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Abstract: The neutrosophic approach is a potential area to provide a novel framework for dealing 

with uncertain data. This study aims to introduce the neutrosophic Maxwell distribution (MD̃) for 

dealing with imprecise data. The proposed notions are presented in such a manner that the 

proposed model may be used in a variety of circumstances involving indeterminate, ambiguous, 

and fuzzy data. The suggested distribution is particularly useful in statistical process control (SPC) 

for processing uncertain values in data collection. The existing formation of VSQ-chart is incapable of 

addressing uncertainty on the quality variables being investigated. The notion of neutrosophic VSQ-

chart (ṼSQ) is developed based on suggested neutrosophic distribution. The parameters of the 

suggested ṼSQ-chart and other performance indicators, such as neutrosophic power curve (PC̃), 

neutrosophic characteristic curve (CC̃)  and neutrosophic run length (RL̃)  are established. The 

performance of the ṼSQ-chart under uncertain environment is also compared to the performance of 

the conventional model. The comparative findings depict that the proposed ṼSQ-chart outperforms 

in consideration of neutrosophic indicators. Finally, the implementation procedure for real data on 

the COVID-19 incubation period is explored to support the theoretical part of the proposed model. 

Keywords: Neutrosophic probability; Maxwell distribution; Maxwell control chart; Simulation;  

Estimation 

 

1. INTRODUCTION 

Statistical process control (SPC) is a set of statistical methods for process improvement and 

quality control. SPC is applied to observe and control a process to reduce the possibility of rework 

[1]. The ability to work at maximum capacity is made possible by monitoring and controlling the 

process [2]. SPC is a process for determining whether or not produced products satisfy the criteria 

and then adjusting the process to generate the desired proportion of conforming items [3]. The 

control chart is one of the most well-known SPC tools for observing and reducing the variation in 

the process. Because of many inherent causes, normal variation occurrence in closely every 

manufactured object is the best possible phenomenon [4]. The SPC is a standard approach that uses 

statistical techniques for estimating fluctuations in production or manufacturing process 
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parameters [5]. The role of a SPC is more significant in manufacturing industries [6]. This method is 

widely used to study the behaviour of processes and enhance their production [7]. SPC aims to 

detect irregularities in made items as early as feasible to stop the progression before defective 

products are made [8]. The Shewhart’s model, developed by Walter A. Shewhart, is a popular 

predictive process tool that is simple to apply and comprehend [9]. The Shewhart control chart 

scheme is usually not recommended in service sectors and production operations where slight 

modifications can result in substantial monetary losses due to its ease of development and 

widespread use [10]. As a result, a chart of memory types that highly responsive to small shifts in 

study parameters. By contrast, most real-world systems can have uncertainties or indeterminacies 

[11]. Shewhart control charts cannot accurately identify a process if the process is ambiguous or 

essential quality characteristics are determined by human subjectivity [12]–[14]. As a result, 

problems are explained and modelled using fuzzy set theory. Research studies [15]–[17] reveal a 

simple application of fuzzy charts. On average, fuzzy-based control charts are more sensitive than 

traditional control charts [18]. The neutrosophic approach is a more general concept and provides a 

platform that combines a fuzzy concept set with the notion of a classical set [19]–[21]. The 

neutrosophic philosophy considers the existence of truth, false, and imprecise situations . The 

concept of neutrosophy is currently being used in various disciplines [22]. New application areas 

for SPC techniques are emerging, demanding further attention. 

In a variety of real-world scenarios, the collected data may be ambiguous [23]. Various 

researchers use neutrosophical philosophy to address the problems of having incomplete data [24]–

[29]. In the field of neutrosophic statistics, the traditional statistical methods have been 

comprehensive to address the management of data involving ambiguity. When the underlying data 

consists of incomplete, unclear, or uncertain data on quality characteristics, it is impossible to utilize 

a typical control chart technique. Numerous researchers such as [13], [16], [30], [31] have suggested 

statistical approaches that are linked with neutrosophic logic in the domains SPC [17]. When the 

premise of normality is seriously questioned, the use of commonly used control charts is far less 

appropriate [32]. The VSQ is one of these approaches for dealing with nonnormality in quality data, 

which is best represented by the classical Maxwell model [33]. The Maxwell distribution is a 

statistical distribution that has sparked the interest of many scholars owing to its numerous 

practical applications [34], [35]. 

