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Abstract. This research directs to obtain optimum fuzzy soft constants through Bonferroni mean and TOPSIS

with the initial data represented in terms of multi-valued m-polar neutrosophic soft set. Multi-valued m-polar

neutrosophic soft set is defined in this paper, which is the generalization of m-polar neutrosophic soft set,

obtained by combining it with multi-valued neutrosophic soft set. Optimum fuzzy soft constants play a funda-

mental role for the construction of the system of differential equations which helps to observe the experts, future

attitudes. Sometimes experts feel a requirement to rethink their choices or decisions due to the observation of

others, choice especially when others choose different alternatives. After the individual decisions of experts, an

analysis of experts, attitudes is produced by using phase portraits and line graphs of the system of differential

equations. This analysis can also be provided by using system of differential equations with fuzzy initial condi-

tions. To find the multi-valued m-polar neutrosophic Bonferroni mean, some basic operations on the elements

of the defined set are introduced. An illustrative example is given where a system of two differential equations

is developed for attitude analysis of two persons with independent variable t.

Keywords: Multi valued neutrosophic set; Multi polar neutrosophic set; Bonferroni mean; Fuzzy soft differ-

ential equations.

—————————————————————————————————————————-

1. Introduction

Fuzzy sets have been conveniently utilized to deal with a plethora of problems regarding

to uncertainties since when it was introduced by Zadeh [10]. It allocates each element of a

set with a membership degree in the real standard [0, 1]. Intuitionistic fuzzy set (IFS) was

introduced by Atanassov [11] which generalizes the concept of fuzzy set and handles some

complicated fuzzy information in multi-criteria decision making (MCDM). IFS determines the
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membership and non-membership degrees for each element of a set. The concept of IFS was

extended by Atanassov and Gargov [12] to interval-valued intuitionistic fuzzy set (IVIFS)

which was applied for MCDM methods by several authors [13–18]. Despite of a number of

research achievements on IFS, there is a need of indeterminate information. Smarandache [1]

proposed an indeterminacy membership function which leads to the neutrosophic set (NS).

NS generalizes the fuzzy set and IFS. Hesitant fuzzy set (HFS) was defined by Torra [20]

which is identified by a function hA on a universe U that returns a subset of [0, 1]. Many

extensions of fuzzy set were further extended by combining with hesitant fuzzy set to Interval-

valued hesitant fuzzy set (IVHFS) [25], hesitant fuzzy soft set (HFSS) [21], Interval-valued

hesitant fuzzy soft set (IVHFSS) [22], dual hesitant fuzzy set (DHFS) [23], dual hesitant

fuzzy soft set (DHFSS) [24], interval-valued dual hesitant fuzzy set (IVDHFS) [26] and some

others. All these extended representations of hesitant fuzzy set have a substantial amount

of research work for MCDM [27–29, 49]. Single valued neutrosophic set (SVNS) is an NS for

which membership function, indeterminacy function and falsity function assign a single value

from the interval [0, 1] for each element of a set [2,45]. Interval-valued neutrosophic set (IVNS)

involves the functions (membership, indeterminacy, non-membership) assigning the intervals

from the interval [0, 1] for each element [43]. NS has remarkably contributed in MCDM [44,47],

and recently in TOPSIS [46]. Sometimes, decision makers hesitate to assign a single value to

membership, non-membership or indeterminacy functions. They may suggest two or more

values to these functions. HFS, IVHFS, DHFS and multi-valued neutrosophic set (MVNS) [3]

facilitates those problems.

Bipolar fuzzy set [50] is an extension of a fuzzy set whose membership degree ranges from

−1 to 1, It represents the double-sided uncertainties (e.g. positive-negative, yes-no, gains-

loses,bright-dim, effect-side effect, etc.). These two sides are reciprocally related. Some bipolar

representations with their applications have been done by different authors [30–33]. Chen et

al. [34] presented a multi-polar fuzzy set which is an abstraction of a bipolar fuzzy set. They

also explained some real world problems involving multi-agent, multi-attribute, multi-object

and multi-index information. Deli et al. [5] defined multi-polar neutrosophic soft set and Saeed

et al. [9] presented some operations on this set.

Bonferroni mean (BM) and geometric Bonferroni mean (WBM) are the aggregation opera-

tors which generalize arithmetic mean and geometric mean respectively [35]. BM and WBM

represent the interrelationships between the arguments of individuals and have some properties

discussed by Yager [36], Xu and Yager [37] and Xia et al. [39]. Multi-valued neutrosophic Bon-

ferroni mean (MVNBM) was defined by Liu et al. [3] and some of its applications in multiple

attribute group decision-making are also presented. Hesitant fuzzy Bonferroni mean (HFBM)

was defined by Zhu et al. [38] which facilitates to calculate BM for hesitant fuzzy elements.
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Beg et al. [41] utilized HFBM to analyze the human attitude by developing fuzzy soft differ-

ential equations. This investigation along with some others [42, 48] guides us to think about

the changes in attitudes or experts, interpersonal influences after the decisions.

In this paper multi-valued m-polar neutrosophic set (MVmNS) is defined by combining the

multi-valued neutrosophic set (MVNS) and m-polar neutrosophic set (mNS). Then operational

laws are defined for its elements which lead to formulate multi-valued m-polar neutrosophic

Bonferroni mean (MVmNBM) and multi-valued m-polar neutrosophic weighted Bonferroni

mean (MVmNWBM) operators which are the extension of multi-valued neutrosophic Bonfer-

roni mean (MVNBM) and multi-valued neutrosophic weighted Bonferroni mean (MVNWBM)

operators [3] respectively. Then by utilizing the score values of MVmNWBM and coefficients

of relative closeness obtained through TOPSIS for each alternative, a system of fuzzy soft

differential equations is constructed to observe the change in experts, attitudes. Another con-

tribution of this research work is the utilization of system of differential equations with fuzzy

initial conditions.

2. Preliminaries

2.1. Neutrosophic Set

Neutrosophy is a branch of Philosophy and a basis of neutrosophic set. Neutrosophy con-

siders a unit “A” in relation to “anti-A” and “neither A nor anti-A”. Smarandache presented

the neutrosophic set with some applications [1].

Definition 2.1. [2] Let Z be a universal set. A single valued neutrosophic set (SVNS) X is

defined as:

X = {z, (TX(z), IX(z), FX(z)) : z ∈ Z},
where, TX(z), IX(z) and FX(z) are three real values in [0, 1], denoting the truth-membership

degree, the indeterminacy-membership degree and the falsity-membership degree of the ele-

ment z ∈ Z to the set X respectively, satisfying

0 ≤ TX(z) + IX(z) + FX(z) ≤ 3

for all z ∈ Z.

Definition 2.2. [3] Let Z be a universal set. An MVNS X is defined as:

X = {z, (
∼
TX(z),

∼
IX(z),

∼
FX(z)) : z ∈ Z},

where,
∼
TX(z),

∼
IX(z) and

∼
FX(z) are three collections of discrete real values in [0, 1], de-

noting the truth-membership degree, the indeterminacy-membership degree and the falsity-

membership degree of the element z ∈ Z to the set X respectively, satisfying

0 ≤ γ, µ, ϕ ≤ 1, 0 ≤ γ+ + µ+ + ϕ+ ≤ 3 and γ ∈
∼
TX(z), γ+ ∈ sup

∼
TX(z), µ ∈

∼
IX(z),

µ+ ∈ sup
∼
IX(z), ϕ ∈

∼
FX(z), ϕ+ ∈ sup

∼
FX(z).
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An element
∼
n of an MVNS X can have the following expression:

∼
n =

(
∼
TX(z),

∼
IX(z),

∼
FX(z)

)
for some z ∈ Z, where

∼
TX(z) = {γ, γ ∈ [0, 1]},
∼
IX(z) = {µ, µ ∈ [0, 1]},
∼
FX(z) = {ϕ,ϕ ∈ [0, 1]}.

Definition 2.3. [3] Let
∼
n1 =

(
∼
T 1,

∼
I1,

∼
F 1

)
and

∼
n2 =

(
∼
T 2,

∼
I2,

∼
F 2

)
be two elements of an

MVNS, then their operational laws are defined as follows:

(1)
∼
n1⊕

∼
n2 =

(
∼
T 1 ⊕

∼
T 2,

∼
I1 ⊗

∼
I2,

∼
F 1 ⊗

∼
F 2

)
= ∪

γ1 ∈
∼
T 1, µ1 ∈

∼
I1, ϕ1 ∈

∼
F 1

γ2 ∈
∼
T 2, µ2 ∈

∼
I2, ϕ2 ∈

∼
F 2

(γ1 + γ2 − γ1γ2, µ1µ2, ϕ1ϕ2)

(2)
∼
n1⊗

∼
n2 =

(
∼
T 1 ⊗

∼
T 2,

∼
I1 ⊕

∼
I2,

∼
F 1 ⊕

∼
F 2

)
= ∪

γ1 ∈
∼
T 1, µ1 ∈

∼
I1, ϕ1 ∈

∼
F 1

γ2 ∈
∼
T 2, µ2 ∈

∼
I2, ϕ2 ∈

∼
F 2

(γ1γ2, µ1 + µ2 − µ1µ2, , ϕ1 + ϕ2 − ϕ1ϕ2)

(3) k
∼
n1 = ∪

γ1∈
∼
T 1,µ1∈

∼
I 1,ϕ1∈

∼
F 1

(
1− (1− γ1)k, µk1, ϕ

k
1

)
, k > 0

(4)
∼
n
k

1 = ∪
γ1∈

∼
T 1,µ1∈

∼
I 1,ϕ1∈

∼
F 1

(
γk1 , 1− (1− µ1)k, 1− (1− ϕ1)k

)
, k > 0

For many real world problems (e.g. ordering results of a journal, ordering results of an

institute and inclusion degrees), multipolar information exists. The notion of m-polar fuzzy

set was put forward to deal with those problems where m is an arbitrary ordinal number [34].

