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ABSTRACT. A refined neutrosophic set (RNS) is an extension of a neutrosophic set in which all the uncertain
belonging-based entities like belonging-grade, non-belonging-grade, and indeterminate-grade are further cat-
egorized into their respective sub-belonging grades, sub-non-belonging-grades, and sub-indeterminate-grades,
respectively. In other words, the RNS provides multi sub-grades for each uncertain component of theneutro-
sophic set. This study is aimed to integrate the classical concepts of convexity and concavity with RNS to make
the RNS applicable to various optimization problems.Thus, convex RNS and concave RNS are developed. Some

of their important aggregation operations and results are investigated and then modified.
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1. Introduction

To deal with uncertainty, Zadeh [1] proposed a fuzzy set (FS) in 1965. Each component
of the universe under investigation is given a belonging grade from the range [0,1] in an
FS. Zadeh [2] used his own idea of FSs as the foundation for a theory of possibility. The
link between FSs and probability theories was studied by Dubois et al. [4,)5]. For algebraic
operations carried out between random set-valued variables, they derived the monotonic-
ity property. Dubois et al. [3] performed research on ranking fuzzy numbers in the context
of possibility theory. Beg et al. computed similarities between FSs under specific implica-
tions [6-8]. The solution of nonlinear partial differential equations in a fuzzy environment
was determined by Osman et al. [9]. Khan et al. [10] envisaged some semi-groups in the

context of fuzzy interior intuitionistic ideals. With applications in both the first and second
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senses, Rahman et al. [11] and Thsan et al. [26] proposed the conceptual framework of (m, n)-
convexity-cum-concavity on fuzzy soft set and fuzzy soft expert set, respectively.

Only being a member is insufficient in some real-world situations. Atanassov conceptual-
ized an intuitionistic fuzzy set (IFS) to make the FSs suitable for the non-belonging grade in
1986 [13,14]. Each component of the universe of discourse receives an allocation of both be-
longing value and non-belonging value from a [0,1]. The generalization of the FS, the IFS, has
shown to be a very useful tool for academics. With their study of operations, algebra, model
operators, and normalization on IFSs, Ejegwa et al. [15] broadened the concept.

Since both Zadeh’s FS and Atanassov’s IFS are insufficient for the grade of indeterminacy,
Smarandache [16] devised the neutrosophic set (NS) to overcome these drawbacks. Addition-
ally, because the NS does not impose the dependency requirement on uncertain components,
truthfulness, falseness, and indeterminacy grades are independent and can take on any value
inside a closed unit interval.

The concept of a concave FS was presented by Chaudhuri [17,[18]. He also examined some of
the sets” valuable qualities and defined some of their related concepts and computing meth-
ods. The development of fuzzy geometry and fuzzy structures can benefit from this idea.
This idea was improved by Yu-Ru Syau [19] to include convex and concave fuzzy map-
pings. Concavo-convex FSs were introduced by Sarkar [20], who also established some of
its intriguing characteristics. The discussion on convex IFSs given by Ban [21,22] led to the
development of convex temporal IFSs. The collection of convex IFSs was described and its
generalized qualities were covered in depth by Diaz et al. [23]. Sarkar [26] discusses convex-
ity on the NS.

Smarandache [24] introduced refinements in FS-like structures including NS by developing
their relevant models with refined settings which categorizes the uncertain grades of these
models into their respective sub-grades. Rahman et al. [25] studied the fundamental proper-
ties, operations, and results of refined IFSs with examples. The researches [21}22,24, 26,27
have many concepts which lead to the motivation of this study and thus convex and concave
sets are generalized under refined NS (RNS). Additionally, few significant properties and re-
sults are investigated in this context.

The remaining portion of the paper has been divided into three sections: section 2, section
3, and section 4. Section 2 is about the recalling of some important definitions, section 3 is
aimed to investigate the notions of classical convexity and concavity under the RNS environ-
ment along with modifications of various results, and the last section summarizes the paper

accompanied by future scope.
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2. Preliminaries

This portion is aimed to recall few definitions which assist the readers to understand the
main concepts. The acronyms A 9,1, 5, ¢ and é are meant for initial set of objects, Z", [0, 1],

true-belonging, false-belonging and indeterminate-belonging functions respectively.
Definition 2.1. [1,2] A FS A is stated as A = {(,{4(¢)) : € A} such that {5 : A — [0,1]
with {3 (9) € [0,1] as belonging-grade of  in A. If A; and A, are FSs then

M) A= {(p1-Ca(p) : p € A}.

@ As = ArU A = { (o max{ls, (9),

®) As= A1 Ar = {(pmin{ls, (),

W@)):pedl.

W(@)}) :pedl.

