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Abstract. It can be difficult to figure out how to satisfy customers’ ever rising demands and keep up one’s

market competitiveness while containing controllable costs. Inefficiencies in the supply chain network are thus

discovered by our investigation. Finding the best allocation order for products from diverse sources going to

numerous destinations is the primary objective. Moreover, The information that is readily available is typically

not clear-cut in real-world circumstances. So, it gives rise to the uncertain transportation problem. With

the aim of helping the decision maker to have the suitable transportation plan with real suitation, in this

paper, a solution procedure for multi objective transportation problem involving uncertainvariables has been

studied under neutrosophic environment. A chance constraint model is constructed foruncertain multi objective

transportation problem and then a neutrosophic compromise approach is used toobtain the pareto optimal

solution for the problem. As neutrosophic sets are built with truth, indeterminacyand falsity membership

functions, they are capable to help the decision maker in this complex transportation model. A numerical

example has been reported to demonstrate the efficiency of the proposed approach towardsthe best compromise

solution and a comparison study has been made with the existing methods.

Keywords: Multi objective transportation problem; Chance constraint programming; Neutrosophic set theory.

—————————————————————————————————————————-

1. Introduction

In the real world, transportation planning decision problems play a vital role in logistics

and supply chain management with diverse challenges to be addressed. A transportation

planning problem involves a large number of factors such as shipment, distance, delivery time;

transportation cost etc and are defined on the basis of quantitative evaluation. More often

than not, the market scenario keeps varying and posing challenges, because of which various
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objective functions are needed related to a transportation problem. For example maximizing

the profit of the transportation, minimizing the transportation cost and toll tax etc. Since the

cost parameters of various objectives of the transportation problem are not related to each

other, these are considered as conflicting and commensurable model of the multi objective

transportation problem (MOTP). In the present-day scenario, most of the transportation

planning decisions is made under uncertain environment due to many unpredictable factors.

Traditional methods failed to capture the decision maker’s ambiguities and are non-effective to

solve these complex ill-defined models. Many researchers had developed different stochastic,

fuzzy and uncertain models to solve complex uncertain transportation engineering problems.

In this paper, we’ve proposed a solution procedure for multi-objective transportation prob-

lem whose parameters are all uncertain variables. Motivated by neutrosophic sets studied by

Smarandache [19] which provides a general structure to deal with uncertainty, a compromise

solution to the proposed model is obtained. The term “neutrosophy”means the knowledge of

neutral thought and considers that all elements can be represented by three degrees namely-

truth, falsity, indeterminacy which lie between 0 and 1. Since its establishment by Smaran-

dache [25], some attention has been developed for optimization aspects [20]. Rizk M [21]

proposed an algorithm based upon MOTP under neutrosophic environment. Since neutro-

sophic models effectively assist the decision-maker by incorporating satisfaction, satisfaction

to some degree, and dissatisfaction of objective functions in determining the best compromise

solution. we have applied the neutrosophic technique for the first time to the MOTP whose

parameters are uncertain normal variables.

The rest of the paper is structured as follows. Section 2 contains the existing research papers

related to the proposed work. In section 3, weve reviewed the preliminaries of uncertainty the-

ory. In section 4, the mathematical model of uncertain multi objective transportation model

is introduced. Deterministic multi objective transportation model, uncertain MOTP model

and chance constraint programming model are presented in the subsections 4.1,4.2 and 4.3

respectively. In section 5, a neutrosophic compromise programming approach is introduced

and we presented the preliminaries of neutrosophic set. In subsection 5.1, neutrosophic de-

cision making is explained and in subsection 5.2, an algorithm to solve uncertain MOTP is

presented. A numerical example has been given in section 6, to understand the applicability

of the proposed model and compared with a existing approach. The result and discussion,

Implications, and the conclusion have been presented in Section 7,8 and 9 respectively.

2. Literature Review

The basic study of the transportation problem (TP) was carried over by Hitchcock [1] and

Koopmans [2] played a significant role in its development. Abdelaziz et al [3] had proposed
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a compromise chance constraint programming model (CCCP) for multi-objective stochastic

programming portfolio models.

Aouni et al [4], for the stochastic goal programming model, explicitly introduced the

decision-makers preferences adapted chance-constrained-program. A fuzzy multi-objective

programming (FMOP) vendor selection model was developed by Wu et al [5]. Bit et al [6]

presented an approach to multicriteria decision making transportation problem under fuzzy

environment. Zimmerman [7], using fuzzy set theory, solved the multi-objective transportation

problem by considering suitable membership functions. A fuzzy goal programming approach

to determine an optimal compromise solution for the multi-objective transportation problem

by assuming that each objective function has a fuzzy goal was proposed by Zangiabadi and

Maleki [8]. Gupta et al [28] proposed a model for the probabilistic fuzzy goal multi-objective

supply chain network (PFG-MOSCN) and discussed the solution procedure for the same.

Although fuzzy set theory proposed by Zadeh [9] is widely applied in many uncertain models,

it could not handle human uncertainty in some contexts involving incomplete information. As

an attempt to deal with such indeterminacies, Liu founded uncertainty theory [10,11]. Nowa-

days, uncertainty theory is considered as a mathematical branch for modeling belief degrees

and has been adopted in many mathematical models like uncertain programming, uncertain

logic, uncertain graph, uncertain statistics and uncertain finance [12–14]. The belief degree

of an uncertain event to happen is measured by uncertain measure. The usage of random

uncertain variable and chance measure was also introduced by Liu [15]. Post that, he also

presented uncertain random programming to model optimization problems containing more

than one random variable. Gao [16], in his paper, newly proposed certain properties based

on continuously uncertain measures. Seyyed Mojtaba Chasence [17] introduced uncertain

linear fractional programming problem and also presented three methods for conversion of

uncertain optimization problem into an equivalent deterministic problem. Liu [18] provided

a new uncertain multi objective programming and introduced uncertain goal programming as

a compromised method to solve multi-objective programming with the uncertain variables,

considering the operational law of uncertain variables through inverse uncertainty distribu-

tion. Gupta et al [29] formulated the model of an Uncertain multi-objective capacitated

transportation problem with mixed constraints. Latter, Srikant Gupta et al [30] proposed the

procedure for solving multi-objective capacitated transportation problem under an uncertain

environment. S Das et al [39] presented a solution procedure for solving fully fuzzy linear

programming problems whose parameters are considered as the trapezoidal fuzzy number.