2.2. Multi-Polar Neutrosophic Set

Definition 2.4. [9] An m-polar neutrosophic set (mNS) on a universal set Z is a mapping

X = {(s1 ◦ TX(z), s2 ◦ TX(z), ..., sm ◦ TX(z)), (s1 ◦ IX(z), s2 ◦ IX(z), ..., sm ◦ IX(z)), (s1 ◦
FX(z), s2 ◦ FX(z), ..., sm ◦ FX(z))} : Z −→ ([0, 1]m, [0, 1]m, [0, 1]m)

where ith mapping is defined as

si ◦ TX : Z −→ [0, 1]

si ◦ IX : Z −→ [0, 1]

si ◦ FX : Z −→ [0, 1]

and 0 ≤ si ◦ TX(z) + si ◦ IX(z) + si ◦ FX(z) ≤ 3

for all i = 1, 2, ...,m and z ∈ Z.

Example 2.5. Let Z = {z1, z2, z3} be a universal set. Then
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X = {
((0.4, 0.6, 0.7), (0.1, 0.2, 0.3), (0.3, 0.5, 0.6))/z1

((0.2, 0.4, 0.5), (0.6, 0.7, 0.8), (0.7, 0.8, 0.9))/z2

((0.2, 0.5, 0.6), (0.3, 0.4, 0.6), (0.4, 0.6, 0.8))/z3

}

represents an 3-polar neutrosophic set (3NS).

2.3. Neutrosophic Soft Set

Let Z be a universal set and E be the set of attributes of elements in Z. Take X to be a

subset of E.

Definition 2.6. [4] An neutrosophic soft set (NSS) (ω,X) over Z is a mapping from X to

P (Z) and is defined as

ΩX = (ω,X) = {(e, ωX(e)) : e ∈ E,ωX(e) ∈ P (Z)}
where P (Z) denotes the collection of all neutrosophic subsets of Z,

ωX(e) = {z, TX(e)(z), IX(e)(z), FX(e)(z) : z ∈ Z}
and each of TX(e)(z), IX(e)(z) and FX(e)(z) is a mapping from Z to interval [0, 1] with

0 ≤ TX(e)(z) + IX(e)(z)+ FX(e)(z) ≤ 3

for all e ∈ E and z ∈ Z.

Definition 2.7. [5] An m-polar neutrosophic soft set (mNSS) (ω,X) over Z is a mapping

from X to P (Z) and is defined as

ΩX = (ω,X) = {(e, ωX(e)) : e ∈ E,ωX(e) ∈ P (Z)}
where P (Z) denotes collection of all neutrosophic subsets of Z,

ωX(e) = {z, si ◦ TX(e)(z), si ◦ IX(e)(z), si ◦ FX(e)(z) : z ∈ Z}
and

0 ≤ si ◦ TX(e)(z) + si ◦ IX(e)(z) + si ◦ FX(e)(z) ≤ 3

for all i = 1, 2, ...,m; e ∈ E, z ∈ Z.

2.4. Bonferroni mean operator

Definition 2.8. [37] Let l,m be two natural numbers and xi ≥ 0 where i ∈ {1, 2, ..., n} then

Bonferroni mean Bl,mis defined as follow:

Bl,m =

 1

n (n− 1)

n∑
i,j=1,i 6=j

xlix
m
j

 1
l+m

.

Definition 2.9. [37] Let l,m be two natural numbers and xi ≥ 0 (i = 1, 2, ..., n) and W =

[wi ≥ 0]T be the weight vector of [xi] with the condition
n∑
i=1
wi = 1, then weighted Bonferroni
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mean (WBM) is defined as follow:

WBM l,m =

 1

n (n− 1)

n∑
i,j=1,i 6=j

(wixi)
l (wjxj)

m

 1
l+m

.

2.5. Fuzzy Differential Equations

2.5.1. Fuzzy Numbers and Fuzzy Functions

Definition 2.10. [6] A fuzzy number x is defined by a pair x = (x, x) of functions x, x :

[0, 1] −→ R, satisfying the three conditions:

(1) x(α) is a bounded, monotonically increasing left-continuous function for all α ∈ (0, 1]

and right-continous for α = 0,

(2) x(α) is a bounded, monotonically decreasing left-continuous function for all α ∈ (0, 1]

and right-continous for α = 0,

(3) For all α ∈ (0, 1] we have: x ≤ x.

For every x = (x, x), y = (y, y) and k > 0, α ∈ (0, 1], we define addition and multiplication

as follows:

• (x+ y)(α) = x(α) + y(α),

• (x+ y)(α) = x(α) + y(α),

• (kx)(α) = kx(α),

• (kx)(α) = kx(α).

With this definition of addition and multiplication, the collection of all fuzzy numbers is

denoted by E1. For 0 < α ≤ 1, we define α−cuts of fuzzy number u with [x]α = {u ∈ R |
x(u) ≥ α} and for α = 0, the support of x is defined as [x]0 = {u ∈ R | x(u) > 0}.

Definition 2.11. [6] Let x = (x, x) and y = (y, y) be two arbitrary numbers, then distance

between x and y is defined as follows:

d(x, y) = sup
α∈[0,1]

{max[| x(α)− y(α) |, | x(α)− y(α) |]}.

Definition 2.12. [6] A fuzzy function g : R1 → E1 is said to be continuous if for an arbitrary

fixed t◦ ∈ R1 and ε > 0 there exists a δ > 0 such that:

|t− t◦| < δ ⇒ d(g(t), g(t̂)) < ε,

then g is said to be continuous.

Definition 2.13. [6] Let x, y ∈ E1. If there exists z ∈ E1 such that x = y+ z then z is called

the H-difference of x, y and it is denoted by x− y.
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Definition 2.14. [6] A function g : (c, d) → E1 is said to be H-differentiable at t◦ ∈ (c, d)

if for a small h > 0, there exist the H-differences g(t◦) − g(t◦ − h), g(t◦ + h) − g(t◦) and the

element g′(t◦) ∈ E1 such that:

0 = lim
h→0+

d

(
g(t◦)− g(t◦ − h)

h
, g′(t◦)

)
= lim

h→0+
d

(
g(t◦ + h)− g(t◦)

h
, g′(t◦)

)
,

then g′(t◦) is called the fuzzy derivative of g at t◦.

Definition 2.15. [7] The triangular fuzzy numbers are common and are denoted by x =

(α, c, β) and defined by:

x =


u−α
c−α , if α ≤ u ≤ c,
β−u
β−c , if c ≤ u ≤ β,

0, otherwise.

2.5.2. First Order Fuzzy Differential Equations

A first order fuzzy differential equation is written in the following form:

x′(t) = g(t, x(t))

where g(t, x) is a fuzzy function of the crisp variable t and the fuzzy variable x and x is a fuzzy

function of t. Here x′ is the fuzzy derivative of x. Consider the initial value problem

x′(t) = g(t, x(t)), x(t◦) = x◦, (1)

a mapping x : R1 → E1 is a solution to the problem (1) if and only if it is continuous and

satisfies the integral equation

x(t) = x◦ +

∫ t

t◦

g(s, x(s))ds

for all t ∈ R1 [8]. Moreover, sufficient conditions for the existence of a unique solution to Eq

(1) are:

• f is continuous,

• A Lipschitz condition d(g(t, x), g(t, y)) ≤ Ld(x, y) satisfied for some L > 0.

To obtain the solution of Eq (1), it can be replaced by the following equivalent system:

x′(t) = g(t, x(t)), x(t◦) = x◦,

x′(t) = g(t, x(t)), x(t◦) = x◦.

For example, to solve

dx
dt = t2x, x(0) = (0, 1

2 , 1),

it is replaced by
dx
dt = t2x, x(0) = (0, 1

2),
dx
dt = t2x, x(0) = (1

2 , 1),
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x(0) = (0, 1
2) and x(0) = (1

2 , 1) are replaced by parametric forms x(0) = 2α and x(0) = 2(1−α),

respectively where α ∈ [0, 1]. And the solution is:

x = (2αe
t3

3 , 2(1− α)e
t3

3 ), α ∈ [0, 1].

2.6. Human attitude analysis after a decision

The constants which provide the base to rank the alternatives, can also provide a support

for further process of rethinking after a decision. These constants were utilized in fuzzy soft

differential equations [41] and in developing the influence matrix which can play a vital role

in influence model and doubly extended TOPSIS [42,48].

2.6.1. Human attitude analysis based on fuzzy soft differential equations

A system of linear fuzzy soft differential equations is developed by Beg et al. [41].

dP1
dt = a1

P1
P1 + a1

P2
P2,

dP2
dt = a2

P1
P1 + a2

P2
P2

(2)

where P1 and P2 are the variables representing the attitude of two persons after taking a

decision at time t, dP1
dt and dP2

dt represent the change in persons, attitudes after some time

due to that decision and aiPj
(i, j = 1, 2) are optimum fuzzy soft constants (OFSCs) taken

as signed fuzzy numbers denoting the influence on ith person of his internal feelings and jth

person,s feelings. Positive sign is assigned to aiPj
when the attitude of jth person for ith person

is supportive, otherwise a negative sign is assigned to it. Stability of system (2) depends upon

eigen values of the matrix

[
a1
P1

a1
P2

a2
P1

a2
P2

]
3. Multi valued Multi-Polar Neutrosophic Set

Multi-valued multi-polar neutrosophic set (MVmNS) is a generalization and composition of

MVNS and mNS.

