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Abstract. Neutrosophy deals with the study of neutrosophic logic, set and probability. A Pythagorean m-

polar neutrosophic set is indeed an expansion of crisp, fuzzy, intuitionistic fuzzy, neutrosophic and Pythagorean

m-polar fuzzy sets. In this paper, we develop the perception of Pythagorean m-polar fuzzy neutrosophic metric

space defined over Pythagorean m-polar fuzzy neutrosophic set relying on the classical definition of metric

spaces defined on a crisp set. We present some related results and illustrations to perceive the conceptions.

We present many examples of metrics which hold true for classical sets but fail to make sense in Pythagorean

m-polar fuzzy environment. We also render a practical utility of the proposed metrics in pattern recognition.

Keywords: Pythagorean m-polar fuzzy neutrosophic set; Pythagorean m-polar fuzzy neutrosophic subset;

Pythagorean m-polar fuzzy neutrosophic metric spaces; Pattern recognition

—————————————————————————————————————————-

1. Introduction

In the wake of advancement of classical sets to fuzzy sets by Zadeh [33], the scientists around

the globe started working on diverse aspects of fuzzy sets and its expansions. Contrary to clas-

sical sets, an element is allowed to partially belong to the set, as specified in fuzzy set. In [2,3]

Atanassov unveiled the notion of intuitionistic fuzzy sets (IFSs) by including the so called non-

membership grade to already included membership grade in a fuzzy set. Yager [32] comforted

the decision makers by enhancing the space for the the choice of association and dissociation

grades prevailing in the IFSs and called the resulting model as Pythagorean fuzzy set. Naeem
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et al. [21] expanded the conception given by Yager to Pythagorean m-polar fuzzy sets and ren-

dered a fascinating practical implementation to advertisement mode selection problem. Later,

Riaz et al. [24] further generalized the thought to Pythagorean fuzzy soft sets. Naeem et al.

further explored the chief characteristics of Pythagorean m-polar fuzzy sets in [22].

Maurice René Fréchet, a French mathematician, floated the idea of metric spaces in 1906.

Deng [12], Diamond and Kloden [13], Atefi and Jehadi [4], Chaudhuri and Rosenfeld [5],

George and Veeramani [14], and Gregori and Romaguera [15] are among the mathematicians

who studied and explored different aspects of fuzzy metric spaces. The scientists who explored

metric spaces in the framework of IFSs mainly include Gregori and Romaguera [16], Li et

al. [19], and Park et al. [23].

Smarandache [28] presented yet another expansion of fuzzy sets called Neutrosophic sets. He

made further explorations in [29] and [30]. The series of fascinating explorations by Smaran-

dache is continued. Wang et al. [31] presented single valued neutrosophic sets. Arockiarani

et al. [1] studied fuzzy neutrosophic soft topological spaces. Şimşek and Kirşci [27] explored

fixed points in the context of neutrosophic metric spaces. Ishtiaq et al. [17] presented fixed

points results in orthogonal neutrosophic metric spaces. Jansi and Mohana [18] studied, in

recent times, pairwise Pythagorean neutrosophic P-spaces (with dependent neutrosophic com-

ponents between T and F). In recent times, Siraj et al. [25] unveiled the apprehension of

Pythagorean m-polar fuzzy neutrosophic topology with applications towards handling eco-

nomic crises caused due to COVID-19 and the root cause behind scarcity of water in Thar

desert of Pakistan.

Das et al. [6] presented the notion of neutrosophic fuzzy matrices with their algebraic opera-

tions. Das and Tripathy [7] studied neutrosophic multiset topological space. Mukherjee and

Das [20] explored neutrosophic bipolar vague soft set and its application. Das et al. [8] un-

veiled the notions of neutro algebra and neutro group. Das and Das [9] presented neutrosophic

separation axioms. Recently, Das et al. [10] rendered the idea of pentapartitioned neutrosophic

probability distributions. Das et al. [11] studied topology on ultra neutrosophic set.

There arise many situations in real life where we have to think time and again before reach-

ing at some decision–a decision that may be thought as flawless. It is in fact the process of

multipolarity. The ever-expanding applications of neutrosophic sets are not concealed from

the world. Pythagorean neutrosophic environment provides the enhanced facility of choosing

values for the three membership functions (truth, indeterminacy and falsity) from a broader

space.

In this article, we explore some notions of Pythagorean m-polar fuzzy neutrosophic metric

spaces. Section 2 presents some basic notions necessary to conceive the main topic of this

study. The third section presents main study of this article. In this section, the notion of
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Pythagorean m-polar fuzzy neutrosophic metric spaces has been put forward. A large number

of examples and illustrations are presented to conceive the perception. Section 4 presents a

practical implementation of the proposed metrics in pattern recognition. Section 5 concludes

the paper.

2. Preliminaries

Definition 2.1. [28, 29] A neutrosophic set N on the underlying set X is specified as

N = {< g, TN(g), IN(g), FN(g) >: g ∈ X}

where T, I, F : X 7→]−0, 1+[ accompanied by the constraint −0 ≤ TN(g)+IN(g)+FN(g) ≤ 3+.

Here TN(g), IN(g) and FN(g) are the degrees of membership, indeterminacy and falsity (non-

membership) of members of the given set, respectively. T , I and F are acknowledged as the

neutrosophic components.

Definition 2.2. [1] A fuzzy neutrosophic set (fn-set) over X is delineated as

A = {< g, TA(g), IA(g), FA(g) >: g ∈ X}

where T, I, F : X 7→ [0, 1] in such a way that 0 ≤ TA(g) + IA(g) + FA(g) ≤ 3.