Utilising the aggregate ranking function, Sapan Kumar Das [40] constructed a new framework

for neutrosophic integer programming problems involving triangular neutrosophic numbers.

SK Das’s [41] studied a transportation problem involving pentagonal Neutrosophic numbers
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where in the supply, demand, and cost of transportation were all ambiguous . Constraints

under neutrosophic environment Das et al [42] proposed the solution procedure for solving

the Linear Programming Problems with Mixed . Motivated by the above said works, we have

proposed the solution procedure for solving the uncertain MOTP by using the neutosophic

techniques.

Table 1. Comparision between existing transportation models with proposed

model

Author Nature of the objective Environment Methodology Used

Single Multiple

Lakhveer et

al [31]

× ✓ Crisp Using the weighted

approach

Subhakantra

Dash et al [32]

✓ × Rough Using the uncertainity

distribution

Bharati et al [33] × ✓ Interval valued

intuitionistic

fuzzy sets

Based on extended

Yager’s function Interval

valued intuitionistic

fuzzy sets

Haiying Guo et

al [34]

✓ × Uncertainty

theory

Using the simplex

method

Thamaraiselvi [35] ✓ × Neutrosophic The arithmetic

operations on single

valued neutrosophic

trapezoidal numbers

areemployed

RizkM.Rizk Al-

lah [36]

× ✓ Neutrosophic Using Neutrosophic

compromise

programming approach

Somnath

maity [37]

✓ × Type-2 fuzzy Using fuzzy number

approximation

Deshabrata Roy

Mahapatra [38]

× ✓ stochastic Using fuzzy goal

programming

Proposed Model ✓ ✓ Uncertainty

theory

Using BOTH

uncertainty theory and

Neutrosophic method

The current research on the transportation issue is presented in Table 1. We compared the

transportation problems on the basis of the numbers of objectives and the various types of
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environments. To the best of our knowledge, no one has investigated a multi-objective trans-

portation problem with the simultaneous goals of maximization of profit, minimization of toll

tax, and minimization of transportation cost in both neutrosophic and uncertain environment.

We have used both the methods to bring the level of indeterminancy down to the maximum.

3. Preliminaries

The concepts and definitions which will be used in the subsequent discussions has been

presented in the section.

Definition 3.1. [13] [10] Let L be a σ - algebra of collection of events Λ of a universal set

Γ. A set function M is said to be uncertain measure defined on the σ - algebra where M{Λ}
indicate the belief degree with which we believe that the event will happen; It satisfies the

following axioms:

(1) Normality Axiom: For the universal set Γ, we have M{Γ} = 1.

(2) Duality Axiom: For any event Γ, we have M{Λ}+M{ΛC} = 1.

(3) Subadditivity Axiom: For every countable sequence of events Λ1,Λ2, · · · , we have

M{
⋃∞

i=1 Λi} ≤
∑∞

i=1M{Λi}.
(4) Product Axiom: Let (Γi,Li,Mi) be uncertainty

spaces for i = 1, 2, 3, · · · The product uncertain measure is an uncertain measure holds

M{Π∞
i=1∧i} = ∧∞

i=1M{∧i} where ∧i ∈ Li for i = 1, 2, 3, · · ·∞.

Definition 3.2. [10] A function ξ : (Γ,L,M) → R is said to be an uncertain variable such

that {ξ ∈ B} = {γ ∈ Γ/ξ(γ) ∈ B} is an event for any Borel set B of real numbers.

Definition 3.3. [10] An uncertain variable ξ defined on the uncertainty space (Γ,L,M) is

said to be non- negative if M{ξ < 0} = 0 and positive if M{ξ ≤ 0} = 0.

Definition 3.4. [10] The uncertainty distribution ϕ(x) of an uncertain variable ξ for any real

number x is defined by ϕ(x) = M{ξ ≤ x}.

Definition 3.5. Let ϕ(x) be the regular uncertainty distribution of an uncertain variable ξ.

Then ϕ−1(α) is called inverse uncertainty distribution of ξ and it exists on (0, 1).

Definition 3.6. [10] The uncertain variable

ξi (i = 1, 2, 3, · · ·n) are said to be independent if

M

{
n⋂

i=1

(ξi ∈ Bi)

}
= ∧n

i=1M(ξi ∈ Bi) (1)

where Bi(i = 1, 2, 3, · · ·n) are called Borel sets of real numbers.
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Theorem 3.7. Let ξ be an uncertain variable with regular uncertain distribution function ψ.

Then its α - optimistic value and α - pessimistic values are

ξsup(α) = ψ−1(1− α), ξinf(α) = ψ−1(α) (2)

Theorem 3.8. [11] The regular uncertainty distributions of independent uncertain variables

ξi(i = 1, 2, 3, · · ·n) are ϕi(i = 1, 2, 3, · · ·n) respectively. If the function

f(x1, x2, · · · , xn) is strictly increasing and strictly decreasing with respect to x1, x2, · · · , xm and

xm+1, xm+2, · · · , xn respectively then the uncertain variable ξ = f(ξ1, ξ2, · · · , ξn) has an inverse

uncertainty distribution

ψ−1(α) =f(ϕ−1
1 (α), ϕ−1

2 (α), · · · , ϕ−1
m (α),

ϕ−1
m+1(1− α), ϕ−1

m+2(1− α), · · · , ϕ−1
n (1− α))

(3)

Definition 3.9. [10] The expected value of uncertain variable ξ is given by

E(ξ) =

∫ ∞

0
M{ξ ≥ x}dx−

∫ 0

−∞
M{ξ ≤ x}dx (4)

This is valid only if at least one of the integral is finite.

