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Abstract. On the one hand, the most extensively used Hierarchical Clustering techniques are the Hierarchical

Divisive Clustering (HDC) algorithms such as DIANA. Its primary goal is to build the tree of Hierarchical

Agglomerative Clustering (HAC) in reverse order. On the other hand, Neutrosophy is an extension of fuzzy

logic and serves as a model of uncertainty. In addition to the truth (T) and falsity (F) elements of fuzzy

logic, single-valued Neutrosophic sets (SVNs) logic estimates the proportion of indeterminacy (I) for a given

proposition. In this work, we propose a Neutrosophic Logic-based DIANA Clustering algorithm. Indeterminacy

is added to the DIANA hierarchical clustering algorithm using single-valued Neutrosophic sets (SVNs). The

suggested algorithm is named Neutro-DIANA (Neutrosophic DIANA) and is broken down into numerous steps.

The experimental findings show that the suggested technique for dealing with indeterminacy is effective.

Keywords: Hierarchical Divisive Clustering (HDC), DIANA, Neutrosophic, Indeterminacy, Neutro-DIANA.

—————————————————————————————————————————-

1. Introduction

Clustering is a subsection of unsupervised learning, which is one of the four basic subcate-

gories of machine learning techniques. Clustering, as a learning method, is useful in numerous

domains, including market segmentation [1], customer regrouping [2], Big data analysis [3],

image processing [4], and so on. Clustering algorithms are classified into four types [5]: (1)

K-means and K-medoids for partitioning. (2) Density-based approaches such as DBSCAN

and OPTICS. (3) Model-based approaches like SOM and EM. (4) AGNES (AGglomerative

NESting) and DIANA (DIvisive ANAlysis) are hierarchical approaches.

The method of organizing data points inside clusters is known as hierarchical clustering.

Hierarchical clustering may be done in two ways: agglomerative (bottom-up) and divisive (top-

down). In contrast to the Agglomerative method, the Divisive method Hierarchical Clustering

starts with a single cluster that contains all entities, then divides the instances into a hierarchy
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of smaller and smaller clusters until each cluster contains just one entity or a predefined amount

of entities.

Numerous hierarchical clustering techniques that use the divisive approach include

TWINSPAN (Two-Way Indicator Species Analysis), MONA (divisive hierarchical MONothetic

Analysis), and DIANA (DIvisive hierarchical ANAlysis). The most well-known and effective

algorithm is DIANA. It is a polythetic divisive method that works with any matrix of dissimi-

larities. It attempts to combine a collection of data items that are comparable to one another

into a single cluster, while dissimilar data objects are connected with other clusters [6].

The DIANA method creates a hierarchy of sub-clusters starting with a single cluster con-

taining all n items. The greatest diameter cluster is split at each stage until there is just one

element in each cluster. To achieve this, the algorithm looks for the element in the chosen

cluster that differs from other elements on average by the most. The algorithm then reassigns

items that are more closely related to the ”splinter group” than to the ”old group” in succeed-

ing phases once the ”splinter group” has been chosen. Two new clusters are the outcome. The

greatest distance between items in the two sub-clusters determines the distance between the

clusters. The average of all 1−d(i), or d(i), is the diameter of the final group including element

i divided by the diameter of the whole dataset. This is known as the divisive coefficient (DC).

As previously stated, the DIANA algorithm was designed to cope with crisp numbers, and

any data issues should be addressed during the data preparation phase. However, many

real-world situations are imprecise and unclear, and their data contains impurities such as

imprecision, uncertainty, and so on. As an extension of fuzzy logic, Neutrosophic [7], [8]. is

proposed to cope with these information flaws. To achieve this, the Neutrosophic provides

a new parameter termed indeterminacy membership (I) in addition to the two values of the

fuzzy logic, degree of truth-membership (T ) and falsity-membership (F ).

