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Abstract. In this paper, the number of neutrosophic topological spaces having two, three, and four open sets

are computed for a finite set XNT whose membership values lies in MNT . Further, the number of neutrosophic

bitopological spaces and neutrosophic tritopological spaces having k(k = 2, 3, 4) neutrosophic open sets on finite

sets are computed.
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—————————————————————————————————————————-

1. Introduction

Finding the number of topologies in a set is an interesting task. Many authors have done

their work in this field. Krishnamurty [1] obtained a sharper bound namely 2n(n−1) for the

number of distinct topologies. Sharp [2] shows that only discrete topology has cardinal greater

than 3
42

n and derived bounds for the cardinality of topologies which are connected, non-

connected, non-T0, and some more. After obtaining all non-homeomorphic topologies with n

points and > 7
162

n open sets, Stanley [3] also determined which of these are T0. The concept

of partial chain topologies supported Kamel [4] to formulate a special case for computing the

number of chain topologies and maximal elements with natural generalization. Ragnarsson et

al. [5], have also studied obtainable sizes of topologies on a finite set. Benoumhani [6] computed

the number of topologies having 2, 3, . . . , 12-open sets, and alsoT0 topologies having n+4, n+5,

and n+ 6 open sets. These results are extended in [7].

Later on, Benoumhani et al. [8] extended their work to fuzzy topological spaces (FTS).

They computed the number of FTS having 2, 3, 4, and 5-open sets and certain cases, where the

number of open sets is large. Basumatary et al. [9] discussed the number of fuzzy bitopological

spaces and gave some formulae.
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After the generalization of the fuzzy set [10] from crisp set and intuitionistic fuzzy set [11],

Smarandache discovered the concept of the neutrosophic set by combining the fuzzy set and

intuitionistic fuzzy set. Since the introduction of the NS (Neutrosophic set) by Smarandache

[12], several authors have contributed their work in science and technology by taking NS

as a tool. Wang [13] studied single-valued NSs in multiset and multistructure. Salama et

al. [14] studied the neutrosophic topological spaces (NTS). Lupiáñez [15–18] investigated NTS.

Mwchahary et al. [19] studied neutrosophic bitopological space (NBTS). Devi et al. [20] and

Ozturk et al. [21] also discussed NBTS. Kelly [22] and Kovar [23] introduced the notion of

bitopological space and tritopological space respectively. The neutrosophic crisp tri-topological

spaces are studied by Al-Hamido et al. [24].

Ishtiaq et al. [25, 26] studied fixed-point results in orthogonal neutrosophic metric spaces

and also certain new aspects in fuzzy fixed-point theory. Ali et al. [27] discussed solving

nonlinear fractional differential equations for contractive and weakly compatible mappings in

neutrosophic metric spaces. Hussain et al. [28] worked on some new aspects of the intuitionistic

fuzzy and neutrosophic fixed point theory. Javed et al. [29] studied the fuzzy b-metric-like

spaces. Hussain et al. [30] studied the pentagonal controlled fuzzy metric spaces with an

application to dynamic market equilibrium.

From the literature survey, it is observed that generally finding the number of topologies

(NoTs) for a set is not an easy task. Because of this current authors started research work in

this area. This article discusses formulae for calculating the NNTSs (number of NTSs) with

2, 3, or 4-open sets, as well as the NNBTSs (number of NBTSs) and NNTRSs (number of

neutrosophic tritopological spaces) with the same number of open sets in topologies.

Let XNT be a non-empty finite set,MNT be the finite totally ordered set with |MNT | = m ≥ 2

and NT
X be a set that contains all the neutrosophic subsets (NSubs) of XNT with membership

values in MNT .

Note that in this paper TNT
X (n,m, k) denotes NNTSs on XNT with |XNT | = n and k-

open sets, (TNT
i ,TNT

j )NT
X (n,m, k) and (TNT

i ,TNT
j ,TNT

k )NT
X (n,m, k) denotes NNBTSs and

NNTRSs respectively on XNT consisting k-open sets in topologies at a time where n,m, k ∈ N,
n ≥ 1,m ≥ 2 and k ≥ 2.