Theorem 3.10. [22] Let ϕi(i = 1, 2, 3, · · ·n) be regular uncertainty distributions of indepen-

dent ξi(i = 1, 2, 3, · · ·n) with respectively. If the function f(x1, x2, · · · , xn) is strictly increasing

and strictly decreasing w.r.to

x1, x2, · · · , xm and xm+1, xm+2, · · · , xn respectively, then

E(ξ) =

∫ 1

0
f(ϕ−1

1 (α), · · · , ϕ−1
m (α),

ϕ−1
m+1(1− α), · · · , ϕ−1

n (1− α))dα

(5)

From the above theorem, we know that

E(ξ) =

∫ 1

0
ϕ−1(α)dα (6)

where ξ is an uncertain variable with regular uncertainty distribution Φ.

Definition 3.11. [10] A linear uncertain variable ξ is defined as

ϕ(x) =


0 ifx ≤ 1

x− l

m− l
if l ≤ x ≤ m

1 ifx ≥ m

(7)

represented by L(l,m), where l and m ∈ R with l < m.

The inverse distribution function of a linear uncertain variable L(l,m) is given by

ϕ−1(α) = (1− α)l + αm (8)
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and its expected value is given by

E(ξ) =
l +m

2
(9)

Definition 3.12. [10] The distribution function of a normal uncertain variable is

ϕ(x) =

1 + exp

π(µ− x)

σ
√
3


−1

, x ≥ 0 (10)

and it is denoted as N(µ, σ);µ, σ ∈ R with σ > 0.

The inverse uncertainty distribution and the expected value of N(µ, σ) is defined as follows

ϕ−1(α) = µ+
σ
√
3

π
ln

α

1− α
(11)

E(ξ) = µ (12)

4. Uncertain Multi objective transportation model

In this section, we introduce the mathematical formulation of uncertain multi objective

transportation problem (UMOTP). For the formulation of UMOTP, the following assump-

tions such as indexes, decision variables and parameters are considered as follows.

i index for origins

j index for destinations

k index for objective function

xij
quantity transported from ith origin to jth

destination

Zk kth objective function

ckij the unit cost of transportation from ith origin

to jth destination for the kth objective

function
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ai total amount of product available at orgin i

bj total demand of the product at destination j

Zk(x : ξ) kth objective function with uncertain variable

ξkij uncertain cost coefficient of the kth objective

γi uncertain availability at origin i

ηj uncertain capacity of destination j

α
confidence level for objective function,

α ∈ (0, 1)

αi
confidence level for availability constraint,

αi ∈ (0, 1)

βj
confidence level for destination constraint,

βj ∈ (0, 1)

ψk regular uncertainty distribution for the

independent uncertain variable ξk

ψk
ij

regular uncertainty distribution for the

independent uncertain variable ξkij

ϕi
regular uncertainty distribution for the

independent uncertain variable γi

θj
regular uncertainty distribution for the

independent uncertain variable ηj

N neutrosophic set

X space of objects

TN truth membership function

IN indeterminacy membership function

FN falsity membership function

tk, sk predetermined numbers in (0,1).

Uk upper bound of the kth objective

Lk lower bound of the kth objective

DN neutrosophic decision set

Gk neutrosophic goal

Ci neutrosophic constraint

λT , λI , λF auxiliary parameters
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4.1. Deterministic model of Multi objective transportation problem

The mathematical formulation of deterministic multi objective transportation problem is

MinZk(x) =
m∑
i=1

n∑
j=1

ckijxij (k = 1, 2, · · · ,K)

subject to

n∑
j=1

xij ≤ ai, i = 1, 2, · · · ,m

m∑
i=1

xij ≥ bj , j = 1, 2, · · · , n

xij ≥ 0,∀i, j

(13)

Here ckij , ai, (i = 1, 2, · · · ,m) and bj , (j = 1, 2, · · · , n) are the cost, supply and demand pa-

rameters of multi objective transportation problem respectively which are represented by crisp

numbers. Without loss of generality, it may be considered that ai ≥ 0,∀i, bj ≥ 0,∀j and

ckij ≥ 0, ∀k and
∑m

i=1 ai =
∑n

j=1 bj .

4.2. Mathematical model for uncertain multi objective transportation problem

In real life scenario, planning is made in prior before the transportation process. But many

uncertain factors like road conditions, climate changes, changes in sales due to attitude of

customers, operate parallelly, making demand, supply and transportation cost remain uncer-

tain. Hence, cost, supply and demand parameters ckij , ai and bj respectively are considered as

uncertain variables and are represented by ξkij , γi and ηj .

Then the mathematical model for uncertain multi objective transportation problem is defined

as

MinZk(x; ξ) =
m∑
i=1

n∑
j=1

ξkijxij (k = 1, 2, · · · ,K)

subject to
n∑

j=1

xij ≤ γi, i = 1, 2, · · · ,m

m∑
i=1

xij ≥ ηj , j = 1, 2, · · · , n

xij ≥ 0, ∀i, j

(14)

As we cannot deal with uncertain environment directly, we have to convert(14) into an equiva-

lent deterministic model by using expected value model or chance constrained model or taking

confidence level on the constraint functions and expected value on the objective function. As

chance constraint programming model provides most suitable solutions [23], we make use of

the chance constraint model for uncertain multi objective transportation problem as shown

below.
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4.3. Chance constraint model of UMOTP

Let α be the predetermined confidence level with α ∈ (0, 1). The decision maker aims to

get a smallest value f̃ such that uncertain variable Zk(x : ξ) ≤ f̃ with the predetermined

confidence level α.

Definition 4.1. The solution vector x = (xij) ≥ 0 is a feasible solution of the model (14), if

it holds the below constraints.

