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Abstract. In this paper, the priority disciplined queuing models are investigated under neutrosophic environ-

ment. It develops and optimizes a model with non-preemptive priorities system, denoted by NM/NM/1. It is

a queuing model where the arrivals follow a Poisson process, service times are exponentially distributed and

there is only one server whose arrival rate and service rate are represented in terms of single valued trapezoidal

Neutrosophic number (SVTNN). Using (α, β, γ)-cut approach and Zadehs extension principle, the Neutrosophic

queuing model is reduced to a crisp model and results are discussed. An illustrative example is provided to

understand the analytical procedure developed in this paper.

Keywords: Neutrosophic set; single value trapezoidal Neutrosophic number; Neutrosophic Markov chain; pri-

ority queue.

—————————————————————————————————————————-

1. Introduction

Basic queueing systems involve organized queues where the arrival rate of customers is in an

order and waiting discipline is ensured. But in real life situations most of the queuing models

require priority discipline as most urgent work has to be given preference. Priority queueing

models are useful in a variety of different applications. In priority queues customers are served

based on their service priorities. The high-priority customers with high urgency are served first

and the lower priority customers are served with less urgency. In communication engineering,

priority queues are used to study networks with differentiated levels of quality of service.

Steady state distribution of single server priority queue was developed by Miller [1]. Prade [2]

dealt with fuzzy service time and fuzzy service rule in a queuing problem with application. Li

et al. [3] investigated two fuzzy queues denoted by M/F/1 and FM/FM/1 whose interarrival

time and service rate are fuzzified. Negi et al. [4] discussed analytical and simulation results of

V. Suvitha, S. Mohanaselvi and Broumi Said, Study on Neutrosophic Priority Discipline Queuing Model

Neutrosophic Sets and Systems, Vol. 53, 2023



fuzzy and probability approaches of traditional queuing models. Maria et al. [5] developed two

fuzzy queueing models with priority-discipline both with non-pre-emptive priorities system

and pre-emptive priorities system. Varadharajan et al. [6] analysed fuzzy priority discipline

queue models using a parametric programming approach.

Kalpana et al. [7] investigated the performance measures for non-pre-emptive priority fuzzy

queues. Usha et al. [8] made an interpretation of a non-pre-emptive priority queueing system

in fuzzy environment with asymmetrical service rates. Aarthi et al. [9] analyzed the per-

formance of a non-pre-emptive intuitionistic fuzzy queuing model. Khudr Al-Kridi et al. [10]

discussed the performance measures of FM/FM/1 queueing model where both arrival and de-

parture rates are fuzzy numbers Kumuthavalli et al. [11] focused on developing a neutrosophic

probability for solving queue operation in the real standard domain.

Fariborz Jolai et al. [12] presented a new formulation for the problem of fuzzy priority assign-

ment and buffer control. Mohamed Bisher Zeina [13] provided Neutrosophic Littles Formulas

which is a main tool in queueing systems problems under neutrosophic environment. Also

he [14, 15] discussed about Erlang service queueing model under neutrosophic environment.

Heba Rashad et al. [16] discussed the performance measures of NM/NM/1, NM/NM/s, and

NM/NM/1/b queueing models. Zhivko Tomov et al. [17] proposed generalized net models of

different queueing disciplines in queueing systems. Buckley [18, 19] dealt fuzzy queue model

using possibility theory. Many researchers [20, 21], have shown light over Intuitionistic fuzzy

queueing models.

Florentin Smarandache [22] introduced Neutrosophic set as an generalization of Intution-

istic fuzzy set developed by Atanassov [23] which is a powerful tool to deal with ambiguity

compared to fuzzy set proposed by Zadeh [24] as it considers membership, indeterminacy and

non-membership degree of an object simultaneously. Also Florentin Smarandache [25,26] has

explored various concepts such as Neutrosophic measure, Neutrosophic logic, Neutrosophic

probability etc.,. Wang et al. [27] discussed about operations and properties of single valued

Neutrosophic set (SVNS). Later applications involving SVNS are considered by many re-

searchers [28,29]. This paper aims at investigating a single server queuing model with priority

discipline involving SVNS. A comparison table 1 of existing queueing model under uncertainty

is discussed below.
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Table 1. Comparison with the existing queueing model

Author Queueing model Uncertainty used Methodology

Prade, H. M (1980) General queuing

model

Fuzzy sets Zadehs extension

principle

Li, R. J. et al.

(1989)

General queuing

model

Fuzzy sets Zadehs extension

principle

Negi, D. S. et al.

(1992)

General queuing

model

Fuzzy sets -cut approach

Khudr Al-Kridi et

al. (2018)

General queuing

model

Fuzzy sets Zadehs extension

principle

Zhivko Tomov

(2019)

General queuing

model

Intuitionistic fuzzy

set

Generalized Net

models

Kumuthavalli et al.