In this work, neutrosophic aspect of the Maxwell model with application domains in SPC is 

presented. The neutrosophic version of the VSQ-chart that may handle the vague, incomplete or 

imprecise observations in underlying Maxwell quality characteristics is suggested.  

The rest of the work is organized as follows: The notions of MD̃ are first introduced in Section 2. 

Section 3 contains the proposed control chart based on MD̃. The suggested neutrosophic design 

performance measure is provided in Section 4. Section 5 contains a comparative analysis of the ṼSQ-

chart. An actual example of the useful execution of the suggested ṼSQ-chart is expounded in Section 

6. Section 7 summarizes the key findings of the work. 

2. STRUCTURE OF THE PROPOSED DISTRIBUTION 
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This section presents an overview of the suggested distribution and introduces it in a unified 

framework. The following definitions establish a connection between the proposed model and its 

applications in the neutrosophic framework. 

Definition 1: The neutrosophic density function (PDF)̃ and Distribution function (CDF)̃ respectively 

of the MD̃ with fuzziness in the scale parameterϑ̃are defined as: 

fN(t, ϑ̃) = √(
2

π
)ϑ̃−3t2e

−
t2

2ϑ̃2 ; ϑ̃ > 0, t > 0        (1) 

FN(t, ϑ̃) = (
2

√π
) γ [

3

2
 ,

t2

2ϑ̃2] ; ϑ̃ > 0, t > 0        (2) 

where ϑ̃ = [ϑ1, ϑu] and the neutrosophic random variable . In the framework of neutrosophic 

calculus, it is defined as the integral of the variable density over a specified range. The neutrosophic 

parameter ϑ̃  denotes simply the scale factor whose different values result in a variety of 

neutrosophic curves of the proposed distribution. The graphs of PDF̃ and CDF̃ for a continuous 

random variable  with different neutrosophic values of the scale parameter are depicted in Figure 

1 and Figure 2, respectively.  

 

Figure 1. The 𝑃𝐷𝐹̃ plots of the proposed model with (a) 𝜗̃ = [1.5, 2] and (b) 𝜗̃ = [2, 3.5] 
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Figure 2. The 𝐶𝐷𝐹̃ plots of the proposed model with (a) 𝜗̃ = [1.5, 2] and (b) 𝜗̃ = [2, 3.5] 

Figure 1 shows that the densities are asymmetric and skewed toward the right. In the neutrosophic 

framework, the density curve is represented by a thick layer rather than a single curve. The layer 

thickness (shaded region) corresponds to an indeterminacy part and total area under the sturdy 

curve equal to one due to completeness of 𝑃𝐷𝐹̃. In addition, Figure 2 shows the overall behaviour 

of 𝐶𝐷𝐹̃ which is right continuous and varies in the interval [0, 1].  

Definition 2 Mean and variance of the MD̃ are respectively given by 

𝜇̃ = 2𝜗̃√
2

𝜋
 , and 𝜎̃2 = (3𝜋 − 8)

𝜗̃2

𝜋
 

Proof By definition 

𝐸(𝑇) = ∫ 𝑡 

∞

0

𝑓𝑁(𝑡)𝑑𝑡 

= ∫ 𝑡 [

∞

0

𝑓𝑙(𝑡), 𝑓𝑢(𝑡)]𝑑𝑡 

= [∫ 𝑡 

∞

0

𝑓𝑙(𝑡)𝑑𝑡, ∫ 𝑡 

∞

0
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= [2𝜗̃𝑙√
2

𝜋
 , 2𝜗̃𝑢√

2

𝜋
 ]         

 (3) 

= 2𝜗̌√
2

𝜋
, is the required mean value of the random variable 𝑇 

Now the second raw moment of the MD̃ is given by: 

𝐸(𝑇2) = ∫ 𝑡2

∞

0

𝑓𝑁(𝑡)𝑑𝑡 

= ∫ 𝑡2 [

∞

0

𝑓𝑙(𝑡),  𝑓𝑢(𝑡)]𝑑𝑡 

= [∫ 𝑡2

∞

0

𝑓𝑙(𝑡)𝑑𝑡, ∫ 𝑡2

∞

0

𝑓𝑢(𝑡)𝑑𝑡 ] 