M


m∑
i=1

n∑
j=1

ξkijxij ≤ f̃

 ≥ α, k = 1, 2, · · · ,K (15)

M


n∑

j=1

xij ≤ γi

 ≥ αi, i = 1, 2, · · · ,m (16)

M

{
m∑
i=1

xij ≥ ηj

}
≥ βj , j = 1, 2, · · · , n (17)

Definition 4.2. A feasible solution x∗ is said to be pareto optimal solution of the model (14)

if there exists no other feasible solution x such that

Min
{
f̃/M

{
Zk(x : ξ) ≤ f̃

}
≥ α

}
≤ Min

{
f̃/M

{
Zk(x

∗ : ξ) ≤ f̃
}
≥ α

}
∀k = 1, 2, · · · ,K

(18)

Definition 4.3.

Min
{
f̃/M

{
Zk(x : ξ) ≤ f̃

}
≥ α

}
< Min

{
f̃/M

{
Zk(x

∗ : ξ) ≤ f̃
}
≥ α

}
for atleast one k = 1, 2, · · · ,K

(19)

The chance constraint programming model of UMOTP can be constructed as follows

Minf̃

subject to

M


m∑
i=1

n∑
j=1

ξkijxij ≤ f̃

 ≥ α, k = 1, 2, · · · ,K

M


n∑

j=1

xij ≤ γi

 ≥ αi

M

{
m∑
i=1

xij ≥ ηj

}
≥ βj

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

(20)

Here, the confidence levels α, αi, βj are predetermined from the interval (0,1).
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Definition 4.4 (Pareto optimal solution). Pareto optimal solution is defined as a set of ‘non-

inferior’ solutions in the objective space defining a boundary beyond which none of the objec-

tives can be improved without sacrificing at least one of the other objectives.

Theorem 4.5. Suppose that ξkij , γi, ηj are independent uncertain variables with regular un-

certainty distribution ψk
ij , ϕi, θj respectively. The equivalent deterministic model of chance

constraint model is

MinZ∗
k =

m∑
i=1

n∑
j=1

(ψk
ij)

−1(α) xij (k = 1, 2, · · · ,K)

subject to

n∑
j=1

xij ≤ (ϕi)
−1(1− αi), i = 1, 2, · · · ,m

m∑
i=1

xij ≥ (θj)
−1(βj), j = 1, 2, · · · , n

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

(21)

Proof:

Assume that uncertainty variable ξk =
∑m

i=1

∑n
j=1(ξ

k
ij)xij has distribution function ψk.

Let f(y11, y12, · · · , ymn) = y11x11 + y12x12 + · · ·+ ymnxmn

It is clear that this function is strictly increasing with respect to y11, y12, · · · , ymn then by the

theorem (3.8), the uncertain variable ξk has an inverse uncertainty distribution.

(ψk)
−1(α) =

n∑
j=1

m∑
i=1

(ψk
ij)

−1(α)xij

So, we have

M


n∑

j=1

m∑
i=1

(ξij)
kxij ≤ f̃

 ≥ α

⇔ ψk(f̃) ≥ α

⇔ (ψk)−1(α) ≤ f̃

(i.e.)

n∑
j=1

m∑
i=1

(ψk
ij)

−1(α)xij ≤ f̃

Neutrosophic Sets and Systems, Vol. 53, 2023                                                                             443

A.N. Revathi , S. Mohanaselvi and Broumi Said , An Efficient Neutrosophic Technique for
Uncertain Multi Objective Transportation Problem



For the constraints, we have

M


n∑

j=1

xij ≤ γi

 ≥ αi

⇔ M


n∑

j=1

xij − γi ≤ 0

 ≥ αi

⇔
n∑

j=1

xij − (φi)
−1(1− α) ≤ 0

⇔
n∑

j=1

xij ≤ (φi)
−1(1− αi)

Similarly M{
∑m

i=1 xij ≥ ηj} ≥ βj is equivalent to∑m
i=1 xij ≥ (θj)

−1(βj), j = 1, 2, · · · , n.
Hence the theorem is proved.

Corollary 4.6. Let xij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n be the non negative decision variable

and ξk, k = 1, 2, · · · ,K are independently uncertain variables with expected values eij , i =

1, 2, · · · ,m, j = 1, 2, · · · , n and the variances σ2ij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n respectively.

If ξ be a normal uncertain variable N(e, σ), then for any α ∈ (0, 1), the model (21) can be

converted into the following model.

Min (eij)k +
(σij)k

√
3

π
ln

α

1− α
, k = 1, 2, · · · ,K

subject to
n∑

j=1

xij ≤ ei +
σi
√
3

π
ln

1− αi

αi
i = 1, 2, · · · ,m

m∑
i=1

xij ≥ e∗j +
σ∗j

√
3

π
ln

βj
1− βj

, j = 1, 2, · · · , n

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

(22)

5. Neutrosophic compromise programming approach

In this section first we introduce some basic definitions of neutrosophic set theory and then

we will discuss about neutrosophic compromise programming approach.

Definition 5.1. A neutrosophic set N defined in the universal set X is characterized by truth

membership function TN (x), indeterminacy membership function

IN (x) and a falsity membership function FN (x) and is denoted by

N = {⟨x, TN (x), IN (x), FN (x)⟩ |x ∈ X} (23)
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where TN (x), IN (x), FN (x) are real standard or non standard subsets belonging to]0- ,1+[.

Also the membership grades of truth, indeterminacy and falsity are the functions from X to

]0- ,1+[. Also we have 0− ≤ supTN (x)+ sup IN (x)+ supFN (x) ≤ 3+ as there is no restriction

on the sum of TN (x), IN (x)&FN (x).

Wang [24] introduced Single valued Neutrosophic set (SVNS) in engineering problem as it is

computationally more comfortable.

Definition 5.2. [24] A single valued neutrosophic set N defined on X is expressed as

N = {⟨x, TN (x), IN (x), FN (x)⟩ |x ∈ X} where

TN (x), IN (x), FN (x) ∈ [0, 1], ∀x ∈ X and

0 ≤ TN (x), IN (x), FN (x) ≤ 3. Clearly, SVNS is subset of neutrosophic set.