(2017)

General queuing

model

Neutrosophic sets Zadehs Exclusion

Principle

Mohamed Bisher

Zeina (2020)

General queuing

model

Neutrosophic sets Neutrosophic Lit-

tles Formulas

Mohamed Bisher

Zeina (2020)

Erlang service

queueing model

Neutrosophic sets Neutrosophic sta-

tistical interval

method

Maria Jose Pardoa

et al. (2007)

Priority queues Fuzzy sets Zadehs extension

principle

Varadharajan et al.

(2018)

Priority queues Fuzzy sets α-cut approach

Kalpana et al.

(2018)

Priority queues Fuzzy sets LR method

Usha Prameela et

al.(2021)

Priority queue Fuzzy sets α-cut approach

Aarthi et al. (2022) Priority queue Intuitionistic Fuzzy

sets

Ranking method

Fariborz Jolai et al.

(2016)

Multi objective pri-

ority queue

Fuzzy sets Fuzzy Data Envel-

opment Analysis

Heba Rashad et al.

(2021)

General queueing

model

Neutrosophic sets Neutrosophic Lit-

tles Formulas

Proposed Priority model Neutrosophic sets (α, β, γ)-cut

In this paper, we explored the neutrosophic queueing model and its application. To the

best of the authors knowledge, none of the previous works has addressed the neutrosophic

decision-making regarding prioritization and queue selection of service-needing people in dis-

aster aftermath. The main contributions of the study include:

(1) The innovative concept of priority queuing model under neutrosophic sets is introduced.
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(2) Formulation of NM/NM/1 queue with priority model is proposed.

(3) Also, a numerical example is discussed to show the effectiveness of the proposed queueing

model.

(4) To make the decision maker understand the solution graphical representation are pro-

vided.

In Section 2, we discusses the Neutrosophic preliminaries. Section 3 briefly discussed the

neutrosophic queueing model. In section 4, numerical illustration are solved for showing per-

formance measures of neutrosophic in queueing model and Section 5 presents the conclusion,

and future work.

2. Preliminaries

Definition 2.1. [26] A neutrosophic set N is given as

N = {(s, TA(s), IA(s),FA(s))/s ∈ s}

where TA(s), IA(s),FA(s) : s →]0−, 1+[ are the degree of truth, ondeterminancy and falsity

such that 0− ≤ sup TA(s) + sup IA(s) + supFA(s) ≤ 3+.

Definition 2.2. [26] A single valued neutrosophic set (SVNS) N in s is stated as

N = {(s, TA(s), IA(s),FA(s))/s ∈ s}

where TA(s), IA(s),FA(s) ∈ [0, 1] and 0 ≤ sup TA(s) + sup IA(s) + supFA(s) ≤ 3.

Definition 2.3. [25] Let (νΩ, NF,NP ) be a neutrosophic probability space, where νΩ is

a neutrosophic sample space, NF is a neutrosophic event space, and NP is a neutrosophic

probability measure.The following neutrosophic probability axioms are as follows

(i) The neutrosophic probability of an event A

NP (A) =
(
ch(A), ch(indetermA), ch(Ā)

)
,

where ch(A) ≥ 0, ch(indetermA) ≥ 0, ch(Ā) ≥ 0, for any A ∈ NF ; with the notations that

indeterm(A) means indeterminacy related to event A and Ā is the complement event of A

(the antiA event).

(ii) The neutrosophic probability of the sample space is between −0 and 3+.

NP (νΩ) =

( ∑
x∈νΩ

ch(x), ch(indetermνΩ), ch(antiνΩ)

)
,

where −0 ≤
∑
x∈νΩ

ch(x), ch(indetermνΩ), ch(antiνΩ) ≤ 3+,

with the notation indetermνΩ means total indeterminacy that may occur in the neutrosophic

sample space. For the classical complete (normalized) sample space, ch(antiνΩ) = 0, but for

incomplete sample space ch(antiνΩ) > 0.

(iii) The neutrosophic σ-additivity is defined as
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NP (A1 ∪A2 ∪ . . .) =

(
∞∑
j=1

ch(Aj), ch(indetermA1∪A2∪...), ch(A1 ∪A2 ∪ . . .)

)
,

where A1, A2, . . . is a countable sequence of disjoint neutrosophic events.

Definition 2.4. [25] A random variable (r.v) which have an indeterminate outcome is said

to be neutrosophic r.v.

A neutrosophic stochastic process is a collection of neutrosophic r.v which represents the

evolution over time of some neutrosophic random values.

Definition 2.5. [25] A neutrosophic stochastic process {X(n) : n ∈ N} is said to be a neu-

trosophic Markov chain if it satisfies the Markov property:

P (Xn+1 = j/Xn = i,Xn−1 = k, . . .X0 = m) = P (Xn+1 = j/Xn = i)

where i, j, k establish the state space S of the process.

