction
degree of an element u to the property corresponding to a bipolar valued fuzzy set ¥ =
{{u, 9" (u), 9~ (u))|u € U}, and the negative membership degree 9~ (u) denotes the satisfaction
degree of u to some implicit counter-property of ¥ = {{u, 9" (u),9~ (u))|u € U}. If 97 (u) # 0
and ¥~ (u) = 0, it is the situation that u is regarded as having only positive satisfaction for
9 = {(u, 9% (u),9" (u))|u € U}. If 97 (u) = 0 and 9~ (u) # 0, it is the situation that u does
not satisfy the property of ¥ = {(u, 9" (u),9” (u))|u € U} but somewhat satisfies the counter
property of ¥ = {{u, 9" (u),9” (u))|u € U}. It is possible for an element u to be 97 (u) # 0
and ¥~ (u) # 0 when the membership function of the property overlaps that of its counter-
property over some portion of the domain. For the sake of simplicity, we shall use the symbol
¥ = (U;9~,97) for the bipolar valued fuzzy set ¥ = {{u, 9" (u), 9~ (u))|u € U}, and use the

notion of bipolar fuzzy sets instead of the notion of bipolar valued fuzzy sets.

Definition 2.2. [11] A neutrosophic set K in a universe set U is an object having the
structure K = {(m, 9% (m), 9% (m), 9% (m)) |m € U}, where 9% (m), 9% (m), 9% (m) : U —
[0, 1] represents the truth-membership function , the indeterminacy membership function and
the falsity-membership function respectively. There is no restriction on the sum of 19%, 19%, 191;(

ands00§1971;+19§{+29f(§3.

Definition 2.3. [11] Let K = {(m,9%(m), 9% (m),9%(m))/meU} and L =
{{m, 9T (m), 9% (m), 9% (m))|m € U} be any two neutrosophic sets of a set U. Then
KNL= { <m,min{ﬂ%(m),ﬁ%(m)},min{ﬁ%(m),19£(m)},max{ﬁf{(m),z9€(m)}> ‘m € U},

K UL = { ((m, max{v} (m), 9T (m)}, max {9 (m), 9}, (m)}, min{0f (m), 9 (m)}) |m € U}.

Definition 2.4. [11] For any neutrosophic set K = {(m, 9% (m), 95 (m), 9% (m))|m € U} of
a set U, we defined a (£, 7)-cut of as the crisp subset {9% (m) > &, 91 (m) > €, 9E(m) < 7|m €
U} of U.

Definition 2.5. [11] Let K and L be any two neutrosophic set of U.  Then

K x L = {ﬁ%xL(m,n),ﬁ%xL(m,n),ﬁﬁxL(m,n)|Vm,n € U}, where ﬁrﬁxL(m,n) =
. 9L (m)+9L (n

min{0% (m), 0% (n)}, Ok, (m,n) = LWL 9l () = max{9E (m), 0F (n)}.
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Definition 2.6. [44] A fuzzy subset K of a bisemiring (S,W,Ws, W) is said to
be a fuzzy subbisemiring of S if Yx(m Wy n) > min{dgx(m),dx(n)}, Ix(m Yo n) >
min{dx(m),x(n)}, ¥k (m ¥z n) > min{dx(m),dx(n)}, for all m,n € S.

Definition 2.7. [44] Let (S1,+,-, x) and (S2,H,0,®) be any two bisemirings. A function
¢ : S1 — Sy is said to be a homomorphism if ¢(m + n) = ¢(m) B ¢(n),d¢(m - n) = ¢(m) o
d(n),d(m x n) = p(m) ® ¢(n), for all m,n € Sy.

3. Bipolar Valued Neutrosophic Subbisemiring (BVINSBS)

In what follows, let S denote a bisemiring unless otherwise noted. In this section, we com-
munication the concept of bipolar valued neutrosophic subbisemiring, strongest neutrosophic
relation on §. Furthermore, we introduce the arbitrary intersection bipolar valued neutro-

sophic subbisemiring and list some properties.

Definition 3.1. A bipolar valued neutrosophic subset K of S is said to be BVNSBS of S if

it satisfies the following conditions:

I (m Wy n) w7
Ji" (m @i n) > min{d3" (m), 93" (n)}, (ag (m &) n) K<m>;%<<>)
U5 (m Wy n) < max{Vg (m), 05 (n)}
9L (m Wy n) > min{dEt (m), 9% (n)}, I (m Wy n) w,
95 (m Wa n) < max{Vg (m), 9% (n)} (19 (m Wa n) W)
9TF i ) 2 min{o% (m), 0% (1)},
I (muzn) < max{¥k (m), 9% (n)} (19? m W n) W)
19% (mwsn) < w

P (m n) < max{ 9" (m), 95" (n)},
P (m iy ) > min{0f (m), 9 (n)}
L (m 9y n) < max {0 (m), 9k* (n)},
I (mwy ) > min{0f (m), 9 (n)}
DI (m s n) < max{9f* (m), 95 (n)},

O (m s n) = min{0f (m), 9% (n)}

for all m,n € S.

Example 3.2. Let S = {ly,ls,13,14} be the bisemiring with the following Cayley table:
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Wil |la|l3|ly Wo [l1 | la]l3]ly W |11 |la]l3]|ly
Ll | h|h | 4L I3l Ll |h|h
lo [l ||l | lo 1o la|ly]|ly lo [l ]la]l3]|ly

bl |l |l3|la|lg|la||l3|la|la|ls|ly

ly | la]l3|ly Iy [lalg]lg|ly lg [l |y |la]ly

(0§(1), 95 (1)) =1 =1, =1 =1
(ﬂ?(l), 19?(5)) (0.55,—0.7) | (0.35,—0.6) | (0.15,—0.3) | (0.25,—0.4)
(z??(l), 191{;([)) (0.65,—0.8) | (0.5,—0.5) | (0.3,—0.1) | (0.4,—0.2)
<19f(+(l),19f{(l)> (0.25,—0.15) | (0.35,—0.25) | (0.65, —0.65) | (0.55, —0.45)

Clearly, K is an BVNSBS of S.
Theorem 3.3. The intersection of a family of BV NSBS?® of S is a BVNSBS of S.