Definition 2.3. [25] A Pythagorean m-polar fuzzy neutrosophic set (PmFNS) ℑ over a basic

setX is marked by three mappings T
(i)
ℑ

: X → [0, 1]m, I
(i)
ℑ

: X → [0, 1]m and F
(i)
ℑ

: X → [0, 1]m,

where m is a natural number, ∀i = 1, 2, · · · ,m, with the limitation that

0 ≤
(

T
(i)
ℑ

(g)
)2

+
(

I
(i)
ℑ
(g)

)2
+

(

F
(i)
ℑ

(g)
)2 ≤ 2

for all g ∈ X.

A PmFNS may be expressed as

ℑ =
{

(g,
(

(T
(1)
ℑ

(g), I
(1)
ℑ

(g), F
(1)
ℑ

(g)), · · · , (T (m)
ℑ

(g), I
(m)
ℑ

(g), F
(m)
ℑ

(g))
)

: g ∈ X
}

=

{

g

(T
(1)
ℑ

(g), I
(1)
ℑ

(g), F
(1)
ℑ

(g)), · · · , (T (m)
ℑ

(g), I
(m)
ℑ

(g), F
(m)
ℑ

(g))
: g ∈ X

}

=

{

g

(T
(i)
ℑ

(g), I
(i)
ℑ

(g), F
(i)
ℑ

(g))
: g ∈ X, i = 1, 2, · · · ,m

}

If cardinality of X is l, then tabular structure of ℑ is as in Table 1:
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Table 1. Tabular representation of PmFNS ℑ

ℑ

g1

(

T
(1)
ℑ

(g1), I
(1)
ℑ

(g1), F
(1)
ℑ

(g1)
) (

T
(2)
ℑ

(g1), I
(2)
ℑ

(g1), F
(2)
ℑ

(g1)
)

· · ·
(

T
(m)
ℑ

(g1), I
(m)
ℑ

(g1), F
(m)
ℑ

(g1)
)

g2

(

T
(1)
ℑ

(g2), I
(1)
ℑ

(g2), F
(1)
ℑ

(g2)
) (

T
(2)
ℑ

(g2), I
(2)
ℑ

(g2), F
(2)
ℑ

(g2)
)

· · ·
(

T
(m)
ℑ

(g2), I
(m)
ℑ

(g2), F
(m)
ℑ

(g2)
)

.

..
.
..

.

..
. . .

.

..

gl

(

T
(1)
ℑ

(gl), I
(1)
ℑ

(gl), F
(1)
ℑ

(gl)
) (

T
(2)
ℑ

(gl), I
(2)
ℑ

(gl), F
(2)
ℑ

(gl)
)

· · ·
(

T
(m)
ℑ

(gl), I
(m)
ℑ

(gl), F
(m)
ℑ

(gl)
)

The corresponding matrix format is

ℑ =











(

T
(1)
ℑ

(g1), I
(1)
ℑ

(g1), F
(1)
ℑ

(g1)
) (

T
(2)
ℑ

(g1), I
(2)
ℑ

(g1), F
(2)
ℑ

(g1)
)

· · ·
(

T
(m)
ℑ

(g1), I
(m)
ℑ

(g1), F
(m)
ℑ

(g1)
)

(

T
(1)
ℑ

(g2), I
(1)
ℑ

(g2), F
(1)
ℑ

(g2)
) (

T
(2)
ℑ

(g2), I
(2)
ℑ

(g2), F
(2)
ℑ

(g2)
)

· · ·
(

T
(m)
ℑ

(g2), I
(m)
ℑ

(g2), F
(m)
ℑ

(g2)
)

...
...

. . .
...

(

T
(1)
ℑ

(gl), I
(1)
ℑ

(gl), F
(1)
ℑ

(gl)
) (

T
(2)
ℑ

(gl), I
(2)
ℑ

(gl), F
(2)
ℑ

(gl)
)

· · ·
(

T
(m)
ℑ

(gl), I
(m)
ℑ

(gl), F
(m)
ℑ

(gl)
)











This l ×m matrix is known as PmFN matrix. The assortment of each PmFNS characterized

over universe would be designated by PmFNS(X).

Definition 2.4. [25] Let ℑ1 and ℑ2 be PmFNSs over X. ℑ1 is acknowledged as a subset of

ℑ2, written as ℑ1 ⊆ ℑ2, ∀ℑ ∈ X and each values of i ranging from 1 to m, if

1) T
(i)
ℑ1

(g) ≤ T
(i)
ℑ2

(g),

2) I
(i)
ℑ1
(g) ≥ I

(i)
ℑ2
(g),

3) F
(i)
ℑ1

(g) ≥ F
(i)
ℑ2

(g).

ℑ1 and ℑ2 are said to be equal if ℑ1 ⊆ ℑ2 ⊆ ℑ1 and is written as ℑ1 = ℑ2.

Definition 2.5. [25] A PmFNS ℑ over X is known as null PmFNS if T
(i)
ℑ

(g) = 0 , I
(i)
ℑ
(g) = 1

and F
(i)
ℑ

(g) = 1, ∀g ∈ X and all acceptable values of i. It is designated by Φ.

Thus,

Φ =















(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)

(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)
...

...
. . .

...

(0, 1, 1) (0, 1, 1) · · · (0, 1, 1)















.

Definition 2.6. [25] A PmFNS ℑ over X is called an absolute PmFNS if T
(i)
ℑ

(g) = 1,

I
(i)
ℑ
(g) = 0, and F

(i)
ℑ

(g) = 0, ∀g ∈ X. It is denoted by χ̆.

Thus,

χ̆ =















(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)

(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)
...

...
. . .

...