Here P̃ij = P (Xn+1 = j/Xn = i) are called the neutrosophic probabilities of moving from

state i to state j in one step. Hence P̃ij =
(
T
P̃ij
, I
P̃ij
,F

P̃ij

)
, where T

P̃ij
(I
P̃ij
,F

P̃ij
) is the

truth (indeterminate, falsity) membership of the transition from state i to state j. The matrix

P = P̃ij is called the neutrosophic transition probability matrix.

Definition 2.6. [30] A single valued trapezoidal neutrosophic number (SVTNN) A is defined

as follows

TA(s) =



sT − tT1
tT2 − tT1

for tT1 ≤ sT ≤ tT2

1 for tT2 ≤ sT ≤ tT3
tT4 − sT

tT4 − tT3
for tT3 ≤ sT ≤ tT4

0 otherwise

where tT1 ≤ tT2 ≤ tT3 ≤ tT4 .

IA(s) =



tI2 − sI

tI2 − tI1
for tI1 ≤ sI ≤ tI2

1 for tI2 ≤ sI ≤ tI3
tI4 − sI

tI4 − tI3
for tI3 ≤ sI ≤ tI4

1 otherwise

where tI1 ≤ tI2 ≤ tI3 ≤ tI4 .

FA(s) =



tF2 − sF

tF2 − tF1
for tF1 ≤ sF ≤ tF2

1 for tF2 ≤ sF ≤ tF3
tF4 − sF

tF4 − tF3
for tF3 ≤ sF ≤ tF4

1 otherwise
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where tF1 ≤ tF2 ≤ tF3 ≤ tF4 .

Definition 2.7. [30]

(α, β, γ)-cut of a TSVNN is defined as follows:

Aα,β,γ = [A1(α), A2(α)] ;
[
A
′
1(β), A

′
2(β)

]
;
[
A
′′
1(γ), A

′′
2(γ)

]
, 0 ≤ α+ β + γ ≤ 3, where

[A1(α), A2(α)] =
[(
tT1 + α(tT2 − tT1 )

)
,
(
tT4 − α(tT4 − tT3 )

)]
,[

A
′
1(β), A

′
2(β)

]
=
[(
tI2 − β(tI2 − tI1 )

)
,
(
tI3 + β(tI4 − tI3 )

)]
,[

A
′′
1(γ), A

′′
2(γ)

]
=
[(
tF2 − γ(tF2 − tF1 )

)
,
(
tF3 + γ(tF4 − tF3 )

)]
.

Definition 2.8. [32] Let [r1, r2] and [r3, r4] be two closed and bounded real intervals. If ∗
denotes addition, substraction, multiplication or division, then [r1, r2] ∗ [r3, r4] = [α, β].

For division, it is assumed that 0 /∈ [r3, r4]. With basic operations, is developed as follows :

i . [r1, r2] + [r3, r4] = [r1 + r3, r2 + r4]

ii . [r1, r2]− [r3, r4] = [r1 − r4, r2 − r3]

iii . [r1, r2] . [r3, r4] = [min {r1r3, r1, r4, r2r3, r2r4} ,max {r1r3, r1, r4, r2r3, r2r4}]

iv .
[r1, r2]

[r3, r4]
=

[
min

{
r1

r3
,
r1

r4
,
r2

r3
,
r2

r4

}
,max

{
r1

r3
,
r1

r4
,
r2

r3
,
r2

r4

}]
3. The Neutrosophic Queueing Model

In this section, we analyze a single server queue with priority in neutrosophic environment.

3.1. Classical M/M/1 queue with priority queue

We consider a single server queue with priority. Assume that there are two arrival stream of

customers called higher priority and low priority customers and they follow different Poisson

process with parameters λ1 and λ2 respectively. A single server provides service to these

customers and the service time follows exponential distribution with rate µ. The higher priority

customers have the right to be served ahead of the others without preemption. The system

capacity is infinite and within the priority group the first come first served rule is applied.

Some system performance are

• Average queue length of higher priority: Lq1 =
ρ.λ1

µ− λ1

• Average queue length of low priority: Lq2 =
ρ.λ2

(1− ρ)(µ− λ1)

• Average waiting time of higher priority queue: Wq1 =
ρ

µ− λ1

• Average waiting time of low priority queue: Wq2 =
ρ

(µ− λ)(µ− λ1)

where λ = λ1 + λ2 and traffic intensity (ρ)=
λ

µ
.