Proof. Let {O;]i € I} be a family of BVNSBS® of S and K = ()0;.
el
Let m and n in S. Now,

1T (mwy n) = 1I€l§ ﬁgj(m W1 n)

> inf min{d5 (m), 95} (n)}
1€ ¢ '

. . T+ . T+

= min {12; U0, (m)vig Vo, (n)}

= min{ﬂj[;+ (m), 19?_(”)}

19%‘ (mWyn)=sup 19:5: (m W1 n)

el

< sup max{ﬁg.f (m)a 195-7 (n)}
i€l ' '

s fsup v T

= max sup ¥, (m),sup v, (n)}

iel v el ¢

= max {05 (m), 9% (n)}.
Now,

P (m Wy n) = Eg’ ﬁlot(m W1 n)

19[+ m _|_19]+ n
A QRRZAQ
i€l 2
inf I+ inf I+
ier Jo, (m) + inf vo, (n)

2
_ 0 (m) + 0K ()
2
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19%_ (mWin)= Slel? ﬂIO:(m W1 n)
1

ol m) 4 5 ()
< sup
iel 2

sup 19[0: (m) + sup 19{); (n)
icl iel
2
O m) + 9l ()
5 )

Now,

z9f(+(m W1 n) = sup 195+ (m Wy n)
iel "
F+ F+
< sup max{d,"(m), 5" (n)}
iel ! ‘
= max qsup v, (m), sup Uo, (n)
il iel
= maux{ﬁ?r (m), 19§+ (n)}

Vi (m i n) = inf 95 (mwy n)
i€ v
> inf min{dg,(m), 96, (n)}
i€ ¢ ¢
o . . F— . F—
— min {12; Jo, (m), 12? Jo, (n)}

= min{dl (m), 9 (n)}.

Similarly, we can prove that other two operations. Hence K is an BVNSBS of S.

Theorem 3.4. If K and L are any two BVNSBS?® of §1 and S respectively, then K X L is
a BVNSBS of §1 X Ss.

Proof. Let K and L be two BVINSBS?® of §; and Sy respectively. Let mq, mg € &1 and

ni,ng € So. Then (my,n;) and (meg,n2) are in S x Sa. Now,

Oictp[(m1,n1) Wi (ma,na)] = O3k | (ma w1 ma, ny W1 no)
= min{9E" (my Wy ma), 9L (ng Wy ng)}
> min{min{V7* (m1), 95" (ma)}, min{d7 " (n1), 97 * (n2)}}
= min{min {07 (m1), 97 (n1)}, min {05 (m2), 97 * (n2)}}

= min{d}%; (m1, 1), 95% (a2, n2)}.
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Similarly, 9% ; [(m1,n1) W1 (2, n2)] < max{d% ; (m1,n1), 9%, ; (ma2,na)}.
Now,

WL (ma,na) Wh (ma,ne)] = 95, (m1 81 ma, ny Wy no)

B G1F (ma Wy ma) + 95T (ng W1 no)

N 2

1| 95 (ma) + 05 (ma) n 97 (ny) + 97 (no)
2 2 2

(95 (ma) + 07 (m) | 03 (ma) + 19£+<n2>]
2 2

Y

_19?“(7711, ny) + %(erL(mz, 712)} -

Similarly, 95, [(m1,m1) 1 (m2,m2)] < 3915, (m1,m0) + 995, (m2,m2)]
Now,
OEL L [(m1,m1) Wy (ma, na)] = 95T (m1 W1 ma, ny Wy ny)
= max{%??’(ml GH mz), 19€+(TL1 W1 712)}
< max{max {9 om1), 95 (ma)}, mas {0 (), 05 (nz)} )
= ma{max{I5F (my), 05+ (n0)}, max 95+ (ma), 95 (1)} }
= max{0}.} | (m1,m1), 0% (ma,na)}.
F

Similarly, 95 ; [(m1,n1) W1 (m2,n2)] > min{9k, | (m1,n1), 9% | (ma,n2)}.

Similarly, we can prove other two operations. Hence, K x L is an BVNSBS of S.

Corollary 3.5. If K1, Ko, ..., K, are the family of BVNSBS® of 81,83, ...,Sn respectively,
then K1 X Ko X ... x K, is an BVNSBS of §1 x &3 X ... X &,.

Definition 3.6. Let K be a bipolar valued neutrosophic subset in &, the strongest neutro-

sophic relation on S, that is a bipolar valued neutrosophic relation on K is O such that

(ﬁng(mm) = min{d" (m), ﬁfﬂn)},) (ﬁéﬂm, ) = Tl ) )

_ _ _ _ 9L (m)+9L (n
95" (m,n) = max{d (m), 95 (n)} |\ 95 (m,n) = Lt ()

(ﬂéﬂm, n) = masx {9 (m), 9+ <n>},)

957 (m,n) = min{d (m), 95 (n))

Theorem 3.7. Let K be the BVNSBS of S and O be the strongest bipolar valued neutrosophic
relation of S. Then K is an BVNSBS of S if and only if O is an BVNSBS of S X S.
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Proof. Let K be the BVNSBS of § and O be the strongest bipolar valued neutrosophic

relation of S. Then for any m = (m3, m2) and n = (n1,n2) are in S X S. Now,

96t (mwyn) =05 [((m1,me) ©r (n1,n2)]
= 195+(m1 W1 ny, me Wy ng)
= min{ﬂﬂﬂml W1 ny), 197[;+(m2 W ng)}
> min{min{d7" (m1), 95" (n1)}, min{95" (m2), 95" (n2)}}
= min{min {07 (my), 5 (ma)}, min {07 (n1), 05+ (n2) 1)
= min{95" (m1,m2), 95" (n1,n2)}

— min{05* (m), 95" (n)}.

Similarly, ﬁgf(m o n) < max{ﬁgf (m), ﬂgf (n)}.

Now,

95" (mwyn) = 95 [((m1,ma) W1 (n1,ny)]
= 19[O+(m1 Wi ni, mo Wy nz)
_ O (m w1 m) + OiF (ma 1 na)
2
19[-1- ﬂ1+ 19[-1— 19[4-
w (m1) + 0% (ny) L UK (ma) + U (nz)]
2 2

1
> -
-2

1 [19§{+(m1) + 9 (ma) N 91 (n1) + 79§<+(n2)]

2 2 2

B O (ma, ma) + 95" (n1,m2)
N 2
_ 95 (m) + 95 (n)

5 .

Similarly, ﬁé_ (mypn) < w.
Similarly, 95" (m wq n) < max{95T(m), 95" (n)} and 95~ (m W1 n) > min{d5 ™ (m), 95" (n)}.
Similarly to prove other two operations. Hence O is an BVNSBS of § x S.