Definition 2.2. [1] A FS A is stated to be convex FS when its belonging function {; satisfies
the following inequality {i (¢f1 + (1 —¢) 92) > min ({5 (91),{4 ($2)) with ¢ € [0,1] and
1, 62 € A,

4
4

Definition 2.3. [17] A FS A is stated to be concave FS when its belonging function { ; satisfies
the following inequality {; (¢P1 + (1 —¢) $2) < max ({4 ($1),C4 (92)) with ¢ € [0,1] and
d1, 02 € A.

Definition 2.4. [13] A IFS [ is stated as I' = {(, ({+(9), 9:(9))) : § € A} such that {7, 9
A — [0,1] with {¢(9), 8:(9) € [0,1] as belonging-grade and non belonging-grade of { in A
such that 0 < {+(9) + 8+(p) < 1. If ['; and T, are IFSs then

M) T = {(& (0:(9).{r(9)) : € A}

) I3=Tul, = {(gf), (max{Cs (§),Cr, (D)}, 71111’1{19 ), ¢ (p)})) ip e A}.

(®) Ty =101 = { (&, (min{Gr, (9), &, (9)} max (3, (), 9, (9)1)) : o € A}
Definition 2.5. [21] A IFS T is stated to be concave IFS when its belonging function {; and

non belonging function d; satisfy the following inequalities
() &p (6pr+ (1 =€) p2) = min (G (1), ¢ (§2))
(2) B¢ (6f1 + (1= ¢) P2) < max (9t ($1), O (2))
with ¢ € [0,1] and 91, o € A.
Definition 2.6. [16] A NS R is stated as

with g, 93 and &4 as belonging, non-belonging and indeterminate functions such that ~0 <

Ca(P) +95(p) +Ex(p) <37

Definition 2.7. [26] A NS R is stated to be convex NS when its belonging function { 4, non

belonging function d and indeterminate function & satisfy the following inequalities
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(1) &y (6p1+ (1 —¢) p2) > min (g ($1),8n (2))

(2) By (&f1 + (1= ¢) o) < max (g ($1), By (£2))

3) & (¢ + (1 —¢) P2) < max (&g (§1),Ex (§2))
with ¢ € [0,1] and $1, o € A

Definition 2.8. [24] A refined FS Qgrrs is stated as

Ores = {(@/ <é}2m(@)’ (IR gQRFS(P)» p=2p€ ()Rps}

QRrs

with @A"(E)RFS as sub-belonging grades of k"'-type entities of A with respect to Qgrs, and for

p . .
ke[l pland ¥ sup(f <1,Vp € Opps.
k=1

Definition 2.9. [24] A refined IFS Qg s is stated as

. ] (G 008 (P) R (P)) o
ORrirs = { (p/< E&? 5(@),@(; ° o). ;MS <@)>> >> ,P+s=23,p€ QRIPS}

7
QRrirs QRiFs QRiFs

with é’é as sub-belonging grades of k'’-type entities with respect to Qgjrs, and 1%
RIFS RIFS

A p 2
as sub non-belonging grades of I'-type entities with respect to Qgjrs and ) sup ¥ +

k=1
2 sup® < 1,and ék QRu:s C0,1]fork e [1,p]and! € [1,s].
Definition 2.10. [24] A RNS Qg is stated as
£1 A\ A2
é QRNs(p)' QRNS( ) gQRNS(p)>
A _ A 91 ) A2 r 2N - . £ A
Opns = @,< Utrens (P) V4, (P), ,I%RNS(W)) ; > ip+s+t>3,0€ Orns
A\ A2 ~ t ~
( QRNS( o), é ( ) QRNS(p))

with él}lms as sub-belonging grades of k™-type entities, @éﬁlms as sub non-belonging grades

of I"-type entities and {f’” s 35 sub indeterminate grades of m!-type entities with respect to
s t
< Pk al Zn < + 7k Al Zm C
QOgrns and ~0 21 sup C w El sup ﬁQRNS + mZ:‘,l sup §Q 37, and é’ Ozws Opns =
|70, 1" [fork € [1,p],1 € [1 s],m € [1,t].
3. Convexity and Concavity on RNSs

This portion describes the notions of convexity and concavity for RNSs. Throughout the

2

paper, the symbols "RNS” and “Z12,” are meant for RNS and line-segment correspondingly.

Definition 3.1. In ¢, a RNS Qgys is stated to be convex if the points 21,2>,23 € 4 on 212,

8 e (B2) = min (86 (21), 85 (2)) k€ [1,p]

QORrns

By (23) < max (8, (21), 8, (%)), 1€ [13]

QORrnNs
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égRNS (23) < max (fgms (21)/5?;”5 (22)) ,me [1, t]

where é’(ﬁ)RNs is k'"-type grade of sub-belonging of the entities with respect to Qrys, and for
p ~ ~
ke 1,p], Xsuplt <1, 196RNS is I'"-type grade of sub non-belonging of the entities with
k=1

A s A A
respect to Orys, and for I € [1,s] and Y sup ¢ < 1land ¢
=1

m : th_ -
Ops 18 M-type grade of sub

a t ~
indeterminacy of the entities with respect to Qrys, and for m € [1,¢], ¥ sup¢™ < 1 with
m=1

P 5 s A t - A
condition ) supf+ Y- supd + Y sup ™ < 3. The symbol Ec,rys is meant for family of
k=1 1=1 m=1

convex RNSs.