2. Preliminaries

Definition 2.1. [14] On a universe of discourse XNT a NS UNT is defined as UNT =

⟨ u
(TNT

U (u),INT
U (u),FNT

U (u))
: u ∈ XNT ⟩, where TNT

U , INT
U , FNT

U : XNT →]−0, 1+[. Here −0 ≤
TNT
U (u)+INT

U (u)+FNT
U (u) ≤ 3+; TNT

U (u) represents degree of membership function, INT
U (u)

degree of indeterminacy and FNT
U (u) degree of non-membership function.
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Definition 2.2. [14,15] Let TNT ⊆ NNT
X then TNT is called a neutrosophic topology (NT)

on XNT if

• 0NT , 1NT ∈ TNT

• UNT
1 ∩ UNT

2 ∈ TNT for any UNT
1 ,UNT

2 ∈ TNT .

• ∪UNT
i ∈ TNT , for arbitrary family {UNT

i : i ∈ I} ∈ TNT .

The pair (XNT ,TNT ) is called NTS and any NS in TNT is called NOS (neutrosophic open

set) in XNT .

Definition 2.3. [19] Let TNT
1 and TNT

2 be the two NTs on XNT . Then (XNT ,TNT
1 ,TNT

2 )

is called a NBTS.

Example 2.4. If XNT = {u,v,w} and if TNT
1 = {0NT , 1NT ,UNT

1 } and TNT
2 =

{0NT , 1NT ,UNT
2 }, where

UNT
1 = ⟨ u

(0.7,0.1,0.5) ,
v

(0.5,0.2,0.3) ,
w

(0.3,0.4,0.4)⟩,U
NT
2 = ⟨ u

(0.2,0.5,0.1) ,
v

(0.1,0.2,0.3) ,
w

(0.6,0.3,0.5)⟩.
Then (XNT ,TNT

1 ) and (XNT ,TNT
2 ) form NTS. Therefore, (XNT ,TNT

1 ,TNT
2 ) is a NBTS.

Definition 2.5. [31] Let TNT
1 ,TNT

2 and TNT
3 be the three NTs on XNT . Then

(XNT ,TNT
1 ,TNT

2 ,TNT
3 ) is called a neutrosophic tritopological space (NTRS).

Example 2.6. If XNT = {u,v,w} and consider TNT
1 = {0NT , 1NT ,UNT

1 }, TNT
2 =

{0NT , 1NT ,UNT
2 } and TNT

3 = {0NT , 1NT ,UNT
3 }.

Here, UNT
1 = ⟨ u

(0.7,0.1,0.5) ,
v

(0.5,0.2,0.3) ,
w

(0.3,0.6,0.2)⟩, UNT
2 = ⟨ u

(0.6,0.5,0.3) ,
v

(0.7,0,0.2) ,
w

(0.8,0.1,0.1)⟩,
UNT
3 = ⟨ u

(0.5,0.2,0.3) ,
v

(0.2,0.1,0.2) ,
w

(0.1,0,0.1)⟩.
Then (XNT ,TNT

1 ), (XNT ,TNT
2 ) and (XNT ,TNT

3 ) form NTS.

Therefore (XNT ,TNT
1 ,TNT

2 ,TNT
3 ) is a NTRS. In this case, (XNT ,TNT

1 ,TNT
2 ,TNT

3 ) is a

NTRS having 3-NOS in each of the topologies.

3. Results on NNTS

Proposition 3.1. The NNTs (Number of Neutrosophic Topologies) on XNT , whose member-

ship values lies in MNT , is finite if and only if both XNT and MNT are finite.

Result 3.2. The NNTSs having 2-NOS is one i.e., TNT
X (n,m, 2) = 1.

The NT having 2-open set is the indiscrete NT which is TNT
1 = {0NT , 1NT }.

Result 3.3. The NNTs having 3-NOS is mn − 2 i.e., TNT
X (n,m, 3) = mn − 2.

These NTs necessarily consists of a chain containing 0NT , 1NT and any one NSub of XNT .

In this case NTs are in the chain, of the form 0NT ⊆ UNT
1 ⊆ 1NT ,UNT

1 is any NSub of XNT .
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Example 3.4. Let XNT = {u,v} and MNT = {(0, 1, 1), (0.6, 0.1, 0.2), (1, 0, 0)}. It is seen

that, |XNT | = n = 2, |MNT | = m = 3.