Conversely assume that O is an BVNSBS of & x S, then for any m = (mj, mg) and

n = (n1,n2) are in § x S. Now,

min{ﬁ?“(ml Hq nl), 29?‘(1712 GH TLQ)} = ﬁng(ml Wi ni, mo Wy TLQ)
= ﬁng[(mth) Wi (n1,n2)]

= ﬁng(m W1 n)
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> min{dg* (m), 95" (n)}

= min{d95" (m1,ma), 95" (n1,n2)}

— min{min{oT (m1), 9+ (ma) }, min{0 T (n1), 05 (n2)}.
If V5 (ma W1 nq) < I (ma Wy ne), then 95 (mq) < 951 (m2) and 95" (n1) < 9% (n2).
We get 95T (my Wy ny) > min{d%"(my), 9% (n1)}.

max{ﬁ (m1 G nl) ﬁjl;_(mQ Hq ng)} = ﬂg_ (m1 W1 Ny, mo Wy ’ng)
=957 [(m1,m2) W1 (n1,n2)]
= 13%_ (m Wy n)
< max{#5,”(m), 94, (n)}
= max{ﬁg_ (mq, ma), 19:8_ (n1,n2)}
= max{max{07 (m1), 9%~ (m2)}, max{0p (m), 9% (n2)}}.
If ﬂjlg_(ml Wy ng) > ﬂﬂ_(mg W1 ng), then 197[;_(m1) > 19£_ (mg) and 197;(_ (n1) > 19,{(_(”2).
We get 19%‘ (myWyng) < max{ﬁﬁ_ (ml),ﬁﬁ_(nl)} for all mi,n; € S. Now,
1
5 ﬁ?(ml Hq nl) + ﬁ?(mg Hq ng):| = 19{)+(m1 W1 ni, mo Wy 712)
= 95" [(m1,m2) W1 (n1,n2)]
= 95" (m Wy n)
- 57 (m) + 95 (n)

= 2
_ 1910+(m1,m2) + ﬁgr(nl,nQ)
2
1 [ﬁgy(ml) 0 (ma) | O () + ﬁgg(ng)]
2 2 2 '

If 19§<+(m1 GH nl) < ﬁ?(mg A ng), then 19§<+(m1) < 19§(-+(TTL2) and ﬁﬁr(nl) < 19§(+(n2)

OLF (ma) it
We get, ﬁ?(ml Wy ng) > M

Similarly, % 917 (my Wy ) + 9k (ma by Tl2 <3

[ I (m1)+19 (mz2) " 19;(n1)42ﬂ9§{(n2)]'
>

If 957 (my Wi ny) > 957 (ma Wy na), then 94 (my) ) and ¥4 (n1) > 94 (na).

We get, 19? (my1 W ny) < ﬂﬁ(i(ml);ﬂf( (1)

Similarly, max{0%" (my w1 ny), 95" (ma W1 n2)} < max{max{95"(m1), 95" (m2)},

max(9" (n1), 01 (n2)} .

If ﬁf{Jr(ml Wy ny) > 19§+(m2 W1 ng), then 0F+( 1) > 19F+( 2) and ﬁfj(m) > ?9f{+(n2).

We get, 95 (mq Wy ny) < max{95"(m1), 95" (n1)}.

Similarly, min{95~ (mq W1 n1), 95 (ma W1 ng)} > min{min{v% " (m1), 9% (m2)},

min{dp " (m), 0" (n2)}}.
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If ﬂﬁ(_(ml Wi ny) < ﬁf(_ (mg Wi ng), then 19?(_ (mq) < 19?(_ (mg) and 195{ (n1) < 19?(_ (ng2).
We get, 95 (mq W1 n1) > min{dh (mq), 95 (n1)}.
Similarly to prove other two operations. Hence K is an BVNSBS of S.

Theorem 3.8. Let K be bipolar valued neutrosophic subset in S. Then ¥ =
{(19%?,19}1{), (19?,19%7), (19?(+,?9f{)} is an BVNSBS of S if and only if all non empty level
set 945) s a subbisemiring of S fort,s € [~1,0] x [0, 1].

Proof. Assume that ¢ is an BVNSBS of S. For each t,s € [-1,0] x [0,1
ai,as € 9. We have 19?{+(a1) > t,1911;+(a2> > ¢ and 19]+(a1) >t 19]+(a2)
95 (a1) < 5,05 (a2) < 5. Now, 95t (a1 Wy ag) > min{dL(a1), 0% (a2)}
I (ar Wy ag) > w > Mt = ¢ and OEF (a1 Wy az) < max{¥iT(a1), 95 (az)
Since, t,s € [~1,0] x [0,1], we have 95" (a1) < t,9%"(az) < t and Wi (a1) < t, 9% (a2)
and 957 (a1) > 5,95 (a2) > s. Now, v5 (a1 Wy a2) < max{d% (a1),d% (ag)} < t and
I (a1 W ag) < w < S =t and 95 (a1 W az) > min{d% (a1), 0% (a2)} >
This implies that a; Wy ag € 945), Similarly, to prove other two operations. Hence 9Es) ig g
subbisemiring of S for each ¢,s € [-1,0] x [0, 1].

Conversely, assume that () is a subbisemiring of S for each t, s € [—1,0] x [0, 1]. Suppose
if there exist aj,az € S such that 951 (a1 W1 az) < min{vE" (a1), 95" (a2)}, V& (a1 W1 az) <
w and 95" (a1 Wy a2) > max{¥5T(a1), 95 (az)}. Select t,s € [0,1] such that
91T (a1 W1 ag) < t < min{dit(a1), 95" (az)} and 91F (a1 Wy an) < t < w and
19f(+(a1 W1 ag) > s > max{ﬁf(Jr(al),l?f(Jr(ag)}. Then aq,as € 949, but a; Wy as ¢ 9(ts),
Suppose if there exist ai,ao € S such that ﬂﬁ_(al Wi az) > max{ﬁﬁ_(al),ﬂﬂ_(ag)},
79%_(@1 W1 ag) > w and 95 (a1 Wi az) < min{vk (a1),9% (az)}. Select
t,s € [~1,0] such that 9% (a1 Wy ag) > t > max{¥9L " (a1), 9% (az)} and 9% (a1 Wy az) >
t > w and 957 (a1 W1 ag) < s < min{¥k " (a1), 9% (a2)}. Then ai,az € 949,
but a; Wy ag ¢ 9. This contradicts to that 9(*) is a subbisemiring of S. Hence ﬁﬂ*(al W1
ag) > min{d5" (a1), 05" (a2)}, I3 (a1 Wi az) < max{dy (1), % (ag)}, U3 (a1 Wi ag) >
w, W1 (a1 Wy ag) < w and 951 (a1 Wy az) < max{95 " (a1), 95" (a2)},
ﬂf(_(al W1 ag) > min{ﬂf{(al), 19];{_(@2)}. Similarly to prove other two operations such as Ws
and W3. Hence 9 = { (0}, 9% ), (955, 9% ), (0k", 9% )} is an BVNSBS of S.

