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Abstract: When performing the simulation process, we encounter many systems that do not follow 

by their nature the uniform distribution adopted in the process of generating the random numbers 

necessary for the simulation process. Therefore, it was necessary to find a mechanism to convert the 

random numbers that follow the regular distribution over the period [0, 1] to random variables that 

follow the probability distribution that works on the system to be simulated. In classical logic, we 

use many techniques in the transformation process that results in random variables that follow 

irregular probability distributions. In this research, we used the inverse transformation technique, 

which is one of the most widely used techniques, especially for the probability distributions for 

which the inverse function of the cumulative distribution function can found. We applied this 

technique to generate neutrosophic random variables that follow an exponential distribution or a 

neutrosophic exponential distribution. This based on classical or neutrosophic random numbers that 

follow a regular distribution. We distinguished three cases according to the logic that each of the 

random numbers or the exponential distribution follows.  We arrived at neutrosophic random 

variables that, when we use them in systems that operate according to an exponential distribution, 

such as queues and others, will provide us with a high degree of accuracy of results, and the reason 

for this is due to the indeterminacy provided by neutrosophic logic. 

Keywords: Simulation - inverse transformation - uniform distribution - exponential distribution - 

neutrosophic exponential distribution - random numbers - random variables - neutrosophic logic. 

1. Introduction 

The generation of random variables that follow a certain distribution is the basis of the simulation. We can 

generate random events that simulate any real system by finding probability distributions that apply to the 

events and properties of that system, for example: "times between arrivals" in queues are random events that 

often follow an exponential distribution. There are several methods and algorithms for generating random 

variables from a given distribution [1,2,3]. 

To keep pace with the modern studies that emerged after the neutrosophic revolution, the logic laid down by the 

American mathematical philosopher Florentin Smarandache in 1995 [6,8,10,11,12,13,20] came as a 
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generalization of the fuzzy logic and an extension of the theory of fuzzy sets presented by Lotfi Zadeh in 1965 

[7]. As an extension of that logic, A. A. Salama presented the theory of classical neutrosophic sets as a 

generalization of the theory of classical sets and developed, introduced and formulated new concepts in the 

fields of mathematics, statistics, computer science and classical information systems through neutrosophic. 

Logic that studies the origin, nature and field of indeterminacy so that it takes into account every idea with its 

opposite (its negation) and with the spectrum of indeterminacy [4]. In addition, there were several achievements 

of many researchers in the field of neutrosophic [5,9,14,15,16,17,18,19,21,22,23,24,25,26]. It was necessary to 

work on transforming the random numbers that follow a neutrosophic uniform distribution into random 

variables that follow a neutrosophic exponential distribution. In this research, we present a study on the process 

of converting random numbers that follow a regular distribution over the period [0, 1] to random variables that 

follow an exponential distribution, based on the definition of regular and exponential distributions according to 

neutrosophic logic.  

2. Experimental and Theoretical Part:  

In view of the great importance that the exponential distribution has in most fields of science, and in order to 

obtain more accurate results when using it in a field. the researchers defined this distribution according to the 

neutrosophic logic. The logic that enables us to deal with all the cases that we can come across during the study. 

In previous research [28] entitled " Fundamentals of Neutrosophical Simulation for Generating Random 

Numbers Associated with Uniform Probability Distribution" we reached mathematical formulas that help us in 

generating neutrosophic random numbers that follow the uniform distribution on the period [0, 1].  In this 

paper, we have developed a mechanism to obtain the neutrosophic random variables that follow an exponential 

distribution. This based on the random numbers that follow the uniform distribution on the period [0, 1]. This 

done by using the inverse transformation of the cumulative distribution function. The study included all the 

cases that we need during the simulation process for the systems that operate according to the exponential 

distribution. 

Previous studies: [1, 2, 3, 28] 

If R1, R2 ... are a sequence of random numbers then Ri has a probability function defined as: 


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To generate x1, x2 ... observations of the random variable X. follow the distribution: 

 

We use the sequence of random numbers R1, R2 …., and the cumulative distribution function for the random 

variable X. Then we apply the inverse transformation method. It is the most commonly used, especially for 

probability distributions in which F-1(x) can found. It based on matching: 

F(X) = R  (*) 

If the random variable X follows a classical exponential distribution. 

Then the probability density function is: 
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The cumulative distribution function: 
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We substitute in the relation (*): 

F(X) = R 

 

By solving the previous equation, it results in: 

 

We call the equation (**): the generator equation for the random variable that follows the exponential 

distribution. Are of the form: 

X = F-1(R) 

Therefore, to obtain a sequence of observations, of the random variable X that follows the exponential 

distribution, we use the relationship )(1 RFX    , and the sequence of random numbers R1, R2.... we write: 

 

 

It can be simplified to the form: 

 

3. Results and Discussion  

 The current study: To generate random variables that follow an exponential distribution according to 

neutrosophic logic, we distinguish the following cases: 

First case: the random numbers follow the neutrosophic uniform distribution on the 

period    1,0  and the exponential distribution in the classical form. 