Then number of elements in NT
X i.e., |NT

X | = 32 = 9. These are

0NT , 1NT , UNT
1 = ⟨ u

(0,1,1) ,
v

(0.6,0.1,0.2)⟩, UNT
2 = ⟨ u

(0,1,1) ,
v

(1,0,0)⟩, UNT
3 = ⟨ u

(0.6,0.1,0.2) ,
v

(0,1,1)⟩,
UNT
4 ⟨ u

(0.6,0.1,0.2) ,
v

(0.6,0.1,0.2)⟩, UNT
5 = ⟨ u

(0.6,0.1,0.2) ,
v

(1,0,0)⟩, UNT
6 = ⟨ u

(1,0,0) ,
v

(0,1,1)⟩,
UNT
7 = ⟨ u

((1,0,0) ,
v

(0.6,0.1,0.2)⟩.
So, TNT

X (2, 3, 3) = 32 − 2 = 7.

The NTs having 3-open sets are:

TNT
1 = {0NT , 1NT ,UNT

1 }, TNT
2 = {0NT , 1NT ,UNT

2 }, TNT
3 = {0NT , 1NT ,UNT

3 },
TNT
4 = {0NT , 1NT ,UNT

4 }, TNT
5 = {0NT , 1NT ,UNT

5 }, TNT
6 = {0NT , 1NT ,UNT

6 },
TNT
7 = {0NT , 1NT ,UNT

7 }.

Result 3.5. An arbitrary NT with 4-NOSs is an NT consisting of 1NT , 0NT and other two

NSubs. These NSubs are either chain of 2-elements or anti-chain of 2-elements having 1NT

and 0NT as union and intersection respectively.

Theorem 3.6. In N̂T
X = NT

X − {0NT , 1NT }, the number of chains (NCs) of length 2 is

obtained by

c2(N
T
X ) =

(
m+1
2

)n − 3mn + 3.

Corollary 3.7. In NT
X , the NCs of length 4 having both 0NT and 1NT is same as c2(N

T
X ).

Lemma 3.8. In NT
X , the number of anti-chains (NACs) of size 2 (having 2-elements) with

1NT as union and 0NT as intersection is 2n−1 − 1.

Corollary 3.9. The NAC NTs of NT
X consisting of 4-open set is 2n−1 − 1.

Theorem 3.10. The NNTs in NT
X with 4-NOSss is

TNT
X (n,m, 4) =

(
m(m+1)

2

)n
− 3mn + 2n−1 + 2.

Follow Cor. 3.7 and Cor. 3.9 for the prove of theorem.

Example 3.11. Let, XNT = {u,v} and MNT = {(0, 1, 1), (0.1, 0.3, 0.8), (1, 0, 0)}. Therefore

|NT
X | = 32 = 9. These NSubs are

0NT = ⟨ u
(0,1,1) ,

v
(0,1,1)⟩, 1NT = ⟨ u

(1,0,0) ,
v

(1,0,0)⟩, UNT
1 = ⟨ u

(0,1,1) ,
v

(0.1,0.3,0.8)⟩,
UNT
2 = ⟨ u

(0,1,1) ,
v

(1,0,0)⟩, UNT
3 = ⟨ u

(0.1,0.3,0.8) ,
v

(0,1,1)⟩, UNT
4 = ⟨ u

(0.1,0.3,0.8) ,
v

(0.1,0.3,0.8)⟩,
UNT
5 = ⟨ u

(0.1,0.3,0.8) ,
v

(1,0,0)⟩, UNT
6 = ⟨ u

(1,0,0) ,
v

(0,1,1)⟩, UNT
7 = ⟨ u

(1,0,0) ,
v

(0.1,0.3,0.8)⟩.
In this case, n = 2, m = 3,

Therefore, TNT
X (2, 3, 4) =

(
3(3+1)

2

)2
− 3.32 + 22−1 + 2 = 62 − 23 = 13.

These NTs with 4-NOSs are

TNT
1 = {0NT , 1NT ,UNT

1 ,UNT
2 }, TNT

2 = {0NT , 1NT ,UNT
1 ,UNT

4 },
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TNT
3 = {0NT , 1NT ,UNT

1 ,UNT
5 }, TNT

4 = {0NT , 1NT ,UNT
1 ,UNT

7 },
TNT
5 = {0NT , 1NT ,UNT

2 ,UNT
5 }, TNT

6 = {0NT , 1NT ,UNT
2 ,UNT

6 },
TNT
7 = {0NT , 1NT ,UNT

3 ,UNT
4 }, TNT

8 = {0NT , 1NT ,UNT
3 ,UNT

5 },
TNT
9 = {0NT , 1NT ,UNT

3 ,UNT
6 }, TNT

10 = {0NT , 1NT ,UNT
3 ,UNT

7 },
TNT
11 = {0NT , 1NT ,UNT

4 ,UNT
5 }, TNT

12 = {0NT , 1NT ,UNT
4 ,UNT

7 },
TNT
13 = {0NT , 1NT ,UNT

6 ,UNT
7 }.