In this study, we develop the Neutrosophic set (SVNs)-based Clustering approach to address

the shortcoming of fuzzy logic (sets, IFSs, and IVIFSs)-based clustering algorithms, which

are unable to capture inconsistent information that corresponds to the real-world data. In

a Neutrosophic setting, each element’s truth, falsity, and indeterminacy (T, F, I) values are

computed to identify whether or not it belongs to any given cluster. Considered to be a

neutrosophic component, e is expressed as e(T, F, I). The input data is initially subjected to a

neutrosophic real problem formulation. This step’s output is sent into the neutrosophic-based

DIANA clustering method.

As you can see from this introduction, we get right into the research issue without debating

the rationale for the method’s selection, the necessity of the hybridization, etc. We would

like to let you know that this study is a successor to a paper we wrote on a cutting-edge

topic called neutrosophic and machine learning [9]. In that paper, we documented all hybrid
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machine learning algorithms that used Single-valued Neutrosophic Sets (SVNs) approaches,

and we subsequently created a taxonomy of Neutrosophic Machine Learning algorithms. In

other words, we have a list of the algorithms that have previously been used, and more details

are provided in [9]. In this paper, we will concentrate on the Neutrosophic-based hierarchical

clustering approach.

The rest of this paper is structured as follows: Section II delves into the background and

preliminaries. The proposed Neutro-DIANA algorithm is explained in detail in Section III,

while the experiments and insightful discussion of the findings are provided in Section VI.

Lastly, Section VI brings this study to a close and proposes some future research areas.

1.1. Related works

The image segmentation technique was enhanced by Qureshi et al. [6] utilizing K-Means

Clustering with Neutrosophic Logic. The technique entails converting an image into a neutro-

sophic collection. The neutrosophic-based k-means approach is used to segment neutrosophic

images, and SVNs are used to quantify the indeterminacy in pixels of an image. To tackle

the ambiguous and inconsistent information that the fuzzy is unable to handle, Vandhana et

al. [10] adopted neutrosophic fuzzy hierarchical clustering. The method is used to analyze

and pinpoint regions where illnesses like dengue fever are influenced by environmental and

climatic factors. As an extension of the hierarchical clustering method, Sahin [11] presented a

single-valued neutrosophic hierarchical clustering technique for clustering SVNSs. The tech-

nique was further expanded to categorize interval neutrosophic data. Ye [12] presented the

single-valued neutrosophic minimum spanning tree (SVNMST) clustering technique as an ex-

tension of the intuitionistic fuzzy minimum spanning tree (IFMST) clustering algorithm. The

approach is based on the generalized distance measure of SVNSs. H2D-FCM is a Fuzzy-based

divisive hierarchical clustering technique introduced by Bordogna and Pasi [13]. It automati-

cally estimates the number of clusters to produce and then divides the node into sub-clusters

using the probabilistic Fuzzy C Means method. In Ding’s study [14], Ding et al. addressed

the most important topic in Hierarchical clustering algorithms: choosing the appropriate next

cluster(s) to divide or merge. They determined that the average similarity approach is the

best for divisive clustering and MinMaxmis the best for agglomerative clustering. In another

study, Ye [15] introduced clustering algorithms for SVNs using distance-based similarity met-

rics in another study (Single-Valued Neutrosophic Sets). To meet the aforementioned goals,

we present a novel Neutrosophic Hierarchical Divisive Clustering algorithm (n-DIANA), based

on a divisive approach.
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2. Background

2.1. Single valued neutrosophic set (SVNS)

Smarandache’s notion of the neutrosophic set [8] is challenging to transfer in a genuine

application and engineering challenge. As a result, Wang et al. [16, 17] established the neu-

trosophic set notions of SVNS (single-valued neutrosophic set) and INS (interval neutrosophic

set). To execute the necessary calculus, various mathematical operations in a neutrosophic

context, such as euclidean distance, average, minimum maximum, and so on, must be defined.

Definition 2.1. Consider X to be a universe discourse and A1 to be a single valued neutro-

sophic set over X. A1 takes the following form:

A1 = {〈x, µA1(x), ωA1(x), νA1(x)〉 : x ∈ X}. (1)

where µA1 : X → [0, 1], ωA1 : X → [0, 1], and νA1 : X → [0, 1], with the constraint

0 ≤ µA1(x) + ωA1(x) + νA(x) ≤ 3, ∀x ∈ X
The values µA1(x), ωA1(x), and νA1(x) represent the degree of truth-membership,

indeterminacy-membership and falsity-membership of x to X respectively.