Definition 5.3. [25] Let P and Q are the two Single Valued Netuosophic Sets (SVNSs). Then

their union also a SVNS and their membership functions are given by

TP∪Q(x) =Max{TP (x), TQ(x)};

IP∪Q(x) =Max{IP (x), IQ(x)};

FP∪Q(x) =Min{FP (x), FQ(x)}

Definition 5.4. [25] Let P and Q are SVNS, then their intersection also a SVNS with the

following membership functions

TP∩Q(x) =Min{TP (x), TQ(x)};

IP∩Q(x) =Min{IP (x), IQ(x)};

FP∩Q(x) =Max{FP (x), FQ(x)}

Definition 5.5. The complement of the neutrosophic set N is denoted by c(N) and is defined

by Tc(N)(x) = FN (x), Ic(N)(x) = 1− IN (x), Fc(N)(x) = TN (x), ∀x ∈ X

5.1. Neutrosophic Decision making

In this section, a neutrosophic approach to solve a deterministic model (21) is presented.

Indeterminacy part present in the optimization problem considered, is handled by neutro-

sophic programming approach as it simultaneously maximizes the degree of satisfaction(truth)

and the degree of dissatisfaction(falsity) and minimizes the degree of satisfaction to some ex-

tent(Indeterminacy) of neutrosophic decis ion [21, 26]. A conjunction of neutrosophic goal Gk

and neutrosophic constraint Ci is the neutrosophic decision set DN , that is,

DN =

(
K⋂
k=1

Gk

)(
m⋂
i=1

Ci

)
= {⟨x, TD(x), ID(x), FD(x)⟩ |x ∈ X}
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where

TD(x) = min

{
TG1(x), TG2(x), · · · , TGk

(x);

TC1(x), TC2(x), · · · , TCm(x);

}
, x ∈ X

ID(x) = min

{
IG1(x), IG2(x), · · · , IGk

(x);

IC1(x), IC2(x), · · · , ICm(x);

}
, x ∈ X

FD(x) = max

{
FG1(x), FG2(x), · · · , FGk

(x);

FC1(x), FC2(x), · · · , FCm(x);

}
, x ∈ X

where TD(x), ID(x), FD(x) are truth, indeterminacy and falsity membership functions respec-

tively of neutrosophic decision set DN . To formulate the membership function for the deter-

ministic model (21) for the uncertain MOTP, the upper bound Uk and lower bound Lk for

each objective function is calculated. By solving K objective function individually subject to

the constraints we obtained k solutions x1, x2, · · · , xK .

To find the bounds for each objective function, these K solutions are substituted in each

objective function.

(i.e.)Uk = max{Fk(x1), Fk(x2), · · · , Fk(xK)}

and Lk = min{Fk(x1), Fk(x2), · · · , Fk(xK)}
(24)

Hence, the upper and lower bounds for truth, falsity and indeterminacy membership function

are given by

UT
k = Uk, L

T
k = Lk

UF
k = UT

k , L
F
k = LT

k + tk(U
T
k − LT

k )

U I
k = LT

k + sk(U
T
k − LT

k ), L
I
k = LT

k

 (25)

where tk, sk are predetermined real numbers in (0,1).

Using the above upper and lower bounds, the membership functions of truth, indeterminacy

and falsity of model (21) can be interpreted as follows:

Tk(Z
∗
k(x)) =


1 ifZ∗

k(x) < LT
k

UT
k − Z∗

k(x)

UT
k − LT

k

ifLT
k ≤ Z∗

k(x) ≤ UT
k

0 ifZ∗
k(x) > UT

k

(26)

Ik(Z
∗
k(x)) =


1 ifZ∗

k(x) < LI
k

U I
k − Z∗

k(x)

U I
k − LI

k

ifLI
k ≤ Z∗

k(x) ≤ U I
k

0 ifZ∗
k(x) > U I

k

(27)

Fk(Z
∗
k(x)) =


1 ifZ∗

k(x) > UF
k

ZF
k − L∗

k(x)

UF
k − LF

k

ifLF
k ≤ Z∗

k(x) ≤ UF
k

0 ifZ∗
k(x) < LF

k

(28)
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where U
(.)
k ̸= L

(.)
k for all objectives. The value of this membership function is set to one, if

U
(.)
k = L

(.)
k . Following the Bellman and Zadeh [26], the neutroshopic optimization model of

(21) can be stated as follows

Max min
k

{Tk(Z∗
k(x))} : k = 1, 2, · · · ,K

Min max
k

{Fk(Z
∗
k(x))} : k = 1, 2, · · · ,K

Max min
k

{Ik(Z∗
k(x))} : k = 1, 2, · · · ,K

where

Min Z∗
k(x) =

m∑
i=1

n∑
j=1

(ψk
ij)

−1(α)xij , k = 1, 2, · · · ,K

subject to

n∑
j=1

xij ≤ (φi)
−1(1− αi) i = 1, 2, · · · ,m

m∑
i=1

xj ≥ (θj)
−1(βj), j = 1, 2, · · · , n

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

(29)

By using the auxiliary parameters, the above problem can be transformed as

MaxλT

MaxλI

MinλF

subject to

Tzk(x) ≥ λT , Izk(x) ≥ λI , Fzk(x) ≤ λF
n∑

j=1

xij ≤ (φi)
−1(1− αi) i = 1, 2, · · · ,m

m∑
i=1

xij ≥ (θj)
−1(βj), j = 1, 2, · · · , n

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

λT ≥ λI , λT ≥ λF , λT + λI + λF ≤ 3, λT , λI , λF ∈ [0, 1]

(30)
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The simplified model of uncertain MOTP (21) can be represented as follows:

MaxλT − λF + λI

subject to

n∑
j=1

xij ≤ (φi)
−1(1− αi), i = 1, 2, · · · ,m

m∑
i=1

xij ≥ (θj)
−1(βj), j = 1, 2, · · · , n

xij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

Z∗
k(x) + (UT

k − LT
k )λT ≤ UT

k

Z∗
k(x) + (U I

k − LI
k)λI ≤ U I

k

Z∗
k(x)− (UF

k − LF
k )λF ≤ LF

k

λT ≥ λI , λT ≥ λF , λT + λI + λF ≤ 3,

λT , λI , λF ∈ [0, 1]

(31)

5.2. Algorithm for solving uncertain MOTP under Neutrosophic environment

In this section, the algorithm for solving uncertain MOTP under neutosophic environment

to obtain the pareto optimal solution is presented.