= [3𝜗̃𝑙 , 3𝜗̃𝑢] 

𝐸(𝑇2) = 3𝜗̃2 

Thus the variance becomes 

Now 𝜎2
𝑁(𝑡) = 𝐸(𝑇2) − (𝐸(𝑇))2 = [3𝜗̃𝑙, 3𝜗̃𝑢] − ([2𝜗̃𝑙√

2

𝜋
 , 2𝜗̃𝑢√

2

𝜋
 ])2 

After simplifying, we get 

= [(3𝜋 − 8)
𝜗̃𝑙

2

𝜋
 , (3𝜋 − 8)

𝜗̃𝑢
2

𝜋
]        (4) 

Further neutrosophic measures of the proposed can be derived in a similar way using the 

neutrosophic calculus. 

The Maxwell distribution is extensively used to describe wind speed data, communications 

data in signals processing, modelling of wind speed data, lifetimes of different objects in reliability 

studies, and noise factor modelling in magnetic imaging and SPC. With particularly focus on SPC, 

designing of new 𝑉̃𝑆𝑄. The chart based on the neutrosophic version of the Maxell model is described 

in the next section.  
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3. CONSTRUCTION OF CONTROL CHART  

Assume that the desired quality attribute is given by Y and that it follows the neutrosophic 

form of the Maxwell model as described in (1). In most real-world circumstances, the value of the 

neutrosophic parameter 𝜗̌ is rarely known and usually estimated by the maximum likelihood (ML) 

approach. Let 𝑦1𝑁 , 𝑦2𝑁 , 𝑦3𝑁 … … . 𝑦𝑚̃𝑁 be the observed interval values sample from MD̃ with density 

function 𝑓𝑁(𝑦, 𝜗̃) . Assume the parameter 𝜗̃  is unknown in the defined distribution, then 

∏ 𝑓𝑁(𝑦𝑖 , 𝜗̃) 𝑚̃
𝑖=1  be the joint probability of the observed sample.  

Taking the logarithm of the product ∏ 𝜙𝑁(𝑦𝑖 , 𝜗̃)𝑚̃
𝑖=1  provides log-likelihood as: 

𝜉𝑁(𝑦𝑖𝑁 , 𝜗̃) =
𝑚̃

2
log (

2

𝜋
) − 3𝑚̃𝑙𝑜𝑔𝜗̃ + 𝑙𝑜𝑔 ∏ 𝑦𝑖𝑁

2 −
∑ 𝑦𝑖𝑁

2𝑚̃
𝑖=1

2𝜗̃2
𝑚̃
𝑖=1     (5) 

where 𝑚̃ = [𝑚𝑙, 𝑚𝑢] is the neutrosophic sample size which turns to classical sample size when  𝑚𝑙 =

𝑚𝑢 = 𝑚 

The ML estimate of the unknown 𝜗̃ is the value that maximizes 𝜉𝑁(𝑦, 𝜗̃) i.e., 

𝜗̂̃ = max (𝜉𝑁(𝑦𝑖𝑁 , 𝜗̃)) 

The ML estimates, namely 𝜆̂𝑁 can be obtained by using the neutrosophic calculus as: 

𝛿𝜉𝑁(𝑦,𝜗̃)

𝛿𝜗̃
= [

𝛿𝜉𝑙(𝑦𝑖𝑙,𝜗̃𝑙)

𝛿𝜗̃𝑢
 ,

𝛿𝜉𝑢(𝑦𝑖𝑢,𝜗̃𝑢)

𝛿𝜗̃𝑙
]         (6) 

where  𝜉𝑙(𝑦, 𝜗̃𝑙) =
𝑚𝑙

2
log (

2

𝜋
) − 3𝑚̃𝑙𝑜𝑔𝜗̃𝑙 + 𝑙𝑜𝑔 ∏ 𝑦𝑖𝑙

2 −
∑ 𝑦𝑖𝑙

2𝑚𝑙
𝑖=1

2𝜗̃𝑙
2

𝑚𝑙
𝑖=1   

and 

𝜉𝑢(𝑦, 𝜗̃𝑢) =
𝑚𝑢

2
log (

2

𝜋
) − 3𝑛𝑙𝑜𝑔𝜗̃𝑢 + 𝑙𝑜𝑔 ∏ 𝑦𝑖𝑢

2 −
∑ 𝑦𝑖𝑢

2𝑚𝑢
𝑖=1

2𝜗̃𝑢
2

𝑚𝑢
𝑖=1 . 