Definition 3.9. Let K be any BVNSBS of S and @ € §. Then the pseudo bipolar valued
neutrosophic coset (aA)? is defined by

(((aﬂfﬁm(m) = z(aw?(m),)
((a057)?) (m) = 2(a)d5 (m)
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for every m € S and for some z € P, where P is a any non-empty set.

Theorem 3.10. Let K be any BVNSBS of S, then the pseudo bipolar valued neutrosophic
coset (aA)* is an BVNSBS of S, for every a € S.

Proof. Now, ((a0%")?)(m Wy n) = 2(a) 95T (m W1 n) > z(a) min{dL"(m), 955 (n)} =
min{z(a) 95" (m), 2(a) 95" (n)} = min{((a¥%")?)(m), ((a9}")?)(n)}. Thus, ((ad")?)(m

n) > min{((a03")?)(m), (a3 H)*) ()} Now, ((@di)?)(m wh n) = z(a) 93t (m &
) > z(a)[ﬁ Foride) ) 0 ) 0 ) (@RI @O0 g

(@95))(m o m) > IDNMHEADDD o (@9f4)7) (m 1 n) = 2(a) Dl (m ) ) <
z(a) max{ﬁff(m), 19?’(71)} = max{z(a) ﬂfﬁ(m), z(a) 19f(+(n)} = max{((aﬁf{k)z)(m),

(a95")?) ()} Thus, ((a9%")*)(m w1 n) < max{((ad")*)(m), ((a0")7)(n)}.
Also, ((aﬁT ) (m Wy n) = z(a) 9 (m W n) < z(a) max{dk (m), 9L (n)} =
max{z(a) (m), z(a) ¥~ (n)} = max{((a}")*)(m), ((aV}7)*)(n)}.

z(a ) ((
m w1 n) < max{((adz)?)(m), ((a¥3")*)(n )} Now, ((a¥)?)(m Wy n) =
< 2a )[ﬂi‘(m);ﬂﬁé(n)] _ =) O (m)al) () (@)Y n)

Thus, ((aﬁ?{_)z (
z(a) 19? (m Wy n)

Thus, ((a95)7)(m @y n) < (IEHE@INW — Now - (@9F-))(m @) n) =
(@) 5 (m sy n) = 2(a) minV(m), 05" (n)} = min{z(a) V5 (m), 2(a) Vi (m)} =
min{((ad")?)(m), (@0 )*)(n)}. Thus, ((ad)*)(m i n) > min{((ady")?)(m),
((a9%7)?)(n)}. Similarly to prove other two operations such as Wy and Ws. Hence (aA)? is an
BVNSBS of S.

Definition 3.11. Let (51, V1, Ve, Vs) and (Sz2,U1, U9, Ls) be any two bisemirings. Let A :
S1 — S be any function and K be any BVNSBS in S;, O be any BVNSBS in A(S;) = So.
If 9 = {(ﬁﬁﬂ ﬁﬁ_), (19?, 19%_), (19?r7 19?(_)} is a bipolar valued neutrosophic set in Sy, then

Yo is a bipolar valued neutrosophic set in Sy, defined by

Py {supﬂ}}"’(m) if meA~'(n) =) = {mwfg(m) if meA(n)

0 otherwise -1 otherwise

0 otherwise -1 otherwise

O (n) = {supﬂ?‘(m) if meAt(n) 9T (n) = {infﬁﬁ(_(m) if meAt(n)

1 otherwise 0 otherwise

I+ (n) = {infﬂ?’(m) if meAt(n) 9= (n) = {supﬁf{(m) if meAt(n)
for all m € §1 and n € Sy is called the image of ¥ under A.
If 9o = {(195+, 1957), (19{)+, 29107), (295+, 1957)} is a bipolar valued neutrosophic set in Sy, then
neutrosophic set 9 = Aodp in S [ie, the bipolar valued neutrosophic set defined by 9 g (m) =

Yo(A(m))] is called the preimage of Jp under A.
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Theorem 3.12. Let (Si1,V1, Ve, Vs) and (S2,U,Us, L) be any two bisemirings. The homo-
morphic image of BVNSBS of S is an BVNSBS of Ss.

Proof. Let A : §§ — Sy be any homomorphism. Then A(m Vi n) = A(m) U
A(n),A(m Va n) = A(m) Uz A(n) and A(m Vi n) = A(m) Us A(n) for all m,n € S;. Let
O = A(K), K is any BVNSBS of S;. Let A(m),A(n) € Ss. Let m € A~1(A(m)) and

n € A~'(A(n)) be such that 9% (m) = sup  9ET(2), 9ET(n) =  sup  9LT(2) and
2€A-1(A(m)) 2€A-1(A(n))
T— _ . T— T— o . T—
Uy (m) = zeA—lln(f\(m))ﬁK (2), ¥ (n) = zEA—l{l(f;\(n))ﬁK (z). Now,
IorAm Ui Am) = sup ()

2 eA=1(A(m)U1A(n))

= sup 197[;+(z/)
2/ €A=1(A(mV1in)

= 197[;—'— (m V1 Tl)
> min{29£+(m), 19?(71)}

= min{ﬂg+A(m), ﬂngA(n)}.

Thus, 951 (A(m) Ui A(n)) > min{v5TA(m), 95T A(n)}.
95 (A(m) Uy A(n)) = inf 0T (2
z €A=1(A(m)UrA(n))

= inf 9T (2
Zen-1 (A(mV1in)

=95 (mVin)
< max{ﬂg_ (m), 1971;_ (n)}

= max{ﬁg_A(m), ﬁg_A(n)}.

Thus, 95~ (A(m) Uy A(n)) < max{95~A(m), 95" A(n)}.

Let m € A~*(A(m)) and n € A~'(A(n)) be such that ¥4 (m) = sup 9L (2),
z€A—1(A(m))
Vit (n) = sup 9 (2), 95 (m) = inf 9 (2), 95 (n) = inf 9L (2).
K= s 0RO = e o), v = 0l ()
Now,
I Am) i Am) = s 9F(Z)

2 A1 (A(m)UIA())
= sup 19?(2/)
7 €A~ (A(mV1n)
=91 (m vy n)
)+ 0 ()
- 2
OGP A(m) + 95 A(n)
2
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I I
Thus, 95 (A(m) Uy A(n)) > 20 AmH06"Aw)

I— -
Similarly, 191 (A(m) Uy A(n)) < Yo A(m);ﬂo Aln)
Let A(m),A(n) € So. Let m € A=*(A(m)) and n € A=*(A(n)) be such that
IEF(m) = inf VEF(2), 95 (n) = inf VEF(2), 95~ (m) = sup 9E= (2
() =y T B ) = Iy P (2 i ) seAL(AGm) )
and 95~ (n) =  sup 957 (2). Now,
zeA—1(A(n))
I (A(m) Uy A(n)) = inf 9+ (2
o (A(m) U1 A(n) / in K (2
z €A=L (A(m)U1A(n))

= inf I
2 €A1 (A(mVin) K ( )

= 19?(+ (m \%1 n)
< max{95(m), 95 (n)}
= max{ﬂg+A(m), 795+A(n)}

Thus, 95 (A(m) Uy A(n)) < max{¥5"A(m), 95T A(n)}.
Similarly, 95~ (A(m) Uy A(n)) > min{d5~A(m), 95 A(n)}.
Similarly, to prove other two operations. Hence O is an BVNSBS of Ss.