Step 1: Convert the Uncertain MOTP (14) into a deterministic model by using chance

constraint model (21).

Step 2: Solve each objective function individually subject to the constraints.

Let x1, x2, · · · , xK represent the respective ideal solutions for k objective transportation

problems. If all k objectives have same solutions x1 = x2 = · · · = xK = {xij}m,n
i,j=1 choose

one of them as optimal compromise solution, otherwise go to step 3.

Step 3: Calculate the lower and upper bounds for all objectives functions

U1 = Max {F1(x1), . . . , F1(xk)}

U2 = Max {F2(x1), . . . , F2(xk)}

...

Uk = Max {Fk(x1), . . . , Fk(xk)}

L1 = Min {F1(x1), . . . , F1(xk)}

...

Lk = Min {Fk(x1), . . . , Fk(xk)} (32)
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Step 4: Define the truth, indeterminacy and falsity membership functions of the objective

functions and constraints using equations (26), (27), (28).

Step 5: Formulate the neutrosophic compromise programming model for given the uncertain

MOTP using the model (31) and solve it for Pareto optimal solution.

6. Illustrative example

Illustrative example from Gurupada et al [27] is considered to demonstrate the proposed

approach where all the multi objective functions parameters are considered to be uncertain.

The decision maker aims to distribute the product from three sources namely M1,M2,M3

to 4 destinations namely C1, C2, C3 and C4 in the planning process he likes to optimize the

following objective function as

* Minimize the transportation cost (Z1)

* Minimize the toll tax (Z2)

* Maximize the profit (Z3)
Table 2. Transportation cost C1

ij (in $) and loss of time (in week)

C1 C2 C3 C4

M1 (20, .1) (18, .1) (22, .1) (24 , .1)

M2 (10, 0) (12, .2) (15, 0) (13 , 0)

M3 (22, 0) (20, .1) (24, 1) (23, .15)

Table 3. Toll tax cost C2
ij (in $) for transportation goods

C1 C2 C3 C4

M1 5 6 4 3

M2 6 5 5 4

M3 9 8 8 10

Table 4. Cost parameters C3
ij related to profit (in $) and loss of time (in

week).

C1 C2 C3 C4

M1 (3, 0.1) (3.5, 0.1) (2.5, 0.1) (5 ,0.1)

M2 (3, 0) (6, 0.2) (4, 0) (4 ,0)

M3 (4, 0) (3, 0.1) (4, 1) (5, 0.15)
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The supply parameters a1, a2 and a3 of mines M1,M2 and M3 the demand parameters

b1, b2, b3 and b4 of cities C1, C2, C3 and C4 follow normal distribution N(e1i , σ
1
i ), for i = 1, 2, 3

and N(e2j , σ
2
j ), for j = 1, 2, 3, 4 respectively. The data for supply ai and demand bj ,∀i, j are

presented in table 4 and 5.

Table 5. Uncertain supply parameters ai.

M1 M2 M3

(55, 4) (60, 5) (70, 4)

Table 6. Uncertain demand parameters bj .

C1 C2 C3 C4

(40, 3) (36, 4) (35, 5) (40, 3)

Step 1:

Assume the confidence level as α = 0.9, αi = 0.9 and βj = 0.9 for all i = 1, 2, 3 and j = 1, 2, 3, 4.

By using the theorem (4.5), the equivalent deterministic model of the problem is

MinZ1=MinZ∗
1 = 20.1x11 + 18.1x12 + 22.1x13 + 24.1x14 + 10x21

+12.2x22 + 15x23 + 13x24 + 22x31 + 20.1x32 + 25.2x33 + 23.2x34

MinZ2=MinZ∗
2 = 5x11 + 6x12 + 4x13 + 3x14 + 6x21 + 5x22

+5x23 + 4x24 + 9x31 + 8x32 + 8x33 + 10x34

MaxZ3=MinZ∗
3 = −3.1x11 − 3.6x12 − 2.6x13 − 5.1x14 − 3x21

−6.2x22 − 4x23 − 4x24 − 4x31 − 3.1x32 − 5.2x33 − 5.2x34

Subject to

x11 + x12 + x13 + x14 + x15 = 50.2

x21 + x22 + x23 + x24 + x25 = 53.9

x31 + x32 + x33 + x34 + x35 = 65.2

x11 + x21 + x31 = 43.6

x12 + x22 + x32 = 40.8

x13 + x23 + x33 = 41.1

x14 + x24 + x34 = 43.6

x15 + x25 + x35 = 0.2

Step 2: Solving the above objective functions individually, we get

x1 = (0, 9.1, 41.1, 0, 0, 43.6, 0, 0, 10.3, 0, 0, 31.7, 0, 33.3, 0.2)

x2 = (0, 0, 6.6, 43.6, 0, 0, 19.4, 34.5, 0, 0, 43.6, 21.4, 0, 0, 0, 2)

x3 = (6.6, 0, 0, 43.6, 0, 12.9, 40.8, 0, 0, 0.2, 24.1, 0, 41.1, 0, 0)
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Clearly x1 ̸= x2 ̸= x3.

Step 3: By using the above solutions, we have

Z∗
1(x1) = 3052.65,Z∗

1(x2) = 3340.14,Z∗
1(x3) = 3376.1

Z∗
2(x1) = 1108.4,Z∗

2(x2) = 990.3,Z∗
2(x3) = 990.9

Z∗
3(x1) = −583.05,Z∗

3(x2) = −738.54,Z∗
3(x3) = −844.6

The upper and lower bounds of each objective functions are as follows:

UZ∗
1
= 3376.1, LZ∗

1
= 3052.65, UZ∗

2
= 1108.4,

LZ∗
2
= 990.3, UZ∗

3
= −583.05, LZ∗

3
= −844.6

Step 4: Formulate the membership functions of the given objectives using the equations (26),

(27) and (28).