Definition 2.2. For below, consider tow SVN measurements A1 and A2, where A1 =

{〈x, µA1(x), ωA1(x), νA1(x)〉 : x ∈ X}, A2 = {〈x, µA2(x), ωA2(x), νA2(x)〉 : x ∈ X}
The fundamental arithmetic operations are as follows:

A1 +A2 = {〈x, µA1(x) + µA2(x)− µA1(x)µA2(x), ωA1(x)ωA2(x), νA1(x)νA2(x)〉 : x ∈ X} (2)

λA1 = {〈x, 1− (1− µA1(x))λ, (ωA1(x))λ, (νA1(x))λ〉 : x ∈ X and λ ≥ 0}. (3)

2.2. DIANA (DIvisive ANAlysis)

DIANA [18–20] is a hierarchical clustering strategy that groups items into multiple clusters,

each of which contains elements that are similar to one another. The clustering method DIANA

utilized in this study may be summed up as follows:

• Step 1: At first, DIANA assumes that all n observations are contained within a single

cluster.

• Step 2: Divide the Clusters again and again until each cluster has just one observation.

– Choose the pair of clusters with the greatest dissimilarity in the current cluster,

which is {ζr}, and {ζs}, in which d({ζr}, {ζs}) = max{d(ζi, ζj)0≤i,j≤n}.
– The cluster is divided into (zetas) and (zetar) clusters to generate the following

clusters.

• Step 3: If all clusters are made up of a single element, break; otherwise, continue to

step 2.
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In comparison to Agglomerative Hierarchical Clustering, divisions in the DIANA technique

are based on average distance and cophenetic distance, which are equivalent to average linkage

and full linkage, respectively. The mean distance between the cluster centroid and the other

objects is computed by taking the average of the Euclidean distances between the cluster

centroid and each item.

Consider Θ = {Ai, i = 1 . . . n} as the space of n observations, and ζ as the cluster’s center;

Eq. 4 gives the average distance between ζ and other objects.

Mean(d(ζ,Θ\ζ)) =
1

|Θ\ζ|
∑

∀Ai∈Θ\ζ

d(ζ,Ai) (4)

3. Neutro-DIANA proposed method

Neutrosophic Clustering is based on the Single-valued Neutrosophic sets (SVNs) technique,

in which data points belong to several clusters with membership degrees in the range [0, 1].

Definition . The neutrosophic DIANA algorithm is a clustering algorithm that uses neutro-

sophic logic principles and neutrosophic sets. It uses SVNs-based operations in the calculation

of its clustering algorithm.

3.1. Neutrosophic Set Formation

Assume a dataset comprises a collection of n SVNs denoted Θ, where Θ = {Ai/1 ≤ i ≤ n}
is defined in a universe of discourse X in the SVNs environment, and each object is expressed

as : Let x be a vector in an n-dimensional real space Rn (the fea- ture space) and let C=c1,

c2, ..., cc, be a set of class labels. A neutrosophic classifier is mapping of the type:

ψ : Rn −→ {TC(x), IC(x),FC(x)|x ∈ Rn} (5)

ψ : Rn −→ {TC(x), IC(x),FC(x)|x ∈ Rn} (6)

Let x be a vector in the n-dimensional features space Rn, and C = {c1, c2, · · · , cc} , be a

collection of class labels. A neutrosophic classifier is a sort of mapping:

Ai = {〈xj , µAi(xj), ωAi(xj), νAi(xj)〉 : xj ∈ X}. (7)

We generate the Neutrosophic Distance matrix-nD0 using SVNS similarity and/or dissimi-

larity measurements ((8)), as indicated in the table (1) below.