Simplification of (6) provides: 

𝛿𝜉𝑁(𝑦,𝜗̃)

𝛿𝜗̃
= [

−3𝑚𝑙

𝜗̃𝑙
+

∑ 𝑦𝑖𝑙
2𝑚𝑙

𝑖=1

𝜗̃𝑙
3  ,

−3𝑚𝑢

𝜗̃𝑢
+

∑ 𝑦𝑖𝑢
2𝑚𝑢

𝑖=1

𝜗̃𝑢
3 ]       (7) 

Equating (7) to [0, 0] yields: 
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[𝜗̂̃𝑙 , 𝜗̂̃𝑢] = [√
∑ 𝑦𝑖𝑙

2𝑚𝑙
𝑖=1

3𝑚𝑙

, √
∑ 𝑦𝑖𝑢

2𝑚𝑢
𝑖=1

3𝑚𝑢

  ] = √
∑ 𝑦𝑖𝑁

2𝑚̃
𝑖=1

3𝑚̃
 

Thus 

 𝜗̂̃ = √∑ 𝑦𝑖𝑁
2𝑚̃

𝑖=1

3𝑚̃
 is the required ML estimator for the neutrosophic parameter of MD̃. 

For structuring the parameters of proposed 𝑉̃𝑆𝑄-chart, we have to establish the distribution of the  𝜗̂̃-

estiamator. The chi (𝜒) random variable 𝑍 with 3-degree of freedom (df) is associated with the 

estimator  𝜗̂̃ as follows [31]: 

 𝜗̂̃ =
𝜎

√3𝑚
𝑍          (8) 

It is now assumed that uncertain values of  𝜎 and 𝑚 are provided instead of accurate values. Under 

neutrosophic environment expression (8) can be written as follows: 

 𝜗̂̃ =
𝜎𝑁

√3𝑚̃
𝑍          (9) 

where 𝜎𝑁 = [𝜎𝑙 , 𝜎𝑢], 𝑚̃ = [𝑚𝑙, 𝑚𝑢] and 𝑍  is the neutrosophic chi (𝜒𝑁) a random variable with 3𝑚̃ 

degree of freedom. The skewed curve is a collective term for the 𝜒 distribution. The density plot of 

the 𝜒𝑁 variable with neutrosophic df is displayed in Figure 3.  

 

Figure 3. Probability curves of the 𝜒𝑁 random variable 
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Figure 3 is sketched to familiar with the neutrosophic form of the 𝜒𝑁 distribution for the case of 

various neutrosophic degrees of freedom. It is depicted from Figure 3 that distribution is skewed to 

the right for the lower degree of freedom. The distributional characteristics of the estimator  𝜗̂̃ using 

(9) can be established) as : 

𝐸 ( 𝜗̂̃) = 𝜎𝑁𝛿 

𝑉 ( 𝜗̂̃) = 𝜎2
𝑁[1 − 𝛿2]         (10) 

where 𝛿 = √(
2

3𝑚̃
) (

Γ(
(3𝑚̃+1)

2
)

Γ(
3𝑚̃

2
)

) is an interval form of the neutrosophic constant and counts on 𝑚̃. 

According to (10), the estimator  𝜗̂̃ is not the unbiased statistic of  𝜎𝑁. For the analysis, suppose 𝑇 

samples with imprecise observations are available. For each sample batch, ML estimate of  𝜗̂̃ is 

obtained, then the mean of all collected sample groups will be:  

 𝜗̂̃
̅

=
∑  𝜗𝑖̃

̂𝑇
𝑖=1

𝑇
           (11) 

Thus an unbiased estimator for 𝜎𝑁 can be developed as follows: 

𝜎̂𝑁 =
 𝜗̂̃
̅

𝛿
           (12) 

Because the distribution of  𝜗̂̃ is highly skewed, particularly for smaller values of 𝑚̃, three-sigma 

limits are ordinarily inapplicable due to unequal tail sizes [36]. A common procedure in SPC is to 

use probability limits (PL) to address this issue. Since  𝜗̂̃ is followed by the 𝜒𝑁 distribution, its 𝛼𝑡ℎ 

percentile is determined as: 