Definition 3.2. In ¢4, a RNS QRNS is stated to be ortho-convex if the points 21,25,23 € ¢ on
212 which is lying on that line which is || axis

k 5! . Pk 5! £k 2!

gf)RNS (Z3) Z min (gﬂRNs (Zl) ’éf)RNS (22)> ke (1, pl.

Y 5/ ) AN, N

190RN5 (23) S max (ﬂQRNS (Zl) ’ﬁORNS (22)) ’l € [1’ S]'

z 5! 2 AN N

b (25) <max (& (21),&8 (%)) ,me .
with same conditions as provided in Definition The symbol EQ s is meant for family

of ortho-convex RNSs.
Remark 3.3. If Ogyg € ngRNS then Qrns € Ecyrns but the converse is not true.

Definition 3.4. In ¢, a RNS Qgys is stated to be concave if the points 21,2>,23 € ¢ on 212,

(22)) 1€ [1,3]
(21),¢4 (22)) ,m e [1,1].

where

é’é s is kfh-type grade of sub-belonging of the entities with respect to QRNS, and is subset
RN

p ~ A
of I fork € [1,p] and ¥ sup(F < 1, ﬁloRNS is [""-type grade of sub non-belonging of the
k=1

A S ~
entities with respect to Qrys, and is subset of I for [ € [1,s] and Y sup ¢ < 1 with condition
I=1
p ~ 5 A A
Yy suplF+ ¥ supd < 1and Cgm\]s is m'"-type grade of sub indeterminacy of the entities
k=1 1=1

N t A
with respect to Ogns, and is subset of I for m € [1,¢] and Y sup¢™ < 1 with condition
1

m=

p A S n t N
Y suplF+ Ysupd + ¥ supé™ < 3.
k=1 1=1 m=1

The symbol EcorNg is meant for family of concave RINSs.
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Definition 3.5. In ¢, a RNS Qxys is stated to be ortho-concave if the points Z1,2>,23 € ¢4 on

212, that is lying on line which is || axis

S (B) <max (85, (21).85, (85)) ke (L]

79 COrNs

N

By (25) = min (8, (1), 8, () 1€ [1,s].

& o (28) = min (&5 (21),85 (), me 1]

with same conditions as provided in Definition

The symbol EC . s is meant for family of ortho-concave RNSs.

Remark 3.6. If Qgps € ‘é‘ngNS then Qs € Ecyrys but the converse is not true.
Theorem 3.7. IfﬂRNs € Hcyrns then (A)%NS € ECorRNS-

Proof. If Qrns € Ecxrns then for points 21, 2>, 23 on 212,

8 (29) > min (85 (2,85 (2)) ke Lp)

SO

—k . —k A —k A

gORNS (23) S 1 — min <1 - gQRNS (Zl) ’1 - gQRNS (Zz)> ’k € [1’ p] (1)
now if

—k A —k A
1= Capys (21) £ 1—=Ca (22)
then
. 7]{ n 7k n 7]( .
min <1 — Copns (21) /1 = Careps (Zz)> =1— (e (21)

and there from

—k A - A
Corpns (23) < Cangys (21)
similarly if

=k A —k .
1- gQRNs (Zz) S 1- éQRNS (Zl)

then
‘ = A <k X —k A
min <l — Cpns (21),1— COpns (Zz)> =1—Copns (22)
so from
7]{ ~ T\k ~
gQRNS (ZS) S éQRNs (Zz) °
Hence
7]{ A 7k A 7k ~
Clpys (£3) < max (gORNS (21) S runs (ZZ)> ke L pl.
Again

N

AL (25) < max (%RNS (81), 0% (22)) e (1,s]

QORrns
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then
B6r... (22) > 1 max (1 B (21),1— B, (22)) 1€ [1,s] 2)
now if
1- B, (21) 21— gy (22)
then
max (1 By (81,1~ B (22)) = 1= P 21)
and from

=1 .
19QRNS (23) = ﬂQRNS (Zl)

similarly if

then
- R = R - A
max <l — Oens (21),1 Drens (22)) =10 (22)
so from
— . I A
Uaws (23) 2 Dapys (22)
Hence
By (£3) > min (ﬂQRNS (1), Oy (zz)> ,1e(l,s]
Similarly
bn o (2) <max (& (21), 8 (22)),m e (14
SO
-m n —m n =
$Opys (£3) = 1 —max (1 — Copns (21),1 =8 (zz)> m € [1,t] 3)
now if
—~m n —~m A
1 - gQRNS (Zl> 2 1 - gQRNS (ZZ)
then
—~m n —~m n —~m n
and there from