3.2. The similarity in Neutrosophic environment

Definition 3. Euclidean Neutrosophic distance. In the Neutrosophic environment, the mapping

form of euclidian distance applied to A1 and A2 (two SVNSs) is as follows:

A. Elhassouny, Neutrosophic Logic-based DIANA Clustering algorithm

Neutrosophic Sets and Systems, Vol. 55, 2023                                                                               502



Table 1. Neutrosophic Distance matrix-nD0

x1 · · · xn

A1 〈µA1(x1), ωA1(x1), νA1(x1)〉 · · · 〈µA1(xn), ωA1(xn), νA1(xn)〉
· · · · · · · · · · · ·
Am 〈µAm(x1), ωAm(x1), νAm(x1)〉 · · · 〈µAm(xn), ωAm(xn), νAm(xn)〉

deucl =

√√√√1

3

n∑
i=1

∑
f=(µ,ω,ν)

(fA1(x)− fA2(x))2 (8)

where µ, ω and ν are Neutrosophic membership functions.

Definition 4. Similarity and/or dissimilarity of SVNSs measurements. The similarity measure

Smes between A1 and A2 based on max and min operators, as described by [21], is defined as

follows :

Smes =
1

3

n∑
i=1

∑
f=(µ,ω,ν) min(fA1(x), fA2(x))∑
f=(µ,ω,ν) max(fA1(x), fA2(x))

(9)

The following is the definition of the dissimilarity measure:

DISmes = 1− Smes (10)

3.3. nDIANA algorithm

Let {Ai//i = 1 . . . n} be a collection of n SVNs nDIANA consists on three main steps.

The nDIANA method starts by treating all n objects as a single cluster levelL(mc = 0) =

Θ object. Using the dissimilarity measures (9), elements Ai are then pairwise compared

among themselves, and then separated into two sub-clusters with sub-levels L(mc+1 = 0), and

L(mc+2 = 0) , respectively, based on the clusters’ furthest (with maximum mean distance)

sub-clusters. The subdividing operation is repeated until all clusters have a single-single item.

That is, each obtained cluster has a size of 1. In each stage, we reapply the treatment on each

sub-cluster recursively, and the distance between the object and the sub-cluster is taken as the

average distance between the object and all components of the sub-cluster.

Step 1 : Calculate the similarity and/or dissimilarity measurements of SVNs using equations

Eq.9 and/or Eq.10, and then create the Neutrosophic Distance matrix-nD0 (Table 1).

Step 2 : Each stage of the divisive algorithm requires a decision on which cluster to split. To

do this, we compute the diameter as indicated in

diam(Q) = maxj∈Q,h∈Qd(Aj , Ah) (11)
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In a loop, choose just the element Aj with the greatest mean dissimilarity to all other elements

in the same cluster.

d(Ai,Θ\Ai) =
1

|Θ| − 1

∑
j 6=i

d(Ai, Aj) (12)

Θnew = Θold\Ai

Θ̄new = Θ̄,old ∪Ai

d(Ai,Θ\Ai)− d(Ai, Θ̄) =
1

|Θ| − 1

∑
j∈Θ,j 6=i

d(Ai, Aj)−
1

|Θ̄|
∑
h∈Θ̄

d(Ai, Ah) (13)

Θ̄ is the complement of Θ.

Step 3 : If all clusters contain only one observation, the procedure is complete; otherwise, go

to step 2 using the sub-clusters formed in the previous iteration.

4. Results and Discussion

To demonstrate the usefulness of the proposed Neutrosophic DIANA method, an experiment

was conducted on both the simulated and real-world datasets. For the purpose of comparison,

we use the numeric example introduced by Sahin in [11]. In this case, dataset consists on five

objects Ai with 1 ≤ i ≤, universe of discourse is X = {x1, x2, x3, x4, x5, x6, x7, x8}.