𝐹𝜒𝑁
(𝑍̃) = 𝛼           (13) 

Using (8) in (13) yielded: 

 𝜗̂̃ =
𝜎𝑁

√3𝑚̃
𝐹𝜒𝑁

−1(𝑍̃)         (14) 

As a result, the PL of the 𝑉̃𝑆𝑄-chart is constructed as follows: 

𝑢𝑝𝑙𝑁 =
𝜎𝑁

√3𝑚̃
𝐹𝜒𝑁

−1 (1 −
𝛼

2
) = 𝜎𝑁𝑡̃1 
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𝑙𝑝𝑙𝑁 =
𝜎𝑁

√3𝑚̃
𝐹𝜒𝑁

−1 (
𝛼

2
) = 𝜎𝑁𝑡̃2        (15) 

where 𝑡̃1 =
𝐹𝑌

−1(1−
𝛼

2
)

√3𝑚̃
= [𝑡1𝑙 , 𝑡1𝑢] and 𝑡2̃ =

𝐹𝑌
−1(

𝛼

2
)

√3𝑚̃
= [𝑡2𝑙 , 𝑡2𝑢] are neutrosophic values.  

When the parameter defining the MD̃ distributed quality characteristic is not provided, it is derived 

using an estimator described in (10). Thus the estimated PL becomes: 

𝑢𝑝𝑙̂𝑁 =
𝜎̂𝑁

√3𝑚̃
𝐹𝜒𝑁

−1 (1 −
𝛼

2
) =  𝜗̂̃

̅
𝑡̃3 

𝑙𝑝𝑙̂𝑁 =
𝜎̂𝑁

√3𝑚̃
𝐹𝜒𝑁

−1 (
𝛼

2
) =  𝜗̂̃

̅
𝑡̃4        (16) 

where 𝑡̃3 =
𝐹𝑌

−1(1−
𝛼

2
)

𝛿√3𝑚̃
= [𝑡3𝑙 , 𝑡3𝑢]  and  𝑡̃4 =

𝐹𝑌
−1(

𝛼

2
)

𝛿√3𝑚̃
= [𝑡4𝑙 , 𝑡4𝑢] 

For a fixed of false alarm probability 𝛼 and various values of 𝑚, the classic pair of crisp values 

(𝑡̃1, 𝑡̃2) and (𝑡̃3, 𝑡̃4) are easily computed and viewable in [31]. Three-sigma limits may be derived 

similarly but are not discussed in detail here due to the asymmetric form of the underlying statistic, 

particularly for the lower value of 𝑚̃. 

4. PERFORMANCE METRICS 

The performance measures applied in this study are explained in this section. The suggested 

control charts' performance is assessed using a variety of metrics, however the average 

neutrosophic run length (ARL̃) is the most frequently used and well accepted metric for analyzing 

neutrosophic control charts. The other related quantities such as neutrosophic power function (PF̃) 

and neutrosophic characteristics function (CH̃)  are also described. The PF̃  and CH̃  functions are 

traditionally used to evaluate the sensitivity of the control chart to identify a sustained shift in key 

parameters. Whereas average number of neutrosophic points display on a control chart prior to the 

detection of an out-of-control signal is referred to as the ARL̃. In this concept, it has been considered 

that samples are taken at evenly spaced time intervals. The ARL̃ is actually the average value of the 

run-length distribution when the process is in-control (IC) and is usually denoted by ARL̃0. On the 

other hand, when a shift occurs, the number of samples collected from that point onward is known 

as out-of-control (OC) run length (ARL̃1). Of course, the optimum circumstance for a given chart is 

for ARL̃0 to be large and ARL̃1 to be small. However, this is harder to establish, as it is with the 

Type-I and Type-II errors probabilities in the hypothesis test framework. As a remedy for this 

problem, the SPC literature employs an approach similar to hypothesis testing in which the ARL̃0 

value is fixed at a certain level and the ARL̃1 value is reduced as much as feasible. To compute the 

value of ARL̃1, the ability of ṼSQ-chart of not detecting the shift is given by: 
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βN = P[lplN ≤ ϑ̃ ≤ uplN H1⁄ ]         (17) 

Further simplification of (17) yielded: 

