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Abstract. This research directs to obtain optimum fuzzy soft constants through Bonferroni mean and TOPSIS
with the initial data represented in terms of multi-valued m-polar neutrosophic soft set. Multi-valued m-polar
neutrosophic soft set is defined in this paper, which is the generalization of m-polar neutrosophic soft set,
obtained by combining it with multi-valued neutrosophic soft set. Optimum fuzzy soft constants play a funda-
mental role for the construction of the system of differential equations which helps to observe the experts’ future
attitudes. Sometimes experts feel a requirement to rethink their choices or decisions due to the observation of
others’ choice especially when others choose different alternatives. After the individual decisions of experts, an
analysis of experts’ attitudes is produced by using phase portraits and line graphs of the system of differential
equations. This analysis can also be provided by using system of differential equations with fuzzy initial condi-
tions. To find the multi-valued m-polar neutrosophic Bonferroni mean, some basic operations on the elements
of the defined set are introduced. An illustrative example is given where a system of two differential equations

is developed for attitude analysis of two persons with independent variable t.

Keywords: Multi valued neutrosophic set; Multi polar neutrosophic set; Bonferroni mean; Fuzzy soft differ-

ential equations.

1. Introduction

Fuzzy sets have been conveniently utilized to deal with a plethora of problems regarding
to uncertainties since when it was introduced by Zadeh [10]. It allocates each element of a
set with a membership degree in the real standard [0, 1]. Intuitionistic fuzzy set (IFS) was
introduced by Atanassov [11] which generalizes the concept of fuzzy set and handles some

complicated fuzzy information in multi-criteria decision making (MCDM). IFS determines the
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membership and non-membership degrees for each element of a set. The concept of IFS was
extended by Atanassov and Gargov [12] to interval-valued intuitionistic fuzzy set (IVIFS)
which was applied for MCDM methods by several authors [13-18]. Despite of a number of
research achievements on IFS,; there is a need of indeterminate information. Smarandache [1]
proposed an indeterminacy membership function which leads to the neutrosophic set (NS).
NS generalizes the fuzzy set and IFS. Hesitant fuzzy set (HFS) was defined by Torra [20]
which is identified by a function hy on a universe U that returns a subset of [0,1]. Many
extensions of fuzzy set were further extended by combining with hesitant fuzzy set to Interval-
valued hesitant fuzzy set (IVHFS) [25], hesitant fuzzy soft set (HFSS) [21], Interval-valued
hesitant fuzzy soft set (IVHFSS) [22], dual hesitant fuzzy set (DHFS) [23], dual hesitant
fuzzy soft set (DHFSS) [24], interval-valued dual hesitant fuzzy set (IVDHFS) [26] and some
others. All these extended representations of hesitant fuzzy set have a substantial amount
of research work for MCDM [27-29,/49]. Single valued neutrosophic set (SVNS) is an NS for
which membership function, indeterminacy function and falsity function assign a single value
from the interval [0, 1] for each element of a set [2,/45]. Interval-valued neutrosophic set (IVNS)
involves the functions (membership, indeterminacy, non-membership) assigning the intervals
from the interval [0, 1] for each element [43]. NS has remarkably contributed in MCDM [44,47],
and recently in TOPSIS [46]. Sometimes, decision makers hesitate to assign a single value to
membership, non-membership or indeterminacy functions. They may suggest two or more
values to these functions. HFS, IVHFS, DHFS and multi-valued neutrosophic set (MVNS) [3]
facilitates those problems.

Bipolar fuzzy set [50] is an extension of a fuzzy set whose membership degree ranges from
—1 to 1, It represents the double-sided uncertainties (e.g. positive-negative, yes-no, gains-
loses,bright-dim, effect-side effect, etc.). These two sides are reciprocally related. Some bipolar
representations with their applications have been done by different authors [30-33]. Chen et
al. |34] presented a multi-polar fuzzy set which is an abstraction of a bipolar fuzzy set. They
also explained some real world problems involving multi-agent, multi-attribute, multi-object
and multi-index information. Deli et al. [5] defined multi-polar neutrosophic soft set and Saeed
et al. |9] presented some operations on this set.

Bonferroni mean (BM) and geometric Bonferroni mean (WBM) are the aggregation opera-
tors which generalize arithmetic mean and geometric mean respectively [35]. BM and WBM
represent the interrelationships between the arguments of individuals and have some properties
discussed by Yager [36], Xu and Yager [37] and Xia et al. [39]. Multi-valued neutrosophic Bon-
ferroni mean (MVNBM) was defined by Liu et al. [3] and some of its applications in multiple
attribute group decision-making are also presented. Hesitant fuzzy Bonferroni mean (HFBM)

was defined by Zhu et al. [38] which facilitates to calculate BM for hesitant fuzzy elements.
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Beg et al. |[41] utilized HFBM to analyze the human attitude by developing fuzzy soft differ-
ential equations. This investigation along with some others |42} 48] guides us to think about
the changes in attitudes or experts’ interpersonal influences after the decisions.

In this paper multi-valued m-polar neutrosophic set (MVmNS) is defined by combining the
multi-valued neutrosophic set (MVNS) and m-polar neutrosophic set (mNS). Then operational
laws are defined for its elements which lead to formulate multi-valued m-polar neutrosophic
Bonferroni mean (MVmNBM) and multi-valued m-polar neutrosophic weighted Bonferroni
mean (MVmNWBM) operators which are the extension of multi-valued neutrosophic Bonfer-
roni mean (MVNBM) and multi-valued neutrosophic weighted Bonferroni mean (MVNWBM)
operators [3] respectively. Then by utilizing the score values of MVmNWBM and coefficients
of relative closeness obtained through TOPSIS for each alternative, a system of fuzzy soft
differential equations is constructed to observe the change in experts’ attitudes. Another con-
tribution of this research work is the utilization of system of differential equations with fuzzy

initial conditions.

2. Preliminaries
2.1. Neutrosophic Set

Neutrosophy is a branch of Philosophy and a basis of neutrosophic set. Neutrosophy con-
siders a unit “A” in relation to “anti-A” and “neither A nor anti-A”. Smarandache presented

the neutrosophic set with some applications [1].

Definition 2.1. [2] Let Z be a universal set. A single valued neutrosophic set (SVNS) X is
defined as:

X ={2,(Tx(2),Ix(2),Fx(z)) : z € Z},

where, T'x (2), Ix(z) and Fx(z) are three real values in [0, 1], denoting the truth-membership
degree, the indeterminacy-membership degree and the falsity-membership degree of the ele-
ment z € Z to the set X respectively, satisfying

0<Tx(z)+Ix(z)+Fx(z)<3

for all z € Z.