(1, 0, 0) (1, 0, 0) · · · (1, 0, 0)















.
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Definition 2.7. [25] The complement of a PmFNS

ℑ =

{

g

(T
(i)
ℑ

(g), I
(i)
ℑ

(g), F
(i)
ℑ

(g))
: g ∈ X, i = 1, · · · ,m

}

over X is defined as

ℑc =

{

g

(F
(i)
ℑ

(g), 1 − I
(i)
ℑ
(g), T

(i)
ℑ

(g))
: g ∈ X, i = 1, · · · ,m

}

.

Definition 2.8. [25] The union of any PmFNSs ℑ1 and ℑ2 expressed over the same universe

X is represented as

ℑ1∪Mℑ2 =
{

g

(max(T
(i)
ℑ1(g), T

(i)
ℑ2 (g)),min(I

(i)
ℑ1(g), I

(i)
ℑ2(g)),min(F

(i)
ℑ1(g), F

(i)
ℑ2 (g))

: g ∈ X, i = 1, · · · ,m
}

Definition 2.9. [25] The intersection of any PmFNSs ℑ1 and ℑ2 expressed over the same

universe X is represented as

ℑ1∩Mℑ2 =
{

g

(min(T
(i)
ℑ1 (g), T

(i)
ℑ2 (g)),max(I

(i)
ℑ1(g), I

(i)
ℑ2(g)),max(F

(i)
ℑ1(g), F

(i)
ℑ2 (g))

: g ∈ X, i = 1, · · · ,m
}

3. Pythagorean m-Polar Fuzzy Neutrosophic Metric Spaces

In this section, we introduce the notion of Pythagorean m-polar fuzzy neutrosophic metric

space along with its prime characteristics and illustrations. The superscript i, wherever used,

will run from 1 to m, unless stated otherwise.

Definition 3.1. Let ð1, ð2 and ð3 be three PmFNSs on X
¯
. The mapping

M
¯
s : PmFN(X

¯
) × PmFN(X

¯
) 7→ [0, 2] is said to be a Pythagorean m-polar fuzzy neutro-

sophic metric on PmFN(X
¯
) if it ensures the following postulates:

M
¯
s
1: 0 ≤ M

¯
s(ð1, ð2) ≤ 2

M
¯
s
2: M¯

s(ð1, ð2) = M
¯
s(ð2, ð1)

M
¯
s
3: M¯

s(ð1, ð2) = 0 ⇔ ð1 = ð2

M
¯
s
4: M¯

s(ð1, ð3) ≤ M
¯
s(ð1, ð2) +M

¯
s(ð2, ð3)

M
¯
s
5: If ð1 ⊆ ð2 ⊆ ð3, then M

¯
s(ð1, ð2) ≤ M

¯
s(ð1, ð3) and M

¯
s(ð2, ð3) ≤ M

¯
s(ð1, ð3)

for all ð1, ð2 and ð3 ∈̄ PmFN(X
¯
).

The pair (PmFN(X
¯
), M

¯
s) is said to be the Pythagorean m-polar fuzzy neutrosophic metric

space (PmFNMS). PmFN(X
¯
) is known as the Pythagorean m-polar fuzzy neutrosophic un-

derlying set (PmFN-underlying set) or the Pythagorean m-polar fuzzy neutrosophic ground set

(PmFN-ground set). The elements of PmFN(X
¯
) are called the Pythagorean m-polar fuzzy

neutrosophic points (PmFN-points) of the PmFNMS (PmFN(X
¯
), M

¯
s).
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Remark 3.2. If ð1, ð2, ð3, · · · ,ðn−1, ðn are n distinct PmFN points of the PmFNMS

(PmFN(X
¯
), M

¯
s), then the fourth postulate may be generalized as

M
¯
s(ð1, ðn) ≤ M

¯
s(ð1, ð2) + M

¯
s(ð2, ð3) + M

¯
s(ð3, ð4) + · · · +M

¯
s(ðn−1,ðn)

Example 3.3. Let

ð1 = {〈(k
¯
(i)
1 , I

¯
(i)
1 , ̥

¯

(i)
1 )〉},

and

ð2 = {〈(k
¯
(i)
2 , I

¯
(i)
2 , ̥

¯

(i)
2 )〉}

be members of PmFN(X
¯
). We establish that

M
¯
s(ð1, ð2) = 2m

√

√

√

√

m
∑

i=1

{

(k
¯
(i)
1 − k

¯
(i)
2 )2m + (I

¯
(i)
1 − I

¯
(i)
2 )2m + (̥

¯

(i)
1 −̥

¯

(i)
2 )2m

}

is a PmFNMS on PmFN(X
¯
).

M
¯
s
2 and M

¯
s
3 of Definition 3.1 are obvious. We establish the remaining requirements.

M
¯
s
1: Since 0 ≤ (k

¯
(i)
1 − k

¯
(i)
2 )2m ≤ 1, 0 ≤ (I

¯
(i)
1 − I

¯
(i)
2 )2m ≤ 1, 0 ≤ (̥

¯

(i)
1 −̥

¯

(i)
2 )2m ≤ 1

⇒ 0 ≤ 2m

√

∑m
i=1

{

(k
¯
(i)
1 − k

¯
(i)
2 )2m + (I

¯
(i)
1 − I

¯
(i)
2 )2m + (̥

¯

(i)
1 −̥

¯

(i)
2 )2m

}

≤ 2

Thus,

0 ≤ M
¯
s(ð1, ð2) ≤ 2

∀ ð1, ð2 ∈̄ PmFN(X
¯
).