Definition 3.1. Let Z be a non empty set. An MVmNS X is a mapping defined as

X : Z →

 m sets of discrete values in [0, 1],

m sets of discrete values in [0, 1],

m sets of discrete values in [0, 1]



X(z) =



(
s1 ◦

∼
TX (z) , s2 ◦

∼
TX (z) , ..., sm ◦

∼
TX (z)

)
,(

s1 ◦
∼
IX (z) , s2 ◦

∼
IX (z) , ..., sm ◦

∼
IX (z)

)
,(

s1 ◦
∼
FX (z) , s2 ◦

∼
FX (z) , ..., sm ◦

∼
FX (z)

)


where si ◦

∼
TX (z) , si ◦

∼
IX (z) and si ◦

∼
FX (z) (i = 1, 2, ...,m) are the collections of discrete

real values γi, µi and ϕi denoting the truth-membership degree, the indeterminacy-membership
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degree and the falsity-membership degree of the element z ∈ Z to the set X respectively with

0 ≤ γi, µi, ϕi ≤ 1, 0 ≤ γ+
i + µ+

i + ϕ+
i ≤ 3, γ+

i ∈ sup

(
si ◦

∼
TX (z)

)
, µ+

i ∈ sup

(
si ◦

∼
IX (z)

)
,

ϕ+
i ∈ sup

(
si ◦

∼
FX (z)

)
.

3.1. Multi valued Multi-Polar Neutrosophic Soft Set

Definition 3.2. Let Z be a universal set and E be a set of parameters with X ⊆ E. Define

ω : X → P (Z), where P (Z) is the collection of all MVmN subsets of the set Z. Then

(ω,X) is said to be an multi-valued m-polar neutrosophic soft set (MVmNSS) over Z which

is represented as ΩX = (ω,X) = {e, ωX(e) : e ∈ E,ωX(e) ∈ P (Z)} and ωX(e) is an MVmNS

over Z.

3.2. Operations on MVmNS

Let X(z1) =



(
s1 ◦

∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)
,(

s1 ◦
∼
IX (z1) , s2 ◦

∼
IX (z1) , ..., sm ◦

∼
IX (z1)

)
,(

s1 ◦
∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)


=
((
∪{γ(z1)

1 }, ...,∪{γ(z1)
m }

)
,
(
∪{µ(z1)

1 }, ...,∪{µ(z1)
m }

)
,
(
∪{ϕ(z1)

1 }, ...,∪{ϕ(z1)
m }

))

and X (z2) =



(
s1 ◦

∼
TX (z2) , s2 ◦

∼
TX (z2) , ..., sm ◦

∼
TX (z2)

)
,(

s1 ◦
∼
IX (z2) , s2 ◦

∼
IX (z2) , ..., sm ◦

∼
IX (z2)

)
,(

s1 ◦
∼
FX (z2) , s2 ◦

∼
FX (z2) , ..., sm ◦

∼
FX (z2)

)


=
((
∪{γ(z2)

1 }, ...,∪{γ(z2)
m }

)
,
(
∪{µ(z2)

1 }, ...,∪{µ(z2)
m }

)
,
(
∪{ϕ(z2)

1 }, ...,∪{ϕ(z2)
m }

))
be two elements of an MVmNS. Then their operational laws are defined as

(1) (X (z1))c =



(
s1 ◦

∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)
,(

s1 ◦
∼
I
´

X (z1) , s2 ◦
∼
I
´

X (z1) , ..., sm ◦
∼
I
´

X (z1)

)
,(

s1 ◦
∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)


=
((
∪{ϕ(z1)

1 }, ...,∪{ϕ(z1)
m }

)
,
(
∪{1− µ(z1)

1 }, ...,∪{1− µ(z1)
m }

)
,
(
∪{γ(z1)

1 }, ...,∪{γ(z1)
m }

))
.

(2) X (z1)⊕X (z2)

=



(
s1 ◦

∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)
,(

s1 ◦
∼
IX (z1) , s2 ◦

∼
IX (z1) , ..., sm ◦

∼
IX (z1)

)
,(

s1 ◦
∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)

⊕


(
s1 ◦

∼
TX (z2) , s2 ◦

∼
TX (z2) , ..., sm ◦

∼
TX (z2)

)
,(

s1 ◦
∼
IX (z2) , s2 ◦

∼
IX (z2) , ..., sm ◦

∼
IX (z2)

)
,(

s1 ◦
∼
FX (z2) , s2 ◦

∼
FX (z2) , ..., sm ◦

∼
FX (z2)

)
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=



(
s1 ◦

∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)
⊕
(
s1 ◦

∼
TX (z2) , s2 ◦

∼
TX (z2) , ..., sm ◦

∼
TX (z2)

)
,(

s1 ◦
∼
IX (z1) , s2 ◦

∼
IX (z1) , ..., sm ◦

∼
IX (z1)

)
⊗
(
s1 ◦

∼
IX (z2) , s2 ◦

∼
IX (z2) , ..., sm ◦

∼
IX (z2)

)
,(

s1 ◦
∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)
⊗
(
s1 ◦

∼
FX (z2) , s2 ◦

∼
FX (z2) , ..., sm ◦

∼
FX (z2)

)



=



((
s1 ◦

∼
TX (z1)

)
⊕
(
s1 ◦

∼
TX (z2)

)
, ...,

(
sm ◦

∼
TX (z1)

)
⊕
(
sm ◦

∼
TX (z2)

))
,((

s1 ◦
∼
IX (z1)

)
⊗
(
s1 ◦

∼
IX (z2)

)
, ...,

(
sm ◦

∼
IX (z1)

)
⊗
(
sm ◦

∼
IX (z2)

))
,((

s1 ◦
∼
FX (z1)

)
⊗
(
s1 ◦

∼
FX (z2)

)
, ...,

(
sm ◦

∼
FX (z1)

)
⊗
(
sm ◦

∼
FX (z2)

))



=


(
∪{γ(z1)

1 + γ
(z2)
1 − γ(z1)

1 γ
(z2)
1 }, ...,∪{γ(z1)

m + γ
(z2)
m − γ(z1)

m γ
(z2)
m }

)
,(

∪{µ(z1)
1 µ

(z2)
1 }, ...,∪{µ(z1)

m µ
(z2)
m }

)
,(

∪{ϕ(z1)
1 ϕ

(z2)
1 }, ...,∪{ϕ(z1)

m ϕ
(z2)
m }

)
 .

(3) X (z1)⊗X (z2)

=



(
s1 ◦

∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)
,(

s1 ◦
∼
IX (z1) , s2 ◦

∼
IX (z1) , ..., sm ◦

∼
IX (z1)

)
,(

s1 ◦
∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)

⊗


(
s1 ◦

∼
TX (z2) , s2 ◦

∼
TX (z2) , ..., sm ◦

∼
TX (z2)

)
,(

s1 ◦
∼
IX (z2) , s2 ◦

∼
IX (z2) , ..., sm ◦

∼
IX (z2)

)
,(

s1 ◦
∼
FX (z2) , s2 ◦

∼
FX (z2) , ..., sm ◦

∼
FX (z2)

)



=



(
s1 ◦

∼
TX (z1) , s2 ◦

∼
TX (z1) , ..., sm ◦

∼
TX (z1)

)
⊗
(
s1 ◦

∼
TX (z2) , s2 ◦

∼
TX (z2) , ..., sm ◦

∼
TX (z2)

)
,(

s1 ◦
∼
IX (z1) , s2 ◦

∼
IX (z1) , ..., sm ◦

∼
IX (z1)

)
⊕
(
s1 ◦

∼
IX (z2) , s2 ◦

∼
IX (z2) , ..., sm ◦

∼
IX (z2)

)
,(

s1 ◦
∼
FX (z1) , s2 ◦

∼
FX (z1) , ..., sm ◦

∼
FX (z1)

)
⊕
(
s1 ◦

∼
FX (z2) , s2 ◦

∼
FX (z2) , ..., sm ◦

∼
FX (z2)

)



=



((
s1 ◦

∼
TX (z1)

)
⊗
(
s1 ◦

∼
TX (z2)

)
, ...,

(
sm ◦

∼
TX (z1)

)
⊗
(
sm ◦

∼
TX (z2)

))
,((

s1 ◦
∼
IX (z1)

)
⊕
(
s1 ◦

∼
IX (z2)

)
, ...,

(
sm ◦

∼
IX (z1)

)
⊕
(
sm ◦

∼
IX (z2)

))
,((

s1 ◦
∼
FX (z1)

)
⊕
(
s1 ◦

∼
FX (z2)

)
, ...,

(
sm ◦

∼
FX (z1)

)
⊕
(
sm ◦

∼
FX (z2)

))



=


(
∪{γ(z1)

1 γ
(z2)
1 }, ...,∪{γ(z1)

m γ
(z2)
m }

)
,(

∪{µ(z1)
1 + µ

(z2)
1 − µ(z1)

1 µ
(z2)
1 }, ...,∪{µ(z1)

m + µ
(z2)
m − µ(z1)

m µ
(z2)
m }

)
,(

∪{ϕ(z1)
1 + ϕ

(z2)
1 − ϕ(z1)

1 ϕ
(z2)
1 }, ...,∪{ϕ(z1)

m + ϕ
(z2)
m − ϕ(z1)

m ϕ
(z2)
m }

)
 .

(4) kX (z1) =



(
∪{1−

(
1− γ(z1)

1

)k
}, ...,∪{1−

(
1− γ(z1)

m

)k
}
)
,(

∪{
(
µ

(z1)
1

)k
}, ...,∪{

(
µ

(z1)
m

)k
}
)
,(

∪{
(
ϕ

(z1)
1

)k
}, ...,∪{

(
ϕ

(z1)
m

)k
}
)

 .
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(5) (X (z1))k =



(
∪{
(
γ

(z1)
1

)k
}, ...,∪{

(
γ

(z1)
m

)k
}
)
,(

∪{1−
(

1− µ(z1)
1

)k
}, ...,∪{1−

(
1− µ(z1)

m

)k
}
)
,(

∪{1−
(

1− ϕ(z1)
1

)k
}, ...,∪{1−

(
1− ϕ(z1)

m

)k
}
)

 .