~m

—~m

Copns (23) = Cangys (21)
similarly if

—=m m

1 - gQRNS (ZZ> 2 1 - gORNS (Zl)
then
—=m n —m n N
max (1 — Cons (21),1 = Carpys (Zz)) =1— Gy (22)

so from

—=m . —-m A
C()RNS (23) Z CORNS (22) *
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Hence
—-m n . —m R —-m R
gQRNS (23) Z min <§ORN5 (Zl) ’gQRNS (Zz)> ,m € [1’ t]

consequently ()% ¢ € ECorNS- [

Remark 3.8. If Ogyns € E&RNS then (g6 € EngNs and Qrns € EcyrNs-
Theorem 3.9. IfQRNS/@RNS S ECXRNS then QRNS U ®RN5 S ECxRNS'

Proof. Let Ogrns and Ogng be two convex RNSs and $rns = Qrns U Orng and the points

£1,%2,23 on £12;. Now
k(2 (65 (20 5 (2
& () =min (8 (2),85 () ke Lp)

é{%RNS (22) = min (ég,{ (22) 'égRNS (22)> ke [1, p]

NS

a(i’RNs (23) = min (égR (23) zé%RNS (23)) ke [1, p],

NS

Now
min (&, (21),%, (22)
= min (min (&6, (1), 86, (1)) min (8, (22). 86, (22)))
= min (égm (21) /86, (B1) 86, (22) 86, (22)> (4)
let

£k 5 £k 2
Conms (33) = Copys (23)

in (4) so that

as Ogns is convex RNS so

S

s (22 Zmin (85 (20),85, (%))

ORNS S
(K 5\ Ak 5\ Ak 5\ Ak 5
>min (8, (1), 8, (2.8 (2),8, ()
ie.
£k 5 (s (A s NPk (s
O e B) =85 (2) >min (8 (), (22)
. . Ak A ’\k A . .
similarly for { s (23) < C Ohens (23) in equation (@) so that
S (s.) — Ak 5
g‘i’RNs (ZS) B €®RNS (23)
as Ogys is convex RNS so @) becomes

ék@RNS (23) > min <élé)RN5 (21) ’élé)RNS (22))

. (5 5\ Ak s\ Fk 5,) (K 5
> min (Cgms (21) + SO (1) 7SO (£2) +Corns (22))
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N
m

i.e.
& () = min (8 (28, (%))
Again
! 5) = 3! N .
ﬁl?RNS (Zl) = max (1901%1\15 (Zl) OrNs (Zl)> e [1, S]
B (22) = max (B (22), 0 (22)) 1€ [Ls
By (23) = max (9 (22), 85 (%)) 1€ L]
Now
max (B, (21),8, ()
Yrns 7 " YrNs
= max (max (ﬁgRNS (21) ’ l@l@m\/s (21)> smax (@é)RNs (22) ’lgl@RNS (22)>>
= max (B, (1) B, (21), B, (22), 8, (22)) 6
let
9! 5 3l A
Orns (23) < 19®RN5 (23)
in (5) so that
o 5\ _ Al A
Frus (23) = ﬁORNs (£3)

as Ogys is convex RNS so

BL (23) < max (@ZA (21), 9 (22))

QRrns QOgrNs 7 " ORrNs

< max (@Q)RNS (21) ,@l@RNS (21),0L (%) ,@Z@RNS (22))

()RNS
ie.

Bl (23) = By (25) Smax (8, (21) 84 (22))
) (23) in equation H so that
¥ (23) =B (23)

YrNs

as Ogys is convex RNS so (5) becomes

By, (22) < max (B (21), 85 (22))

Orns OrnNs 7 " ORrNs

~

Al n Al 2 / 5 91 5
< max (ﬂQRNS (21) ’19®RNS (21) ’ﬂQRNS (22) ’19®RNS (Zz))

i.e.

Similarly now
Gy (21) = max (fngN (21)’62;121\15 (21)> ,m € [1,]
by () =max (8 (22),88  (22)),me 11

é?gRNS (25) = max (681@\]5 (£3) régm (23)) ,m e [1,t].
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Now
max (& (21), 88 (22))
- max (max (égRNS (21) / 6gRN5 (21)> ,max (égRNs (22) ’ égRNS (22)))
—max (8 (2), 88 ()88 (22),88 (%)) ©
let
gQRNS (23) < (:gRNS (23)
in (6) so that

as Orys is convex RNS so
B () <max(En (21),8  (2))
( Orns éf®RNS (21), éngNs (22), ggm\zs (22)>

ie.
En (B =G0 (2) <max (& (2)& (%))
similarly for égm (23) > ém . (23) in equation (@) so that

G s (83) = 68, (23)
as Ogys is convex RNS so @ becomes
b e (3) S max (88 (20).88 (22))
<max (& (21),85 (21), 88 (22),88 (%))

S

i.e.

by (@) <max (& ()& (%)),

Yrys

Theorem 3.10. IfQRNS/ ®RNS S ngRNS then QRNS U ®RNS S é‘ngNS and ORNS U é)RNS €
ECxRNS-

Proof. Let Qgrns and Ogys be two convex RNSs and $rys = Qrng U Orns and the points

Al Al Al NS
21,25,25 on leZH axis.