M
¯
s
4: By virtue of Minkowski’s inequality, we have

[(k
¯
(i)
1 −k

¯
(i)
3 )2m+(I

¯
(i)
1 − I

¯
(i)
3 )2m+(̥

¯

(i)
1 −̥

¯

(i)
3 )2m]

1
2m ≤ [(k

¯
(i)
1 −k

¯
(i)
2 )2m+(I

¯
(i)
1 − I

¯
(i)
2 )2m+

(̥
¯

(i)
1 −̥

¯

(i)
2 )2m]

1
2m + [(k

¯
(i)
2 − k

¯
(i)
3 )2m + (I

¯
(i)
2 − I

¯
(i)
3 )2m + (̥

¯

(i)
2 −̥

¯

(i)
3 )2m]

1
2m

⇒ M
¯
s(ð1, ð3) ≤ M

¯
s(ð1, ð2) + M

¯
s(ð2, ð3)

∀ ð1, ð2, ð3 ∈̄ PmFN(X
¯
).

M
¯
s
5: If ð1 ⊆ ð2 ⊆ ð3, then

k
¯
(i)
1 ≤ k

¯
(i)
2 ≤ k

¯
(i)
3 ,

I
¯
(i)
1 ≥ I

¯
(i)
2 ≥ I

¯
(i)
3 ,

̥
¯

(i)
1 ≥ ̥

¯

(i)
2 ≥ ̥

¯

(i)
3

so that

M
¯
s(ð1, ð2) = [(k

¯
(i)
1 − k

¯
(i)
2 )2m + (I

¯
(i)
1 − I

¯
(i)
2 )2m + (̥

¯

(i)
1 −̥

¯

(i)
2 )2m]

1
2m

∵ M
¯
s(ð1, ð2) = M

¯
s(ð2, ð1), from M

¯
s
2

So,

M
¯
s(ð1, ð2) = [(k

¯
(i)
2 − k

¯
(i)
1 )2m + (I

¯
(i)
2 − I

¯
(i)
1 )2m + (̥

¯

(i)
2 −̥

¯

(i)
1 )2m]

1
2m

and

M
¯
s(ð1, ð3) = [(k

¯
(i)
1 − k

¯
(i)
3 )2m + (I

¯
(i)
1 − I

¯
(i)
3 )2m + (̥

¯

(i)
1 −̥

¯

(i)
3 )2m]

1
2m
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again from M
¯
s
2, we have

M
¯
s(ð1, ð3) = [(k

¯
(i)
3 − k

¯
(i)
1 )2m + (I

¯
(i)
3 − I

¯
(i)
1 )2m + (̥

¯

(i)
3 −̥

¯

(i)
1 )2m]

1
2m

Now, if ð2 ⊆ ð3, then

k
¯
(i)
2 ≤ k

¯
(i)
3

⇒ k
¯
(i)
2 − k

¯
(i)
1 ≤ k

¯
(i)
3 − k

¯
(i)
1

⇒ (k
¯
(i)
2 − k

¯
(i)
1 )2m ≤ (k

¯
(i)
3 − k

¯
(i)
1 )2m

Also,

I
¯
(i)
2 ≥ I

¯
(i)
3

⇒ −I
¯
(i)
2 ≤ −I

¯
(i)
3

⇒ I
¯
(i)
1 − I

¯
(i)
2 ≤ I

¯
(i)
1 − I

¯
(i)
3

⇒ (I
¯
(i)
1 − I

¯
(i)
2 )2m ≤ (I

¯
(i)
1 − I

¯
(i)
3 )2m

and

I
¯
(i)
2 ≥ I

¯
(i)
3

⇒ −̥
¯

(i)
2 ≤ −̥

¯

(i)
3

⇒ ̥
¯

(i)
1 −̥

¯

(i)
2 ≤ ̥

¯

(i)
1 −̥

¯

(i)
3

⇒ (̥
¯

(i)
1 −̥

¯

(i)
2 )2m ≤ (̥

¯

(i)
1 −̥

¯

(i)
3 )2m

It follows from above inequalities that M
¯
s(ð1, ð2) ≤ M

¯
s(ð1, ð3).

The other inclusion may be established on the parallel track.

Thus, M
¯
s(ð1, ð2) is a PmFNMS on PmFN(X

¯
).

Example 3.4. Consider the PmFNSs ð1, ð2 and ð3 given in Example 3.3. Then, none of the

following is a PmFNMS on PmFN(X
¯
):

(1) M
¯
s
r(ð1, ð2) = maxi{k

¯
(i)
1 ,k

¯
(i)
2 }+maxi{I

¯
(i)
1 , I

¯
(i)
2 }+maxi{̥

¯

(i)
1 ,̥

¯

(i)
2 }.

(2) M
¯
s
t (ð1, ð2) = mini{k

¯
(i)
1 ,k

¯
(i)
2 }+mini{I

¯
(i)
1 , I

¯
(i)
2 }+mini{̥

¯

(i)
1 ,̥

¯

(i)
2 }.

(3) M
¯
s
b(ð1,ð2) =

∑m
i=1

(

k
¯
(i)
1 + k

¯
(i)
2 + I

¯
(i)
1 + I

¯
(i)
2 +̥

¯

(i)
1 +̥

¯

(i)
2

)

.

(4) M
¯
s
c(ð1,ð2) =

∑m
i=1

{

(k
¯
(i)
1 + k

¯
(i)
2 )2 + (I

¯
(i)
1 + I

¯
(i)
2 )2 + (̥

¯

(i)
1 +̥

¯

(i)
2 )2

}

.

(5) M
¯
s
d(ð1,ð2) =

√

∑m
i=1

{

(k
¯
(i)
1 + k

¯
(i)
2 )2 + (I

¯
(i)
1 + I

¯
(i)
2 )2 + (̥

¯

(i)
1 +̥

¯

(i)
2 )2

}

.