β = FχN
(θϑ̃1√3m̃) − FχN

(θϑ̃2√3m̃)       (18) 

where θ is the shift constant that linked the IC parameter with OC parameter as: 

ϑ̃1 = θϑ̃0;  ϑ̃0 = [ϑ̃l0, ϑ̃u0]          (19) 

Thus ARL̃1 can be defined as: 

ARL̃1 =
1

1−FχN
(θt̃1√3m̃)+FχN

(θt̃2√3m̃)
=

1

1−β
       (20) 

Note that the expression 1 − FχN
(θt̃1√3m̃) + FχN

(θt̃2√3m̃) = 1 − β  establishes the PF̃  of the 

proposed chart and when θ becomes equal to 1, (20) provides ARL̃0 i.e., mean of IC run length while 

the other values of θ  i.e., θ ≠ 1,  provides upwardly and downwardly shifts in the observed 

parameter of the proposed model. Now we compute the values of ARL̃1 and (PF̃) of the proposed 

chart for known value of process parameters. For this, we assume that m̃ = [3,5], crisp ARL̃0 =

[370, 370] and upwardly shift in the observed parameter. In such case, computed ARL̃1 and (PF̃) are 

depicted in Figure 4 and Figure 5, respectively. 

 

Figure 4 The ARL̃1 curve of the proposed ṼSQ-chart 
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Figure 5 The PF̃ curve of the proposed ṼSQ-chart 
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chart also detects the greater shifts with higher probabilities. In addition, we have provided the 

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

shifted parameter:

1

ARL0 = 370

m = [2, 3]



Neutrosophic Sets and Systems, Vol. 53, 2023     308  

 

 

Faisal Shah, Muhammad Aslam and Zahid Khan, New Control Chart Based On Neutrosophic Maxwell 

Distribution with Decision Making Applications 

 

performance of ṼSQ-chart in terms of ARL̃1  in Table 1. The results in Table 1 are based on 105 

simulations of each shift in the study parameter at a fixed benchmark value ARL̃0 = [370, 370]. 

 

Table 1 The estimated ARL̃1of ṼSQ-chart 

Sample size 

Shifting 

amount (𝜃) 

[2, 3] [5, 7]  [9, 12]  

 

1.00 [371.77,372.05]  [369.54,370.57]  [365.69,370.57]  

1.25 [132.32,214.55]  [35.80,62.82]  [22.57, 35.80]  

1.50 [35.88, 80.03]  [5.51, 11.62]  [3.27,5.51]  

1.75 [13.23, 35.95]  [1.95, 3.81]  [1.36,1.95]  

2.00 [6.18, 18.60]  [1.21, 1.91]  [1.04,1.21]  

2.25 [3.47, 10.75]  [1.03, 1.30]  [1.00,1.03]  

2.50 [2.27, 6.81]  [1.00, 1.09]  [1.00,1.00]  

2.75 [1.67, 4.65]  [1.00, 1.02]  [1.00,1.00]  

3.00 [1.36, 3.38]  [1.00,1.00]  [1.00,1.00]  

3.25 [1.18, 2.60]  [1.00,1.00]  [1.00,1.00]  

3.50 [1.18, 2.60]  [1.00,1.00]  [1.00,1.00]  

3.75 [1.09,2.09]  [1.00,1.00]  [1.00,1.00]  

4.00 [1.04, 1.75]  [[1.00,1.00]  [1.00,1.00]  

4.25 [1.01, 1.52]  [1.00,1.00]  [1.00,1.00]  

4.50 [1.00, 1.36]  [1.00,1.00]  [1.00,1.00]  

4.75 [1.00, 1.25]  [1.00,1.00]  [1.00,1.00]  

5.00 [1.00, 1.17]  [1.00,1.00]  [1.00,1.00]  

 

Results in Table 1 show the performance of ṼSQ-chart at various neutrosophic sample sizes. It looks 

that estimated ARL̃1 is closer to the benchmark value of 370 when no shift occurred in the process 

parameter, i.e., θ = 1. In contrast, for other values of θ, ARL̃1 steadily decreases as expected with an 

increase in the shifted parameter. 