Here, the only anti-chain NTs in NT
X is TNT

6 with 0NT and 1NT as intersection and union

respectively.

4. Results on NNBTS

In this section, the NBTS having 3-NOSs in both NTs and the NBTS having 3-NOSs in both

NTs without repetition means NBTS of the form (XNT ,TNT
i ,TNT

j ), where TNT
i ,TNT

j are

identical or non-identical topologies, and non-identical topologies having 3-NOSs respectively.

A similar meaning is used for 4-NOSs.

Result 4.1. In NT
X , the NNBTS with two NOSs in both the NTs is

(TNT
i ,TNT

j )NT
X (n,m, 2) = 1.

From Result 3.2, TT
X (n,m, 2) = 1, which is the indiscrete topology TNT

1 = {0NT , 1NT }.
Hence, NBTS with 2-NOSs is only one i.e., (XNT ,TNT

1 ,TNT
1 ).

Result 4.2. In NT
X , the NNBTSs having 3-NOSs in both NTs is

(TNT
i ,TNT

j )NT
X (n,m, 3) =

(
TNT
X (n,m,3)+1

2

)
= m2n−3mn+2

2 .

Example 4.3. Example 3.4 gives TNT
X (2, 3, 3) = 7.

Therefore,(TNT
i ,TNT

j )NT
X (2, 3, 3) =

(
TNT
X (2,3,3)+1

2

)
= 28.

Then, these NBTSs are

(XNT ,TNT
1 ,TNT

1 ), (XNT ,TNT
1 ,TNT

2 ), (XNT ,TNT
1 ,TNT

3 ), (XNT ,TNT
1 ,TNT

4 ),

(XNT ,TNT
1 ,TNT

5 ), (XNT ,TNT
1 ,TNT

6 ), (XNT ,TNT
1 ,TNT

7 ),

(XNT ,TNT
2 ,TNT

2 ), (XNT ,TNT
2 ,TNT

3 ), (XNT ,TNT
2 ,TNT

4 ), (XNT ,TNT
2 ,TNT

5 ),

(XNT ,TNT
2 ,TNT

6 ), (XNT ,TNT
2 ,TNT

7 ),

(XNT ,TNT
3 ,TNT

3 ), (XNT ,TNT
3 ,TNT

4 ), (XNT ,TNT
3 ,TNT

5 ), (XNT ,TNT
3 ,TNT

6 ),

(XNT ,TNT
3 ,TNT

7 ),

(XNT ,TNT
4 ,TNT

4 ), (XNT ,TNT
4 ,TNT

5 ), (XNT ,TNT
4 ,TNT

6 ), (XNT ,TNT
4 ,TNT

7 ),

(XNT ,TNT
5 ,TNT

5 ), (XNT ,TNT
5 ,TNT

6 ), (XNT ,TNT
5 ,TNT

7 ),

(XNT ,TNT
6 ,TNT

6 ), (XNT ,TNT
6 ,TNT

7 ),

(XNT ,TNT
7 ,TNT

7 ).

Result 4.4. In NT
X , the NNBTSs having 3-NOSs in both NTs without repetition is
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(TNT
i ,TNT

j )NT
X (n,m, 3) =

(
TNT
X (n,m,3)

2

)
.

Example 4.5. Following Example 3.4 and Result 4.4., the number of NBTSs without repeti-

tion is

21 =
(
TNT
X (2,3,3)

2

)
=

(
7
2

)
.

Result 4.6. The NNBTSs in NT
X , consisting 4-NOSs in both the NT is

(TNT
i ,TNT

j )NT
X (n,m, 4) =

(
TNT
X (n,m,4)+1

2

)
.

Example 4.7. Let XNT = {u,v} and MNT = {(0, 1, 1), (0.1, 0.3, 0.8), (1, 0, 0)}.
Then, TNT

X (2, 3, 4) = 13.

and the NNBTSs is

(TNT
i ,TNT

j )NT
X (2, 3, 4) =

(
TNT
X (2,3,4)+1

2

)
= 91.