Example 3.3. Let

x1 = (({0.3}, {0.4, 0.5}, {0.5, 0.6}) , ({0.4, 0.5}, {0.2}, {0.7}) , ({0.3}, {0.5}, {0.8})) and

x2 = (({0.1}, {0.3}, {0.6}) , ({0.2, 0.4}, {0.6}, {0.7, 0.8}) , ({0.5}, {0.6}, {0.7, 0.8}))
be two elements of an MV3NS. Then

(x1)c = (({0.3}, {0.5}, {0.8}) , ({0.6, 0.5}, {0.8}, {0.3}) , ({0.3}, {0.4, 0.5}, {0.5, 0.6})) ,

x1 ⊕ x2 =

 ({0.37}, {0.58, 0.65}, {0.8, 0.84}) ,
({0.08, 0.2}, {0.12}, {0.49, 0.56}) ,

({0.15}, {0.30}, {0.56, 0.64})

 ,

x1 ⊗ x2 =

 ({0.03}, {0.12, 0.15}, {0.3, 0.36}) ,
({0.52, 0.7}, {0.68}, {0.91, 0.94}) ,

({0.65}, {0.8}, {0.94, 0.96})

 ,

2x1 =

(
({0.51}, {0.64, 0.75}, {0.75, 0.84}) ,

({0.16, 0.25}, {0.04}, {0.49}) , ({0.09}, {0.25}, {0.64})

)
,

(x1)2 =

(
({0.09}, {0.16, 0.25}, {0.25, 0.36}) ,

({0.64, 0.75}, {0.36}, {0.91}) , ({0.51}, {0.75}, {0.96})

)
.

Definition 3.4. Score function s(X(z)) and accuracy function a(X(z)) of an element X(z)

of an MVmNS is defined as follows:

s(X(z)) =
1

m

m∑
i=1

(
1

liT liI liF

∑(
γi − µi − ϕi

3

))
,

a(X(z)) =
1

m

m∑
i=1

(
1

liT liI liF

∑(
γi + µi + ϕi

3

))
,

where γi ∈ si ◦
∼
TX (z) , µi ∈ si ◦

∼
IX (z), ϕi ∈ si ◦

∼
FX (z) and liT , liI , liF are the number of

elements in si ◦
∼
TX (z) , si ◦

∼
IX (z) and si ◦

∼
FX (z) respectively.

It can be observed that, the score function and accuracy function satisfy the following

properties:

(1) For an element X(z) of an MVmNS,

−2

3
≤ s(X(z)) ≤ 1

3
.

(2) For an element X(z) of an MVmNS,

0 ≤ a(X(z)) ≤ 1.
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Definition 3.5. Two elements X(z1) and X(z2) of an MVmNS are compared as:

• if s (X (z1)) > s (X (z2)) , then X (z1) > X (z2) ,

• if s (X (z1)) = s (X (z2)) and

– if a (X (z1)) > a (X (z2)) , then X(z1) > X (z2) ,

– if a (X (z1)) = a (X (z2)) , then X(z1) = X (z2) .

Definition 3.6. Let X(zi), (i = 1, 2, ..., n) be the elements of an MVmNS. Then for two

natural numbers p, q, MVmNBM operator is defined as

MVmNBMp,q (X (z1) , X (z2) , ..., X (zn)) =

(
1

n(n−1)

(
n
⊕

i,j=1,j 6=i
((X(zi))

p ⊗ (X (zj))
q)

)) 1
p+q

Theorem 3.7. Let X(zi), (i = 1, 2, ..., n) be n elements of an MVmNS, then MVmNBM

operator can be expressed as:

MVmNBMp,q (X (z1) , X (z2) , ..., X (zn)) =


∪




1−


n∏

i, j = 1

i 6= j

(
1−

(
γ

(zi)
1

)p (
γ

(zj)
1

)q)


1
n(n−1)



1
p+q


, ...,∪




1−


n∏

i, j = 1

i 6= j

(
1−

(
γ

(zi)
m

)p (
γ

(zj)
m

)q)


1
n(n−1)



1
p+q




,


∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1− µ(zi)

1

)p (
1− µ(zj)

1

)q)


1
n(n−1)



1
p+q


, ...,∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1− µ(zi)

m

)p (
1− µ(zj)

m

)q)


1
n(n−1)



1
p+q




,


∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1− ϕ(zi)

1

)p (
1− ϕ(zj)

1

)q)


1
n(n−1)



1
p+q


, ...,∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1− ϕ(zi)

m

)p (
1− ϕ(zj)

m

)q)


1
n(n−1)



1
p+q







Proof. Let

X(zi) =
((
∪{γ(zi)

1 }, ...,∪{γ(zi)
m }

)
,
(
∪{µ(zi)

1 }, ...,∪{µ
(zi)
m }

)
,
(
∪{ϕ(zi)

1 }, ...,∪{ϕ
(zi)
m }

))
and X (zj) =

((
∪{γ(zj)

1 }, ...,∪{γ(zj)
m }

)
,
(
∪{µ(zj)

1 }, ...,∪{µ(zj)
m }

)
,
(
∪{ϕ(zj)

1 }, ...,∪{ϕ(zj)
m }

))

(X (zi))
p =


(
∪{
(
γ

(zi)
1

)p
}, ...,∪{

(
γ

(zi)
m

)p
}
)
,(

∪{1−
(

1− µ(zi)
1

)p
}, ...,∪{1−

(
1− µ(zi)

m

)p
}
)
,(

∪{1−
(

1− ϕ(zi)
1

)p
}, ...,∪{1−

(
1− ϕ(zi)

m

)p
}
)


(X (zj))
q =


(
∪{
(
γ

(zj)
1

)q
}, ...,∪{

(
γ

(zj)
m

)q
}
)
,(

∪{1−
(

1− µ(zj)
1

)q
}, ...,∪{1−

(
1− µ(zj)

m

)q
}
)
,(

∪{1−
(

1− ϕ(zj)
1

)q
}, ...,∪{1−

(
1− ϕ(zj)

m

)q
}
)


(X (zi))
p ⊗ (X (zj))

q =
(
∪
{(
γ

(zi)
1

)p (
γ

(zj)
1

)q}
, ...,∪

{(
γ

(zi)
m

)p (
γ

(zj)
m

)q})
,(

∪
{

1−
(

1− µ(zi)
1

)p (
1− µ(zj)

1

)q}
, ...,∪

{
1−

(
1− µ(zi)

m

)p (
1− µ(zj)

m

)q})
,(

∪
{

1−
(

1− ϕ(zi)
1

)p (
1− ϕ(zj)

1

)q}
, ...,∪

{
1−

(
1− ϕ(zi)

m

)p (
1− ϕ(zj)

m

)q})
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n
⊕

i,j=1,j 6=i
((X(zi))

p ⊗ (X (zj))
q) =


∪


1−

n∏
i, j = 1

i 6= j

(
1−

(
γ

(zi)
1

)p (
γ

(zj)
1

)q)

, ...,∪


1−

n∏
i, j = 1

i 6= j

(
1−

(
γ

(zi)
m

)p (
γ

(zj)
m

)q)



,


∪


n∏

i, j = 1

i 6= j

(
1−

(
1− µ(zi)

1

)p (
1− µ(zj)

1

)q)

, ...,∪


n∏

i, j = 1

i 6= j

(
1−

(
1− µ(zi)

m

)p (
1− µ(zj)

m

)q)



,


∪


n∏

i, j = 1

i 6= j

(
1−

(
1− ϕ(zi)

1

)p (
1− ϕ(zj)

1

)q)

, ...,∪


n∏

i, j = 1

i 6= j

(
1−

(
1− ϕ(zi)

m

)p (
1− ϕ(zj)

m

)q)





Finally, the required result is obtained by using operations 4 and 5, presented in section 3.2.

Definition 3.8. Let X(zi), (i = 1, 2, ..., n) be the elements of an MVmNS with weight vector

W = (w1, w2, ..., wn)T satisfying wi ≥ 0 and
n∑
i=1
wi = 1. Then for two natural numbers p, q,

MVmNWBM operator is defined as

MVmNWBMp,q (X (z1) , X (z2) , ..., X (zn)) =

(
1

n(n− 1)

(
n
⊕

i,j=1,j 6=i
((wiX(zi))

p ⊗ (wjX (zj))
q)

)) 1
p+q

Theorem 3.9. Let X(zi), (i = 1, 2, ..., n) be n elements of an MVmNS with weight vector

W = (w1, w2, ..., wn)T satisfying wi ≥ 0 and
n∑
i=1
wi = 1, then MVmNWBM operator can be

expressed as:

MVmNWBMp,q (X (z1) , X (z2) , ..., X (zn)) =
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∪




1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

1

)wi
)p (

1−
(

1− γ(zj)
1

)wj
)q)



1
n(n−1)



1
p+q


, ...,

∪




1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

m

)wi
)p (

1−
(

1− γ(zj)
m

)wj
)q)



1
n(n−1)



1
p+q





,



∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(zi)
1

)wi
)p (

1−
(
µ

(zj)
1

)wj
)q)



1
n(n−1)



1
p+q


, ...,

∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(zi)
m

)wi
)p (

1−
(
µ

(zj)
m

)wj
)q)



1
n(n−1)



1
p+q





,



∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
ϕ

(zi)
1

)wi
)p (

1−
(
ϕ

(zj)
1

)wj
)q)



1
n(n−1)



1
p+q


, ...,

∪


1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
ϕ

(zi)
m

)wi
)p (

1−
(
ϕ

(zj)
m

)wj
)q)



1
n(n−1)



1
p+q






Proof. This result can be obtained similarly as the previous one.