For Z∗
1 :

UT
Z∗
1
= 3376.1, LT

Z∗
1
= 3052.65

UF
Z∗
1
= 3376.1, LF

Z∗
1
= 3052.65 + 323.45t1

U I
Z∗
1
= 3052.65 + 323.45s1, L

I
Z∗
1
= 3052.65

T1(Z
∗
1 (x)) =


1 ifZ∗

1 (x) < 3052.65

3376.1− Z∗
1 (x)

3376.1− 3052.65
if 3052.65 ≤ Z∗

1 (x) ≤ 3376.1

0 ifZ∗
1 (x) > 3376.1

I1(Z
∗
1 (x)) =


1 ifZ∗

1 (x) < 3052.65

3052.65 + 323.45s1 − Z∗
1 (x)

323.45s1
if 3052.65 ≤ Z∗

1 (x) ≤ 3052.65 + 323.45s1

0 ifZ∗
1 (x) > 3052.65 + 323.45s1

F1(Z
∗
1 (x)) =


1 ifZ∗

1 (x) > 3376.1

Z∗
1 (x)− 3052.65− 323.45t1

323.45− 323.45t1
if 3052.65 + 323.45t1 ≤ Z∗

1 (x) ≤ 3376.1

0 ifZ∗
1 (x) < 3052.65 + t1(323.45)

For Z∗
2 :

UT
Z∗
2
= 1108.4, LT

Z∗
2
= 990.3

UF
Z∗
2
= 1108.4, LF

Z∗
2
= 990.3 + 118.1t2

U I
Z∗
2
= 990.3 + 118.1s2, L

I
Z∗
2
= 990.3

T2(Z
∗
2 (x)) =


1 ifZ∗

2 (x) < 990.3

1108.4− Z∗
2 (x)

118.1
if 990.3 ≤ Z∗

2 (x) ≤ 1108.4

0 ifZ∗
2 (x) > 1108.4

I2(Z
∗
2 (x)) =


1 ifZ∗

2 (x) < 990.3

990.3 + 118.1s2 − Z∗
2 (x)

118.1s2
if 990.3 ≤ Z∗

2 (x) ≤ 990.3 + 118.1s2

0 ifZ∗
2 (x) > 990.3 + 118.1s2
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F2(Z
∗
2 (x)) =


1 ifZ∗

2 (x) > 1108.4

Z∗
2 (x)− 990.3− 118.1t2

118.1− 118.1t2
if 990.3 + 118.1t2 ≤ Z∗

2 (x) ≤ 1108.4

0 ifZ∗
2 (x) < 990.3 + 118.1t2

For Z∗
3 :

UT
Z∗
3
= −583.05, LT

Z∗
3
= −844.6

UF
Z∗
3
= −583.05, LF

Z∗
3
= −844.6 + 261.55t3

U I
Z∗
3
= −844.6 + 261.55s3, L

I
Z∗
3
= −844.6

T3(Z
∗
3 (x)) =


1 ifZ∗

3 (x) < −844.6

−583.05− Z∗
3 (x)

261.55
if − 844.6 ≤ Z∗

3 (x) ≤ −583.05

0 ifZ∗
3 (x) > −583.05

I3(Z
∗
3 (x)) =


1 ifZ∗

3 (x) < −844.6

−844.6 + 261.55s3 − Z∗
3 (x)

261.55s3
if − 844.6 ≤ Z∗

3 (x) ≤ −844.6 + 261.55s3

0 ifZ∗
3 (x) > −844.6 + 261.55s3

F3(Z
∗
3 (x)) =


1 ifZ∗

3 (x) > −583.05

Z∗
3 (x) + 844.6− 261.55t3
261.55− 261.55t3

if − 844.6 + 261.55t3 ≤ Z∗
3 (x) ≤ −583.05

0 ifZ∗
3 (x) < −844.6 + 261.55t3

Step 5: The neutrosophic compromise programming model for given the uncertain MOTP

using the model (31) is

Max λT − λF + λI

subject to

x11 + x12 + x13 + x14 + x15 = 50.2

x21 + x22 + x23 + x24 + x25 = 53.9

x31 + x32 + x33 + x34 + x35 = 65.2

x11 + x21 + x31 = 43.6

x12 + x22 + x32 = 40.8

x13 + x23 + x33 = 41.1

x14 + x24 + x34 = 43.6

x15 + x25 + x35 = 0.2

20.1x11 + 18.1x12 + 22.1x13 + 24.1x14 + 10x21 + 12.2x22 +15x23 + 13x24 + 22x31 + 20.1x32 +

25.2x33 + 23.2x34 +233.45λT ≤ 3376.1

5x11+6x12+4x13+3x14+6x21+5x22+5x23+4x24 +9x31+8x32+8x33+10x34+118.1λT ≤ 1108.4

−3.1x11−3.6x12−2.6x13−5.1x14−3x21−6.2x22 −4x23−4x24−4x31−3.1x32−5.2x33−5.2x34
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+261.55λT ≤ −583.05

20.1x11 + 18.1x12 + 22.1x13 + 24.1x14 + 10x21 + 12.2x22 +15x23 + 13x24 + 22x31 + 20.1x32 +

25.2x33 + 23.2x34 +323.45t1(λT − 1) ≤ 3052.65

5x11+6x12+4x13+3x14+6x21+5x22+5x23+4x24 +9x31+8x32+8x33+10x34+118.1t2(λT−1) ≤
990.3

−3.1x11−3.6x12−2.6x13−5.1x14−3x21−6.2x22 −4x23−4x24−4x31−3.1x32−5.2x33−5.2x34

+261.55t3(λT − 1) ≤ −844.6

20.1x11 + 18.1x12 + 22.1x13 + 24.1x14 + 10x21 + 12.2x22 +15x23 + 13x24 + 22x31 + 20.1x32 +