These NBTSs are

(XNT ,TNT
1 ,TNT

1 ), (XNT ,TNT
1 ,TNT

2 ), (XNT ,TNT
1 ,TNT

3 ), (XNT ,TNT
1 ,TNT

4 ),

(XNT ,TNT
1 ,TNT

5 ), (XNT ,TNT
1 ,TNT

6 ), (XNT ,TNT
1 ,TNT

7 ), (XNT ,TNT
1 ,TNT

8 ),

(XNT ,TNT
1 ,TNT

9 ), (XNT ,TNT
1 ,TNT

10 ), (XNT ,TNT
1 ,TNT

11 ), (XNT ,TNT
1 ,TNT

12 ),

(XNT ,TNT
1 ,TNT

13 ),

(XNT ,TNT
2 ,TNT

2 ), (XNT ,TNT
2 ,TNT

3 ), (XNT ,TNT
2 ,TNT

4 ), (XNT ,TNT
2 ,TNT

5 ),

(XNT ,TNT
2 ,TNT

6 ), (XNT ,TNT
2 ,TNT

7 ), (XNT ,TNT
2 ,TNT

8 ), (XNT ,TNT
2 ,TNT

9 ),

(XNT ,TNT
2 ,TNT

10 ), (XNT ,TNT
2 ,TNT

11 ), (XNT ,TNT
2 ,TNT

12 ), (XNT ,TNT
2 ,TNT

13 ),

(XNT ,TNT
3 ,TNT

3 ), (XNT ,TNT
3 ,TNT

4 ), (XNT ,TNT
3 ,TNT

5 ), (XNT ,TNT
3 ,TNT

6 ),

(XNT ,TNT
3 ,TNT

7 ), (XNT ,TNT
3 ,TNT

8 ), (XNT ,TNT
3 ,TNT

9 ), (XNT ,TNT
3 ,TNT

10 ),

(XNT ,TNT
3 ,TNT

11 ), (XNT ,TNT
3 ,TNT

12 ), (XNT ,TNT
3 ,TNT

13 ),

(XNT ,TNT
4 ,TNT

4 ), (XNT ,TNT
4 ,TNT

5 ), (XNT ,TNT
4 ,TNT

6 ), (XNT ,TNT
4 ,TNT

7 ),

(XNT ,TNT
4 ,TNT

8 ), (XNT ,TNT
4 ,TNT

9 ), (XNT ,TNT
4 ,TNT

10 ), (XNT ,TNT
4 ,TNT

11 ),

(XNT ,TNT
4 ,TNT

12 ), (XNT ,TNT
4 ,TNT

13 ),

(XNT ,TNT
5 ,TNT

5 ), (XNT ,TNT
5 ,TNT

6 ), (XNT ,TNT
5 ,TNT

7 ), (XNT ,TNT
5 ,TNT

8 ),

(XNT ,TNT
5 ,TNT

9 ), (XNT ,TNT
5 ,TNT

10 ), (XNT ,TNT
5 ,TNT

11 ), (XNT ,TNT
5 ,TNT

12 ),

(XNT ,TNT
5 ,TNT

13 ),

(XNT ,TNT
6 ,TNT

6 ), (XNT ,TNT
6 ,TNT

7 ), (XNT ,TNT
6 ,TNT

8 ), (XNT ,TNT
6 ,TNT

9 ),

(XNT ,TNT
6 ,TNT

10 ), (XNT ,TNT
6 ,TNT

11 ), (XNT ,TNT
6 ,TNT

12 ), (XNT ,TNT
6 ,TNT

13 ),

(XNT ,TNT
7 ,TNT

7 ), (XNT ,TNT
7 ,TNT

8 ), (XNT ,TNT
7 ,TNT

9 ), (XNT ,TNT
7 ,TNT

10 ),

(XNT ,TNT
7 ,TNT

11 ), (XNT ,TNT
7 ,TNT

12 ), (XNT ,TNT
7 ,TNT

13 ),

(XNT ,TNT
8 ,TNT

8 ), (XNT ,TNT
8 ,TNT

9 ), (XNT ,TNT
8 ,TNT

10 ), (XNT ,TNT
8 ,TNT

11 ),

(XNT ,TNT
8 ,TNT

12 ), (XNT ,TNT
8 ,TNT

13 ),

(XNT ,TNT
9 ,TNT

9 ), (XNT ,TNT
9 ,TNT

10 ), (XNT ,TNT
9 ,TNT

11 ), (XNT ,TNT
9 ,TNT

12 ),

(XNT ,TNT
9 ,TNT

13 ),
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(XNT ,TNT
10 ,TNT

10 ), (XNT ,TNT
10 ,TNT

11 ), (XNT ,TNT
10 ,TNT

12 ), (XNT ,TNT
10 ,TNT

13 ),

(XNT ,TNT
11 ,TNT

11 ), (XNT ,TNT
11 ,TNT

12 ), (XNT ,TNT
11 ,TNT

13 ),