Now
Oy, (B1) = min (85 (21), 85, (21)) ke Lp
(s (22) =min (26, ()85, () K € [Lp]

8y s (5) =min (Z5 (24), 85 (24)) ke [Lp).
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Now
min ( {(Y (2/1) ’ é{(PRNS (2/2))
= min (min (25 (21),25, . (2)),min (8 ()25 ()))
= min (85, (2),85 ()8, (#).85, () )
let
](%RNS (%’) < é](EDRNS (23)
in (7) so that

as QOgys is ortho-convex RNS so
2k ol . 2k &l 2k ol
(e (88) 2 min (8, (21) .05, (2))

>min (85 (1), 85, (1), 8, () 85, (22)
1.e.
s (B8) =85 () =min (&, ()85, (%))
similarly for £§  (25) < {f (24) in equation @) so that
g (#) =8 (2)
as Ogys is ortho-convex RNS so

8, (35) = min (85 (£1),85 (23)

Z min (égms (2,1) /ékéRNS (2/1) ’éIéRNs (2/2) 'él(é)RNs (2,2))

ie.
ék@RNS (23) - é{%RNS (%) 2 min (é{%RNS (2/1) é{(i’RNs (2/2)) '
Again
3h, o (2) = max (8, (21),85 (21)),1€[L3]
Bl (28) =max (8, (), (25)),1€L3]
Bh o (28) = max (B (24), 8 (24)) 1€ [1,3]
Now
max (@gR ()8 (2/2))
= max (max (8 (21), 0% (%)), max (9 (2), 0% (%))
- max <l§é)RNs (21) ! @%RNS (23) ! Aé)RNS (2/2) ! @ZC:)RNS (2/2>) (8)
let

3l 5! ) 5!

ﬁORNS (23) 2 19®RNS (23)
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in (8) so that
l%’RNs (%) - @QRNS (23)

as Ogys is ortho-convex RNS so

B () <max (8 ()8 ()

QORrns QORrns

<max (B, (), 8, (20), 8 ()65, ()

i.e.

Bons (28) = Bl (85) < max (B, (21) By, (20))

e 4l 5 > Bl 5 3 -
similarly for 19®RNS (25) > ﬁQRNS (£3) in equation @ so that

By (23) = o, (23)

Yrus Orns

as Orps is ortho-convex RNS so

By (28) <max (B, (31). 8, (%))
< max (l%)lws (2/1) ,@%RNS (21) ! @BRNS (2/2) ’@é)zws (2,2)>
ie.
Bos (28) = B, (28) < max (B, (&) 8, ().
Similarly
E$RNS (21) = max (631“5 (21) ,5gRNS (23)) ,m € [1,t]
&y (&) =max (8 (%),88 (#)),me 1]
fr L (2) =max (En (#4),88 (2)),me L]
Now
max (&, (1) &, ()
= max (max (&5, (21), €5, (21)) max (&, ()83, (35)))
=max (8, (588, (2).84,,, (2.8, (23)) ©)
let
Ch (25) 268 (25)
in (9) so that

as Qgps is ortho-convex RNS so

En e (25 <max (& (21), &8 (23))

2 ol 2 ol 2 al 2 ol
< max ( gRNs (Zl) ,ggRNS (Zl) ! gRNS (22) ’ggRNS (22))
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2

i.e.
égRNS (%) - 6$RNS (25) < max (é'?i}RNS (2,1) CA$RNS (2/2))

similarly for ggm (25) > @AgRNS (2%) in equation (ﬁ) so that
A N o S Al
s (B3) =66 ()
as Ogys is ortho-convex RNS so
Zm 2/ £m 5/ £m 5/
B (5) < max (8, (). 83, ()

<max (&8 (2).88 (#),8 (#).8 (%))
ie.
égRNS (2/3) - é%ws (23) < max <6$RNS (21) é‘rgRNS (2/2)>

since every ortho-convex RNS is also convex RNS. Hence the proof.
Remark 3.11. If Q?{NS € ECXRNS then Q?{NS S ECXRNS'
o

oY =0 aY 40 aY &
Remark 3.12. If O} ¢ € E¢ gy then Laj O%ns € E¢ rns and 90RN5 € ECyRNS-