Theorem 3.13. Let (S1,V1,Va,Vs) and (S2,Uh,Us, Ls) be any two bisemirings. The homo-
morphic preimage of BVNSBS of Sy is an BVNSBS of S;.

Proof. Let A : S — S2 be any homomorphism. Then A(m Vi n) = A(m) Uy A(n), A(m Vs
n) = A(m) Uz A(n) and A(m Vs n) = A(m) Us A(n) for all myn € S;. Let O = A(K),
where O is any BVNSBS of S;. Let m,n € S;. Now, 29%*(771 Vin) = ﬁng( (m Vy n))
IS (A(m) Uy A(n)) > min{d5TA(m), 957 A(n)} = min{9}" (m), 95+ (n)}. Thus, 19T+(

n) > min{d5"(m), 9% (n)}. Now, 04 (m vin) = 957 (A(m v n)) = 957 (A(m) U; A(n ))
ﬁgA(m);ﬂ?gA(n) = ﬂg(m);ﬂ?(n). Thus, ﬂ?(m Vin) > w Now, 19F+(m Vin) =
19g+(A(m\/1 n)) = 195+(A(m)l_ll A(n)) < max{ﬁg+A(m),ﬁg+A(n)} = max{05" (m), 95" (n)}.
Thus, 95" (m Vi n) < max{d5F(m), 95 (n)}. Also, 9% (m Vi n) = ﬁgf(A(m Vin)) =
957 (A(m) Uy A(n)) < max{d5 A(m), 95 A(n)} = max{d} (m),9) (n)}. Thus, 95 (m V4
n) < max{dy (m),9% (n)}. We have, 19%_ (mVin) = 1910_(A(m\/1 n)) = 196_ (A(m)Ui1A(n)) <
Yo MmIIo M) _ I M () g 9l (i vy ) < ST N 9F= (v, ) =
D5~ (Am Vi n)) = 95~ (A(m) Uy A(n)) = min{85~A(m), 95~ A(n)} = min {0 (m), 05~ (n)}.
Thus, 95~ (m Vi n) > min{95 " (m), 9% (n)}. Similarly to prove other two operations, hence
K is an BVNSBS of S;.

,_n

Theorem 3.14. Let (S1,V1,Va,Vs) and (Sz,U,Us, Us) be any two bisemirings. If A : S —
So is a homomorphism, then A(K ) is a level subbisemiring of BVNSBS O of Sa.
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Proof. Let A : S — S2 be any homomorphism. Then A(m Vi n) = A(m) Uy A(n), A(m Vs
n) = A(m) Uy A(n) and A(m Vzn) = A(m) Us A(n) for all m,n € §;. Let O = A(K), K is an
BVNSBS of S;. By Theorem@, O is an BVNSBS of Sz. Let K(; 5) be any level subbisemiring
of K. Suppose that m,n € K ). Then A(m Vqin), A(m Van) and A(m Vzn) € K ). Now,
ITT(A(m)) = 9 (m) > t, 95T (A(n)) = 9%+ (n) > t. Thus, 95T (A(m) Uy A(n)) > 951 (m V1
n) > t. Now, 19{)+(A(m)) =91 (m) >t 191+( (n)) = ¥4F(n) > t. Thus, ﬂgr(A(m) Ui A(n)) >
9 (m Vi n) > t. Now, 19F+( (m)) = 95k (m) < s,ﬁS"'(A(n)) = 95 (n) < s. Thus,
IET(A(m) Uy A(n)) < 95 (m vin) < s, for all A(m),A(n) € Sa. Also, 95 (A(m)) =
i (m) < t, 19T (A(n)) = 937 (n) < t. Thus, ﬁg_(A(m) Ly A(n)) < 957 (mvin) <
Now, 95 (A(m)) = 95 (m) < t,95 (A(n)) = 9% (n) < t. Thus, 95 (A(m) Ly A(n)) <
91 (m Vi n) < t. Now, ﬁg_(A(m)) = 957 (m) > s,ﬁg_(A(n)) = 957 (n) > s. Thus,
IE(A(m) Uy A(n)) > 95 (m vin) > s, for all A(m),A(n) € Sp. Similarly to prove other
operations, hence A(K(; 4)) is a level subbisemiring of BVNSBS O of S,.

~

Theorem 3.15. Let (S1,V1, Ve, Vs) and (Sa, U1, Us, Us) be any two bisemirings. If A : Sy —
Sz is any homomorphism, then K ) is a level subbisemiring of BVNSBS K of Si.

Proof. Let A : S — S2 be any homomorphism. Then A(m Vi n) = A(m) Uy A(n), A(m Vs
n) = A(m) Us A(n) and A(m Vsn) = A(m) Us A(n) for all m,n € S;. Let O = A(K), O is an
BVNSBS of S;. By Theorem K is an BVNSBS of 1. Let A(K(; ) be a level subbisemir-
ing of O. Suppose that A(m), A(n) € A(K(,)). Then A(m Vin),A(mVan)and A(m Vin) €
A(Ks))- Now, 9ET(m) = 95T (A(m)) > ¢,9%"(n) = 95T (A(n)) > t. Thus, V5 (m Vi n) >
min{9%"(m), 95" (n)} > t. Now, 915 (m) = ﬁg(A(m)) > t, 95 (n) = 19IO+(A(n)) > t. Thus,
9 (mvyn) > BOHENEW Sy Now 9T+ (m) = 95+ (A(m)) < 5,95 (n) = 95T (A(n)) < s.
Thus, 95" (m vin) = ﬁng(A(m) Ly A(n)) < max{v5"(m), 95 (n)} < s, for all m,n € Sy.
Also, 95 (m) = 95 (A(m)) < t,9% (n) = 95 (A(n)) < t. Thus, 95 (m Vi n) <
max{ﬁ%;_(m),ﬁ%i(n)} %t. Now, ﬂﬁ{(m) = ﬁlo_(A(m)) <t, 19%_(n) = 1910_ (A(n)) <t. Thus,
91 (mvyn) < 2N <4 Now, 95 (m) = 95~ (A(m)) > 5,95 (n) = 95~ (A(n)) > s.
Thus, 95~ (m vin) = 1957 (A(m) Uy A(n)) > min{0h"(m), 95" (n)} > s, for all m,n € S;. In
the same way, prove the other two operations, hence Ky ;) is a level subbisemiring of BVNSBS
K of &;.