MVmNBM and MVmNWBM operators satisfy the following properties:
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• Permutation

• Monotonicity

• Boundedness

Theorem 3.10. (Permutation) Let X(zi), (i = 1, 2, ..., n) be a set of n elements of an

MVmNS. If X (́zi), (i = 1, 2, ..., n) is a permutation of X(zi), (i = 1, 2, ..., n), then

MVmNWBM(X (z1) , X (z2) , ..., X (zn)) =MVmNWBM
(
X´(z1) , X´(z2) , ..., X´(zn)

)
Proof. Following result can be obtained by definition(

1

n(n− 1)

(
n
⊕

i,j=1,j 6=i
((wiX(z1))p ⊗ (wjX (z2))q)

)) 1
p+q

=

(
1

n(n− 1)

(
n
⊕

i,j=1,j 6=i

((
wiX

´(z1)
)p
⊗
(
wjX

´(z2)
)q))) 1

p+q

.

Hence the result.

Theorem 3.11. (Monotonicity) Let X(zi), (i = 1, 2, ..., n) and X (́zi), (i = 1, 2, ..., n) be

two sets of elements of an MVmNS. If X(zi) ≥ X (́zi) for all i = 1, 2, ..., n then

MVmNWBMp,q (X (z1) , X (z2) , ..., X (zn)) ≥MVmNWBMp,q
(
X´(z1) , X´(z2) , ..., X´(zn)

)
.

Proof. Let

X(zi) =
((
∪{γ(zi)

1 }, ...,∪{γ(zi)
m }

)
,
(
∪{µ(zi)

1 }, ...,∪{µ
(zi)
m }

)
,
(
∪{ϕ(zi)

1 }, ...,∪{ϕ
(zi)
m }

))
and X (́zi) =

((
∪{γ (́zi)

1 }, ...,∪{γ (́zi)
m }

)
,
(
∪{µ(́zi)

1 }, ...,∪{µ
(́zi)
m }

)
,
(
∪{ϕ(́zi)

1 }, ...,∪{ϕ
(́zi)
m }

))
.

(1) X(zi) ≥ X (́zi) =⇒ γ
(zi)
1 ≥ γ (́zi)

1 =⇒ 1−
(

1− γ(zi)
1

)wi

≥ 1−
(

1− γ (́zi)
1

)wi

=⇒
(

1−
(

1− γ(zi)
1

)wi
)p(

1−
(

1− γ(zj)
1

)wj)q
≥
(

1−
(

1− γ (́zi)
1

)wi
)p(

1−
(

1− γ (́zj)
1

)wj)q
for all j = 1, 2, . . . ,m,

=⇒ 1−
(

1−
(

1− γ (́zi)
1

)wi
)p(

1−
(

1− γ (́zj)
1

)wj)q
≤ 1−

(
1−

(
1− γ(zi)

1

)wi
)p(

1−
(

1− γ(zj)
1

)wj)q

=⇒
n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ (́zi)

1

)wi
)p(

1−
(

1− γ (́zj)
1

)wj)q)
≤

n∏
i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

1

)wi
)p(

1−
(

1− γ(zj)
1

)wj)q)
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=⇒ 1−
n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

1

)wi
)p(

1−
(

1− γ(zj)
1

)wj)q)
≥

1−
n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ (́zi)

1

)wi
)p(

1−
(

1− γ (́zj)
1

)wj)q)

=⇒


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

1

)wi
)p (

1−
(

1− γ(zj)
1

)wj
)q)



1
n(n−1)



1
p+q

≥


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ (́zi)

1

)wi
)p (

1−
(

1− γ (́zj)
1

)wj
)q)



1
n(n−1)



1
p+q

Similarly
1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ(zi)

k

)wi
)p (

1−
(

1− γ(zj)
k

)wj
)q)



1
n(n−1)



1
p+q

≥


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
1− γ (́zi)

k

)wi
)p (

1−
(

1− γ (́zj)
k

)wj
)q)



1
n(n−1)



1
p+q

for k = 1, 2, ...,m.

(2) X(zi) ≥ X (́zi) =⇒ µ
(zi)
1 ≤ µ(́zi)

1 =⇒
(
µ

(zi)
1

)wi

≤
(
µ

(́zi)
1

)wi

=⇒
(

1−
(
µ

(zi)
1

)wi
)p (

1−
(
µ

(zj)
1

)wj
)q
≥
(

1−
(
µ

(́zi)
1

)wi
)p (

1−
(
µ

(́zj)
1

)wj
)q
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=⇒ 1−
(

1−
(
µ

(zi)
1

)wi
)p (

1−
(
µ

(zj)
1

)wj
)q
≤ 1−

(
1−

(
µ

(́zi)
1

)wi
)p (

1−
(
µ

(́zj)
1

)wj
)q

=⇒
n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(zi)
1

)wi
)p (

1−
(
µ

(zj)
1

)wj
)q)

≤

n∏
i, j = 1

i 6= j

(
1−

(
1−

(
µ

(́zi)
1

)wi
)p (

1−
(
µ

(́zj)
1

)wj
)q)

=⇒ 1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(zi)
1

)wi
)p (

1−
(
µ

(zj)
1

)wj
)q)



1
n(n−1)



1
p+q

≤

1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(́zi)
1

)wi
)p (

1−
(
µ

(́zj)
1

)wj
)q)



1
n(n−1)



1
p+q

Similarly

1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(zi)
k

)wi
)p (

1−
(
µ

(zj)
k

)wj
)q)



1
n(n−1)



1
p+q

≤

1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
µ

(́zi)
k

)wi
)p (

1−
(
µ

(́zj)
k

)wj
)q)



1
n(n−1)



1
p+q
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for k = 1, 2, ...,m.

(3)1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
ϕ

(zi)
k

)wi
)p (

1−
(
ϕ

(zj)
k

)wj
)q)



1
n(n−1)



1
p+q

≤

1−


1−


n∏

i, j = 1

i 6= j

(
1−

(
1−

(
ϕ

(́zi)
k

)wi
)p (

1−
(
ϕ

(́zj)
k

)wj
)q)



1
n(n−1)



1
p+q

for k = 1, 2, ...,m.

From (1)-(3), the required result is obtained.

Theorem 3.12. (Boundedness) Let X(zi), (i = 1, 2, ..., n) be a set of n elements of an

MVmNS, then

min (X (z1) , X (z2) , ..., X (zn)) ≤MVmNWBM (X (z1) , X (z2) , ..., X (zn))

≤ max (X (z1) , X (z2) , ..., X (zn))

Proof. Let m = min (X (z1) , X (z2) , ..., X (zn)) and M = max (X (z1) , X (z2) , ..., X (zn))

Since m ≤ X(zi) ≤M so by using previous theorem

m ≤MVmNWBM (X (z1) , X (z2) , ..., X (zn)) ,

MVmNWBM (X (z1) , X (z2) , ..., X (zn)) ≤M.

Hence the result.

3.3. Multi-Valued Multi-Polar Neutrosophic Soft Set

Definition 3.13. Let Z be a universal set and E be a set of parameters with X ⊆ E. Define

ω : X → P (Z), where P (Z) is the collection of all MVmN subsets of the set Z. Then

(ω,X) is said to be an multi-valued m-polar neutrosophic soft set (MVmNSS) over Z which

is represented as ΩX = (ω,X) = {e, ωX(e) : e ∈ E,ωX(e) ∈ P (Z)} and ωX(e) is an MVmNS

over Z.
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Table 1. Representation of a MV3NSS.

C1 C2 C3

A1

 ({0.6}, {0.4, 0.5}, {0.4, 0.5}) ,
({0.8, }, {0.1, 0.4}, {0.5}) ,
({0.2}, {0.8}, {0.3, 0.6})


 ({0.6}, {0.7}, {0.4, 0.5}) ,

({0.3, 0.7}, {0.6}, {0.8, 0.9}) ,
({0.4}, {0.8, 0.9}, {0.5})


 ({0.3, 0.5}, {0.7}, {0.9}) ,

({0.6, 0.9}, {0.8}, {0.6}) ,
({0.4, 0.5}, {0.4}, {0.7})


A2

 ({0.4, 0.6}, {0.5}, {0.2}) ,
({0.6, 0.7}, {0.7}, {0.2, 0.4}) ,

({0.4}, {0.6}, {0.6, 0.8})


 ({0.4, 0.6}, {0.6}, {0.6, 0.9}) ,

({0.6}, {0.6, 0.8}, {0.7}) ,
({0.4}, {0.6}, {0.5, 0.9})


 ({0.6, 0.8}, {0.6}, {0.5, 0.7}) ,

({0.2, 0.6}, {0.3, 0.4}, {0.4}) ,
({0.4}, {0.5}, {0.5, 0.7})


A3

 ({0.4}, {0.3}, {0.8, 0.9}) ,
({0.4}, {0.3}, {0.9}) ,

({0.7, 0.9}, {0.8}, {0.5})


 ({0.6}, {0.4, 0.6}, {0.8}) ,

({0.7, 0.8}, {0.9}, {0.5}) ,
({0.3, 0.5}, {0.8}, {0.7, 0.8})


 ({0.9}, {0.7}, {0.8, 0.9}) ,

({0.4}, {0.7, 0.9}, {0.8}) ,
({0.4}, {0.8}, {0.7, 0.9})


A4

 ({0.6}, {0.6}, {0.5, 0.7}) ,
({0.5, 0.7}, {0.7}, {0.9}) ,

({0.4}, {0.8, 0.9}, {0.5, 0.6})


 ({0.6}, {0.4}, {0.1, 0.3}) ,

({0.5}, {0.8}, {0.6, 0.7}) ,
({0.3}, {0.6, 0.7}, {0.6, 0.9})


 ({0.7}, {0.3, 0.6}, {0.7}) ,

({0.7}, {0.9}, {0.4, 0.5}) ,
({0.4}, {0.3}, {0.6})



Following example shows an MV3NS where three poles represent three different opinion

leaders and decision makers are considered as opinion followers. Opinion leaders have an

influence power for updating process of opinion followers, opinions [40].