An M/M/1 priority queue with infinite capacity as depicted in figure 1.
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(a) Higher priority customers in service (b) Low priority customers in service

Figure 1. M/M/1 queue with priority queue

3.2. Formulation of NM/NM/1 queue with priority model

Consider a single server NM/NM/1 queueing system with priority. The neutrosophic in-

terarrival times Ãi, i = 1, 2 of units in the first and second priority, neutrosophic service time

S̃ are approximately known and are represented by the follows

Ãi =
{(
a, T

Ãi
(a), I

Ãi
(a),F

Ãi
(a)
)
/a ∈ X

}
; i = 1, 2

S̃ =
{(
s, T

S̃
(s), I

S̃
(s),F

S̃
(s)
)
/s ∈ Y

}
where X and Y are crisp universal sets of the neutrosophic interarrival times and neutrosophic

service time and µ
Ãi

(a); i = 1, 2, T
S̃

(s) are the corresponding membership functions. The

(α, β, γ)-cut of Ãi; i = 1, 2 and S̃ are

Ai(α, β, γ) =
{
a ∈ X/T

Ãi
(a) ≥ α, I

Ãi
(a) ≤ β,F

Ãi
(a) ≤ γ

}
; i = 1, 2

S(α, β, γ) =
{
s ∈ Y/T

S̃
(s) ≥ α, I

S̃
(s) ≤ β,F

S̃
(s) ≤ β

}
where the Ai(α, β, γ) and S(α, β, γ) are the crisp subsets of X and Y respectively.

Using (α, β, γ)-cuts, the Neutrosophic interarrival times and Neutrosophic service time

can be represented by different levels of confidence intervals. Consequently, a Neutro-

sophic queue can be reduced to a family of crisp queues with different (α, β, γ)-cuts

{Ai(α, β, γ) : 0 < α ≤ 1, 0 ≤ β < 1, 0 ≤ γ < 1} and

{S(α, β, γ) : 0 < α ≤ 1, 0 ≤ β < 1, 0 ≤ γ < 1} .
In this paper, we proposed queueing model with both interarrival times Ãi, i = 1, 2 and

service time S̃ are represented as SVTNN. Denote confidence intervals of Ãi and S̃ by

[l
Ãi(α,β,γ)

, u
Ãi(α,β,γ)

] and [l
S̃(α,β,γ)

, u
S̃(α,β,γ)

].

Let us denote the performance measure by p(Ãi, S̃) and the truth membership function, the

indeterminacy membership function and the falsity membership function of p(Ãi, S̃) can be

defined using Zadeh’s extension principle [31,32], as:

T
p(Ãi,S̃)

(z) = sup
{
mina∈X,a′∈Y (µ

Ãi(a)
, T
S̃(a
′
)
) : z = p(a, a

′
)
}
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I
p(Ãi,S̃)

(z) = inf
{
mina∈X,a′∈Y (µ

Ãi(a)
, T
S̃(a′ )) : z = p(a, a

′
)
}

and

F
p(Ãi,S̃)

(z) = inf
{
mina∈X,a′∈Y (µ

Ãi(a)
, T
S̃(a′ )) : z = p(a, a

′
)
}

We can find the lower and upper bounds of the (α, β, γ) cuts of Ãi, S̃ as follows:

lp(α,β,γ) = min p(a, a
′
) such that l

Ãi(α,β,γ)
≤ a ≤ u

Ãi(α,β,γ)
, l
S̃(α,β,γ)

≤ a′ ≤ u
S̃(α,β,γ)

(1)

up(α,β,γ) = max p(a, a
′
) such that l

Ãi(α,β,γ)
≤ a ≤ u

Ãi(α,β,γ)
, l
S̃(α,β,γ)

≤ a′ ≤ u
S̃(α,β,γ)

(2)

provided a ∈ Ãi(α, β, γ) and a
′ ∈ S̃(α, β, γ).

If both lp(α,β,γ) and up(α,β,γ) are invertible with respect to (α, β, γ) then the left shape function

LT (z) =
(
lp(α,β,γ)

)−1
and the right shape function RT (z) =

(
up(α,β,γ)

)−1
can be obtained,

from which the truth membership function µ
p(Ãi,S̃)

(z) is given by

T
p(Ãi,S̃)

(z) =


LT (z); zT1 ≤ z ≤ zT2
RT (z); zT3 ≤ z ≤ zT4
0; otherwise

where zT1 ≤ z ≤ zT4 and LT (zT1 ) = RT (zT4 ) = 0 for the SVTNN.

Similarly the indeterminacy membership function η
p(Ãi,S̃)

(z) and the falsity membership func-

tion ν
p(Ãi,S̃)

(z),are derived as follows

I
p(Ãi,S̃)

(z) =


LI(z); zI1 ≤ z ≤ z2v

RI(z); zI3 ≤ z ≤ zI4
0; otherwise

where zI1 ≤ z ≤ zI4 and LI(z
I
1 ) = RI(z

I
4 ) = 0 for the SVTNN.

F
p(Ãi,S̃)

(z) =


LF (z); zF1 ≤ z ≤ zF2
RF (z); zF3 ≤ z ≤ zF4
0; otherwise

where zF1 ≤ z ≤ zF4 and LF (zF1 ) = RF (zF4 ) = 0 for the SVTNN.

The proposed NM/NM/1 queue with priority can be reduced it to classical M/M/1 queue

with priority by using the concept of (α, β, γ)-cut approach.