4. (¢, 7)-Bipolar Valued Neutrosophic Subbisemiring

In this section, we discuss (&, 7)—bipolar valued neutrosophic subbisemiring. In what follows
that, (¢7,7%) € [0,1] and (£7,77) € [-1,0] be such that 0 < (T <7t <land -1 <7 <
¢~ <0, both (&§,7) € [0, 1] are arbitrary but fixed.
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Definition 4.1. Let K be any bipolar valued neutrosophic subset of S is called a (&, 7)-
BVNSBS of S if it satisfies the following conditions:

I+ m I+ n
(max{é‘ﬁ;r(m w1 n), €T} > min {M, T+})

min{01" (m w1 n), €} < max { L) oY
<max{ﬁ};+(mw1 n),§+}>min{19;T<+(m)ﬂ9;T<+(n),T+},> w (men), &7 < 2 :

min{l??(_ (mwyin), &} < max{ﬂﬁ_ (m), 1932_ (n), 77} OR

T+ + . T+ T+ + I+ + k4 +(m)+191+(n) +
max{dp " (mWan), T} > min{d" (m), 95 (n), 77}, max{d (mzn),§ }>m1n{7,‘r }
min{l?f(_ (mwan), &} < max{ﬁ};_ (m), 1971;_ (n), 77} mln{ﬂK (mwan), £} < max{ K (m)+19K (n) T_}

<max{191T<+(m Wz n), §+} > min{ﬂ};+ (m), 19£+(n), T+}, OR
in{9% " (mWsn), €7} < max{93~ (m), 9% (n), 7 I (m)+0 1 (n
min{9%~ (m wa n), € } < max{9%" (m), 9 (n), 7~} (max{w(mwsn%m>mm{ﬂ,{( okt )7#})

I— I—
min{ﬁﬁ; (mWzn), &} < max {W, -r*}

min{95 (m w1 n),+} < max{dhT (m), 95T (n), 77},
max {9}, (m w1 n),£} > min{d (m), 9% (n), 7"}

min{d gt (m W2 n), £} < max{o5" (m), 95" (n), 71},
max{ﬂf(_ (mwyan), &7} > min{ﬂf(_ (m), ﬂf(_ (n), 77}

min{ﬁi+ (m w3 n), E*} < max{t?iJr(m), 19£+(n), T+},
max{ﬁf(_ (mwysn), &7} > min{ﬁi_ (m), ﬁf(_ (n), 77}

for all m,n € S.

Example 4.2. By the Example

(W05:(1), ()) I=1 =1, =1 =1
<197[;+(l) ) (0.85,-0.95) | (0.8,-0.75) | (0.7,—0.55) | (0.75, —0.65)
(0?(1) ) (0.95,—0.8) | (0.9,-0.7) | (0.8,—0.5) | (0.85, —0.55)
<19F+(l) )) (0.65,—0.25) | (0.85,—0.35) | (0.95, —0.45) | (0.90, —0.40)

Clearly, K is a (0.60,0.70)-BVNSBS of S.

Theorem 4.3. The intersection of family of (§,7)- BVNSBS® of S is a (§,7)- BVNSBS of
S.

Proof. Let {O;]i € I} be any family of (¢,7)- BVNSBS® of S and K = ()0;.

i€l
Let m and n in S. Now,
max{9EF (mwy n), 7} = inf max{ﬂgj(m Wi n), &}
> 1n§ min{95" (m), 95" (n), 71}
1€ O ¢
T s +
= min {af 05, ). i 957 (.7

— min{0%H (m), 9F (n), 7}
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min{Y} " (m 1 n),{ } = sup min{dy (mwh n), &}
i€l !
T— T— -
< sup max{d;, (m),9, (n), 7"}
iel ! !

= max {sup ﬁg__(m), sup v“(T)__ (n), 7'_}
el " ier "

= max{d" (m), 9 (n),7"}.
Now,
max {9k (m i n), €7} = 1n§ max{ﬁlof(m win), &}
i€ ¢

§I+ m %7§I+ n
> inf min{ Oi( )2 Oi( ),T+

i€l

iel Y1 iel
2

inf 95" (m) + inf 95" (n)
= min 7t

1 1
_ min{Wm) ;v;m)ﬁ}.

min{9k (m Wy n), &} = Slel? min{ﬁIO: (mWyn),& }

{ﬂé: (m) + 95, (n) }
2 b

< sup max
i€l
sup ﬁloj(m) + sup ﬁfoj(n)
i€l el —
= max { 5 y T }

. {ﬁ§;<m>+ﬂ§;<n> }
. .

Now,

min{95" (m i n), T} = sup min{d5 " (m W n), T}

il ‘
sup max{ﬂgﬂ'(m), ﬁg+(n), T}
ZGI 2 K2

= max {sup IET (m), su? ﬂgj(n), T+}

IN

k3

icl 1€
— max {95+ (m), 9E* (n), 7}
max{95 " (mw; n), £} = 1r€1§ max{ﬂg; (mWin), &}

> inf min{d5~ (m), 96" (n),7~}
(S ¢ ‘

. . F— . F— _
= min {?g Vo, (m)’ig ¥, (n), 7 }
— min{9E=(m), 95~ (n), 7 }.

Similarly to prove other operations. Hence, K is a ({,7)- BVNSBS of S.
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Theorem 4.4. If K and L are any two (§,7) — BVNSBS® of S§1 and Sy respectively, then
— BVNSBS 0f81 X 52.

K xLisa(§T)

Proof. Let K and L be two (§,7) — BVNSBS? of S§; and S; respectively. Let myi,ma € S;
and ny,ng € Sa. Then (my,n1) and (mg,ng) are in S; X Sa. Now
max {ﬂﬂtL[(ml,m) Wy (m2,n2)],§+}

= max {ﬁﬂf@(ml W1 ma, n1 Y n2)a5+}

= min { max{vﬂ?r(ml Hq mg), §+}, max{ﬁfﬂnl Hq TLQ), f+}}

> mi

n { min{ﬁﬁJr (mq), 19?“ (ma), 7"}, min{ﬁ%Ur (n1), 193-:+ (n2), 7'+}}

in { min {07 (m), 07 ()}, min{0 3 (ma), 07 (n2)}}, 7+ }

= min {ﬂﬁtL(ml,nl),ﬂﬁtL(m%nQ)a 7'+}-

Also, min{ xl(mi,n1) Wy (ma, na)l, 5_} < max {ﬁﬁ;L(ml,nl),ﬁr{{;L(mg,ng),T_}.