(6) M
¯
s
e(ð1,ð2) =

∑m
i=1

{(

(k
¯
(i)
1 + k

¯
(i)
2 )2 + (I

¯
(i)
1 + I

¯
(i)
2 )2 + (̥

¯

(i)
1 +̥

¯

(i)
2 )2

)n}
, where n ∈ R.

(7) M
¯
s
u(ð1, ð2) = maxi{k

¯
(i)
1 + k

¯
(i)
2 , I

¯
(i)
1 + I

¯
(i)
2 ,̥

¯

(i)
1 +̥

¯

(i)
2 }.

In case of (1), if ð1 = ð2 i.e. if k
¯
(i)
1 = k

¯
(i)
2 , I

¯
(i)
1 = I

¯
(i)
2 and ̥

¯

(i)
1 = ̥

¯

(i)
2 , then it is not necessary

that k
¯
(i)
1 = k

¯
(i)
2 = I

¯
(i)
1 = I

¯
(i)
2 = ̥

¯

(i)
1 = ̥

¯

(i)
2 = 0.

Therefore, ð1 = ð2 ; M
¯
r
s(ð1, ð2) = 0. Hence, M

¯
s
r(ð1, ð2) is not a PmFNMS on PmFN(X

¯
).

Same reasoning holds good for (2).
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For (3), it is not guaranteed that the sum on the RHS will not exceed 2. So, M
¯
s
b fails to be a

PmFNMS on PmFN(X
¯
). The same argument is valid for (4), (5) and (6).

The analogous issue arises in case of (7).

Example 3.5. Let PmFN(X
¯
) = {x1, x2} be the universal sets with three P3FNSs as given

in Tables 2 - 4.

Table 2. P3FNS M1

M1

x1 (0.417, 0.312, 0.356) (0.012, 0.374, 0.436) (0.811, 0.363, 0.272)

x2 (0.712, 0.117, 0.562) (0.333, 0.672, 0.891) (0.068, 0.772, 0.921)

Table 3. P3FNS N1

N1

x1 (0.811, 0.062, 0.211) (0.312, 0.270, 0.137) (0.921, 0.266, 0.152)

x2 (0.932, 0.101, 0.431) (0.466, 0.352, 0.721) (0.368, 0.572, 0.900)

and

Table 4. P3FNS O1

O1

x1 (0.932, 0.001, 0.200) (0.527, 0.170, 0.007) (1.000, 0.062, 0.008)

x2 (0.982, 0.001, 0.231) (0.667, 0.252, 0.421) (0.766, 0.423, 0.262)

where M1, N1, O1 ∈̄ P3FN(X
¯
) and M1 ⊂ N1 ⊂ O1. We show that M

¯
s(M1, N1) is a P3FNMS

on PmFN(X
¯
) if

M
¯
s
α(M1, N1) =

√

∑

i

{

(k
¯
(i)
1 − k

¯
(i)
2 )2 + (I

¯
(i)
1 − I

¯
(i)
2 )2 + (̥

¯

(i)
1 −̥

¯

(i)
2 )2

}

M
¯
s
1: M¯

s
α(M1, N1) =

√
0.239 + 0.190 + 0.036 + 0.066 + 0.149 + 0.130 = 0.900

⇒ 0 ≤ M
¯
s
α(M1, N1) ≤ 2.

M
¯
s
2: Obvious.

M
¯
s
3: Obvious.

M
¯
s
4: Since M

¯
s
α(M1, O1) = 1.680, M

¯
s
α(N1, O1) = 0.970, and M

¯
s
α(M1, N1) = 0.900, so

M
¯
s
α(M1, O1) ≤ M

¯
s
α(M1, N1) +M

¯
s
α(N1, O1)

M
¯
s
5: M1 ⊂ N1 ⊂ O1 ⇒ M

¯
s
α(M1, N1) < M

¯
s
α(M1, O1) and M

¯
s
α(N1, O1) < M

¯
s
α(M1, O1)

follows from above computations.
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Thus, M
¯
s
α(M1, N1) is a P3FNMS on PmFN(X

¯
), for M1, N1, O1 ∈̄ P3FN(X

¯
).

Proposition 3.6. Let M
¯

s(ð1, ð2) and M
¯

s(ð3, ð4) be two PmFNMSs on a PmFNS

PmFN(X
¯
), then M

¯
s
f [(ð1, ð3), (ð2, ð4)] = M

¯
s(ð1, ð2) + M

¯
s(ð3, ð4) is not a PmFNMS on

PmFN(X
¯
)× PmFN(X

¯
).

Proof. Since M
¯
s(ð1, ð2) and M

¯
s(ð3, ð4) are two PmFNMSs. Therefore, by definition

0 ≤ M
¯
s(ð1, ð2) ≤ 2 and 0 ≤ M

¯
s(ð3, ð4) ≤ 2

⇒ 0 ≤ M
¯
s(ð1, ð2) +M

¯
s(ð3, ð4) ≤ 4

⇒ 0 ≤ M
¯
s
f [(ð1, ð3), (ð2, ð4)] ≤ 4

So, M
¯
s
f [(ð1, ð3), (ð2, ð4)] is not a PmFNMS on PmFN(X

¯
)× PmFN(X

¯
).

0.1cm

Remark 3.7. It is interesting to note that the distance defined in the way as in Proposition

3.6 yields metric space in crisp sets but fails to hold in PmFNSs.