  To generate random variables that follow the exponential distribution whose probability density function: 

f(x) = e-x  x > 0 

Cumulative Distribution Function: 

F(x) = 1 – e-x  x  0 

Using the sequence of neutrosophic random numbers that follows the uniform distribution on the 

period    1,0  , and which is given as R1 - , R2 - … , we apply the relationship (*): 
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F(x) = R 

In this case, we write: 

F(x) = Ri -   

1 – e-x = Ri -  

e-x = 1 – (Ri - ) 

-x = ln (1 – (Ri - ))  

 





)R(1ln
x i            i = 1, 2… 

Accordingly, to obtain a sequence of observations of the random variable X using the random 

numbers that follow the neutrosophic uniform distribution on the period    1,0 , which 

is given by the formula Ri -  . We substitute, in the following relationship: 

        ; i = 1, 2… 

 

It can be simplified: 

 

           ; i = 1, 2… 

 

The second case: classical random numbers and a neutrosophic exponential 

distribution. 

Let's have a sequence of random numbers R1, R2 … that follows a uniform distribution on the 

period  1,0  , and we want to generate random variables that follow a neutrosophic exponential 

distribution. 

Probability density function of the neutrosophic exponential distribution [4]: 

Nx

NN e)x(f


         0 < x <  

The cumulative distribution function given by: 

NF(x) = 1 - Nx
e
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Using the relation (*): 

NF(x) = R  

1 - Nx
e

  = R  
Nx

e
  = 1 – R 

N

)R1ln(
x




            Or:             

N

Rln
x


  

Accordingly, to obtain a sequence of observations of the random variable X, ''which follow the 

neutrosophic exponential distribution''. Using the random numbers that follow the uniform 

distribution on the period  1,0 , we substitute in the relationship: 
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The third case: the random numbers follow the neutrosophic uniform distribution and 

the neutrosophic exponential distribution. 

To find the relationship through which we get: random variables that follow the neutrosophic 

exponential distribution starting from the sequence of neutrosophic random numbers that follow the 

regular distribution on the period    1,0 , which are given as follows: 

R1 - , R2 - , …. 

We apply the relationship (*): 

F(x) = R 

1 - Nx
e

  = R -   

 )R(1ln
1

X
N
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or in the form: 
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Therefore, to obtain a sequence of observations of the random variable X that follows the 

neutrosophic exponential distribution using the random numbers that follow the neutrosophic 

uniform distribution on the period    1,0 , we substitute in the relation: 

N

i

Ni

R
X



 )ln( 
         i = 1, 2… 

4. Application Example: 

Suppose we have a system that operates according to an exponential distribution whose probability 

density function is   0;2 2   xexf x
 . We want to conduct a neutrosophic simulation of this 

system. Where the indeterminate  03,0,0 . Here we need to generate neutrosophic random 

numbers. Therefore, we use one of the cases: 

 

First case: The exponential distribution is classical, its probability density function              is 

  0;2 2   xexf x
, and neutrosophic random numbers (We get it by one of the methods studied 

in the research [28 ] ). 
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In this example, we generate random numbers that follow the neutrosophic uniform distribution on 

the period    1,0 , That is, we generate random numbers according to one of the known 

methods. Here we will use the "mean-squared" method, by taking the seed 1276R . We get the 

random numbers: 

  0 9 5 1,0,3 3 1 0,0,4 5 0 9,0,6 2 8 1,0 4321  RRRR  

By using the rule that we reached in previous research [28] to convert classical random numbers into 

random numbers that follow the neutrosophic uniform distribution on the period    1,0 . In 

addition, take the given indeterminacy  03,0,0 . We get the neutrosophic random numbers: 

     
   0956,0,0656,0,3310,0,3010,0

4509,0,4209,0,6281,0,5981,0,1276,0,0976,0

43

21




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Then we apply the following rule  
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It is sequence of neutrosophic random observations, which follow an exponential distribution. 

The second case: The neutrosophic exponential distribution, its probability density function 

is       0;03,2,2 03,2,2   xexf x
. Random numbers are classical. 

To find the required neutrosophic random observations, we will take the random numbers that follow 

the uniform distribution on the period  1,0 : 

0951,0,3310,0

4509,0,6281,0,1276
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Then we apply the rule: 
N

i
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R
X
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  ; 4,3,2,1,0i  
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We get: 
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It is sequence of neutrosophic random observations, which follow the neutrosophic exponential 

distribution. 

The third case: The neutrosophic exponential distribution, its probability density function given by 

the following       0;03,2,2 03,2,2   xexf x
 . The neutrosophic random numbers from the 

figure iR . To find neutrosophic random observations. We take the neutrosophic random numbers 

used in the first case and apply the following rule:   
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It is sequence of neutrosophic random observations, which follow the neutrosophic exponential 

distribution. 

5. Conclusions: 

Through the previous study, we found that, to generate a sequence of neutrosophic random 

observations that follow an exponential distribution, using a sequence of random numbers that follow 

a uniform distribution. We use one of the following cases, according to the case under study: The first 
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case: neutrosophic random numbers, i.e. They follow the neutrosophic uniform distribution on the 

period    1,0 , and the exponential distribution in the classical form. 

The second case: random numbers that follow the uniform distribution on the period  1,0 , and the 

neutrosophic exponential distribution. 

The third case: the neutrosophic random numbers, i.e., they follow the neutrosophic uniform 

distribution on the period    1,0 , and the neutrosophic exponential distribution. 

By using techniques used in classical logic. In this paper, we used the inverse transformation 

technique. In addition, we found that for every random number (neutrosophic or classical) there is a 

random variable that follows the neutrosophic exponential distribution, which enables accurately 

simulate the systems that follow the exponential distribution. That is through the accuracy that 

neutrosophic logic provides us when studying any system according to its hypotheses. 

In the near future, we are looking forward to preparing studies that will enable us to generate 

neutrosophic random variables that follow other probability distributions such as the Weibull 

distribution, the geometric distribution, and others. 
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