Example 3.14. Let {A1, A2, A3, A4} be a set of four companies where an investor wants to

invest a suitable amount and {C1, C2, C3} be a set of criteria, then an MV3NSS is represented

in Table 1.

3.3.1. Operations on Multi-Valued m-Neutrosophic Soft Set

Some operations in MVmNSS are defined in this section.

Definition 3.15. Let Z be a universal set and E be a set of parameters with U, V ⊆ E. For

two MVmNSSs ΩU and ΨV , ΩU ⊆̆ΨV if

(1) U ⊆ V ,

(2) ΩU (e) ⊆ ΨV (e) for all e ∈ U i.e. s (ΩU (e)(z)) ≤ s (ΨV (e)(z)) for all e ∈ U , z ∈ Z.

Example 3.16. Let Z = {z1, z2} and E = {e1, e2, e3}. U = {e1, e2} and V = {e1, e2} be

subsets of E. Let ΩU and ΨV be two MV3NSSs defined as:
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ΩU = {(e1, (z1, ({0.3, 0.4}, {0.4, 0.6, 0.7}, {0.2, 0.5}), ({0.5, 0.7}, {0.6, 0.8, 0.9}, {0.7, 0.8}),
({0.4, 0.6}, {0.5, 0.7}, {0.5, 0.7, 0.8})), (z2, ({0.3, 0.4}, {0.6, 0.9}, {0.8, 0.9}),
({0.4, 0.5}, {0.6, 0.8}, {0.4, 0.6, 0.7}), ({0.1, 0.3, 0.5}, {0.6, 0.7}, {0.7, 0.8}))),
(e2, (z1, ({0.4, 0.5}, {0.4, 0.6}, {0.6, 0.9}), ({0.2, 0.4, 0.5}, {0.6, 0.7}, {0.7, 0.8}),
({0.3, 0.5}, {0.6, 0.7, 0.8}, {0.7, 0.9})), (z2, ({0.4, 0.6}, {0.4, 0.6, 0.7}, {0.6, 0.7}),
({0.1, 0.2, 0.4}, {0.5, 0.6, 0.7}, {0.6, 0.8}), ({0.4, 0.5}, {0.5, 0.6}, {0.5, 0.7})))}

ΨV = {(e1, (z1, ({0.8, 0.9}, {0.3, 0.5}, {0.5, 0.6}), ({0.5, 0.6}, {0.2, 0.3}, {0.4, 0.5}),
({0.8, 0.9}, {0.3, 0.4, 0.5}, {0.3, 0.4, 0.5})), (z2, ({0.7, 0.8, 0.9}, {0.4, 0.5}, {0.5, 0.6}),
({0.6, 0.7}, {0.6, 0.7}, {0.3, 0.5}), ({0.7, 0.8}, {0.4, 0.6}, {0.2, 0.5}))),
(e2, (z1, ({0.6, 0.8}, {0.4, 0.5}, {0.4, 0.5, 0.6}), ({0.6, 0.8, 0.9}, {0.4, 0.6}, {0.6, 0.7}),
({0.7, 0.8}, {0.6, 0.7}, {0.5, 0.7})), (z2, ({0.6, 0.8}, {0.4, 0.5}, {0.4, 0.5}),
({0.5, 0.8}, {0.4, 0.5}, {0.1, 0.4}), ({0.9}, {0.4, 0.5}, {0.5, 0.7})))}.

Since s (ΩU (e)(z)) ≤ s (ΨV (e)(z)) for all e ∈ U , z ∈ Z ⇒ ΩU ⊆̆ΨV (one of the different

choices of e and z is explained as: s(ΩU (e1)(z1)) = −0.3288 ≤ −0.083 = s(ΨU (e1)(z1))).

Definition 3.17. Let Z be a universal set and ΩU , ΨV be two MVmNS sets, where U and V

are subsets of E. ΩU and ΨV are said to be equal if ΩU ⊆̆ΨV and ΨV ⊆̆ΩU .

4. Distance Measures

Let Z = {z1, z2, ..., zn} be a universal set, E = {e1, e2, ..., ep} be a set of attributes and

U, V ⊆ E. Let ΩU and ΨV be two MVmNS sets over Z with their respective MVmN mappings:

ωU (ej) =

{(
zk, si ◦

∼
TU (ej) (zk) , si ◦

∼
IU (ej) (zk) , si ◦

∼
FU (ej) (zk)

)}
,

ψV (ej) =

{(
zk, si ◦

∼
T V (ej) (zk) , si ◦

∼
IV (ej) (zk) , si ◦

∼
F V (ej) (zk)

)}
,

for all i = 1, 2, . . . ,m; j = 1, 2, . . . , p and k = 1, 2, . . . , n, then the distance measures between

ΩU and ΨV are defined as:

4.1. Hamming Distance

dH (ΩU ,ΨV ) = 1
3mp


m∑
i=1

p∑
j=1

n∑
k=1



∣∣∣∣si ◦ ∼TU (ej) (zk)− si ◦
∼
T V (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼IU (ej) (zk)− si ◦
∼
IV (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼FU (ej) (zk)− si ◦
∼
F V (ej) (zk)

∣∣∣∣




.
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4.2. Normalized Hamming Distance

dNH (ΩU ,ΨV ) = 1
3mpn


m∑
i=1

p∑
j=1

n∑
k=1



∣∣∣∣si ◦ ∼TU (ej) (zk)− si ◦
∼
T V (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼IU (ej) (zk)− si ◦
∼
IV (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼FU (ej) (zk)− si ◦
∼
F V (ej) (zk)

∣∣∣∣




.

4.3. Euclidean Distance

dE (ΩU ,ΨV ) = 1
3mp


m∑
i=1

p∑
j=1

n∑
k=1



(
si ◦

∼
TU (ej) (zk)− si ◦

∼
T V (ej) (zk)

)2

+(
si ◦

∼
IU (ej) (zk)− si ◦

∼
IV (ej) (zk)

)2

+(
si ◦

∼
FU (ej) (zk)− si ◦

∼
F V (ej) (zk)

)2





1
2

.

4.4. Normalized Euclidean Distance

dNE (ΩU ,ΨV ) = 1
3mpn


m∑
i=1

p∑
j=1

n∑
k=1



(
si ◦

∼
TU (ej) (zk)− si ◦

∼
T V (ej) (zk)

)2

+(
si ◦

∼
IU (ej) (zk)− si ◦

∼
IV (ej) (zk)

)2

+(
si ◦

∼
FU (ej) (zk)− si ◦

∼
F V (ej) (zk)

)2





1
2

.

Some distance measures are defined with weight vector W = (w1, w2, ..., wp)
T satisfying

wj ≥ 0 and
p∑
j=1

wj = 1.

4.5. Weighted Hamming Distance

dWH (ΩU ,ΨV ) = 1
3mp


m∑
i=1

p∑
j=1

n∑
k=1

wj



∣∣∣∣si ◦ ∼TU (ej) (zk)− si ◦
∼
T V (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼IU (ej) (zk)− si ◦
∼
IV (ej) (zk)

∣∣∣∣+∣∣∣∣si ◦ ∼FU (ej) (zk)− si ◦
∼
F V (ej) (zk)

∣∣∣∣




.

4.6. Weighted Euclidean Distance

dE (ΩU ,ΨV ) = 1
3mp


m∑
i=1

p∑
j=1

n∑
k=1

wj



(
si ◦

∼
TU (ej) (zk)− si ◦

∼
T V (ej) (zk)

)2

+(
si ◦

∼
IU (ej) (zk)− si ◦

∼
IV (ej) (zk)

)2

+(
si ◦

∼
FU (ej) (zk)− si ◦

∼
F V (ej) (zk)

)2





1
2

.
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5. MCDM Based on MVmNSS by using TOPSIS

Ordering of the elements of MVmNS and formulation of distance measures between them

leads us to develop a stepwise algorithm of TOPSIS.

Step 1: Construct a set of alternatives X = {x1, x2, . . . , xn} and a set of attributes E =

{e1, e2, . . . , ep}.
Step 2: A decision matrix is constructed by a decision maker which is the representation

of an MVmNSS. In case of group decision, decision matrices are obtained from the experts

and then an aggregated matrix D is obtained by using MVmNBM (Definition 3.6), and is

represented as:

D (xk) =

{(
ej , si ◦

∼
TD (ej) , si ◦

∼
ID (ej) , si ◦

∼
FD (ej)

)}
,

for an alternative xk, k = 1, 2, . . . , n.

Step 3: Choose the positive and negative ideal solutions by calculating the score values of

the entries of decision matrices,

PIS =

{(
ej , si ◦

∼
TP (ej) , si ◦

∼
IP (ej) , si ◦

∼
FP (ej)

)}
,

NIS =

{(
ej , si ◦

∼
TN (ej) , si ◦

∼
IN (ej) , si ◦

∼
FN (ej)

)}
.