Example 3.8. Consider the PmFNSs PmFN(X
¯
), M1, N1 and O1 given in Example 3.5 and

M2, N2 and O2 given in Tables 5, 6 and 7, respectively:

Table 5. P3FNS M2

M2

x1 (0.444, 0.123, 0.256) (0.114, 0.274, 0.336) (0.901, 0.269, 0.117)

x2 (0.882, 0.107, 0.432) (0.441, 0.521, 0.742) (0.172, 0.710, 0.916)

Table 6. P3FNS N2

N2

x1 (0.844, 0.002, 0.201) (0.332, 0.260, 0.037) (0.922, 0.261, 0.109)

x2 (0.936, 0.006, 0.331) (0.470, 0.262, 0.621) (0.468, 0.472, 0.889)

Table 7. P3FNS O2

O2

x1 (0.992, 0.001, 0.169) (0.627, 0.070, 0.006) (1.000, 0.032, 0.006)

x2 (0.988, 0.001, 0.201) (0.676, 0.152, 0.411) (0.862, 0.413, 0.216)
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∀ M1, M2, N1, N2, O1, O2 ∈̄ P3FN(X
¯
). We check whether M

¯
s[(M1,M2), (N1,N2)] =

2
∑

r=1

M
¯
s(Mr,Nr) is a PmFNMS on PmFN(X

¯
)× PmFN(X

¯
) or not?

Since M
¯
s(M1,N1) = 0.900 and M

¯
s(M2,N2) = 0.756, so that M

¯
s[(M1,M2), (N1,N2)] = 1.656

⇒ 0 ≤ M
¯
s[(M1,M2), (N1,N2)] ≤ 2

But,

M
¯
s[(M1,M2), (O1,O2)] = M

¯
s(M1,O1) +M

¯
s(M2,O2)

=
√
0.386 + 0.491 + 0.196 + 0.196 + 0.509 + 1.043

+
√
0.323 + 0.414 + 0.095 + 0.076 + 0.301 + 1.054

=
√
2.821 +

√
2.263

= 3.182 � 2

So, M
¯
s[(M1,M2), (N1,N2)] is not a P3FNMS on PmFN(X

¯
)× PmFN(X

¯
).

Proposition 3.9. Let M
¯

s(ð1, ð2) and M
¯

s(ð3, ð4) be two PmFNMSs on PmFNS PmFN(X
¯
),

then

(i) M
¯

s
g[(ð1, ð3), (ð2, ð4)] = max{M

¯
s(ð1, ð2),M

¯
s(ð3, ð4)}

(ii) M
¯

s
g[(ð1, ð3), (ð2, ð4)] = min{M

¯
s(ð1, ð2),M

¯
s(ð3, ð4)}

are PmFNMSs on PmFN(X
¯
)× PmFN(X

¯
).

Proof. We prove (i) here. The proof of (ii) may be furnished on the parallel track.

M
¯
s
1: Since M

¯
s(ð1, ð2) and M

¯
s(ð3, ð4) are PmFNMSs on PmFN(X

¯
).

⇒ 0 ≤ M
¯
s(ð1, ð2) ≤ 2 and 0 ≤ M

¯
s(ð3, ð4) ≤ 2

But then, max{M
¯
s(ð1, ð2),M

¯
s(ð3, ð4)}, being the maximum of two non-negative and

less than or equal to 2 quantities, is also non-negative and less than or equal to 2.

M
¯
s
2: Obvious.

M
¯
s
3:

M
¯
s
g[(ð1, ð3), (ð2, ð4)] = 0 ⇔ max{M

¯
s(ð1, ð2),M

¯
s(ð3, ð4)} = 0

⇔ M
¯
s(ð1, ð2) = 0, M

¯
s(ð3, ð4) = 0

⇔ ð1 = ð2, ð3 = ð4

⇔ (ð1,ð3) = (ð2,ð4)

M
¯
s
4: M¯

s
g[(ð1, ð3), (ð5, ð6)] = max{M

¯
s(ð1, ð5),M

¯
s(ð3, ð6)}

Let M
¯
s
g[(ð1, ð3), (ð5, ð6)] = M

¯
s(ð1, ð5). Then,

M
¯
s(ð1, ð2) ≤ max{M

¯
s(ð1, ð2),M

¯
s(ð3, ð4)}

and
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M
¯
s(ð2, ð5) ≤ max{M

¯
s(ð2, ð5),M

¯
s(ð4, ð6)}

Since M
¯
s(ð1, ð2) is a PmFNMS. Therefore,

M
¯
s(ð1, ð5) ≤ M

¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

⇒ max [M
¯
s(ð1, ð5),M

¯
s(ð3, ð6)] ≤ M

¯
s(ð1, ð2) + M

¯
s(ð2, ð5) ≤

max{M
¯
s(ð1, ð2),M

¯
s(ð3, ð4)}+ [M

¯
s(ð2, ð5),M

¯
s(ð4, ð6)]

⇒ M
¯
s
g[(ð1, ð3), (ð5, ð6)] ≤ M

¯
s
g[(ð1, ð3), (ð2, ð4)] +M

¯
s
g[(ð2, ð4), (ð5, ð6)]

M
¯
s
5: Straight forward.

Thus, M
¯
s
g[(ð1, ð3), (ð2, ð4)], ∀ ð1, ð2, ð3, ð4, ð5, ð6 ∈̄ PmFN(X

¯
) is a PmFNMS on

PmFN(X
¯
)× PmFN(X

¯
).

0.1cm

Remark 3.10. Proposition 3.9 shows that more than one PmFNMSs can be defined on a

single PmFNS.

Example 3.11. Consider the P3FNSs given in Example 3.5 and 3.8. We check whether

(i) M
¯
s
1[(M1,M2), (N1,N2)] = max{M

¯
s(M1,N1),M

¯
s(M2,N2)}

(ii) M
¯
s
2[(M1,M2), (N1,N2)] = min{M

¯
s(M1,N1),M

¯
s(M2,N2)}

where M
¯
s(M1,M2) and M

¯
s[(M3,M4) are P3FNMSs on PmFN(X

¯
)× PmFN(X

¯
) or not?