Definition 2.2. [3] Let Z be a universal set. An MVNS X is defined as:

X ={z, (%X(z),;x(z),;’x(z)) 1z € 7Y,

where, T x(2), I x(z) and F x(z) are three collections of discrete real values in [0, 1], de-
noting the truth-membership degree, the indeterminacy-membership degree and the falsity-
membership degree of the element z € Z to the set X respectively, satisfying

0 <y <1,0 < A" +pt 4+ 9t <3and v € Tx(2), v7 € supTx(2), p € Ix(2),

ptesup Ix(z2), p € Fx(2), ¢t €sup Fx(2).
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An element 7 of an MVNS X can have the following expression:

n= <%X(z),.7x(z),}~7x(z)> for some z € Z, where

2

X(Z) = {’777 € [0’ 1]}7
X(Z) = {'ua/‘ € [O> 1]}3
X(Z) = {90?90 € [07 1]}

M~

Definition 2.3. [3] Let ny = %1,}1,;’1 and ny = (%2,?2,%’2) be two elements of an
MVNS, then their operational laws are defined as follows:
(1) M@ ng = <%1@%2,}1®}2,1?'1 ®1?2)
= - U (A2 =2, papes p12)
€T, € I1,01 € Fy
Y2 € %2#2 € }2&2 € 1?2
(2) n1® ng = (%1 ®%2,-71@}27f~71 @;72>
= N U = (v p2 — pape, 01+ w2 — p1p2)
€T, u € In,01 € Fy
Y2 € %2,/@ S .727@2 € ;72

B km= U (-0 —y)k k), k>0
y1€T1,p1€l1,p1€F
~k
4n = U _ (’yf,l—(1—M1)k,1—(1—g01)k),k>0

Y1€T1,u1€11,01€F

For many real world problems (e.g. ordering results of a journal, ordering results of an
institute and inclusion degrees), multipolar information exists. The notion of m-polar fuzzy

set was put forward to deal with those problems where m is an arbitrary ordinal number [34].

2.2. Multi-Polar Neutrosophic Set

Definition 2.4. [9] An m-polar neutrosophic set (mNS) on a universal set Z is a mapping

X = {(s1 0 Tx(z),82 0 Tx(2), ... Sm © T'x(2)), (51 © Ix(2),52 0 Ix(2),...,8m © Ix(2)), (s1 ©
Fx(2),820 Fx(2),...,8mo Fx(2))}: Z — ([0,1)™, [0, 1]™, [0, 1]™)

where ith mapping is defined as

sioTx : Z — [0,1]

siolx :Z —[0,1]

sioFx : Z —[0,1]

and 0<s;0Tx(z)+s;0lx(z)+s;0Fx(z)<3

forallt=1,2,...,m and z € Z.

Example 2.5. Let Z = {21, 22, 23} be a universal set. Then
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((0.4,0.6,0.7), (0.1,0.2,0.3), (0.3,0.5,0.6)) /21
X ={ ((0.2,0.4,0.5), (0.6,0.7,0.8), (0.7,0.8,0.9)) /22 }

((0.2,0.5,0.6), (0.3,0.4,0.6), (0.4,0.6,0.8)) /23
CS

represents an 3-polar neutrosophic set (3NS).

2.3. Neutrosophic Soft Set

Let Z be a universal set and E be the set of attributes of elements in Z. Take X to be a
subset of F.

Definition 2.6. [4] An neutrosophic soft set (NSS) (w, X) over Z is a mapping from X to
P(Z) and is defined as

Qx = (w,X) ={(e,wx(e)) :e € E,wx(e) € P(Z)}

where P(Z) denotes the collection of all neutrosophic subsets of Z,

wx(e) = {=. Tx(e)(), Ix ()(2), Fx (e)(2) : = € Z}

and each of T'x(e)(z), Ix(e)(z) and Fx(e)(z) is a mapping from Z to interval [0, 1] with

0 <Tx(e)(2) + Ix(e)(2)+ Fx(e)(z) <3

forallee F and z € Z.

Definition 2.7. [5] An m-polar neutrosophic soft set (mNSS) (w, X) over Z is a mapping
from X to P(Z) and is defined as

Qx = (w,X) ={(e,wx(e)) : e € E,wx(e) € P(Z)}

where P(Z) denotes collection of all neutrosophic subsets of Z,

wx(e) ={z,s,0Tx(e)(2),s0Ix(e)(z),si0 Fx(e)(z):z€ Z}

and

0<s;0oTx(e)(z)+siolx(e)(z)+si0oFx(e)(z) <3

foralli=1,2,....m;e€e E,z € Z.

2.4. Bonferroni mean operator

Definition 2.8. [37] Let [, m be two natural numbers and x; > 0 where ¢ € {1,2,...,n} then
Bonferroni mean B“™is defined as follow:

1

n I+m

1
Im _ - l..m
B = n(n—l),‘g,,xzx]
i,j=1,i#]

Definition 2.9. [37] Let {,m be two natural numbers and z; > 0 (i =1,2,...,n) and W =
n

[w; > 0]T be the weight vector of [x;] with the condition Y w; = 1, then weighted Bonferroni
i=1
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mean (WBM) is defined as follow:

n +m

> (wizy) (wyzy)™

i,j=1,i#]

1

n(n—1)

WBMY™ =

2.5. Fuzzy Differential Equations
2.5.1. Fuzzy Numbers and Fuzzy Functions

Definition 2.10. [6] A fuzzy number z is defined by a pair x = (z,7) of functions z,7 :

[0,1] — R, satisfying the three conditions:

(1) z(«) is a bounded, monotonically increasing left-continuous function for all a € (0, 1]
and right-continous for o = 0,

(2) T(«) is a bounded, monotonically decreasing left-continuous function for all a € (0, 1]
and right-continous for oo = 0,

(3) For all a € (0,1] we have: z < 7.

For every x = (z,%), y = (y,y) and k > 0, a € (0, 1], we define addition and multiplication

as follows:
o (z+y)(a) =z(a) + y(a),
o (z+y)(a) =z(a) +Y(a),
o (kz)(a) = kz(a),
o (kx)(a) = kZ().

With this definition of addition and multiplication, the collection of all fuzzy numbers is
denoted by El. For 0 < a < 1, we define a—cuts of fuzzy number u with [2]* = {u € R |
z(u) > a} and for a = 0, the support of x is defined as [z]° = {u € R | z(u) > 0}.

Definition 2.11. [6] Let # = (2,7) and y = (y, ) be two arbitrary numbers, then distance

between x and y is defined as follows:

d(z,y) = Sel[lopl]{maX[l z(a) —y(@) || z(a) —y(a) [}

Definition 2.12. [6] A fuzzy function g : R — E' is said to be continuous if for an arbitrary
fixed to € R! and € > 0 there exists a § > 0 such that:

[t —to] <8 = d(g(t),9(t) <e.
then g is said to be continuous.

Definition 2.13. [6] Let x,y € E'. If there exists 2 € E! such that * = y + 2 then z is called
the H-difference of z,y and it is denoted by x — y.
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Definition 2.14. [6] A function g : (¢,d) — E' is said to be H-differentiable at t, € (c,d)
if for a small h > 0, there exist the H-differences g(t,) — g(to — h), g(to + h) — g(t.) and the
element ¢'(t.) € E! such that:

0= lim d <9(t°> —9(te = h),g’(to)> — lim d <g<t° +h) = g(tc’),g’(to)) :

h—0+ h h—0+ h

then ¢'(t) is called the fuzzy derivative of g at to.

Definition 2.15. |[7] The triangular fuzzy numbers are common and are denoted by x =
(a, ¢, B) and defined by:

e ffa<u<e,

cC—Q
r={0 ife<u<p,
0, otherwise.

2.5.2. First Order Fuzzy Differential FEquations

A first order fuzzy differential equation is written in the following form:

2'(t) = g(t, ()

where ¢(t, x) is a fuzzy function of the crisp variable ¢ and the fuzzy variable x and x is a fuzzy

function of ¢. Here 2’ is the fuzzy derivative of z. Consider the initial value problem

x/(t) = g(t>$(t))a -r(to) = Zo, (1)

a mapping = : R — E! is a solution to the problem (1) if and only if it is continuous and

satisfies the integral equation

z(t) = xo —1—/t g(s,x(s))ds

for all ¢t € R! [8]. Moreover, sufficient conditions for the existence of a unique solution to Eq
(1) are:
e f is continuous,

e A Lipschitz condition d(g(¢,x), g(t,y)) < Ld(z,y) satisfied for some L > 0.