Theorem 3.13. IfQRNS € ECZ)RNS then Q%NS S ECxRN&

Proof. Let Orns € Ecorng and the points 21, 22, 23 on 212y, then

égms (23) < max (f’éms (£1) /égms (22)> kel p]

SO

—k —k —k

gQRl\IS (23) 2 1 — maXx <1 - gQRl\IS (21) 4 1 - gQRNS (22)> ’k E [1’ p] (10)
now if

7]{ n 7]( n
1 - gQRNS (Zl> S 1 - gQRNS (ZZ)
then
—k . —k A —k .
max (1= e (1)1~ e (2) ) = 1= rg (2

and from

—k —k
gQRNS (23) Z éQRNS (Zz)

similarly if

7k n 7k n

1= Conens (22) <1 —Cap (21)
then
=% =% =
max (1 e (21),1 e (32) ) =1 o (1)

so from

o N T

gQRNS (23) Z gORNS (Zl) *
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Hence
=k A [k =k A
gORNS (23) Z min (gQRNS (Zl) ’gQRNS (22)> ’k € [1’ p]

consequently (A)%NS € EcyrNs-

Again
Bl (23) > min (8 (21), 0 (22)),1€ [15]
so we have
§ZQRNS (23) <1 —min <1 - ﬁlﬁm (2),1— ﬁgm (22)> Je1,s)
now if
1- Egm (81) >1-— 5§3RN5 (22)
then
min (1 By (21),1- Bp, (@)) —1-3q,. (22)
and there from
T (22) < By, (22)

similarly if

QORrns
then
min (1 By, (21),1- B (@)) —1-3q,,. (21)
so from
Bergys (23) < B (1)
Hence
B0y, (23) < max <@IQRNS (21), B (22)> Te,s).
Similarly

Ep o (B) =min (&a (21),84  (22)) me L]
so we have
—=m A . —-m A —=m n
Eyns (23) S1—min (1—=E,  (21),1 =&, (22)) m e 1Y
now if
—=m n —=m n
1 - gQRNS (Zl) Z 1 - é’rQRNs (Zz)
then
. —~m n —~m R —~m n
min (1= & (81),1 = Eoe (22)) = 1 &y (22)
and there from

—=m n —=m n
gQRNS (23) S gQRNS (ZZ)

(11)

(12)
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N
llol

similarly if

—=m n —=m n
1 - gQRNS (22) 2 1 - g()RNS (Zl)

then
) —m . =M R Zzm o
min (1 - gQRNS (Zl) 7 1 - gQRNS (ZZ)) = 1 - gQRNS (Zl)
so from
—m N Zm A
C()RNS (23) S é’()RNS (Zl) :
Hence

Eorns (83) < max (&, (21), Eprgys (22)) m € 11,1

consequently O%Ns € EcyrNS- O

Remark 3.14. If Ogpns € EngNS then Q%Ns € E&RNS and Orns € Ecxrns-
Theorem 3.15. IfQRNS/ ®RNS € ECZJRNS then QRNS U ®RNS € ECZ)RNS'

PT’OOf. Let OQgrns, Orns € Ecorns, Yrns = Qrns U Orys and the points 21,272,253 on 212,

now
é%RNS (21) = max (@%RNS (21) ’ékéRNS (21)> ke [1,p]
CAI‘%RNS (22) = max (égRNS (22) ’él(é)RNs (22)> ke [1,p]
éﬁ%RNS (23) = max (égm (23) réléRNs (23)> Lk € [1/ P]
now
max ({4, (21), &, (22))
= max (max (£, (20), 8., (3)) max (86, (22). 85, (2))
= max (égm\]s (21) ’él(é)RNS (21) ’ZIEIRNS (22) ,ékéRNS (22)> (13)
let
7k 5 £k A
CQRNS ( 3) 2 CGRNS ( 3)
in equation so that

sk . 5 .
C‘%RNS <Z3) - gl(%RNS <Z3)

as QOgrys is concave RNS so equation becomes
B (33) = 85 (23) <max (85 (21),85,  (22))
Frus 3 Opys 3/ = Orns V75 Qpys V22

2k 2 2k N 2k N 2k 2 2k 2
B e (30) <max (88 (20), 85 (20,85, ()5, (22))
i.e.
£k R Sk A\ 2k o
8y, (B0) Smax (8, () 4, (22))
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similarly for é’éms (23) > égm (23),in equation 1i so that