4. Numerical Illustration

In this section, we present a numerical example to explain the proposed NM/NM/1 queue-

ing model with priority.

Let the arrival rates of first and second priority with the same service rate are represented by

SVTNN Ã1 = 〈(3, 4, 5, 6) (2, 5, 8, 11) (2, 4, 6, 8)〉
Ã2 = 〈(4, 5, 6, 7) (3, 4, 5, 6) (6, 6, 7, 8)〉 and

S̃ = 〈(16, 17, 18, 19) (18, 20, 22, 24) (17, 19, 21, 23)〉 per hour respectively.
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The (α, β, γ)-cut of Ãi, i = 1, 2; S̃ are

Ã1 = 〈[3 + α, 6− α], [5− 3β, 8 + 3β], [4− 2γ, 6 + 2γ]〉 ,
Ã2 = 〈[4 + α, 7− α], [4− β, 5 + β], [6− γ, 7 + γ]〉 and

S̃ = 〈[16 + α, 19− α], [20− 2β, 22− 2β], [19− 2γ, 21 + 2γ]〉
From equations (1) and (2) the parametric programming problems are formulated to derive

the membership function Lq1 , Lq2 ,W q1 and W q2 . They are calculated as follows.

The performance functions of (i) Lq1- average queue length of higher priority (ii) Lq2- aver-

age queue length of low priority (iii) W q1 -average waiting time in higher priority queue (iv)

W q2 - average waiting time in low priority queue are derived from the respective parametric

programs. These differ only in their objective functions and are listed below.

lLq1 (α) = min

{
e1(e1 + e2)

e3(e3 − e1)

}
, uLq1 (α) = max

{
e1(e1 + e2)

e3(e3 − e1)

}
such that 3 + α < e1 < 6− α

4 + α < e2 < 7− α

16 + α < e3 < 19− α

(3)

where 0 < α ≤ 1. lLq1 (α) is found when e1 and e2 approach their lower bounds (l.b) and e3

approaches its upper bound (u.b) and also uLq1 (α) is found when e1 and e2 approach their

u.b’s and e3 approaches its l.b. Consequently the optimal solution for (3) are

lLq1 (α) =
21 + 13α+ 2α2

304− 54α+ 2α2
and uLq1 (α) =

78− 25α+ 2α2

160 + 42α+ 2α2

The truth membership function is

TLq1
(z) =


LT (z);

[
lLq1 (α)

]
α=0
≤ z ≤

[
lLq1 (α)

]
α=1

RT (z);
[
uLq1 (α)

]
α=1
≤ z ≤

[
uLq1 (α)

]
α=0

0; otherwise

which is estimated as

TLq1
(z) =



(54z + 13)− (484z2 + 4004z − 1)

1

2

2(2z − 2)
; 0.07 ≤ z ≤ 0.14

−(42z + 25) + (484z2 + 4004z − 1)

1

2

2(2z − 2)
; 0.27 ≤ z ≤ 0.49

0; otherwise

lLq1 (β) = min

{
e1(e1 + e2)

e3(e3 − e1)

}
, uLq1 (β) = max

{
e1(e1 + e2)

e3(e3 − e1)

}
such that 5− 3β < e1 < 8 + 3β

4− β < e2 < 5 + β

20− 2β < e3 < 22 + 2β

(4)
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where 0 < β ≤ 1. lLq1 (β) is found when e1 and e2 approach their l.b’s and e3 approaches its

u.b. and also uLq1 (β) is found when e1 and e2 approach their u.b’s and e3 approaches its l.b.

Consequently the optimal solution for (4) is

lLq1 (β) =
45− 47β + 12β2

374 + 144β + 10β2
and uLq1 (β) =

104 + 71β + 12β2

240− 124β + 10β2

The indeterminacy membership function is

ILq1
(z) =


LI(z);

[
lLq1 (β)

]
β=1
≤ z ≤

[
lLq1 (β)

]
β=0

RI(z);
[
uLq1 (β)

]
β=0
≤ z ≤

[
uLq1 (β)

]
β=1

0; otherwise

which is estimated as

ILq1
(z) =



−(144z + 47) + (5776z2 + 33288z + 49)

1

2

2(10z − 12)
; 0.02 ≤ z ≤ 0.12

(124z + 71)− (5776z2 + 33288z + 49)

1

2

2(10z − 12)
; 0.43 ≤ z ≤ 1.48

0; otherwise

lLq1 (γ) = min

{
e1(e1 + e2)

e3(e3 − e1)

}
, uLq1 (γ) = max

{
e1(e1 + e2)

e3(e3 − e1)

}
such that 4− 2γ < e1 < 6 + 2γ

6− γ < e2 < 7 + γ

19− 2γ < e3 < 21 + 2γ

(5)

where 0 < γ ≤ 1. lLq1 (γ) is found when e1 and e2 approach their l.b’s and e3 approaches its

u.b. and also uLq1 (γ) is found when e1 and e2 approach their u.b’s and e3 approaches its l.b.