To obtain the solution of Eq (1), it can be replaced by the following equivalent system:

Q(t, $(t)), g(to) = Zo,
() =9g(t,x(t)), T(to) =7o.
For example, to solve
% = tzwv :E(O) = (0’ %7 1)>

it is replaced by
d
CT% = t2£7 Q(O) = (07 %)7
T — 27, 7(0) = (3,1),
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z(0) = (0,1) and Z(0) = (3, 1) are replaced by parametric forms z(0) = 2a and Z(0) = 2(1—a),
respectively where o € [0, 1]. And the solution is:

3 3

z=(20e7,2(1 —a)e?), ac [0,1].

2.6. Human attitude analysis after a decision

The constants which provide the base to rank the alternatives, can also provide a support
for further process of rethinking after a decision. These constants were utilized in fuzzy soft
differential equations |41] and in developing the influence matrix which can play a vital role

in influence model and doubly extended TOPSIS [42,48].

2.6.1. Human attitude analysis based on fuzzy soft differential equations

A system of linear fuzzy soft differential equations is developed by Beg et al. [41].
Py _ 1 1

ditl _aP1P1+aP2P27 (2)

afy — a%;lPl + a%g2P2

where P, and P» are the variables representing the attitude of two persons after taking a

decision at time t, % and % represent the change in persons’ attitudes after some time

due to that decision and aé;j (1,7 = 1,2) are optimum fuzzy soft constants (OFSCs) taken

as signed fuzzy numbers denoting the influence on ¢th person of his internal feelings and jth

person’s feelings. Positive sign is assigned to aﬁgj when the attitude of jth person for ith person

is supportive, otherwise a negative sign is assigned to it. Stability of system (2) depends upon

ab, al

eigen values of the matrix 2P ! 5 2
ap a

P Py

3. Multi valued Multi-Polar Neutrosophic Set

Multi-valued multi-polar neutrosophic set (MVmNS) is a generalization and composition of
MVNS and mNS.

Definition 3.1. Let Z be a non empty set. An MVmNS X is a mapping defined as
m sets of discrete values in [0, 1],

X :Z — | m sets of discrete values in [0, 1],
m sets of discrete values in [0, 1]
(81 o IN’X (2),s90 %X (2) 5 ooy S © %X (z)) ,

~

X = | (sr0Tx )00 Tx () osmo T ()
S]_O%X(Z),SQOFX(Z),...,SmOE‘X(Z)>

where s; 0 T'x (2), s;oIx (2) and s;0 Fx (z) (i =1,2,...,m) are the collections of discrete
real values v;, u; and ; denoting the truth-membership degree, the indeterminacy-membership
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degree and the falsity-membership degree of the element z € Z to the set X respectively with
0 <7 piy 0 1,0 <97+ pf +¢f <3, €sup <3iOTX(Z)> , M € sup <5iOIX(Z)> ,

@f € sup (si o Fx (z)

3.1. Multi valued Multi-Polar Neutrosophic Soft Set

Definition 3.2. Let Z be a universal set and E be a set of parameters with X C E. Define
w: X — P(Z), where P(Z) is the collection of all MVmN subsets of the set Z. Then
(w, X) is said to be an multi-valued m-polar neutrosophic soft set (MVmNSS) over Z which
is represented as Qx = (w, X) = {e,wx(e) : e € E,wx(e) € P(Z)} and wx(e) is an MVmNS

over Z.

3.2. Operations on MVmNS
<3107N“X (zl),SQOIN”X (z1),. smoTX zl
Let X(z1) = slo}X (zl),SQO}X (21),. smoIX z1
SlO%X(Zl),SQO%X(Zl) smoFX zl

(21

S (CIE U{v&l})v(u{uyﬂ},~wu{u( u{w@“}, Ul
<51 oTx (22) 820 Tx (22) vy 8m 0 T'xt ( ZQ
and X (25) = | (s107x (22), 820 Ix (22) s 8m 0 Ix ( 22
510 Fx (22),820 Fx (22) 1 0oey $m 0 Fx (22 >
- U{

= (vt U }>,<U{M§Z2)}7---7U{u( } s (W) Uil )

be two elements of an MVmNS. Then their operatlonal laws are defined as

(51OFX(Z1)752OFX(Zl)7-~73mOFX (21)>,
(1) (X (21))" = s1olx(z1),820 5 (21), s smolx (Zl)> :
s10Tx (21),520Tx (21), -, 8moTx (Z1)>

= (U1t} UL} ) (U0 = ™), UL = G0}) L (U1 UEEY) )
(2) X (21) & X (22)

<51 oTx (21),820Tx (21) .y SmoTx (21)> , <31 oTx (22),800Tx (22),..c 8m o T'x (zz)) ,
= 31OIX(Zl);SQOIX(Zl)a--~73mOIX(Zl)>7 ® (31OIX(ZQ)aSQOIX(22>7-~-73mOIX(ZQ))a
81OFx(Zl),SQOFX(21),...,SmoFx(2’1)> <81OFx(ZQ),SQOFx(ZQ),...,SmOFx(22)>
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<810TX (2’1),SQOTX (2’1),. SloTX 22) 59 OTX (ZQ),...,SmOTX (ZQ)) s
= <Slofx(21),8201)((21),. SloIX 2’2) SQOIX(ZQ),...,SmOIX(ZQ)),
(810FX(21),SQOFX(21),. zl)> sloFX (z2) , szoFX(ZQ),...,smoFX(ZQ)>

~

<<81oTx(21)>69<$10TX z2) |, SmOTX (21) @<SmOTX(22)>>’
= <<sloIX(z1) ® $1OIX (22) |

<<310Fx(z1) ® sloFX smoFX (1) ®<SmOFX(ZQ)>>

SmOIX 21 X SmOIX(ZQ)

(U{% +{ )—vle)% )} () + 4 )—7551)7552)}),
_ (ol }...,U{,;mms;ﬂ}),

(u{sol so& D, U}
(3) X (21) ® X (22)

<<81 o%x (zl)) ® <51 o%X (22) ), Sm O%X (21)
_ <<510;X(21) @ (s107Tx (22)), SmO}X(Zl))
<<310}N7X(z1) & slo;‘x(ZQ)),..., <smo;‘X(zl) @<smoﬁx(@)>>

(VO L))
= Eu{ul +M§ 2) 'ugn)u( )} U{,LL(ZI ,u(z) N( )#%2)}>7

Ul + o — o ol)}, . Ul + o5 — ol )})
(u{1 - <1 - ’le))k}, L U{L — (1 - %”)%) :
(4) kX (1) = (Ut (u) Yot (165) )
(U () Fom it () 1)
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s10 JN’X (21),820 ]N’X (21) 5 ooy Sm © '}X (21)> , <31 o %X (z2),820 %X (22) 5 ooy S © %X (zg)> ,

= slo}X (21),520})( (21),...,smo}X (21)>, ® Slo}X (zg),szo;x (22))-"78777,07)( (z2)>,

510 Fx (21),820 Fx (21) 100y 8m 0 Fx (21)> 510 Fx (22),82 0 Fx (22) 100y 8m 0 Fx (ZQ)>
(sloTX 21) SQOZN’X (zl),...,smo%x (z1) | ® slo%x 29) , S2 O%X (22),...,smo%x (ZQ)) ,
= (sloIX (z1), SQO;X (21),...,smo}X (z1) | @ slo}JX (ZQ),SQO}X (zg),...,smo;x (zg)) ,
<3101?X (zl),SQOIN;’X (21) ey Sm x(z1)) ® (slo}NWX 22),320;7)( (zg),...,smo;”X (22)>