25.2x33 + 23.2x34 +(λF − 1)(3052.65 + 323.45s1)− 3376.1λF ≤ 0

5x11 + 6x12 + 4x13 + 3x14 + 6x21 + 5x22 + 5x23 + 4x24 +9x31 + 8x32 + 8x33 + 10x34

+(λF − 1)(990.3 + 118.1s2)− 1108.4λF ≤ 0

−3.1x11−3.6x12−2.6x13−5.1x14−3x21−6.2x22 −4x23−4x24−4x31−3.1x32−5.2x33−5.2x34

+(λF − 1)(−844.6 + 261.55s3) + 583.05λF ≤ 0

λT ≥ λI , λT ≥ λF , λT + λF + λI ≤ 3, λT ≤ 1, λI ≤ 1, λF ≤ 1

0 ≤ t1, s1 ≤ 323.5, 0 ≤ t2, s2 ≤ 118.1, 0 ≤ t3, s3 ≤ 261.55, λT , λF , λI ∈ [0, 1]

solving the above model by using the LINGO (17.0) software, we get

λT = 0.523, λF = 0, λI = 0.52,

x11 = 21.1, x12 = 28.1, x14 = 0.9, x22 = 11.2,

x24 = 42.6, x31 = 22, x32 = 1.4, x33 = 41.1, x35 = 0.2

t1 = 1, t2 = 1.2, t3 = 0.9,

s1 = 1.2, s2 = 1.2, s3 = 0.47,

Z1 = 3192.71, Z2 = 1041.2, Z3 = 717.06.

Table 7 illustrates the comparison between the results obtained from Fuzzy Multi Choice goal

programming method and the proposed method. Table 8 provides the comparison study of

solution obtained by fuzzy goal programming method and proposed method.

In Gurupada et al [27] work, wherein he proved that Fuzzy multi choice goal programming

was more efficient in providing an optimal solution than by employing goal programming and

revised multi choice goal programming approach. Contrasting to his work in the proposed

method, the decision maker need not fix the goals of the objective function using any of the

existing techniques, to get a better optimal value for the objective function. In short, we have

overcome the difficulty of the decision maker to fix the objective value goal.

Clearly it can be seen that by using neutrosophic compromise programming approach, we

obtained an improvised pareto optimal solution. As in table 8, we can observe that the pro-

posed method yields a more minimal value for transportation cost and a considerable increase
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in profit. As neutrosophic programming explores the indeterminacy part of a optimization

problem, it helps the decision maker to get better results.

Table 7. Comparison between the pareto optimal solution of the existing and

the proposed method.

Method Pareto-optimal solution

Fuzzy Multi Choice

goal programming

method [27]

x11 = 3.12,

x12 = 0,

x13 = 18.95,

x14 = 29.10,

x21 = 11.26,

x22 = 25.07,

x23 = 4.36,

x24 = 14.54,

x31 = 29.26,

x32 = 15.42,

x33 = 17.74,

x34 = 0

Proposed method

x11 = 21.1,

x12 = 28.1,

x14 = 0.9,

x22 = 11.2,

x24 = 42.6,

x31 = 22,

x32 = 1.4,

x33 = 41.1,

x35 = 0.2

Table 8. The comparison between the existing and the proposed method.

Method Min Z1 Min Z2 Max Z3

Fuzzy Multi Choice

goal programming

method [27]

3400 980.13 650

Proposed method 3192.71 1041.2 717.06
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7. Result and Discussion

In our work, we have obtained the compromise solution of the Uncertain MOTP using the

neutrosphic technique.

Table 7 illustrates the comparison between the results obtained from Fuzzy Multi Choice

goalprogramming method and the proposed method. Table 8 provides the comparison study

ofsolution obtained by fuzzy goal programming method and proposed method.In Gurupada

et al [27] work, wherein he proved that Fuzzy multi choice goal programmingwas more efficient

in providing an optimal solution than by employing goal programming andrevised multi choice

goal programming approach. Contrasting to his work in the proposedmethod, the decision

maker need not fix the goals of the objective function using any of theexisting techniques, to

get a better optimal value for the objective function. In short, we haveovercome the difficulty

of the decision maker to fix the objective value goal.Clearly it can be seen that by using

neutrosophic compromise programming approach, weobtained an improvised pareto optimal

solution. As in Table 8, we can observe that the proposed method yields a more minimal value

for transportation cost and a considerable increasein profit. As neutrosophic programming

explores the indeterminacy part of a optimizationproblem, it helps the decision maker to get

better results.

8. Implications

This paper used the neutrosophic approach to discuss the uncertain MOTP. The literature

review section includes studies that are comparable to these ones. According to the author’s

knowledge, no research has been done on applying the neutrosophic method to solve the un-

certain MOTP. The method for solving uncertain MOTP utilizing the neutrosophic technique

has been provided in the suggested work to close the aforementioned research gap. The effi-

ciency of the proposed work has been demonstrated by comparing Gurupata’s [27]’s work. It

has been explained that the suggested work will assist the decision maker to have the suitable

and desired transportation plan.

9. Conclusion

In this work, a procedure to solve multi objective transportation problem with uncertainvari-

ables is studied under neutrosophic environment. The uncertain MOTP is converted into an

equivalent chance constraint deterministic model with the use of operational law of uncertain

variables. Then using neutrosophic compromise programming approach the best compromise

solution is obtained. Since the solution searches of UMOTP based on different membership

function such as truth, indeterminacy and falsity, it allows the decision maker to know about

the various functions and provides more practicable and reasonable compromise solution. More
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info It has been established that, in order to obtain a better optimal value for the objective

function, the decision maker does not need to fix the goals of the objective function using any

of the available strategies. In other words, we have succeeded in fixing the decision-difficulty

maker’s with regard to the objective value aim. A numerical example had been considered and

obtained the compromise solution and is tabulated in Table 8. It is evident that we were able

to achieve an improvised pareto optimum solution by applying the neutrosophic compromise

programming approach.

Conflicts of Interest: The authors confirm that there are no known conflicts of interest

associated with this publication.
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