(XNT ,TNT
12 ,TNT

12 ), (XNT ,TNT
12 ,TNT

13 ),

(XNT ,TNT
13 ,TNT

13 ).

Result 4.8. In NT
X , the NNBTSs having 4-NOSs in both NTs without repetition is

(TNT
i ,TNT

j )NT
X (n,m, 4) =

(
TNT
X (n,m,4)

2

)
.

Example 4.9. Following Example 3.11 and result 4.8, the number of NBTSs without repeti-

tion is 78 =
(
TNT
X (2,3,4)

2

)
=

(
13
2

)
.

5. Results on NNTRS

In this section, the NTRS having 3-NOS in three NTs and the NTRS having 3-NOS

in three NTs without repetition means NTRS of the form (XNT ,TNT
i ,TNT

j ,TNT
k ) where

TNT
i ,TNT

j ,TNT
k are identical or non-identical topologies and non-identical topologies having

3-NOS respectively. A similar meaning is used for 4-NOS.

Result 5.1. In NT
X the NNTRS consisting 2-NOSs in three NT is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 2) = 1.

In this case NT with 2-NOSs is the indiscrete one i.e., TNT
1 = {0NT , 1NT }. Therefore,

NNTRS with 2-NOSs is exactly one, namely (XNT ,TNT
1 ,TNT

1 ,TNT
1 ).

Result 5.2. The NNTRSs consisting 3-NOSs in all three NT in NT
X is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 3) =
(
TNT
X (n,m,3)+2

3

)
.

Example 5.3. Example 3.4 implies (TNT
X (2, 3, 3) = 7.

Therefore, (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 3) =
(
TNT
X (2,3,3)+2

3

)
= 9×8×7

6 = 84.

Result 5.4. The NNTRSs consisting 3-NOSs in all three NT without repetition in NT
X is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 3) =
(
TNT
X (n,m,3)

3

)
.

Example 5.5. From Example 3.4, TNT
X (2, 3, 3) = 7. In this case, the NTRSs having 3-NOSs

in three NTs without repetition are

(XNT ,TNT
1 ,TNT

2 ,TNT
3 ), (XNT ,TNT

1 ,TNT
2 ,TNT

4 ), (XNT ,TNT
1 ,TNT

2 ,TNT
5 ),

(XNT ,TNT
1 ,TNT

2 ,TNT
6 ), (XNT ,TNT

1 ,TNT
2 ,TNT

7 ),

(XNT ,TNT
1 ,TNT

3 ,TNT
4 ), (XNT ,TNT

1 ,TNT
3 ,TNT

5 ), (XNT ,TNT
1 ,TNT

3 ,TNT
6 ),

(XNT ,TNT
1 ,TNT

3 ,TNT
7 ),

(XNT ,TNT
1 ,TNT

4 ,TNT
5 ), (XNT ,TNT

1 ,TNT
4 ,TNT

6 ), (XNT ,TNT
1 ,TNT

4 ,TNT
7 ),

(XNT ,TNT
1 ,TNT

5 ,TNT
6 ), (XNT ,TNT

1 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
1 ,TNT

6 ,TNT
7 ),
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(XNT ,TNT
2 ,TNT