Step 4: Find the distances of the elements of the aggregated matrix from PIS and NIS for

each alternative xk, k = 1, 2, . . . , n by using one of the following group of distance measures:

• dWH (Dxk , P IS) = 1
3mp


m∑
i=1

p∑
j=1

wj



∣∣∣∣si ◦ ∼TD (ej)− si ◦
∼
TP (ej)

∣∣∣∣+∣∣∣∣si ◦ ∼ID (ej)− si ◦
∼
IP (ej)

∣∣∣∣+∣∣∣∣si ◦ ∼FD (ej)− si ◦
∼
FP (ej)

∣∣∣∣




,

dWH (Dxk , NIS) = 1
3mp


m∑
i=1

p∑
j=1

wj



∣∣∣∣si ◦ ∼TD (ej)− si ◦
∼
TN (ej)

∣∣∣∣+∣∣∣∣si ◦ ∼ID (ej)− si ◦
∼
IN (ej)

∣∣∣∣+∣∣∣∣si ◦ ∼FD (ej)− si ◦
∼
FN (ej)

∣∣∣∣




,

• dWE (Dxk , P IS) = 1
3mp


m∑
i=1

p∑
j=1

wj



(
si ◦

∼
TD (ej)− si ◦

∼
TP (ej)

)2

+(
si ◦

∼
ID (ej)− si ◦

∼
IP (ej)

)2

+(
si ◦

∼
FD (ej)− si ◦

∼
FP (ej)

)2





1
2

,
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dWE (Dxk , NIS) = 1
3mp


m∑
i=1

p∑
j=1

wj



(
si ◦

∼
TD (ej)− si ◦

∼
TN (ej)

)2

+(
si ◦

∼
ID (ej)− si ◦

∼
IN (ej)

)2

+(
si ◦

∼
FD (ej)− si ◦

∼
FN (ej)

)2





1
2

.

Step 5: Calculate the co-efficients of relative closeness (RC) for the alternatives by using

one of the following formulae:

RC(xk) =
dWH (Dxk , NIS)

dWH (Dxk , NIS) + dWH (Dxk , P IS)
,

or

RC(xk) =
dWE (Dxk , NIS)

dWE (Dxk , NIS) + dWE (Dxk , P IS)
,

k = 1, 2, ..., n, according to the distance measure used in step 4.

Step 6: Rank the alternatives.

5.1. An Application Example

Let X = {x1, x2, x3, x4} be a set of alternatives, E = {e1, e2, e3} be a set of attributes and

D = {d1, d2, d3} be the set of decision makers. Ranking of alternatives by the experts and

observation of their attitudes is done here by two techniques:

(1) MVmNBM

(2) TOPSIS

By using first technique, stepwise procedure is as under:

Step 1: Obtain the MV2NSSs from the decision makers d1, d2 and d3 which can be repre-

sented in Table 2, Table 3 and Table 4 respectively.

Step 2: Obtain an MVmNSS dagg by calculating MV2NBM (Definition 3.6) for the respec-

tive values of Table 2, Table 3 and Table 4.

Step 3: Let W1 =
(

0.3 0.5 0.2
)

, W2 =
(

0.2 0.4 0.4
)

and W3 =
(

0.7 0.1 0.2
)

be three weight vectors for the attributes provided by three decision makers d1, d2 and d3

respectively. Their weighted aggregated values are obtained from Definition 3.7 and are shown

in Table 6, Table 7 and Table 8.

Step 4: Now by using the score function (Definition 3.4), find the single values for each

alternative.

Score values for d1:

S(x1) = −0.3128

S(x2) = −0.3341

S(x3) = −0.3009

S(x4) = −0.3147
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Table 2. Decision matrix from the decision maker d1.

1 e1 e2 e3

x1

 ({0.3, 0.4}, {0.4}) ,
({0.5}, {0.4}) ,
({0.6}, {0.7})


 ({0.6, 0.7}, {0.8}) ,

({0.5, 0.7}, {0.4, 0.6}) ,
({0.9}, {0.9})


 ({0.9}, {0.6, 0.8}) ,

({0.4, 0.5}, {0.7}) ,
({0.3}, {0.6})


x2

 ({0.1}, {0.5}) ,
({0.5}, {0.9}) ,

({0.6, 0.7}, {0.9})


 ({0.7, 0.8}, {0.5}) ,

({0.6, 0.7}, {0.6}) ,
({0.6, 0.8}, {0.9})


 ({0.3}, {0.7}) ,

({0.4}, {0.9}) ,
({0.2}, {0.3, 0.5})


x3

 ({0.6}, {0.8}) ,
({0.7, 0.8}, {0.1}) ,

({0.6}, {0.1})


 ({0.9}, {0.8}) ,

({0.7}, {0.6}) ,
({0.5, 0.6}, {0.5})


 ({0.5}, {0.6}) ,

({0.4}, {0.9}) ,
({0.1, 0.4}, {0.5})


x4

 ({0.5}, {0.9}) ,
({0.2, 0.6}, {0.4}) ,

({0.7}, {0.4})


 ({0.1, 0.4}, {0.5}) ,

({0.7}, {0.2}) ,
({0.5}, {0.3, 0.7})


 ({0.3}, {0.8}) ,

({0.4}, {0.5, 0.6}) ,
({0.4, 0.6}, {0.7})



Table 3. Decision matrix from the decision maker d2.

2 e1 e2 e3

x1

 ({0.1}, {0.3}) ,
({0.2}, {0.1, 0.5}) ,

({0.4}, {0.6})


 ({0.7}, {0.5}) ,

({0.4}, {0.5}) ,
({0.3, 0.5}, {0.4})


 ({0.3, 0.5}, {0.5, 0.6}) ,

({0.4}, {0.8}) ,
({0.3}, {0.7})


x2

 ({0.4, 0.6}, {0.9}) ,
({0.8}, {0.5}) ,
({0.6}, {0.6})


 ({0.1}, {0.5, 0.7}) ,

({0.6}, {0.7}) ,
({0.1}, {0.3})


 ({0.4}, {0.9}) ,

({0.5}, {0.6}) ,
({0.7}, {0.8})


x3

 ({0.2}, {0.4}) ,
({0.5}, {0.6, 0.7}) ,

({0.2}, {0.7})


 ({0.4}, {0.7, 0.8}) ,

({0.2}, {0.1}) ,
({0.2}, {0.7})


 ({0.2}, {0.8, 0.9}) ,

({0.5}, {0.8}) ,
({0.1}, {0.5, 0.9})


x4

 ({0.5, 0.7}, {0.4}) ,
({0.4, 0.8}, {0.9}) ,

({0.1}, {0.5})


 ({0.9}, {0.8}) ,

({0.6}, {0.7, 0.9}) ,
({0.3}, {0.6})


 ({0.3}, {0.4, 0.5}) ,

({0.3, 0.4}, {0.6}) ,
({0.7}, {0.2, 0.3})



Score values for d2:

S(x1) = −0.3084

S(x2) = −0.3326

S(x3) = −0.2952

S(x4) = −0.3167
Score values for d3:
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Table 4. Decision matrix from the decision maker d3.

3 e1 e2 e3

x1

 ({0.6}, {0.7}) ,
({0.8, 0.9}, {0.4}) ,

({0.3}, {0.6})


 ({0.4, 0.6}, {0.7}) ,

({0.4}, {0.6}) ,
({0.5}, {0.7, 0.9})


 ({0.1, 0.3}, {0.4}) ,

({0.6}, {0.5, 0.8}) ,
({0.3, 0.5}, {0.4})


x2

 ({0.4}, {0.5}) ,
({0.6}, {0.7}) ,
({0.8}, {0.6})


 ({0.3}, {0.4}) ,

({0.5, 0.6}, {0.6}) ,
({0.4}, {0.7})


 ({0.5, 0.8}, {0.5}) ,

({0.2}, {0.3}) ,
({0.4}, {0.9})


x3

 ({0.2}, {0.3, 0.6}) ,
({0.4}, {0.5}) ,
({0.7}, {0.8})


 ({0.6}, {0.7, 0.8}) ,

({0.7}, {0.9}) ,
({0.4, 0.5}, {0.8})


 ({0.9}, {0.7}) ,

({0.4}, {0.6, 0.7}) ,
({0.6}, {0.8})


x4

 ({0.2}, {0.6}) ,
({0.4, 0.6}, {0.7}) ,
({0.6}, {0.8, 0.9})


 ({0.6}, {0.4}) ,

({0.4}, {0.9}) ,
({0.3}, {0.6, 0.7})


 ({0.2}, {0.3, 0.5}) ,

({0.7, 0.8}, {0.9}) ,
({0.4}, {0.1})


Table 5. Aggregated matrix dagg.

Agg1 e1 e2 e3

x1

 ({0.3039, 0.3437}, {0.4539}) ,
({0.5187, 0.56}, {0.3025, 0.4338}) ,

({0.4362}, {0.6346})


 ({0.5638, 0.6666}, {0.6666}) ,

({0.4338, 0.5050}, {0.5022, 0.5677}) ,
({0.5891, 0.6507}, {0.6961, 0.7911})


 ({0.3691, 0.5488}, {0.4978, 0.5955}) ,

({0.4687, 0.5022}, {0.6774, 0.7690}) ,
({0.3, 0.3672}, {0.5740})


x2

 ({0.2860, 0.3437}, {0.6246}) ,
({0.6418}, {0.7204}) ,

({0.6722, 0.7050}, {0.7140})


 ({0.3268, 0.3484}, {0.4659, 0.5285}) ,

({0.5677, 0.6346}, {0.6346}) ,
({0.3732, 0.4454}, {0.6732})


 ({0.3966, 0.4806}, {0.7003}) ,

({0.3693}, {0.6299}) ,
({0.4404}, {0.7207, 0.7607})


x3

 ({0.3068}, {0.4806, 0.5955}) ,
({0.5387, 0.5775}, {0.4130, 0.4512}) ,

({0.5194}, {0.5824})


 ({0.6268}, {0.7334, 0.8}) ,

({0.5607}, {0.5803}) ,
({0.3693, 0.4419}, {0.6774})


 ({0.5095}, {0.7, 0.7334}) ,

({0.4338}, {0.7832, 0.8081}) ,
({0.2430, 0.3732}, {0.6088, 0.7607})


x4

 ({0.3912, 0.4524}, {0.6268}) ,
({0.3346, 0.6722}, {0.6961}) ,

({0.4936}, {0.6193})


 ({0.5169, 0.6268}, {0.5581}) ,

({0.5740}, {0.6516, 0.7608}) ,
({0.3672}, {0.5080, 0.6682})


 ({0.2648}, {0.4806, 0.5947}) ,

({0.4724, 0.5432}, {0.6842, 0.7140}) ,
({0.5050, 0.5740}, {0.32, 0.3656})



S(x1) = −0.3444

S(x2) = −0.3663

S(x3) = −0.3365

S(x4) = −0.3503

S(x2) < S(x4) < S(x1) < S(x3) is the ranking of alternatives which is similar for all three

decision makers. Alternative x3 is the best one to select.