5. COMPARATIVE STUDY 

In this section, the performance of the suggested chart is compared to that of other existing 

model utilized to monitor the parameter of interest of the Maxwell model. It has been evaluated 

against an existing model of the V-chart in an indeterminate framework to observe how well ṼSQ-

chart performs. Various measures can be used for this comparison, although power curves are 

routinely employed in many research studies [37]–[39]. The equation (20) shows that power curve is 

a function of α, m̃ and θ . Power curves are often used to show the connection between these 

parameters. The development of the power curve for the suggested model is also based on the 

distribution of the estimator  ϑ̂̃ . In estimating how large sample size is needed to detect an 

observable difference with a given probability, power curves can be helpful. In our case, the power 

of the ṼSQ-chart is defined as if the computed  ϑ̂̃ statistic surpasses the design limits for particular 

values of α and m̃. To construct the power curve, assume that ϑ̃0 is an IC value of the observed 



Neutrosophic Sets and Systems, Vol. 53, 2023     309  

 

 

Faisal Shah, Muhammad Aslam and Zahid Khan, New Control Chart Based On Neutrosophic Maxwell 

Distribution with Decision Making Applications 

 

process. Then PF̃ indicates the likelihood of detecting a shift to a new value, say ϑ̃1, where ϑ̃1 = θϑ̃0 

on the first sample after the shift. This approach is used to evaluate the neutrosophic power of the 

recommended chart and its counterpart for fixed values of ARL̃0 and m̃ in Figure 6. 

 

 

Figure 6 Power comparisons of ṼSQ-chart at (a) ARL̃0 = [370, 370] and m̃ = [3,5], (b) ARL̃0 = [370, 370] and 

m̃ = [8,10] 

For examining Figure 6, it is observed that the suggested ṼSQ-chart is particularly successful in 

identifying process changes even for small sample size. As an illustration, the power of ṼSQ-chart 

and neutrosophic V -chart for detecting a shift of amount 3ϑ̃0  are [0.75, 0.95] and [0.25, 0.40] 

respectively at m̃ = [3,5].Whereas the same comparison with higher probabilities hold for a larger 

sample size, i.e., m̃ = [8,10]. Thus the proposed chart is deemed efficiently and highly sensitive for 

detecting the shift of different amounts in the studied parameter of the neutrosophic Maxwell 

process.  

6.  REAL-LIFE APPLICATION 

In this section, a real-life example of the healthcare sector has been described to explain the 

theoretical framework of the proposed method. A patient's life or death is at stake in healthcare 

quality. To ensure patient satisfaction and safety, the healthcare system requires both investment 

and quality. Quality is a major concern for investors in this sector, which has seen a steady rise in 

investment. The assumption that the distribution of most medical data is normal is not accurate in 

most cases, so the customary assumption of normality approximation turns into inadequate for 

nonnormal data analysis. On the contrary, the techniques proposed in this work may effectively 

monitor and model the healthcare data. The capacity to reliably monitor the mean incubation time 

of COVID-19 and its variability in healthcare has become a major issue for the government, 
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industry, the general public, and academics. We have applied ṼSQ -chart to COVID-19 mean 

incubation time data taken from the source [40] to examine the possible variability in incubation 

periods estimated from different studies. Being aware of the incubation period model while dealing 

with a point source pandemic enables statistical evaluation of exposure time. This information may 

also be used to evaluate hypotheses about whether the pandemic has come to an end by analyzing 

incubation time distribution during point-source epidemics. The incubation time, defined as the 

period between initial infection and illness manifestation, is an essential indicator for characterizing 

the spread of contagious diseases and developing quarantine policies [41]. It is important because 

reproduction numbers are often calculated using the mean incubation time, while quarantine 

durations are typically determined by using the maximum incubation period. The typical 

incubation time for COVID-19 varies widely, ranging from 3 days to 18 days [42]. As a result, it's 

impossible to quantify a precise quarantine period. Incubation periods have been found to vary 

widely in different research studies most likely because of the study population size and the 

estimating methodologies used. As a result, the mean incubation duration worldwide from the 

source is reported in Table 2 with uncertainties rather than precise figures in 12 subgroups.  