3 ,TNT
4 ), (XNT ,TNT

2 ,TNT
3 ,TNT

5 ), (XNT ,TNT
2 ,TNT

3 ,TNT
6 ),

(XNT ,TNT
2 ,TNT

3 ,TNT
7 ),

(XNT ,TNT
2 ,TNT

4 ,TNT
5 ), (XNT ,TNT

2 ,TNT
4 ,TNT

6 ), (XNT ,TNT
2 ,TNT

4 ,TNT
7 ),

(XNT ,TNT
2 ,TNT

5 ,TNT
6 ), (XNT ,TNT

2 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
2 ,TNT

6 ,TNT
7 ),

(XNT ,TNT
3 ,TNT

4 ,TNT
5 ), (XNT ,TNT

3 ,TNT
4 ,TNT

6 ), (XNT ,TNT
3 ,TNT

4 ,TNT
7 ),

(XNT ,TNT
3 ,TNT

5 ,TNT
6 ), (XNT ,TNT

3 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
3 ,TNT

6 ,TNT
7 ),

(XNT ,TNT
4 ,TNT

5 ,TNT
6 ), (XNT ,TNT

4 ,TNT
5 ,TNT

7 ),

(XNT ,TNT
4 ,TNT

6 ,TNT
7 ).

(XNT ,TNT
5 ,TNT

6 ,TNT
7 ).

Therefore, the NNTRSs consisting 3-NOSs in all three NTs without repetition is

(TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 3) = 35 =
(
TNT
X (2,3,3)

3

)
=

(
7
3

)
.

Result 5.6. (TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 3) = mn

3 (TNT
i ,TNT

j )NT
X (n,m, 3).

Example 5.7. From Example 4.3 and 5.3, we have,

(TNT
i ,TNT

j )NT
X (2, 3, 3) = 28 and (TNT

i ,TNT
j ,TNT

k )NT
X (2, 3, 3) = 84.

Therefore 32

3 × (TNT
i ,TNT

j )NT
X (2, 3, 3) = 32

3 × 28 = 84 = (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 3).

Result 5.8. In NT
X , the NNTRSs consisting 4-NOSs in three NTs is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 4) =
(
TNT
X (n,m,4)+2

3

)
.

Example 5.9. Example 3.11 implies,

TNT
X (2, 3, 4) = 13.

Then the NNTRS having 4-NOSs is

(TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4) =
(
TNT
X (2,3,4)+2

3

)
= 13(13+1)(13+2)

6 = 455.

Result 5.10. The NNTRSs consisting 4-NOSs in all three NT without repetition in NT
X is

(TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 4) =
(
TNT
X (n,m,4)

3

)
.

Example 5.11. From Example 3.11, TNT
X (2, 3, 4) = 13. Following Example 5.5

and result 5.10, the NNTRSs consisting 4-NOSs in all three NT without repetition is

(TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4) = 286.

Result 5.12. (TNT
i ,TNT

j ,TNT
k )NT

X (n,m, 4) =
(TNT

X (n,m,4)+2)
3 (TNT

i ,TNT
j )NT

X (n,m, 4).

Example 5.13. From Examples 3.11, 4.7 and 5.9, we have

TNT
X (2, 3, 4) = 13, (TNT

i ,TNT
j )NT

X (2, 3, 4) = 91 and (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4) = 455.
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Therefore,

(TNT
X (2,3,4)+2)

3 (TNT
i ,TNT

j )NT
X (2, 3, 4) = 13+2

3 × 91 = 455 = (TNT
i ,TNT

j ,TNT
k )NT

X (2, 3, 4).

6. Effective of the proposed method

The formula for giving the number of topologies T (n) is still not obtained for a finite set

X having n elements. If n is small, then we can compute it by hand. But the difficulty

increases when n becomes large. Studying this particular area is also a highly valued part of

the topology, and this is one of the fascinating and challenging research areas. Note that the

explicit formula for finding the number of topologies is undetermined till now. This paper is

towards the formulae for finding the number of neutrosophic topological spaces having 2, 3, 4-

open sets, the number of neutrosophic bitopological spaces, and tritopological spaces having

the same number of open sets in topologies.

7. Conclusions

In this paper, the NNTSs consisting of small NOSs i.e., 2, 3, and 4-open sets are computed.

Moreover, the NNBTSs and NNTRSs are computed. It is also observed that formulae for

finding NNTSs, NNBTSs, and NNTRSs are interrelated. Hope this work will help in further

study of NNTSs with greater open sets. In the future, the NNBTSs having k, l-open sets and

the NNTRSs having k, l,m-open sets can be found where k ̸= l ̸= m. Moreover, we aim to

extend our work to study the existence of NNTSs in the topological group.
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