Step 5: To analyze the future attitude of the decision makers, system of differential equa-

tions (2) is developed by selecting ajpi , i, j = 1, 2, 3 from the score values.a1
p1 = 0.6991, a1

p2 =

0.7048, a2
p1 = 0.6991, a2

p2 = 0.7048

dP1
dt = 0.6991P1 + 0.7048P2

dP2
dt = 0.6991P1 + 0.7048P2

(3)
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Table 6. Weighted aggregated values for d1.

x1

 ({0.6455, 0.7069}, {0.7202, 0.7360}) ,
({0.7883, 0.8137}, {0.7889, 0.8375}) ,
({0.7778, 0.8019}, {0.8684, 0.8858})


x2

 ({0.5922, 0.6256}, {0.7444, 0.7571}) ,
({0.8186, 0.8313}, {0.8771}) ,

({0.8, 0.8185}, {0.8924, 0.8968})


x3

 ({0.6843}, {0.7723, 0.8112}) ,
({0.8109, 0.8172}, {0.8381, 0.8473}) ,
({0.7346, 0.7749}, {0.8617, 0.8789})


x4

 ({0.6379, 0.6756}, {0.7298, 0.7465}) ,
({0.7832, 0.8494}, {0.8824, 0.9030}) ,
({0.7760, 0.7859}, {0.7963, 0.8345})


Table 7. Weighted aggregated values for d2.

x1

 ({0.6527, 0.7225}, {0.7263, 0.7470}) ,
({0.7825, 0.8081}, {0.8027, 0.8508}) ,
({0.7683, 0.7942}, {0.8634, 0.8808})


x2

 ({0.6019, 0.6362}, {0.7520, 0.7644) ,

({0.8064, 0.8201}, {0.8716}) ,
({0.7848, 0.8033}, {0.8912, 0.8976})


x3

 ({0.7001}, {0.7867, 0.8221}) ,
({0.8033, 0.8084}, {0.8527, 0.8623}) ,
({0.7179, 0.7647}, {0.8595, 0.8840})


x4

 ({0.6304, 0.6637}, {0.7270, 0.7496}) ,
({0.7826, 0.8418}, {0.8802, 0.9015}) ,
({0.7730, 0.7872}, {0.7815, 0.8234})


Line graph for the system (3) (Figure 2) shows the same future behaviour of the decision

makers d1 and d2, since lines are overlapping and phase portrait (Figure 1) shows that the

system is unstable. It means that the experts may change their attitudes in future. A similar

conclusion can be observed between d3 and d2 or d1 and d3. Future attitudes of d1 and d2 can

also be analyzed (Figure 3) with the following fuzzy initial conditions (FICs):

P1(0) = (−1, 0, 1),

P2(0) = (−1, 0, 1),

or (α-cut representation)

P1(0) = (−1 + α, 1− α) α ∈ [0, 1],

P2(0) = (−1 + α, 1− α) α ∈ [0, 1].
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Table 8. Weighted aggregated values for d3.

x1

 ({0.5941, 0.6529}, {0.6708, 0.6887}) ,
({0.8239, 0.8432}, {0.8310, 0.8709}) ,
({0.7917, 0.8105}, {0.8813, 0.8881})


x2

 ({0.5629, 0.6}, {0.7245, 0.7304}) ,
({0.8437, 0.8488}, {0.8980}) ,

({0.8431, 0.8567}, {0.9106, 0.9155})


x3

 ({0.6299}, {0.7240, 0.7646}) ,
({0.8336, 0.8407}, {0.8720, 0.8806}) ,
({0.7762, 0.8090}, {0.8767, 0.8985})


x4

 ({0.5891, 0.6212}, {0.6886, 0.7115}) ,
({0.8066, 0.8744}, {0.9019, 0.9135}) ,
({0.8179, 0.8283}, {0.8261, 0.8461})



Figure 1. Phase portrait for the system (3).

Figure 2. Line graph for the system (3).
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Figure 3. Line graph for the system (3) with FICs.

Table 9. Score values from the decision maker d1.

d1 e1 e2 e3

x1 −0.2416 −0.2416 −0.075

x2 −0.3916 −0.2666 −0.15

x3 −0.025 −0.1083 −0.1583

x4 −0.0833 −0.1916 −0.175

Table 10. Score values from the decision maker d2.

d2 e1 e2 e3

x1 −0.1833 −0.0833 −0.2083

x2 −0.1833 −0.1666 −0.2166

x3 −0.2416 −0.0083 −0.175

x4 −0.1833 −0.1 −0.1916

Now the stepwise procedure of the second technique is as under:

Step 1 Same as in first technique

Step 2 Same as in first technique.

Step 3 Find the score values of the entries of Table 2, Table 3 and Table 4 by Definition

3.4. Respective score values are represented in Table 9, Table 10 and Table 11.

Step 4 By comparing the score values of the alternatives in Table 9, Table 10 and Table 11,

select the PIS and NIS from Table 2, Table 3 and Table 4.

Step 5 Find the weighted distances between the entries of Table 5 and Table 12 as described

in section 4.5 with W1 =
(

0.3 0.5 0.2
)

and W2 =
(

0.2 0.4 0.4
)

. Here weighted

Hamming distance is utilized.
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Table 11. Score values from the decision maker d3.

d3 e1 e2 e3

x1 −0.1416 −0.1833 −0.2416

x2 −0.3 −0.2583 −0.1

x3 −0.2916 −0.25 −0.1416

x4 −0.3083 −0.2083 −0.2583

Table 12. Positive and negative ideal solution.

e1 e2 e3

PIS

 ({0.6}, {0.8}) ,
({0.7, 0.8}, {0.1}) ,

({0.6}, {0.1})


 ({0.4}, {0.7, 0.8}) ,

({0.2}, {0.1}) ,
({0.2}, {0.7})


 ({0.9}, {0.6, 0.8}) ,

({0.4, 0.5}, {0.7}) ,
({0.3}, {0.6})


NIS

 ({0.1}, {0.5}) ,
({0.5}, {0.9}) ,

({0.6, 0.7}, {0.9})


 ({0.7, 0.8}, {0.5}) ,

({0.6, 0.7}, {0.6}) ,
({0.6, 0.8}, {0.9})


 ({0.2}, {0.3, 0.5}) ,

({0.7, 0.8}, {0.9}) ,
({0.4}, {0.1})



dW1H (Dx1 , P IS) = 0.4059 dW2H (Dx1 , P IS) = 0.3875

dW1H (Dx2 , P IS) = 0.4284 dW2H (Dx2 , P IS) = 0.4131

dW1H (Dx3 , P IS) = 0.4048 dW2H (Dx3 , P IS) = 0.3886

dW1H (Dx4 , P IS) = 0.4523 dW2H (Dx4 , P IS) = 0.4485

dW1H (Dx1 , NIS) = 0.3838 dW2H (Dx1 , NIS) = 0.4064

dW1H (Dx2 , NIS) = 0.3928 dW2H (Dx2 , NIS) = 0.3824

dW1H (Dx3 , NIS) = 0.4060 dW2H (Dx3 , NIS) = 0.4109

dW1H (Dx4 , NIS) = 0.4122 dW2H (Dx4 , NIS) = 0.4597

Step 6 Find the Coefficients of relative closeness for each alternative and rank the alterna-

tives.

RCW1(x1) = 0.4860 RCW2(x1) = 0.5119

RCW1(x2) = 0.4783 RCW2(x2) = 0.4807

RCW1(x3) = 0.5007 RCW2(x3) = 0.5139

RCW1(x4) = 0.4768 RCW2(x4) = 0.5061

S(x4) < S(x2) < S(x1) < S(x3) S(x2) < S(x4) < S(x1) < S(x3)

Both experts select the same alternative and their future attitude is same as discussed in

previous technique.
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6. Conclusion

MVmNSS can model the problems of MCDM with undetermined information better than

MVNSS and mNSS. It engages not only the multi-polar information but also multi-valued data.

The multi-valued neutrosophic set has the membership, non-membership and indeterminacy

values which can be treated as in hesitant fuzzy set or dual hesitant fuzzy set when operational

laws (Definition 2.3) are defined. An analysis of experts, attitudes after their decisions can

also be done by utilizing the MVmNBM. This study has also been carried out by Beg et

al. [41] with a fuzzy soft matrix as the initial data which does not captivate the degrees

of falsity-membership and indeterminacy-membership. MVmNSS handles these complicated

uncertainties and can be aggregated by MVmNBM. In the future, other MCDM methods

(TOPSIS, VIKOR, etc.) can be applied in group decision problems by defining the distance

and similarity measures in MVmNSs. Another aspect of this research is the utilization of

differential equations with FICs which does not produce different results.
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