Consequently the optimal solution for (5) is

lLq1 (γ) =
40− 32γ + 6γ2

357 + 118γ + 8γ2
and uLq1 (γ) =

78 + 44γ + 6γ2

247− 102γ + 8γ2
(6)

The falsity membership function is

FLq1
(z) =


LF (z);

[
lLq1 (γ)

]
γ=1
≤ z ≤

[
lLq1 (γ)

]
γ=0

RF (z);
[
uLq1 (γ)

]
γ=0
≤ z ≤

[
uLq1 (γ)

]
γ=1

0; otherwise
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which is estimated as

FLq1
(z) =



−(118z + 32) + (2500z2 + 17400z + 64)

1

2

2(8z − 6)
; 0.03 ≤ z ≤ 0.11

(102z + 44)− (2500z2 + 17400z + 64)

1

2

2(8z − 6)
; 0.32 ≤ z ≤ 0.83

0; otherwise

For different values of α, β, γ ∈ [0, 1], the average queue length of higher priority Lq1 is calcu-

lated and given in table 2. Also a graphical interpolation of truth, Indeterminacy and falsity

of average queue length of higher priority is shown in figure 2.

Table 2. Lq1

α lLq1(α)
uLq1(α)

β, γ lLq1(β)
uLq1(β)

lLq1(γ)
uLq1(γ)

0.0 0.06908 0.48750 1.0 0.12032 0.43333 0.11204 0.31579

0.1 0.07474 0.45987 0.9 0.10404 0.48845 0.09992 0.34811

0.2 0.08074 0.43376 0.8 0.08948 0.55046 0.08884 0.38357

0.3 0.08709 0.40908 0.7 0.07649 0.62042 0.07870 0.42253

0.4 0.09380 0.38573 0.6 0.06491 0.69958 0.06945 0.46539

0.5 0.10090 0.36364 0.5 0.05463 0.78947 0.06100 0.51263

0.6 0.10840 0.34273 0.4 0.04552 0.89196 0.05331 0.56477

0.7 0.11633 0.32293 0.3 0.03748 1.00936 0.04631 0.62244

0.8 0.12469 0.30419 0.2 0.03043 1.14457 0.03995 0.68637

0.9 0.13353 0.28643 0.1 0.02427 1.30125 0.03419 0.75742

1.0 0.14286 0.26961 0.0 0.01894 1.48413 0.02899 0.83660

Figure 2. Average queue length of higher priority
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Similarly the performance functions of Lq2 is derived from the respective parametric pro-

grams. These differ only in their objective functions and are listed below.

lLq2 (α) = min

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(7)

and

uLq2 (α) = max

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(8)

The objective functions given through the equations (7) and (8) with the constraints given

with the equation (3) yield the following results:

lLq2 (α) =
28 + 15α+ 2α2

192− 72α+ 6α2
; uLq2 (α) =

91− 27α+ 2α2

30 + 36α+ 6α2

TLq2
(z) =



(72z + 15)− (576z2 + 4368z + 1)

1

2

2(6z − 2)
; 0.14 ≤ z ≤ 0.36

−(36z + 27) + (576z2 + 4368z + 1)

1

2

2(6z − 2)
; 0.92 ≤ z ≤ 3.03

0; otherwise

Similarly the performance functions of Lq2 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lLq2 (β) = min

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(9)

and

uLq2 (β) = max

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(10)

The objective functions given through the equations (9) and (10) with the constraints given

with the equations (4) yield the following results:

lLq2 (β) =
36− 25β + 4β2

221 + 167β + 30β2
; uLq2 (β) =

65 + 33β + 4β2

84− 107β + 30β2

ILq2
(z) =



−(167z + 25) + (1369z2 + 16206z + 49)

1

2

2(30z − 4)
; 0.04 ≤ z ≤ 0.16

(107z + 33)− (1369z2 + 16206z + 49)

1

2

2(30z − 4)
; 0.77 ≤ z ≤ 14.57

0; otherwise

Similarly the performance functions of Lq2 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lLq2 (γ) = min

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(11)
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and

lLq2 (γ) = max

{
e2(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(12)

The objective functions given through the equations (11) and (12) with the constraints given

with the equations (5) yield the following results:

lLq2 (γ) =
60− 28γ + 3γ2

187 + 129γ + 20γ2
; uLq2 (γ) =

91 + 34γ + 3γ2

78− 89γ + 20γ2

FLq2
(z) =



−(129z + 28) + (1681z2 + 14268z + 64)

1

2

2(20z − 3)
; 0.1 ≤ z ≤ 0.32

(89z + 34)− (1681z2 + 14268z + 64)

1

2

2(20z − 3)
; 1.17 ≤ z ≤ 14.22

0; otherwise

For different values of α, β, γ ∈ [0, 1], the average queue length of low priority Lq2 is calculated

and given in table 3. Also a graphical interpolation of truth, Indeterminacy and falsity of

average queue length of low priority is shown in figure 3.