F
)
)

@ | smolx(z2) ,

) ® <sm o Tx (22))> ,
)
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(UO8) Yot (36))

) (e = | (v (1= u) dnn = (1= 66))

(u{l - (1 - ¢§Zl>)k}, LUl — (1 - gosgﬂ)k})
Example 3.3. Let

= (({0.3},{0.4,0.5},{0.5,0.6}), ({0.4,0.5},{0.2},{0.7}), ({0.3},{0.5}, {0.8})) and
= (({0.1},{0.3},{0.6}), ({0.2,0.4},{0.6},{0.7,0.8}), ({0.5},{0.6},{0.7,0.8}))
be two elements of an MV3NS. Then

(z1)° = (({0.3},{0.5},{0.8}), ({0.6,0.5},{0.8},{0.3}), ({0.3},{0.4,0.5},{0.5,0.6})) ,

({0.37},{0.58,0.65}, {0.8,0.84}) ,
z1 @ o= | ({0.08,0.2},{0.12},{0.49,0.56}), |,
({0.15}, {0.30}, {0.56,0.64})
({0.03},{0.12,0.15}, {0.3,0.36}) ,

21 @z = | ({0.52,0.7},{0.68},{0.91,0.94}), |,
({0.65}, {0.8},{0.94,0.96})
N ( ({0.51},{0.64,0.75}, {0.75,0.84}) , )
7 (40.16,0.25), {0.04}, {0.49)) , ({0.09}, {0.25}, {0.64})
- ({0.09}, {0.16,0.25}, {0.25,0.36}) ,
(=)= ( ({0.64,0.75},{0.36}, {0.91}) , ({0.51}, {0.75}, {0.96}) ) '

Definition 3.4. Score function s(X(z)) and accuracy function a(X(z)) of an element X (z)
of an MVmNS is defined as follows:

1 Vi — Wi — i
EZ < lelezF Z ( 3 )) ’

=1

RS Vi + pi + @i
Ez < lelIle Z ( 3 >> ’

=1

where v; € s;0Tx (2), i € s;0 IX (2), @i € sio Fx(z) and lip,l;1,lir are the number of

elements in s; 0 T'x (2), s; 0 I x (z) and s; o Fx (z) respectively.

It can be observed that, the score function and accuracy function satisfy the following

properties:

(1) For an element X (z) of an MVmNS,

2 <X () <

(2) For an element X (z) of an MVmNS,

W=

0<a(X(2) <L
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Definition 3.5. Two elements X (z;) and X (z2) of an MVmNS are compared as:
o if s(X (21)) > s(X (22)), then X (21) > X (22),
o if s(X (21)) =5(X(22)) and
—ifa (X (21)) (
— ifa(X (21)) = a(

Definition 3.6. Let X(z;), (i = 1,2,...,n) be the elements of an MVmNS. Then for two
natural numbers p,q, MVmNBM operator is defined as

, then X (21) > X (22),

>
= , then X (21) = X (22) .

a (X (22))
a(X (z2))

21

n p+q

MVIRNBMPY (X (1) X (22) s X ) = (s (6 (OGP 0 (X ()9 )
,)=1,0F1
Theorem 3.7. Let X(z;), (i = 1,2,...,n) be n elements of an MVmNS, then MVmNBM
operator can be expressed as:

MVmNBMP? (X (z1),X (22) ..., X (2n))

}‘_ Il

e\ o= AN
SR I R C R ofle (- ) ()
ij=1 i,j=1
17 i
e\ 7 BEE
Wi=fi=| I (1= (=) (1= )" o] (- () ()
i,j=1 =1
it i
) oD
ufi-fi-f I (- (=) (=) S| B ) )
i,j=1 Q=1
el i#J

Proof. Let
X (%) = <<U{7§Zi)}, .__7U{fy£§i)}) ’ (U{Mgzi)}, --~7U{M7(7?)}> : (U{@§Zi)}, ...,U{(p%i)}>>
and X (Z]) = ((U{%%)}) ...,U{fy,(ij)}> , (U{M§Zj)}7 ---,U{M%j)}> 7 (U{(szj)}, ---7U{(P£7Z1j)})>

(AGEN) Yol (9))

(X )P = | (vfr= (1-u) o - (

—_—~

{OEY )Y G R
(oo () () (1) (1)),
(o= - (1ot (1Y (1))
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LG ((XE) e (X () =

ot I (-G 7)) poeude I (- (8) (6R))

ij=1 hj=1
i#] i#]

ud 1l (1— (1—/152”)11 (1—u(f’)>q) Ul Tl (1— (1—u5$’)>p (1—/151?))(1) :

i,j=1 ih,j=1
i 7 iF ]

B (A O o] B ) ()

i,j=1 hj=1
i# ] i# ]
Finally, the required result is obtained by using operations 4 and 5, presented in section 3.2.

Definition 3.8. Let X (z;), (i =1,2,...,n) be the elements of an MVmNS with weight vector
n
W = (w1, ws, ...,wn)T satisfying w; > 0 and ) w; = 1. Then for two natural numbers p, g,

=1
MVmNWBM operator is defined as

1

MVImNWBMP (X (z1), X (22) 1000y X (20)) = <n(nl_1) <ij:%j#((wiX(zz‘))p ® (w; X (Zj))q)>)p+q

Theorem 3.9. Let X(z;), (i = 1,2,...,n) be n elements of an MVmNS with weight vector

n

W = (wl,wg,...,wn)T satisfying w; > 0 and Y w; = 1, then MVmNWBM operator can be
i=1

expressed as:

MVmNWBMPA (X (21),X (22) ..., X (2)) =
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1- —

n
I1
ij=1
i # ]

1—

(-G

n
I1
i,j =1
i 7

1—

n

[I
ij=1
i #

1—

(-0

n
[1
i,j=1
i

1—

(21)

(-0 (1o

(1= (0= () 7) (=

¥1

(-0

(%5)
1

) -0

(2

)Y -0

(

m

(2

)Y (- )

o)

m

) ) (- (e

Proof. This result can be obtained similarly as the previous one.

(25
m

Y 0= ()

(=5)

(%5)

n(n—1)

"))

n(n—

"))

n(n—1)

1
n(n—1)
1
n(n—1)

"))

1
n(n—1)

"))

MVmNBM and MVmNWBM operators satisfy the following properties:

)

) pt+aq

pt+q

p+aq

p+q

p+q
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e Permutation
e Monotonicity

e Boundedness

Theorem 3.10. (Permutation) Let X(z), (i = 1,2,...,n) be a set of n elements of an
MVmNS. If X (), (i = 1,2,...,n) is a permutation of X (z;), (i = 1,2,...,n), then
MVmNWBM(X (z1),X (22) ..., X (2n)) =MVmNWBM(X (1), X (22), ..., X (2n))

Proof. Following result can be obtained by definition

<n(nl—1) <i,j:é1g,#i (weX(z))" @ (w; X (zz))q)» " B )

(Tl(nl—l) (z‘,j:%j# «wiX’(zl))p ® (ij’(ZQ))q)» .

Hence the result.

Theorem 3.11. (Monotonicity) Let X(z;), (i = 1,2,...,n) and X(z;), (i = 1,2,...,n) be
two sets of elements of an MVmNS. If X (z;) > X (2) for all i = 1,2, ...,n then
MVmNWBMPA (X (21),X (22) ,...; X (20)) 2MVmNWBMP? (X (21), X (22) .., X (20)) .