For (i):

M
¯
s
1:

M
¯
s
1[(M1,M2), (N1,N2)] = max{M

¯
s(M1,N1),M

¯
s(M2,N2)}

= max{0.900, 0.756}

= 0.900

⇒ 0 ≤ M
¯
s
1[(M1,M2), (N1,N2)] ≤ 2

M
¯
s
2: Obvious.

M
¯
s
3: Obvious.

M
¯
s
4: M¯

s
1[(M1,M2), (O1,O2)] = max{M

¯
s(M1,O1),M

¯
s(M2,O2)} = max{1.680, 1.504} =

1.680.

Also,

M
¯
s
1[(M1,M2), (N1,N2)] = max{M

¯
s(M1,N1),M

¯
s(M2,N2)] = max{0.900, 0.756} =

0.900,

and

M
¯
s
1[(N1,N2), (O1,O2)] = max{M

¯
s(N1,O1),M

¯
s(N2,O2)} = max{0.970, 0.973} = 0.973.

⇒ M
¯
s
1[(M1,M2), (N1,N2)] +M

¯
s
1[(N1,N2), (O1,O2)] = 0.900 + 0.973 = 1.873

Thus,
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M
¯
s
1[(M1,M2), (O1,O2)] < M

¯
s
1[(M1,M2), (N1,N2)] +M

¯
s
1[(N1,N2), (O1,O2)]

M
¯
s
5: As given, M1 ⊆ N1 ⊆ O1 and M2 ⊆ N2 ⊆ O2

M
¯
s
1[(M1,M2), (N1,N2)] = 0.900,

M
¯
s
1[(M1,M2), (O1,O2)] = 1.680,

and

M
¯
s
1[(N1,N2), (O1,O2)] = 0.973.

It may be observed that

M
¯
s
1[(M1,M2), (N1,N2)] < M

¯
s
1[(M1,M2), (O1,O2)]

and

M
¯
s
1[(N1,N2), (O1,O2)] < M

¯
s
1[(M1,M2), (O1,O2)]

Hence, M
¯
s
1[(M1,M2), (N1,N2)] is a P3FNMS on PmFN(X

¯
)× PmFN(X

¯
).

(ii) may be proved likewise.

Example 3.12. Consider the P3FNMS given in Example 3.5, then following are not P3FNMSs

on PmFN(X
¯
).

(i) M
¯
s
4(M1,N1) =

M
¯

s
(M1,N1)

1−M
¯

s
(M1,N1)

(ii) M
¯
s
5(M1,N1) =

1−M
¯

s
(M1,N1)

M
¯

s
(M1,N1)

(iii) M
¯
s
6(M1,N1) =

3−M
¯

s
(M1,N1)

1+M
¯

s
(M1,N1)

(iv) M
¯
s
7(M1,N1) =

M
¯

s
(M1,N1)

3−M
¯

s
(M1,N1)

(v) M
¯
s
8(M1,N1) =

1−M
¯

s
(M1,N1)

1+M
¯

s
(M1,N1)

We prove them one by one as follows:

(i) Since M
¯
s(M1,N1) = 0.900, so

M
¯
s
4(M1,N1) =

M
¯

s
(M1,N1)

1−M
¯

s
(M1,N1)

= 0.900
1−0.900 = 9 � 2

and hence M
¯
s
4(M1,N1) =

M
¯

s
(M1,N1)

1−M
¯

s
(M1,N1)

is not a P3FNMS on PmFN(X
¯
).

(ii) Since

M
¯
s
5(M1,M1) =

1−M
¯

s
(M1,M1)

M
¯

s
(M1,M1)

= 1−0
0 = 1

0

which is undefined. So, M
¯
s
5(M1,N1) is not a P3FNMS on PmFN(X

¯
).

(iii) Since

M
¯
s
6(M1,M1) =

3−M
¯

s
(M1,M1)

1+M
¯

s
(M1,M1)

= 3−0
1+0 = 3 6= 0

Hence, M
¯
s
6(M1,N1) is not a P3FNMS on PmFN(X

¯
).

(iv) Since

M
¯
s
7(M1,O1) =

M
¯

s
(M1,O1)

3−M
¯

s
(M1,O1)

= 1.680
3−1.680 = 1.273

M
¯
s
7(M1,N1) =

M
¯

s
(M1,N1)

3−M
¯

s
(M1,N1)

= 0.900
3−0.900 = 0.429
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and

M
¯
s
7(N1,O1) =

M
¯

s
(N1,O1)

3−M
¯

s
(N1,O1)

= 0.970
3−0.970 = 0.478

so,

M
¯
s
7(M1,O1) � M

¯
s
7(M1,N1) +M

¯
s
7(N1,O1)

and hence M
¯
s
7(M1,N1) is not a P3FNMS on PmFN(X

¯
).

(v) Since

M
¯
s
8(M1,M1) =

1−M
¯

s
(M1,M1)

1+M
¯

s
(M1,M1)

= 1−0
1+0 = 1 6= 0

Thus, M
¯
s
8(M1,N1) is not a P3FNMS on PmFN(X

¯
).

Remark 3.13. Let M
¯
s(M1,N1) be a PmFNMS on non-empty universal PmFNS PmFN(X

¯
),

then

(1) M
¯
s∗(M1,N1) =

M
¯

s
(M1,N1)

q−M
¯

s
(M1,N1)

, where q is any integer, is not a PmFNMS on PmFN(X
¯
).

(2) M
¯
s∗∗(M1,N1) =

M
¯

s
(M1,N1)

n+M
¯

s
(M1,N1)

, where n is any natural number, is a PmFNMS on

PmFN(X
¯
).