Table 3. Lq2

α lLq2(α)
uLq2(α)

β, γ lLq2(β)
ulq2(β)

lLq2(γ)
ulq2(γ)

0.0 0.14583 3.03333 1.0 0.16290 0.77381 0.32086 1.16667

0.1 0.15969 2.62389 0.9 0.14092 0.92853 0.28601 1.36263

0.2 0.17476 2.28846 0.8 0.12191 1.12476 0.25524 1.60525

0.3 0.19118 2.00968 0.7 0.10541 1.37839 0.22800 1.91092

0.4 0.20906 1.77513 0.6 0.09105 1.71391 0.20380 2.30439

0.5 0.22857 1.57576 0.5 0.07853 2.17105 0.18226 2.82468

0.6 0.24987 1.40476 0.4 0.06759 2.81830 0.16303 3.53711

0.7 0.27314 1.25697 0.3 0.05803 3.78403 0.14584 4.55961

0.8 0.29861 1.12835 0.2 0.04965 5.33864 0.13043 6.12857

0.9 0.32652 1.01576 0.1 0.04232 8.16167 0.11660 8.79646

1.0 0.35714 0.91667 0.0 0.03589 14.57144 0.10417 14.22223
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Figure 3. Average queue length of low priority

Similarly the performance functions of W q1 is derived from the respective parametric pro-

grams. These differ only in their objective functions and are listed below.

uWq1 (α) = min

{
(e1 + e2)

e3(e3 − e1)

}
(13)

and

uWq1 (α) = max

{
(e1 + e2)

e3(e3 − e1)

}
(14)

The objective functions given through the equations (13) and (14) with the constraints given

with the equations (3) yield the following results:

lWq1 (α) =
7 + 2α

304− 54α+ 2α2
; uWq1 (α) =

13− 2α

160 + 42α+ 2α2

TW q1
(z) =



(54z + 2)− (484z2 + 272z + 4)

1

2

4z
; 0.02 ≤ z ≤ 0.04

−(42z + 2) + (484z2 + 272z + 4)

1

2

4z
; 0.05 ≤ z ≤ 0.08

0; otherwise

Similarly the performance functions of W q1 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lWq1 (β) = min

{
(e1 + e2)

e3(e3 − e1)

}
(15)

and

uWq1 (β) = max

{
(e1 + e2)

e3(e3 − e1)

}
(16)
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The objective functions given through the equations (15) and (16) with the constraints given

with the equations (3) yield the following results:

lWq1 (β) =
9− 4β

374 + 144β + 10β2
; uWq1 (β) =

13 + 4β

240 + 124β + 10β2

IW q1
(z) =



−(144z + 4) + (5776z2 + 1512z + 16)

1

2

20z
; 0.009 ≤ z ≤ 0.02

(124z + 4)− (5776z2 + 1512z + 16)

1

2

20z
; 0.05 ≤ z ≤ 0.13

0; otherwise

Similarly the performance functions of W q1 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lWq1 (γ) = min

{
(e1 + e2)

e3(e3 − e1)

}
(17)

and

uWq1 (γ) = max

{
(e1 + e2)

e3(e3 − e1)

}
(18)

The objective functions given through the equations (17) and (18) with the constraints given

with the equations (5) yield the following results:

lWq1 (γ) =
10− 3γ

357 + 118γ + 8γ2
; uWq1 (γ) =

13 + 3γ

247− 102γ + 8γ2

FW q1
(z) =



−(118z + 3) + (2500z2 + 1028z + 9)

1

2

16z
; 0.01 ≤ z ≤ 0.03

(102z + 3)− (2500z2 + 1028z + 9)

1

2

16z
; 0.05 ≤ z ≤ 0.11

0; otherwise

For different values of α, β, γ ∈ [0, 1], the average waiting time in the higher priority queue

W q1 is calculated and given in table 4. Also a graphical interpolation of truth, Indeterminacy

and falsity of average waiting time in the higher priority queue is shown in figure 4.
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Table 4. W q1

α lWq1(α)
uWq1(α)

β, γ lWq1(β)
uWq1(β)

lWq1(γ)
uWq1(γ)

0.0 0.02303 0.08125 1.0 0.02406 0.05417 0.02801 0.05263

0.1 0.02411 0.07794 0.9 0.02214 0.05885 0.02630 0.05615

0.2 0.02523 0.07479 0.8 0.02034 0.06401 0.02468 0.05993

0.3 0.02639 0.07177 0.7 0.01866 0.06971 0.02315 0.06402

0.4 0.02759 0.06888 0.6 0.01708 0.07604 0.02170 0.06844

0.5 0.02883 0.06612 0.5 0.01561 0.08310 0.02033 0.07323

0.6 0.03011 0.06347 0.4 0.01422 0.09102 0.01904 0.07844

0.7 0.03144 0.06093 0.3 0.01292 0.09994 0.01781 0.08411

0.8 0.03281 0.05850 0.2 0.01170 0.11005 0.01665 0.09031

0.9 0.03424 0.05616 0.1 0.01055 0.12161 0.01554 0.09711

1.0 0.03571 0.05392 0.0 0.00947 0.13492 0.01449 0.10458

Figure 4. Average waiting time in the higher priority queue

Similarly the performance functions of W q2 is derived from the respective parametric pro-

grams. These differ only in their objective functions and are listed below.