Proof. Let

X(z) = (U0 00m)) L (0™ - D)) () el )))
and X () = (U0}, s U0RY) s (WE0E s UL ) (DR s LR ) )
(1) X(2) 2 X(z) = 2 25 = 1= (150" 21— (1-91)"

= (1= (1)) (1 - (1- %Zj))wj)q > (1= (1-91)" <1 -(1- %Zj))wj)q

forall j =1,2,...,m,

—1-(1- (1= (1 - (1- v'ﬁz"'))wjy <1-(1- (1= <1 - (1- vfzj))wj)q

= f{ 1 (1 — (1= (1= <1 - (1 —%Z”'))wj)q) <
40
T (-0 (- 6-4))
i F
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o ﬁ <1 - (1 B (1 _%Zi))wz)p <1 - (1 _%Zj))wj)q) §
ij=1
i F

Similarly

3
3}
=]

ij =1
i 7]

for k=1,2,...,m.
(2) X(zz) > X(Zz) - ,ugzi) < Iu,gzi) _ (,ugzl)> ‘ < (,ugzl)> ¢

= (1= (7)) (= (™) )= (= (7)) (- (™))

v

]
3
Q
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—1- (1 _ (Mgzi))“’iy (1 B (Mgzj)>wj>q 1 (1 e
- 100
1,7 =1
i F ]
ﬁ (1 - (1 _ <M'gz¢))wi)p (1 _ (M'(lzj)>wj>Q>
1,j =1
i

—- | T (- (= ()Y (- ()))

IN

Similarly

3
+‘~
=]

ih,j=1
i F ]

IN

]
i
Q

h~]
i
Q
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for k=1,2,...,m.
n(n—1)

o[- 0006 (- 657

ij=1
i#j

IN

1 1
A=) pt+q

| I )Y - 6))
i #£ ]

for k=1,2,...,m.
From (1)-(3), the required result is obtained.

Theorem 3.12. (Boundedness) Let X(z;), (i = 1,2,...,n) be a set of n elements of an
MVmNS, then

min (X (z1), X (22),..., X (2n)) <K MVmNWBM (X (21),X (22) y ..., X (2n))
<max (X (21),X (22), ..., X (zn))

Proof. Let m = min (X (21),X (22),...., X (2n)) and M = max (X (z1),X (22),..., X (2n))

Since m < X (z;) < M so by using previous theorem

m < MVmNWBM (X (z1),X (22) ..., X (2n)) ,
MVmMNWDBM (X (z1),X (22) ..., X (2n)) < M.

Hence the result.

3.3. Multi- Valued Multi-Polar Neutrosophic Soft Set

Definition 3.13. Let Z be a universal set and E be a set of parameters with X C E. Define
w: X — P(Z), where P(Z) is the collection of all MVmN subsets of the set Z. Then
(w, X) is said to be an multi-valued m-polar neutrosophic soft set (MVmNSS) over Z which
is represented as Qx = (w, X) = {e,wx(e) : e € E,wx(e) € P(Z)} and wx(e) is an MVmNS
over Z.
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TABLE 1. Representation of a MV3NSS.

¢ Cs
({0.6},{0.4,0.5},{0.4,0.5}), ({0.6}, {0. 7} {04 0.5}), ({0.3,0.5},{0.7},{0.9}),
Ay ( ({0.8,},{0.1,0.4},{0.5}) , ) ({0.3,0.7},{0.6},{0.8,0.9}),, ) (({0609} {0.8},{0.6}), )
({0.2},{0.8},{0.3,0.6}) ({0.4},{0.8,0.9},{0.5}) ({0.4,0.5}, {0.4},{0.7})
{0.6,0.8},{0.6},{0.5,0.7}),
Ay | ({0.6,0.7},{0.7},{0.2,0.4}), ({0.6},{0.6,0.8},{0.7}) , (({0206} {0.3,0.4},{0.4}), )

({0.4},{0.6},{0.5,0.9}) ) ({0.4},{0.5},{0.5,0.7})
({0.6},{0.4,0.6},{0.8}), ({0.9},{0.7},{0.8,0.9}) ,
({0.7,0.8},{0.9}, {0.5}),, ) ( ({0.4},{0.7,0.9},{0.8}) , )
({0.3,0.5},{0.8}, {0.7,0.8}) ({0.4},{0.8},{0.7,0.9})
({0.6},{0.4},{0.1,0.3}), ({0.7},{0.3,0.6},{0.7}) ,
({0.5},{0.8},{0.6,0.7}) , ) ( ({0.7},{0.9},{0.4,0.5}) , )
({0.3},{0.6,0.7}, {0.6,0.9}) ({0.4}, {0.3},{0.6})

({0.4},{0.3},{0.8,0.9}),

Az (({04}{03}{09} )
({0.7,0.9}, {0.8}, {0.5})
({0.6},{0.6},{0.5,0.7}),

Ay ( ({0.5,0.7}, {0.7}, {0.9}) , )
(

( ({0.4,0.6},{0.5},{0.2}), ) ( ({0.4,0.6},{0.6},{0.6,0.9}),
({0.4},{0.6},{0.6,0.8})
{0.4},{0.8,0.9},{0.5,0.6}) (

Following example shows an MV3NS where three poles represent three different opinion
leaders and decision makers are considered as opinion followers. Opinion leaders have an

influence power for updating process of opinion followers’ opinions [40].

Example 3.14. Let {A;, As, Az, A4} be a set of four companies where an investor wants to
invest a suitable amount and {C7, Cy, C3} be a set of criteria, then an MV3NSS is represented
in Table [Il

3.3.1. Operations on Multi- Valued m-Neutrosophic Soft Set

Some operations in MVmNSS are defined in this section.

Definition 3.15. Let Z be a universal set and E be a set of parameters with U,V C E. For
two MVmNSSs Qp and Uy, QuC Wy if

(1H)UucCVv,
(2) Qu(e) CUy(e) forall e e Uice. s(Qu(e)(z)) <s(Py(e)(z)) forallee U, z € Z.

Example 3.16. Let Z = {z1,22} and E = {e1,e2,e3}. U = {e1,ea} and V = {e1,ea} be
subsets of E. Let Qy and ¥y be two MV3NSSs defined as:
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Q= {(e1, (21, ({0.3,0.4}, {0.4,0.6,0.7}, {0.2,0.5}), ({0.5, 0.7}, {0.6,0.8, 0.9}, {0.7,0.8}),
({0.4,0.61,{0.5,0.7}, {0.5,0.7,0.81)), (22, ({0.3,0.4}, {0.6,0.9}, {0.8,0.9}),
({0.4,0.5},{0.6,0.8}, {0.4,0.6,0.7}), ({0.1,0.3, 0.5}, {0.6, 0.7}, {0.7,0.81))),

(e2, (21, ({0.4,0.5}, {0.4,0.6}, {0.6,0.9}), ({0.2,0.4,0.5}, {0.6,0.7}, {0.7,0.8}),
({0.3,0.5}, {0.6,0.7,0.8}, {0.7,0.9})), (22, ({0.4, 0.6}, {0.4,0.6,0.7}, {0.6,0.7}),
({0.1,0.2,0.4},{0.5,0.6,0.7}, {0.6,0.8}), ({0.4, 0.5}, {0.5,0.6}, {0.5,0.7})))}
{(e1, (21, ({0.8,0.9}, {0.3,0.5}, {0.5,0.6}), ({0.5, 0.6}, {0.2,0.3}, {0.4,0.5}),
({0.8,0.9}, {0.3,0.4, 0.5}, {0.3,0.4,0.5})), (22, ({0.7,0.8,0.9}, {0.4,0.5}, {0.5, 0.6}),
({0.6,0.7},{0.6,0.7}, {0.3,0.5}), ({0.7,0.8}, {0.4, 0.6}, {0.2,0.5}))),

(2, (21, ({0.6,0.8}, {0.4,0.5}, {0.4,0.5,0.6}), ({0.6,0.8,0.9}, {0.4,0.6}, {0.6,0.7}),
({0.7,0.8},{0.6,0.7},{0.5,0.7})), (22, ({0.6,0.8},{0.4,0.5}, {0.4,0.5}),

({0.5,0.8}, {0.4,0.5}, {0.1,0.4}), ({0.9}, {0.4, 0.5}, {0.5,0.7})))}.