Table 2: COVID-19 mean incubation period data with uncertainties 

Sample 

batch 

Mean incubation period values 

1 [7.81, 9.00] [8.31, 9.16] [4.48, 5.65] [7.43, 8.51] 

2 [4.95, 5.80] [6.75, 7.62] [5.05, 6.01] [4.95, 5.22] 

3 [6.49, 7.73] [5.58, 6.45] [5.55, 6.80] [6.85, 7.18] 

4 [3.99, 4.57] [4.82, 5.04] [6.58, 7.12] [3.38, 4.45] 

5 [8.94, 9.48] [6.11, 7.60] [5.36, 6.40] [4.84, 5.05] 

6 [5.35,6.63] [9.48, 10.68] [8.35, 9.27] [7.93, 8.74] 

7 [5.91, 6.16] [9.90, 10.50] [10.31, 11.37] [8.32, 8.92] 

8 [5.21, 5.98] [5.88, 6.68] [5.03, 5.31] [3.83, 5.18] 

9 [5.82, 6.90] [6.01, 7.01] [5.07, 6.14] [2.52, 3.73] 

10 [7.38, 8.18] [5.80, 7.26] [6.76, 7.57] [6.52, 7.70] 

11 [6.32, 6.86] [5.33, 6.78] [5.07,5.77] [2.07, 3.65] 

12 [7.42, 8.21] [4.06, 5.92] [4.17,5.48] [3.72, 4.52] 

 

Mean incubation time uncertainties are introduced to the technique devised in [13]. An informal 

graphical approach has shown that the Maxwell distribution is an acceptable model for 

representing the incubation time data since most actual data does not stray greatly from the 

theoretical red lines. The process data are skewed, as seen from the histogram and CDF plot in 

Figure 7 and Figure 8. As a result, the data may be further examined using the model that has been 

suggested.  
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Figure 7. Histrogram of COVID-19 incubation period data 

 

 

Figure 8. Theoretical and empirical CDF plots of incubation period data 

 

By considering the individual values given in Table 2, the ML estimator  ϑ̂̃ can be obtained from 

each subgroup in Table 3: 
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Table 3: Neutrosophic estimates of the proposed model for each sample group 

Sample batch Neutrosphic estimator ( 𝜗̂̃) 

1 [4.14, 4.73] 

2 [3.16, 3.59] 

3 [3.54, 4.07] 

4 [2.79, 3.12] 

5 [3.75, 4.22] 

6 [4.52, 5.16] 

7 [5.06, 5.45] 

8 [2.91, 3.36] 

9 [2.92, 3.52] 

10 [3.83, 4.44] 

11 [2.86, 3.41] 

12 [2.92, 3.56] 

 

After finding ML estimate of  ϑ̂̃ from each sample batch, the mean of all collected sample groups 

from (10) can be obtained as: 

 ϑ̂̃
̅

= [3.54, 4.06] 

The upper and lower probability limits for sample size 4 utilizing (16) thus can be obtained as: 

upl̂N = max[5.90, 6.78] and lpl̂N = min[1.60,1.80]. 

The proposed control chart based on these limits is depicted in Figure 9. 

 

Figure 9. Control chart based on the proposed model 
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The depicted Maxwell estimator in Figure 9 exhibits a random tendency within the control limits. 

Thus, observable data-generating mechanisms may be inferred as a statistical control condition. 

. 

7.  CONCLUSIONS  

The classical Maxwell model under the neutrosophic logic has been extended in this work. Several 

theoretical aspects of the proposed MD̃  distribution, such as its probability density function, 

characteristic function, and a few raw moments, are investigated. The theoretical framework of the 

suggested model, notably in domains of SPC, have been described for working data, including 

ambiguous, indeterminate, and imprecise observations on examined variables. Because of its 

suitability for dealing with ambiguous data in SPC applications, a new control chart based on the 

suggested MD̃  distribution has been developed. Some essential charting characteristics such as 

power curve (PC̃), the neutrosophic characteristic curve (CC̃) and neutrosophic run length (RL̃) of 

the proposed chart in terms of neutrosophic logic have been derived and validated through 

simulated data. A simulation study is carried out to demonstrate the theoretical results and the 

effectiveness of the ṼSQ-chart is evaluated to that of existing counterparts. Simulation results reveal 

that the proposed chart is deemed efficiently and have highly discriminatory power for detecting 

the shift of different amounts in the studied parameter of MD̃ distribution. Finally, the usefulness of 

the ṼSQ-chart has been described considering the real data example on the incubation period of 

COVID-19. Based on the results given in this study, neutrosophic extension may be designed for 

other statistical models in future work. 
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