lWq2 (α) = min

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(19)

and

uWq2 (α) = max

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(20)

The objective functions given through the equations (19) and (20) with the constraints given

with the equations (3) yield the following results:

lWq2 (α) =
7 + 2α

192− 72α+ 6α2
; uWq2 (α) =

13− 2α

30 + 36α+ 6α2
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TW q2
(z) =



(72z + 2)− (576z2 + 456z + 4)

1

2

12z
; 0.04 ≤ z ≤ 0.07

−(36z + 2) + (576z2 + 456z + 4)

1

2

12z
; 0.15 ≤ z ≤ 0.43

0; otherwise

Similarly the performance functions of W q2 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lWq2 (β) = min

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(21)

and

uWq2 (β) = max

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(22)

The objective functions given through the equations (21) and (22) with the constraints given

with the equations (3) yield the following results:

lWq2 (β) =
9− 4β

221 + 167β + 30β2
; uWq2 (β) =

13 + 4β

84− 107β + 30β2

IW q2
(z) =



−(167z + 4) + (1369z2 + 2416z + 16)

1

2

60z
; 0.01 ≤ z ≤ 0.04

(107z + 4)− (1369z2 + 2416z + 16)

1

2

60z
; 0.15 ≤ z ≤ 2.43

0; otherwise

Similarly the performance functions of W q2 is derived from the respective parametric programs.

These differ only in their objective functions and are listed below.

lWq2 (γ) = min

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(23)

and

uWq2 (γ) = max

{
(e1 + e2)

[e3 − (e1 + e2)](e3 − e1)

}
(24)

The objective functions given through the equations (23) and (24) with the constraints given

with the equations (5) yield the following results:

lWq2 (γ) =
10− 3γ

187 + 129γ + 20γ2
; uWq2 (γ) =

13 + 3γ

78− 89γ + 20γ2

FW q2
(z) =



−(129z + 3) + (1681z2 + 1574z + 9)

1

2

40z
; 0.02 ≤ z ≤ 0.05

(89z + 3)− (1681z2 + 1574z + 9)

1

2

40z
; 0.17 ≤ z ≤ 1.78

0; otherwise
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For different values of α, β, γ ∈ [0, 1], the average waiting time in the low priority queue W q2

is calculated and given in table 5. Also a graphical interpolation of truth, Indeterminacy and

falsity of average waiting time in the low priority queue is shown in figure 5.

Table 5. W q2

α lWq2(α)
uWq2(α)

β, γ lWq2(β)
uWq2(β)

lWq2(γ)
uWq2(γ)

0.0 0.03646 0.43333 1.0 0.04072 0.15476 0.05348 0.16667

0.1 0.03895 0.38027 0.9 0.03613 0.18207 0.04848 0.19192

0.2 0.04161 0.33654 0.8 0.03208 0.21630 0.04401 0.22295

0.3 0.04446 0.29995 0.7 0.02849 0.26007 0.04000 0.26177

0.4 0.04751 0.26896 0.6 0.02529 0.31739 0.03639 0.31140

0.5 0.05079 0.24242 0.5 0.02244 0.39474 0.03314 0.37662

0.6 0.05432 0.21949 0.4 0.01988 0.50327 0.03019 0.46541

0.7 0.05812 0.19952 0.3 0.01758 0.663870 0.02752 0.59216

0.8 0.06221 0.18199 0.2 0.01552 0.92045 0.02508 0.78571

0.9 0.06664 0.16652 0.1 0.01365 1.38333 0.02286 1.11348

1.0 0.07143 0.15278 0.0 0.01196 2.42857 0.02083 1.77778

Figure 5. Average waiting time in the low priority queue
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5. Conclusion

Priority queueing models are useful in real world problems such as emergency cases in hos-

pital medical treatment, communication networks etc. The parameters for queueing decision

models can be known imprecisely and hence the performance measurements of the system can

be dealt in neutrosophic environment. This paper, proposes a single server queuing model

with priority discipline and its characteristics. The service time and arrival time of proposed

model are expressed in terms of single valued trapezoidal Neutrosophic number. An illustra-

tive example is provided to show the performance measures of the proposed model which are

constructed using truth, indeterminacy and falsity membership degree of SVTNN. In future,

this queueing model can extended multi objective priority queuing model. The extensions

of neutrosophic sets such as pythogorean and Fermatean neutrosophic sets can used in the

proposed model to explore its new aspects.
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