Since s (Qu(e)(2)) < s(Vy(e)(z)) forall e € U, z € Z = QuC¥y (one of the different

choices of e and z is explained as: s(Qu(e1)(z1)) = —0.3288 < —0.083 = s(Vy(e1)(21))).

Definition 3.17. Let Z be a universal set and 27, ¥y be two MVmNS sets, where U and V'
are subsets of E. Qp and ¥y are said to be equal if QyC ¥y and Uy COy.

4. Distance Measures

Let Z = {z,22,...,2,} be a universal set, £ = {ej,ea,...,e,} be a set of attributes and

U,V C E. Let Qy and ¥y be two MVmNS sets over Z with their respective MVmN mappings:

wir(e) = { (2500 T (e) (21) s 0 fzf<ej><Zk>,sio.ow<ej><Zk>) ,
by (e)) = Zk,siofrxz<ej>(zk>,sic>1»z<ej><Zk>,sio.wa<ej><Zk>> ,
forallt=1,2,...,m;7=1,2,...,pand k =1,2,...,n, then the distance measures between

Qu and ¥y are defined as:

4.1. Hamming Distance
\

sioTy (e5) (zx) — sio Ty (e5) (zx) |+

s; 0 }U (€j) (z) — si 0 ;V (ej) (z1)| +

di (Qu, ¥v) = 55 %ii

i=1j=1k=1

sio Fu (e;) (21) — i 0 Fy (e) (21)

\ /
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4.2. Normalized Hamming Distance

;

_|_

sioTy (ej) (zx) —sio Ty (ej) (zk)

~ ~

sio Iy (e5) (z1) — sio Iy (ej) (2x)| +

9y

MS

dym (Qu,¥y) = 3mlpn

i=1j=1k=1
s;io Fy (ej) (zx) — sio Fy (e5) (21)
4.3. FEuclidean Distance
( -~ -~ 2 ) %
<si o Ty (€j) (21) — si o Ty (e5) (zk)> +
dg (Qu,Vv) = 53,5 21 Zlkzl <5i oIy (ej)(zx) —sioly (e)) (Zk:)> +
i=1j=1k=
2

<8¢ o Fy (¢)) (2) — sio Fy (¢)) (Zk)>

4.4. Normalized Euclidean Distance

N[

N N 2

(si 0Ty (e5) (z1) —sioTv (e;) (zk)> +
dng (Q, Ov) = grps 4 2020 <3i oIy (ej) (zk) — sio Iv (e;) (%)) +
2

(0 Fu e ) = 0 Fv ) a0

Some distance measures are defined with weight vector W = (wy, wa, ...,wp)T satisfying

P
w; > 0and Y w; =1.

j=1
4.5. Weighted Hamming Distance

si0 Ty (¢) (21) — 510 Ty (e) (21)| +

+

sio Iy (ef) (21) — si0 Ty (e5) (1)

m P n
dwr (. Uv) = gm 4 22 2 wj
i=1j=1k=1

sio Fu (e;) (2) — 0 Fy (e) (21)

4.6. Weighted Euclidean Distance

S

(5070 (e () =50 T (e w)z ¥

SN
S|
=
S

<
=

I
w
]
S

MS

P n ~ ~ 2

5w, ( o To (e) (z1) — 510 Ty (e5) (zw) n

1j=1k=1 N N )
(si o Fy () (z) — sio Fy (e) (zk))
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5. MCDM Based on MVmNSS by using TOPSIS

Ordering of the elements of MVmNS and formulation of distance measures between them
leads us to develop a stepwise algorithm of TOPSIS.

Step 1: Construct a set of alternatives X = {x1,x9,...,2,} and a set of attributes E =

{ela €2,..., ep}'
Step 2: A decision matrix is constructed by a decision maker which is the representation

of an MVmNSS. In case of group decision, decision matrices are obtained from the experts
and then an aggregated matrix D is obtained by using MVmNBM (Definition 3.6), and is

represented as:
D(l’k) = {<€j,5iOTD (ej),sioID (ej),sioFD (6]'))},
for an alternative zp, k=1,2,...,n.

Step 3: Choose the positive and negative ideal solutions by calculating the score values of

the entries of decision matrices,

PIS = {<€j,5iO%P(6]’),SiO;P(ej)asiO;‘P(ej))}’
NIS = {(ej,sio%N(ej),siOFN (ej),SiO;_‘N(ej)>}'

Step 4: Find the distances of the elements of the aggregated matrix from PIS and NIS for

each alternative xy, k = 1,2,...,n by using one of the following group of distance measures:
sioTp (ej) —s;0Tp (6]') +
1 m p ~ ~
o dwn (Day, PIS) = 3,58 >_ > w; siolp(ej) —siolp(ej)|+ ,
i=1j=1
SiOFD(Bj)—SiOFp(ej)
( ~ ~
s;oTp (ej) —s; 01N (6]‘)‘ +
1 m P ~ ~
dWH(-Dl’kaNIS):m ZZU}]‘ sioID(ej)—sioIN(ej) + ;
i=1j=1
sioFD(ej)—sioFN(ej)

<SlOTD €;) SlOTp (e5)

\_/\/
N
+
[

m P
o dwg (Dyy, PIS) = 5. 212le
i=1j

N

szoID (ej) SzOIP (ej)

<sZ o Fp (ej) —sio Fp (63)>
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D=

~ ~ 2
<3iOTD (6]‘) —Sz‘OTN (6j)) +
p

m ~ ~ 2
dWE(ka,NIS):ﬁ 2'21% <5iOID(ej)SiOIN(€j)> +
i=1j=

N - 2

(Si o FD (€j) — 8§; 0 FN (6j)>
\ Y
Step 5: Calculate the co-efficients of relative closeness (RC) for the alternatives by using

one of the following formulae:

B dy 17 (Dy,, NIS)
RC(wk) = dwi (Da,, NIS) + dw g (Day, PIS)’

or

dwg (Dg,, NIS)
dwg (Ds,,, NIS) + dwg (Da,,, PIS)’
k=1,2,...,n, according to the distance measure used in step 4.

Step 6: Rank the alternatives.

RC(xx) =

5.1. An Application Example

Let X = {x1,x9,x3,24} be a set of alternatives, E = {e1, e2,e3} be a set of attributes and
D = {dy,ds,ds} be the set of decision makers. Ranking of alternatives by the experts and

observation of their attitudes is done here by two techniques:

(1) MVmNBM
(2) TOPSIS

By using first technique, stepwise procedure is as under:
Step 1: Obtain the MV2NSSs from the decision makers d;, d2 and ds which can be repre-
sented in Table [2] Table 3] and Table [4] respectively.
Step 2: Obtain an MVmNSS d?99 by calculating MV2NBM (Definition 3.6) for the respec-
tive values of Table [2| Table [3| and Table
Step 3: Let Wi = (103 05 02 ), Wo=( 02 04 04 JandWs=( 07 0.1 02 )
be three weight vectors for the attributes provided by three decision makers di, do and ds
respectively. Their weighted aggregated values are obtained from Definition 3.7 and are shown
in Table [0, Table [7] and Table
Step 4: Now by using the score function (Definition 3.4), find the single values for each
alternative.
Score values for dy:
S(z1) = —0.3128
S(w2) = —0.3341
S(z3) = —0.3009
S(xy4) = —0.3147
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TABLE 2. Decision matrix from the decision maker d;.