Pk 5 £k 5
g‘i’m\/s (23) - §®RNS (23)

as Orns is concave RNS so equation (13) becomes

é{%m\/s (23) - CAI(E)RNS (23> < max (égm]s <21) ’égRNS (22)>

B e (30) Smax (88 (1), 85 (20,85, ()5, (22)

ie.
0%\, (£3) < max (ﬁ; LEnd (A2)>
Now
Y. (21) =max (8, (21),85 (2)),1€ 1]
@%,RNS (22) = max (l%ms (22), Aé)RNS (22)> e l,s] (14)
Bl (23) = max (8 (2), 8 ()1 € [L5]
now
max (l@fl, s (21), s (22))
= max (max (8, (1), 9o, (20)) max (9, (22 B, (2))
= max (B, (21) B, (2,0, (2,86, (22))
let

in equation (14) so that

as Ogys is concave RNS so equation (14) becomes

@%’RNS (23) - @ZQRNS (23) < max <l§l()RNs (21) /I%)RNS (22))

(21), 8, (21),0% (22)Bh (%))

. 3l
(23) < max (ﬂQRNS 7 “ORrNs

ie.
Al N, .
< max <19‘i’zws (21) G (zz)>

)
s 23) > 0L (%3),in equation so that

as @RNS is concave RNS so equation becomes
al 5 4l 5 al A\ Al 5
8L (23) =L (23) < max (ﬁ@m (21), 9% (zz))

Prys Orns
5 ) 5 ) 5 ) s\ A 5
TrNs (Z?’) = max (ﬁQRNS (Zl) ! 19®RNS (Zl) /ﬁQRNS (Zz) 19@RNS (22)>
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i.e.
ﬁ%RNS (Zg) < max (l%’ <A1) %’RNS (A2>>

Similarly

éc$RNS (Zl) — max (égm\/s (21) ’égm\/s (21)) ,me [1/ t]

é%ws (£2) = max (égRNs (£2) 'égRNs (22)> sm e [1,1] (15)

& (E) = max (& (23,88 (2)),me LY
now

max ( v s (21) ,(%RNS (22)>
= max (max (C?)R (21),86, (21)> ,max Agms (22) /CASRNS (h)))

= max (ggR S (Al) ’6®RNS (21) ’égRNS (22) ’gé)RNS ( 2))

let
Chs (23) 288 (%)

in equation so that

a?m\/s <23) - égRNS <23)

as Qrys is concave RNS so equation becomes
ClrfﬁRNS (23) = gRNS (25) < max (égRl\IS (21) ’égst (22)>
2m 2m 5\ Am 5
gl?RNS (éQRNS g@)RNS ( 1) ’gQRNs (22) C@RNS (22))

ie.
8 s (23) Smax (85 (21) 85, (22))
(23),in equation 1| so that
em s\ _ Am IS
éli’RNS (Zs) o g@RNs (23)
as Ogys is concave RNS so equation becomes

8 s (30) = 88, (25 S max (85, (20), 88 (22))

QORrnNs

8 (3) < max (88, (20), 83, (&), 88, )88, (22))

similarly for égms (23) > Agms

ie.
&y (8 < max (8 (60 & (22)

hence the proof.

Theorem 3.16. UQRNS/®RNS S ‘E(CJURNS then Qrns U Orns € EngNS and Qgrns U Orns €

EC vRNS-
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PTOOf. Let ()RNS/ @RNS € é“ngNS’ ‘?RNS = QRNS U ©RNS and the points 2&,2’2, fg on 2’12,2 SO

that 212/ || axis.

Now
8y s (1) = max (85 (21),85 (£1)) ke [1,p]
By s () = max (85 (25),85 (85)) ke [1,p]
Oy s (35) =max (85 (£5) .85, (#)) ke [L,p]
now
£k 51\ Ak 5/
max (gli’ NS (Zl) ,€TRN5 (22)>
= max (max (&, (21), 86, (1)) max (85, (%5).85 (%))
— max (égRNS (23) ’ élé)lws (23) ’ CIE)RNS (2/2) ’ ék@RNS (2I2)> (16)
let
s (8) 2 86, (8)
in so that

as QOgys is ortho-concave RNS so
é‘]}’zws (2/3) - égRNS (2/3) < max (égm\ls (2/1) ’éIE)RNS (ﬁé)>
a{?RNS (23) < max (égRNS (23) ’é]((:)RNS (2/1) ! A](E)RNS (2,2) é%RNs (2,2))
i.e.
8 (85) <max (&, (#0) 84, (22)
similarly for é”éRNS (25) > é’éms (2%),in equation 1| so that
a%RNs (23) - égms (23)
as Ogys is ortho-concave RNS so equation becomes

B (85) = 8o (89) < max (8, (81). 86, (3)

a{i’m\/s (23) < max (él(%RNS (21) ’égRNS (2,1) ,égRNS (2/2) élé)RNs (2/2))

i.e.

Again

By, (22) =min (8 (%), 9 (2)

QOgrns
By, (28) =min (9 (24), 8 (25)) 1€ L]
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1%
now

QRNS ®RNS ZZ
= min (8, (1) 86, ()96, (3) 96, (2) i
let

in (17) so that

as Qgns is ortho-concave RNS so

By s (28) = B, (28) 2 mmin (8, (21) 8, ()

RNS T
i.e.