Now, max {

| \/

i
.,
-
s

K

[((m1,n1) Wy (M2, n2)], §+}
L (m1 81 ma,ny Wy ng), f+}

max{z? F(my W ma), }+max{19[+ (n1 W1 na), & }] }

+19?—(Tn2)77_+} +min{19?‘(n1) —;-192+(n2)7T+}] }

,(9I+
mln{ K (ml) 9

(95 (ma) + 91" (m) | O (ma) + 19£+<n2>] T+}
2 2 ’

2
. {19
= Imin

L(mi,na) + 95 | (ma, ng) n
2 , T .

19[

1= mo,n
Also, min{ﬁﬁ&L[(ml,nl) W (m2,n2)],§*} < maX{ 2 1);%{“( B 2),7}-

Similarly, min {ﬁf&L[(ml, n1) W (ma,na)], €T

= min {ﬂ?;L(ml W1 ma, n1 W n2)7§+}

= max { min{0f (m w1 ma), €}, min{0]* (m 6y o), €4}

< max

{ ma{9F (ma), 01 (m2), 7} max (9] (m), 9] (n2), 7} }

= max { {max {91 (ma), 95 F (1)}, max{05F (ma), 05 (n2)}}, 7}

= max {195‘(—;L(m17 nl)? 0f(—i_<L(m27 712), T+}'
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Also, maX{ﬁIF&L[(ml,nl) tq (m2,n2)]>§_} > min {ﬁf(;L(mlan1)719f(:<[,(m2,n2)>7'_}-

In the same way, prove the other two operations. Hence K x L is a (£, 7)- BVNSBS of §; x Ss.

Corollary 4.5. If K1, K>, ..., K, are the family of ({,7)- BVNSBS?® of 81,853, ...,Sy, respec-
tively, then K1 X Ko X ... x Ky, is a (§,7)- BVNSBS of §1 x Sa X ... X Sp,.

Definition 4.6. Let K be any (§, 7)- bipolar valued neutrosophic subset in S, the strongest
(&, 7)- bipolar valued neutrosophic relation on S, that is a (£, 7)- bipolar valued neutrosophic

relation on K is O such that

max{ﬁ(TfL (m,n),ET} = min{ﬁ?r (m), 19[T(+ (n), T+},)
min{ﬁ?f (m,n), "} = max{ﬁ%}f (m), 197[;7(71), T~}
max {05 (m. n), £} = min{04! (m), 9% (n), T+},)
min{ﬁlo_ (m,n), &} = max{ﬂﬁ(_ (m), 19%_ (n), 77}

min{9E+ (m, n), £+} = max{0E+ (m), 05+ (n), T+},>
max{ﬁgf (m,n), &} = min{ﬁf{ (m), 1927 (n), 77}

Theorem 4.7. Let K be any ({,7) — BVNSBS of S and O be the strongest (§,7)- bipolar
valued neutrosophic relation of S. Then K is a (§,7) — BVNSBS of S if and only if O is a
(&,7)— BVNSBS of S x S.

Theorem 4.8. Let (S1,V1,Va,Vs) and (Sz,Ui,Us,Us) be any two bisemirings. The homo-
morphic image of (§,7) — BVNSBS of 81 is a ({,7) — BVNSBS of Ss.

Proof. Let A : §§ — & be any homomorphism. Then A(m Vi n) = A(m) U
A(n),A(m Vo n) = A(m) Uz A(n) and A(m Vs n) = A(m) Us A(n) for all m,n € S;. Let
O = A(K), K is any (&,7)-BVNSBS of S;. Let A(m),A(n) € So. Let m € A~Y(A(m))

and n € A~ (A(n)) be such that V5" (m) = sup  9EF(2), 9% (n) = sup  ILF(2),
2€A-1(A(m)) 2eA-1(A(n))
9 (m) = ZeAiiln(g(m)) 917 (2) and 95 (n) = zeAj{l(f;\(n)) 9% (2). Now,
max |95 (A(m) Uy A(n)) ,£F| = max sup 19£+(z/) ,5'1
[ 2 €A1 (A(m)L1A(n))

= max sup e (), 5‘1
| 2 eA-L(A(mV1in)

= max _197[;+(m Vin), f*}
> min {19%? (m), 9%+ (n), T+}

= min {195+A(m), I A(n), T+}.

M.Palanikumar, K.Arulmozhi, Ganeshsree Selvachandran and Sher Lyn Tan, New approach
to bisemiring theory via the bipolar valued neutrosophic normal sets



Neutrosophic Sets and Systems, Vol. 55, 2023 ﬁ

Similarly, min [195_ (A(m) U; A(n)) ,{‘} < max {ﬁg_A(m), ﬂg_A(n),T_}.
Let A(m),A(n) € So. Let m € A~'(A(m)) and n € A~'(A(n)) be such that ¥if(m) =

sup  95F(2) and 9L (n) = sup L (z), 9k (m) = inf $1-(2) and
z€ATL(A(m)) z€A-1(A(n)) zEA-L(A(m))
9 (n) = . j?(fA ) 91 (2). Now,
max [é‘gr(A(m) Ui A(n)) , €7 = max sup 19?(2/) ,§+]
| 2/ €A=L(A(m)Ur1A(n))

= max sup ?9?(2'/) ,5'1
| 2’ €A=L (A(mV1in)

= max _ﬁgf(m Vin), f"'}

- {ﬁﬁ(m) + 95 (n) | 7+}

>
- 2
~ uin {19[O+A(m) + 19IO+A(n) T+}
2 )
o . - _ 05 Am)+95 A(n)
Similarly, min [1910 (A(m) Uy A(n)) ,& } < Inax{ o A ); o A ),7' }
Let m € A™'(A(m)) and n € A~'(A(n)) be such that 95+ (m) = zeA—iIIg\(m)) IEF (2), 951 (n) =
inf  9ET(2), 95k (m)=  sup 9L (2) and ¥ (n) = sup 9% (2). Now,
z€A1(A(n)) zeA=1(A(m)) zeA—1(A(n))
min |95 (A(m) Ui A(n)) ,&F| = min inf ﬁf(Jr(zl) N
_zlEA—l(A(m)uUX(n))

= min inf ﬂf(+(z/) ,§+]
| 2 €A=L (A(mVin)

— min _ﬁf{Jr(m Vin), §+}

IN

max {ﬁfj(m), 9EF (n), T+}
= max {195+A(m), 95T A(n), T+}.

Similarly, max ﬁgf(A(m) Lh A(n)) ,5_] > min {ﬂng(m), ﬂng(n), 7'_}. In the same way,
prove the other two operations. Hence O is a (£, 7)-BVNSBS of Ss.