1 (&) €9 €3

T

[y

({0.3,0.4}, {0.4}), ({0.6,0.7}, {0.8}), ({0.9}, {0.6,0.8}) .
( ({0.5},{0.4}), ) ( ({0.5,0.7},{0.4,0.6}), ) ( ({0.4,0.5},{0.7}),, )
({0.6},{0.7}) ({0.9},{0.9}) ({0.3},{0.6})
({0.1}, {0.5}), ({0.7,0.8}, {0.5}), ({0.3}, {0.7}).,
v ( ({0.5}, {0.9}), ) ( ({0.6,0.7}, {0.6}), ) ({0.4}, {0.9}) ,
({0.6,0.7}, {0.9}) ({0.6,0.8}, {0.9}) ({0.2}, {0.3,0.5})

({0.6},{0.8}), ( ({0.9},{0.8}), ) ({0.5},{0.6}),
(

[\

T3 ({0.7,0.8},{0.1}), ({0.7},{0.6}), ({0.4},{0.9}),
({0.6},{0.1}) {0.5,0.6},{0.5}) ({0.1,0.4}, {0.5})
({0.5},{0.9}), (({0.1,0.4},{0.5}),) ( ({0.3},{0.8}), )

za | ({0.2,0.6},{0.4}), ({0.73,{0.2}), ({0.4}, {0.5,0.6}) ,
({0.7}, {0.4}) ({0.5}, {0.3,0.7}) ({0.4,0.6}, {0.7})

TABLE 3. Decision matrix from the decision maker d.

2 el es €3
({0.1},{0.3}), ({0.7},{0.5}), ({0.3,0.5},{0.5,0.6}),

x1 ({0.2},{0.1,0.5}), ( ({0.4},{0.5}), ) ( ({0.4},{0.8}), )
({0.4},{0.6}) ({0.3,0.5},{0.4}) ({0.3},{0.7})

({0.4,0.6},{0.9}), ({0.1},{0.5,0.7}), ({0.4},{0.9}),

T2 ({0.8},{0.5}), ({0.6},{0.7}), ( ({0.5},{0.6}), )
({0.6},{0.6}) ({0.1},{0.3}) ({0.7},{0.8})
({0.2},{0.4}), ({0.4},{0.7,0.8}), ({0.2},{0.8,0.9}),

3 ({0.5},{0.6,0.7}), ({0.2},{0.1}), ({0.5},{0.8}),
({0.2},{0.7}) ({0.2},{0.7}) ({0.1},{0.5,0.9})

({0.5,0.7},{0.4}), ({0.9},{0.8}), ({0.3},{0.4,0.5}),

T4 ({0.4,0.8},{0.9}), ({0.6},{0.7,0.9}), ({0.3,0.4},{0.6}),

({0.1},{0.5}) ({0.3},{0.6}) ({0.7},{0.2,0.3})

Score values for ds:
S(z1) = —0.3084

S(x2) = —0.3326
S(z3) = —0.2952

S(z4) = —0.3167
Score values for ds:
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TABLE 4. Decision matrix from the decision maker ds.

3 el €9 €3

({0.6}, {0.7}) ({0.4,0.6},{0.7}), ({0.1,0.3}, {0.4}),
T ({0.8,0.9},{0.4}), ({0.4},{0.6}), ({0.6},{0.5,0.8}),
({0.3},{0.6}) ({0.5},{0.7,0.9}) ({0.3,0.5},{0.4})
({0.4},{0.5}), ({0.3},{0.4}), ({0.5,0.8},{0.5})

2 ({0.6},{0.7}), ({0.5,0.6}, {0.6)), ({0.2},{0.3}),

({0.8},{0.6}) ({0.4},{0.7}) ({0.4},{0.9})

({0.2},{0.3,0.6}), ({0.6},{0.7,0.8}), ({0.9},{0.7}),
z3 ({0.4}, {0.5)) ({0.7}, {0.9}), ({0.4}, {0.6,0.7}),

({0.7}, {0.8)) ({0.4,0.5}, {0.8}) ({0.6}, {0.8})
({0.2}, {0.6}), ({0.6},{0.4}), ({0.2},{0.3,0.5}) ,
v | ({0.4,0.6},{0.7)), ({0.4},{0.9}) ({0.7,0.8}, {0.9}),

({0.6}, {0.8,0.9}) ({0.3},{0.6,0.7}) ({0.4},{0.1})

TABLE 5. Aggregated matrix d*99.

Aggl €1 €2 e3

( ({0.3039,0.3437}, {0.4539}) , ) ( ({0.5638,0.6666}, {0.6666}) , ) (({043691,0.5488},{044978,0.5955}),)
1

({0.5187,0.56}, {0.3025,0.4338}) , ({0.4338,0.5050}, {0.5022, 0.5677}) , ({0.4687,0.5022}, {0.6774,0.7690}) ,
(£0.4362}, {0.6346}) ({0.5891,0.6507}, {0.6961,0.7911}) ({0.3,0.3672}, {0.5740})
({0.2860,0.3437}, {0.6246}) , ({0.3268,0.3484}, {0.4659, 0.5285}) , ({0.3966,0.4806}, {0.7003}) ,
2 ( ({0.6418}, {0.7204}) , ) ( ({0.5677,0.6346}, {0.6346}) , ) ( ({0.3693}, {0.6299}) , )
(£0.6722,0.7050}, {0.7140}) ({0.3732,0.4454}, {0.6732}) ({0.4404}, {0.7207,0.7607})
({0.3068}, {0.4806, 0.5955}) , ({0.6268}, {0.7334,0.8}) , ({0.5095}, {0.7,0.7334}) ,
3 ( ({0.5387,0.5775}, {0.4130, 0.4512}) , ) ( ({0.5607}, {0.5803}) , ) ( ({0.4338}, {0.7832,0.8081}) , )
({0.5194}, {0.5824}) ({0.3693,0.4419}, {0.6774}) ({0.2430,0.3732}, {0.6088, 0.7607})
({0.3912,0.4524}, {0.6268}) , (£0.5169,0.6268}, {0.5581}) , ({0.2648}, {0.4806, 0.5947}) ,
vy ( ({0.3346,0.6722}, {0.6961}) , ) ( ({0.5740}, {0.6516, 0.7608}) , ) ( ({0.4724,0.5432}, {0.6842,0.7140}) , )
({0.4936}, {0.6193}) ({03672}, {0.5080, 0.6682}) ({0.5050,0.5740}, {0.32,0.3656})

S(x1) = —0.3444
S(x) = —0.3663
S(x3) = —0.3365
S(x4) = —0.3503

S(x2) < S(x4) < S(x1) < S(x3) is the ranking of alternatives which is similar for all three
decision makers. Alternative x3 is the best one to select.

Step 5: To analyze the future attitude of the decision makers, system of differential equa-
tions (2) is developed by selecting a{;i, i,7 = 1,2,3 from the score Values.azl71 = 0.6991, a}DQ =
0.7048, a2 = 0.6991, a2, = 0.7048

4 = 0.6991P; + 0.7048P,

a2 = 0.6991P; + 0.7048P,
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TABLE 6. Weighted aggregated values for d;.