Table 2. Neutrosophic Set Formation Example

x1 x2 x3 x4 x5 x6 x7 x8

A1 0.2 0.05 0.5 0.1 0.15 0.8 0.5 0.05 0.3 0.9 0.55 0.0 0.4 0.4 0.35 0.1 0.4 0.9 0.3 0.15 0.5 1.0 0.6 0.0

A2 0.5 0.6 0.4 0.6 0.3 0.15 1.0 0.6 0.0 0.15 0.05 0.65 0.0 0.25 0.8 0.7 0.65 0.15 0.5 0.5 0.5 0.65 0.05 0.2

A3 0.45 0.05 0.35 0.6 0.5 0.3 0.9 0.05 0.0 0.1 0.6 0.8 0.2 0.35 0.70 0.6 0.4 0.2 0.15 0.05 0.8 0.2 0.6 0.65

A4 1.0 0.65 0.0 1.0 0.25 0.0 0.85 0.65 0.1 0.2 0.05 0.8 0.15 0.3 0.85 0.1 0.6 0.7 0.3 0.6 0.7 0.5 0.35 0.7

A5 0.9 0.2 0.0 0.9 0.4 0.0 0.8 0.05 0.1 0.7 0.45 0.2 0.5 0.25 0.15 0.3 0.3 0.65 0.15 0.1 0.75 0.65 0.5 0.8

The nDIANA algorithm begins with all observations as a single cluster, L(mc = 0) =

{Ai/1 ≤ i ≤ 5}, with 5 is the number of observations.

Utilize (Eq. (9), Eq.(10) to calculate the similarity and dissimilarity measures of SVNSs,

and then construct Neutrosophic Distance matrix-nD0 (table 3).

To determine the similarity and dissimilarity measurements of SVNSs, use the equations (

(Eq. (9), Eq.(10)), and then create the Neutrosophic Distance matrix-nD0 (table 3).

Next, use Eq. (12), Eq.(13) to compute the average distance between each element and

every other element.
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Table 3. Distance matrix–nD0

A1 A2 A3 A4 A5 Mean

A1 0.000 0.661 0.563 0.636 0.508 0.474

A2 0.661 0.000 0.438 0.357 0.596 0.410

A3 0.563 0.438 0.000 0.469 0.433 0.381

A4 0.636 0.357 0.469 0.000 0.416 0.376

A5 0.508 0.596 0.433 0.416 0.000 0.390

Select the element with the highest distance mean, in this case (A1), which is 0.474. As a

result, the cluster {A1}’s maximum distance from other data points is 0.474. However, before

deciding to split, we must first determine which elements are closest to each new cluster. To

do this, we must compute the mean distance between each element using the formulasL(mc =

1) = {A1} and L(mc = 2) = {Θ\A1} as given in the table 4.

Table 4. Distance matrix-nD01 of each observation with each cluster

{A1} {A2, A3, A4, A5}
A1 0.000 0.592

A2 0.661 0.348

A3 0.563 0.335

A4 0.636 0.310

A5 0.508 0.361

Thus, the single cluster L(mc = 0) = Θ is split into tow clusters L(mc = 1) = {A1} and

L(mc = 2) = Θ\A1. With a new sub-cluster, L(mc = 2), we carry out the identical processes

once more to get a new distance matrix-nD2 (able 5).

Table 5. Distance matrix – nD02

A2 A3 A4 A5 Mean

A2 0.000 0.438 0.357 0.596 0.348

A3 0.438 0.000 0.469 0.433 0.341

A4 0.357 0.469 0.000 0.416 0.310

A5 0.596 0.433 0.416 0.000 0.361

From table 5 the maximum of mean distances is between A5 and the rest at distance 0.361.

Then, L(mc = 2) = {A2, A3, A4, A5} is split into clusters, L(mc = 3) = {A2, A3, A4}, and

L(mc = 4) = {A5} at a distance 0.361.

To cross check the stability of each gotten cluster L(mc = 3) and L(mc = 4), we examine

the closeness of each element to both obtained cluster (table 6).
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Table 6. Distance matrix-nD02 of each observation with each cluster

{A2, A3, A4} {A5}
A2 0.265 0.596

A3 0.302 0.433

A4 0.275 0.416

A5 0.482 0.000

The sub-cluster L(mc = 3) = {A2, A3, A4} obtained from previous splitting need to be

treated, and its Distance matrix–nD03 (see table 7).