Theorem 4.9. Let (S1,V1,Va,V3) and (Sz,Us,Us,Us) be any two bisemirings. The homo-
morphic preimage of (§,7)-BVNSBS of Sy is a (§,7)-BVNSBS of S:.

Proof. Let A : S — Sz be any homomrphism. Then A(mVin) = A(m)UiA(n), A(mVan) =
A(m) Uz A(n) and A(m Vs n) = A(m) Us A(n) for all myn € S;. Let O = A(K),
where O is any (& 7)-BVNSBS of Sp. Let m,n € S;. Then max{d%"(m Vi n), &t} =
max{ﬁg"'(A(m Vin)),ET} = max{19:5+(A(m) Uy A(n)), &} > min{ﬁg*'A(m), 192+A(n), N
min{95" (m), 9% (n), 77}, Thus, max{dx" (m V1 n), &} > min{d5 " (m), 9% (n),77}. Also,
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min{Y% " (m Vi n),£°} = min{ﬁg_(A(m Vin)),&}t = min{ﬂg_(A(m) L A(n)), &}
max{95 " A(m), 95" A(n), 77} = max{¥% (m), 9% (n),7~}. Thus, min{d%" (m Vi n),£}
max{dg (m), 9% (n),7"}. Now, max{9¥if(m Vi n),&t} = max{¥5 (A(m Vi n)),+} =
max{ﬁ(If(A(m) Uy A(n)), &7} > min{ﬁ{fA(m),ﬁ{fA(n)ﬁ‘*‘} = min{dL (m),9%F (n), 7+}.
Thus, max{9%5(m vy n),&t} > min{vL (m), 95 (n), 77}, Also, min{9k (m Vi n),&"} =
min{?5 (A(m Vi n)), &~} = min{95 (A(m) Uy A(n)),&} < max{95 A(m), 95 A(n), 77} =
max {9 (m), 9% (n),7~}. Thus, min{d% (m Vi n),€"} < max{dk (m),0% (n),7~}. Now,
min{95"(m vy n), et} = min{ﬂg+(A(m Vin)),Et} = min{ﬁg"'(A(m) Ly A(n)),&F} <
max{95TA(m), 95T A(n), 77} = max{v5 (m), 95" (n), 7+}. Thus, min{95" (m vq n), &} <
max {05 (m), 95T (n), 7}, Also, max{v¥5~(m Vi n),£7} = max{¥5 " (A(m Vi n)), &7} =
max{ﬁgf(/\(m) Ui A(n)), &} > min{ﬁng(m),ﬁng(n),T_} = min{d5" (m), 95" (n), 77 }.
Thus, max{9%5" (m Vi n),&} > min{v% " (m), 95 (n),7~}. In the same way, prove the other
two operations, hence K is a (£, 7)-BVNSBS of S;.

IN A

5. (¢,7)-Bipolar Valued Neutrosophic Normal Subbisemiring

In this section, we interact the theory for (£, 7)-bipolar valued neutrosophic normal sub-

bisemiring. Here BV NNSB.S stands for bipolar valued neutrosophic normal subbisemiring.

Definition 5.1. Let K be any bipolar valued neutrosophic subset of S is said to be a
BV NNSBS of § if it satisfies the following conditions:

(19?(771 Wy n) = 9L (n m),)

IEF (m g n) = 9EF (n Wy m), Vi (m Wy n) = 95 (n Wy m)

Vi (m Wy n) =95 (n W m) OR

I (m g n) = 95T (n Wy m), VI (m Wa n) = 91T (n Wy m),

I (m Wy n) = 9L (n Wy m) (19? (m Wy n) = 94 (n Wy m))

IEF (m Wz n) = 9EF (n Wz m), OR

I (m s n) = 9% (n W3 m) I (m g n) = 95 (n Wy m),
(19%_ (man) =95 (n s m))

IR (m Wy n) = 9T (nw; m),
IET (mwy n) = 95k (nwy m)
IET (m Wa n) = 95T (n Wy m),
95T (m by n) = 95 (n Wy m)

19?’(771 W3 n) = 19?‘(71 W3 m),

IET (m b n) = 95k (nwym)

for all m,n € S.

M.Palanikumar, K.Arulmozhi, Ganeshsree Selvachandran and Sher Lyn Tan, New approach
to bisemiring theory via the bipolar valued neutrosophic normal sets



Neutrosophic Sets and Systems, Vol. 55, 2023 143

Theorem 5.2. (a) The intersection of a family of BVNNSBS® of S is a BVNNSBS of S.
(b) The intersection of a family of (§{,7) — BVNNSBS® of S is a (§,7) — BVNNSBS of S.

Proof. Proof follows from Theorem [3.3] and Theorem (4.3l

Theorem 5.3. (a) If K1, Ko, ..., K,, are the family of BVNNSBS*® of 81,8, ...,S, respec-
tively, then K1 X Ko X ... Xx K, is a BVNNSBS of §1 X Sg X ... X S,,.

(b) If K1, Ko, ..., K,, are the family of ({,7) — BVNNSBS® of 81,83, ...,Sy, respectively, then
Ky x Ky x..xKpisa({,7)—BVNNSBS of §; x Sa X ... X S,,.

Proof. Proof follows from Theorem [B.4] and Theorem [4.41

Theorem 5.4. (a) Let K be any BVNNSBS of S and O be the strongest bipolar valued
neutrosophic relation of S. Then K is a BVNNSBS of S if and only if O is a BVNNSBS
of § x S.

(b) Let K be any (§,7) — BVNNSBS of S and O be the strongest (£, 7) bipolar valued
neutrosophic relation of S. Then K is a ({,7) — BVNNSBS of S if and only if O is a
(&,7)— BVNNSBS of § x S.

Proof. Proof follows from Theorem B.7]

Theorem 5.5. Let (S1,V1,Va,V3) and (Sg,L1, s, Us) be any two bisemirings.

(a) The homomorphic image of any BVNNSBS of S is a BVNNSBS of Sa.

(b) The homomorphic image of any (§,7) — BVNNSBS of &1 is a ({,7) — BVNNSBS of
So.

Proof. Proof follows from Theorem [3.12] and Theorem [4.8

Theorem 5.6. Let (S1, V1, Va,Vs) and (S2,Up,Us, L) be any two bisemirings.

(a) The homomorphic preimage of any BVNNSBS of S is a BVNNSBS of S;.

(b) The homomorphic preimage of any (§,7) — BVNNSBS of Sg is a (§,7) — BVNNSBS
Of 81.

Proof. Proof follows from Theorem [3.13] and Theorem 9l
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