({0.6455,0.7069}, {0.7202, 0.73601}) ,
z1 | ({0.7883,0.8137},{0.7889,0.8375}) ,
({0.7778,0.8019}, {0.8684, 0.8858})
({0.5922,0.6256}, {0.7444, 0.7571}) ,
9 ({0.8186,0.8313}, {0.8771}),
({0.8,0.8185}, {0.8924, 0.8968})
({0.6843},{0.7723,0.8112}) ,
z3 | ({0.8109,0.8172}, {0.8381,0.8473})
({0.7346,0.7749}, {0.8617, 0.8789})
({0.6379,0.6756}, {0.7298, 0.7465}) ,
zs | ({0.7832,0.8494}, {0.8824,0.9030}) ,
({0.7760,0.7859}, {0.7963, 0.8345})

TABLE 7. Weighted aggregated values for ds.

({0.6527,0.7225}, {0.7263, 0.7470}) ,
z1 | ({0.7825,0.8081}, {0.8027,0.8508})
({0.7683,0.7942}, {0.8634, 0.8808})
({0.6019,0.6362}, {0.7520, 0.7644) ,
9 ({0.8064,0.8201}, {0.8716})
({0.7848,0.8033}, {0.8912, 0.8976})
({0.7001%}, {0.7867,0.8221}) ,
z3 | ({0.8033,0.8084},{0.8527,0.8623}),
({0.7179,0.7647}, {0.8595, 0.8840})
({0.6304,0.6637}, {0.7270, 0.7496}) ,
zs | ({0.7826,0.8418},{0.8802,0.9015})
({0.7730,0.7872}, {0.7815,0.8234})

Line graph for the system (3) (Figure [2)) shows the same future behaviour of the decision
makers d; and dg, since lines are overlapping and phase portrait (Figure |1)) shows that the
system is unstable. It means that the experts may change their attitudes in future. A similar
conclusion can be observed between d3 and dy or di and d3. Future attitudes of d; and dy can
also be analyzed (Figure |3) with the following fuzzy initial conditions (FICs):

P1(0) = (=1,0,1),
P(0) = (=1,0,1),

or (a-cut representation)
P0)=(-14a,1—0a) «ae€]0,1],
P0)=(-14a,1—a) «ael0,1].
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TABLE 8. Weighted aggregated values for ds.

z1

T2

3

|

(
(

{0.5941,0.6529}, {0.6708, 0.6887}) ,
{0.8239,0.8432}, {0.8310,0.8709}) ,
({0.7917,0.8105}, {0.8813, 0.8881})
({0.5629,0.6}, {0.7245,0.7304}) ,
({0.8437,0.8488}, {0.8980}) ,
({0.8431,0.8567}, {0.9106, 0.9155})
({0.6299}, {0.7240, 0.7646}) ,
({0.8336,0.8407}, {0.8720, 0.88061}) ,
({0.7762, 0.8090}, {0.8767,0.8985})
({0.5891,0.6212}, {0.6886, 0.7115}) ,
({0.8066,0.8744}, {0.9019, 0.9135}) ,
({0.8179,0.8283}, {0.8261, 0.8461})
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FIGURE 2. Line graph for the system (3).
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FIGURE 3. Line graph for the system (3) with FICs.

TABLE 9. Score values from the decision maker dj.

dq e1 €9 es
1 —0.2416 —0.2416 —0.075
9 —0.3916 —0.2666 —0.15
s —0.025 —0.1083 —0.1583
rg —0.0833 —-0.1916 —0.175

TABLE 10. Score values from the decision maker d.

do e1 €9 e3

r1 —0.1833 —0.0833 —0.2083
xo —0.1833 —0.1666 —0.2166
xg —0.2416 —0.0083 —0.175
zqg —0.1833 —-0.1 —0.1916

Now the stepwise procedure of the second technique is as under:

Step 1 Same as in first technique

Step 2 Same as in first technique.

Step 3 Find the score values of the entries of Table [2] Table [3] and Table [] by Definition
3.4. Respective score values are represented in Table [9] Table [L0] and Table

Step 4 By comparing the score values of the alternatives in Table [0] Table [10]and Table
select the PIS and NIS from Table [2] Table [3] and Table [

Step 5 Find the weighted distances between the entries of Table[5]and Table[12]as described
in section 4.5 with Wy = ( 0.3 0.5 0.2 ) and Wy = ( 0.2 04 04 ) Here weighted

Hamming distance is utilized.
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TABLE 11. Score values from the decision maker ds.

ds e1 €2 es

r1 —0.1416 —0.1833 —0.2416

g —03 —0.2583 —0.1

x3 —0.2916 —0.25 —0.1416

xq4 —0.3083 —0.2083 —0.2583
TABLE 12. Positive and negative ideal solution.

el €2 €3
({0.6},{0.8}), ({0.4},{0.7,0.8}), ({0.9},{0.6,0.8}),
PIS ({0.7,0.8},{0.1}), ({0.2},{0.1}), ({0.4,0.5},{0.7}),
({0.6},{0.1}) ({0.2},{0.7}) ({0.3},{0.6})
({0.1},{0.5}), ({0.7,0.8},{0.5}), ({0.2},{0.3,0.5}),
NIS ({0.5},{0.9}), ({0.6,0.7},{0.6}), ({0.7,0.8},{0.9}),

({0.6,0.7},{0.9})

({0.6,0.8}, {0.9})

({0.4},{0.1})

dw, i (Dg,, PIS) = 0.4059 | dyw, s (D, , PIS) = 0.3875
dw, i (Dyg,, PIS) = 0.4284 | dy, i (Ds,, P1S) = 0.4131
dyw, 11 (Dyy, PIS) = 0.4048 | dy, 7 (Day, P1S) = 0.3886
dw, 11 (Dy,, PIS) = 0.4523 | dyw, s (D, PIS) = 0.4485
dw, 11 (Dy,, NIS) = 0.3838 | dy, 1 (Dy,, NIS) = 0.4064
dw, 11 (Dgy, NIS) = 0.3928 | dy, 1 (D, NIS) = 0.3824
dw, 1t (Dgy, NIS) = 0.4060 | dyy, 7 (Dyy, NIS) = 0.4109
dw, i (Dgy, NIS) = 0.4122 | dy, 11 (Dg,, NIS) = 0.4597

Step 6 Find the Coeflicients of relative closeness for each alternative and rank the alterna-

tives.

RCyw, (1) = 0.4860 ROw, (1) = 0.5119
ROy, (12) = 0.4783 ROy, (22) = 0.4807
RCw, (23) = 0.5007 ROy, (23) = 0.5139
ROy, (24) = 0.4768 RCy, (4) = 0.5061
S(z4) < S(m2) < S(x1) < S(x3) | S(x2) < S(4) < S(21) < S(23)

Both experts select the same alternative and their future attitude is same as discussed in
previous technique.
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6. Conclusion

MVmNSS can model the problems of MCDM with undetermined information better than
MVNSS and mNSS. It engages not only the multi-polar information but also multi-valued data.
The multi-valued neutrosophic set has the membership, non-membership and indeterminacy
values which can be treated as in hesitant fuzzy set or dual hesitant fuzzy set when operational
laws (Definition 2.3) are defined. An analysis of experts attitudes after their decisions can
also be done by utilizing the MVmNBM. This study has also been carried out by Beg et
al. [41] with a fuzzy soft matrix as the initial data which does not captivate the degrees
of falsity-membership and indeterminacy-membership. MVmNSS handles these complicated
uncertainties and can be aggregated by MVmNBM. In the future, other MCDM methods
(TOPSIS, VIKOR, etc.) can be applied in group decision problems by defining the distance
and similarity measures in MVmNSs. Another aspect of this research is the utilization of

differential equations with FICs which does not produce different results.
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