Al . 4 N Al y

04 (23) > min (ﬂ‘iﬁws (21) B¢ e (zz))
. . Al’\ Al < Al,\ A . .

similarly for Uons (2%) < Vs (24),in equation 1i so that

%, (85) =0g, (%)

Ogrns

as Orns is ortho-concave RNS so equation (17) becomes

{%?RNS (2é> = @IGRNS (23) > min (@lh (21) @lh (A/)>

Orns

B () = min (8, (21), 85 (21),9, ()8 (%))
ie.
By () = min (8 (2) 8%, (22)).
Similarly
Gy (&) =min (& (2), &8 (2)),me L1
&y o () =min (&8 (25),88 () ,me (L1
Gy (@) =min (&2 (25),88 (2)),me (14
now
min (6$RNS (23) ’ A$RNS (2/2))
= min (min (&8 (¢1) .48, (1)) min (&8, (£),83, . (2))))
= min (&8, (5),88,,, ()88, ()88, () (18)
let

em o/ em sl

QRNS (23) S C(:DRNS (23)
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in (18) so that

as Qgns is ortho-concave RNS so

é%ws (25) = &4 (25) > min (c’f’" (21), &n (2'2))
ie.

similarly for égRNS (25) < ég (25),in equation 1i so that

(oo (33) = C5,, (25)
as é@RNS is ortho-concave RNS so equation 1; becomes
§$RNS (2/3) - égRNS (2/3) Z min (égst (2/1) ’égRNS (2/2)>

6$RNS (%) = min (ggRNS (2/1) ’ggm\/s (2/1) ’(ngNs (2,2) égzws (2/2))
i.e.
8 (85) 2 min (8 ()87, (2).

Since every ortho-concave RNS is also concave RNS which leads to completion of proof.

Remark 3.17. If Q‘IXQNS € Ecorns then U QDI‘QNS € ECoRNS-
4
Remark 3.18. If 0%, € E2 ..o then Laj 0% s € B pyg and QQ%NS € Ecorns-

Definition 3.19. If .Z be any line and p be any point on it with ., 1 & at Qgrns then the
inf projection of QOgys, denoted by Q) ¢, is stated as a mapping ¢ : .2 — X such that for any
p € Z,P(p) =inf {Qrns(?), # € £, } where {Qrns(?), 7 € £} C X.

Definition 3.20. If Z be any line and p be any point on it with .£, | . at Qgns then the
sup projection of Qrns, denoted by () &, is stated as a mapping ¢ : .# — X such that for any
p €.Z,9(p) =sup {Qrns(F), 7 € &} where {Orns(?),7 € .2, } C X.

Theorem 3.21. IfQRNS € ECURNS then Qg € ECURNS'

Proof. Let Z1,%,,23 are the points lying on .2 with Z3 that is lying on £1Z,, for any € > 0,
NI . . . Sk A Sk A A Sk o
let 2], 2/, be the points lying on .%, and .%;, with Cor, (21) > Crns (27) — € and Cre (22) >

Ny ol 51

Pk o! A sl ). . A . ol
CORNS (25) — & Let 25 = 2{2, N Z,. Since Oy is concave and 25 € 212/, then we have

(e (B) <max (8 (21).85,,, (8)) ke Lpl

QORrnNs
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<max (88 (21)+8 85 (22)+¢)
= max ( ]é (:21),5];2 (Zz)) +é
but
Che (88) 2 05 (23)
hence

égg (23) < max (égg (21)15?53 (22>> +é

as & > 0 is of arbitrary nature, therefore

Again
B (25) > min (8 (21), 0 (25)) 1€ [13]
>min (9 (1) +8,8) (22) +2)
= min (191A (21), 0% (22)) +¢
but
9, (25) <9 (23)
hence

19’03 (23) > min (191(13 (21)11%2 (22)> +é

as € > 0 is of arbitrary nature, therefore

8%, (23) > min (@lﬁz (21), 9% (22)) .

Similarly
B (28) Zmin (85 (21),85 (5)),me L1,
> min (ég$ (21) + &, égg (22) + S)
= min (5}%2 (21),¢4 (Zz)) +8
but
G () <& (2)
hence

so ()¢ is concave.

Remark 3.22. If QRNS S ECXRNS then Qg € ECXRNS'
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4. Conclusion

Through this research, the existing idea of NS is refined by categorizing its uncertain com-
ponents into their respective multi-sub-grades. This refined idea is then integrated with the
classical theory of convexity and concavity to make it applicable to solving optimization-
related problems. Several useful axiomatic results are generalized with convex and concave
RNS settings. It is observed that all classical results that are discussed in the paper, are quite
valid for such settings. By taking into consideration the various kinds of convexity, the pro-
posed model may be extended to generalize the results for them. Additionally, these results

can also be utilized successfully for establishing various types of mathematical inequalities.
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