Table 7. Distance matrix–nD03

A2 A3 A4 Mean

A2 0.000 0.438 0.357 0.265

A3 0.438 0.000 0.469 0.302

A4 0.357 0.469 0.000 0.275

The maximum of mean distances is between A3 and the rest of elements at distance 0.302.

Then, the L(mc = 3) = {A2, A3, A4} is split into clusters, L(mc = 5) = {A2, A4}, and

L(mc = 6) = {A3} at a distance 0.302.

Table 8. Distance matrix-nD03 of each observation with each clusters

{A2, A4} {A3}
A2 0.179 0.438

A3 0.454 0.000

A4 0.179 0.469

Finally, because the remain cluster L(mc = 5) = {A2, A4} contains only two elements, it

is divided into L(mc = 7) = {A2} and L(mc = 8) = {A4} at distance 0.357 and creates the

single–single object in all clusters. As a result, the Neutrosophic Divisive Analysis Clustering

(nDIANA) with Neutrosophic computation is terminated.

Here, we outline the specifics of the entire splitting process as implemented by our nDIANA

suggested method.

At the beginning Θ = {Ai/1 ≤ i ≤ 5}, all elements are in the same cluster

{A1, A2, A3, A4, A5}.
The farthest dissimilarity measure is of A1 (Eq.14).

d(A1,Θ\A1) = max{d1≤i≤5(Ai,Θ\Ai)} (14)
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which is 0.474 terminates {A1, A2, A3, A4, A5} is split into tow clusters : {A1}and

{A2, A3, A4, A5}.
The farthest dissimilarity measure in gotten sub-cluster is of A5 (Eq.15).

d(A5,Θ\{A1, A5}) = max{d2≤i≤5(Ai,Θ\{Ai, A1})} (15)

which is 0.361, then {A2, A3, A4, A5} are split into tow clusters : {A2, A3, A4} and {A5}.
The farthest dissimilarity measure in gotten sub-cluster is of A3 (Eq.16).

d(A3,Θ\{A1, A5, A3}) = max{di=2,4(Ai,Θ\{Ai, A1, A5})} (16)

which is 0.302, then {A2, A3, A4} are split into tow clusters : {A2, A4} and {A3}.
There are only two elements left {A2, A4}, the distance between them is 0.357, and in this

case the subdivision is automatic to two clusters which are: {A2} and {A4}.
By the end, put all the results together we get :

first ((A1), A2, A3, A4, A5),

next ((A1), (A2, A3, A4, (A5))),

then ((A1), (((A2, A4), (A3)), (A5))),

finally ((A1), ((((A2), (A4)), (A3)), (A5))).

Each and every machine learning method is designed to tackle learning issues involving crisp

numbers. However, all data sources produce inaccurate, imprecise, and ambiguous data that

has numerous other flaws. A broad framework is provided by the single-valued Neutrosophic

set (SVNs), an extension of the fuzzy logic set, to describe and model uncertain, imperfect, and

imprecise data with missing and mistakes. By using machine learning algorithms designed for

precise numbers, it is possible to build tidy data that is purported to be clean but really goes

through a lot of creation and destruction processes simultaneously. Hence, clustering learning

in a single-valued Neutrosophic environment is another way to capture and manage data noise

and take it into account as an additional source of information. To handle data noise and

take it into account as an extra factor, clustering learning in a single-valued Neutrosophic

environment is a different technique.

5. Conclusion

In conclusion, we obtained the same outcomes when comparing the Agglomerative Hier-

archical Clustering Technique and the DIANA with Neutrosophic findings on the simulated

data set. And from there, we may conclude that (1) the DIANA with Neutrosophic algorithm

can aggregate SVNs on a wide scale, and (2) the uncertainty information acquired by SVNs is

crucial for the accomplishment of some aggregation tasks. We have created a useful approach

for grouping SVNs using divisive hierarchical clustering.
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To reduce data indeterminacy, the hierarchical clustering divisive DIANA method based

on Neutrosophic logic is used. The suggested method’s findings show that it may be utilized

to produce superior outcomes on real-world data. Based on the crisp hierarchical clustering

technique, we suggested a hierarchical single-value neutrosophic algorithm for SVN clustering.
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