(3) Distance defined in this way yields metric spaces in crisp set but fails to hold in

PmFNMSs.

Proposition 3.14. Let M
¯

s(ð1, ð2) be a PmFNMS on a non-empty universal PmFNS

PmFN(X
¯
) then M

¯
s
f (ð1, ð2) =

M
¯

s
(ð1, ð2)

n+M
¯

s
(ð1, ð2)

, where n is any natural number, is also a

PmFNMS on PmFN(X
¯
).

Proof. M
¯
s
1: Since M

¯
s(ð1, ð2) is a PmFNMS on PmFN(X

¯
). So,

0 ≤ M
¯
s(ð1, ð2) ≤ 2 ⇒ 0 ≤ M

¯
s
(ð1, ð2)

n+M
¯

s
(ð1, ð2)

≤ 2 ⇒ 0 ≤ M
¯
s
f (ð1, ð2) ≤ 2

M
¯
s
2:

M
¯
s
f (ð1, ð2) =

M
¯
s(ð1, ð2)

n+M
¯
s(ð1, ð2)

=
M
¯
s(ð2, ð1)

n+M
¯
s(ð2, ð1)

(∵ M
¯
s(ð1, ð2) is a PmFNMS on PmFN(X

¯
))

= M
¯
s
f (ð2, ð1)

M
¯
s
3:

M
¯
s
f (ð1, ð2) = 0 ⇔ M

¯
s(ð1, ð2)

n+M
¯
s(ð1, ð2)

= 0

⇔ M
¯
s(ð1, ð2) = 0

⇔ ð1 = ð2

Since M
¯
s(ð1, ð2) is a PmFNMS on PmFN(X

¯
).
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M
¯
s
4: Since M

¯
s(ð1, ð2) is a PmFNMS on PmFN(X

¯
). So,

M
¯
s(ð1, ð5) ≤ M

¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

n+M
¯
s(ð1, ð5) ≤ n+M

¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

1

n+M
¯
s(ð1, ð5)

≥ 1

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

−n

n+M
¯
s(ð1, ð5)

≤ −n

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

1− n

n+M
¯
s(ð1, ð5)

≤ 1− n

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

n+M
¯
s(ð1, ð5)− n

n+M
¯
s(ð1, ð5)

≤ n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)− n

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

M
¯
s(ð1, ð5)

n+M
¯
s(ð1, ð5)

≤ M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

=
M
¯
s(ð1, ð2)

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

+
M
¯
s(ð2, ð5)

n+M
¯
s(ð1, ð2) +M

¯
s(ð2, ð5)

≤ M
¯
s(ð1, ð2)

n+M
¯
s(ð1, ð2)

+
M
¯
s(ð2, ð5)

n+M
¯
s(ð1, ð2)

⇒ M
¯
s
f (ð1, ð5) ≤ M

¯
s
f (ð1, ð2) +M

¯
s
f (ð2, ð5)

M
¯
s
5: Since M¯

s(ð1, ð2) is a PmFNMS on PmFN(X
¯
). So, if ð1 ⊆ ð2 ⊆ ð5 then M

¯
s(ð1, ð2) ≤

M
¯
s(ð1, ð5) and M

¯
s(ð2, ð5) ≤ M

¯
s(ð1, ð5) then follows directly from definition.

Hence, M
¯
s
f (ð1, ð2) is also a PmFNMS on PmFN(X

¯
). 0.1cm

Example 3.15. Consider the PmFNMS given in Example 3.5. We show that M
¯
s
3(M1,N1) =

M
¯

s
(M1,N1)

1+M
¯

s
(M1,N1)

is a PmFNMS on PmFN(X
¯
).

M
¯
s
1: Since M

¯
s(M1,M2) = 0.900 from Example 3.5, so

M
¯
s
3(M1,N1) =

M
¯

s
(M1,N1)

1+M
¯

s
(M1,N1)

= 0.900
1+0.900 = 0.900

1.900 = 0.474 ⇒ 0 ≤ M
¯
s
3(M1,N1) ≤ 2.

M
¯
s
2: Obvious.

M
¯
s
3: Obvious.

M
¯
s
4: M¯

s
3(M1,O1) =

M
¯

s
(M1,O1)

1+M
¯

s
(M1,O1)

= 1.680
1+1.680 = 0.627

M
¯
s
3(M1,N1) = 0.474 and

M
¯
s
3(N1,O1) =

M
¯

s
(N1,O1)

1+M
¯

s
(N1,O1)

= 0.970
1+0.970 = 0.492

∴ M
¯
s
3(M1,O1) < M

¯
s(M1,N1) +M

¯
s
3(N1,O1)

M
¯
s
5: M¯

s
3(M1,N1) = 0.474 < 0.627 = M

¯
s
3(M1,O1)

and M
¯
s
3(N1,O1) = 0.492 < 0.627 = M

¯
s
3(M1,O1)

Thus, M
¯
s
3(M1,N1) is also a PmFNMS on PmFN(X

¯
).
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4. Application of proposed metrics in pattern recognition

In this section, we present an application of suggested metrics in pattern recognition. Pat-

tern recognition is the science endued with diverse utilizations, mainly including speech and

fingerprint recognition, medical imaging and diagnosis, aerial photo interpretation, image pro-

cessing, and optical character recognition in scanned documents such as contracts and pho-

tographs.

Example 4.1. Let PmFN(Z
¯
) = {z1, z2, z3} be the universal set with model P3FNS M and

three P3FNSs M1, M2 and M3 as given in Tables 8, 9, 10 and 11, respectively.

Table 8. Model P3FNS M

M

z1 (0.206, 0.101, 0.135) (0.010, 0.153, 0.215) (0.600, 0.142, 0.051)

z2 (0.114, 0.100, 0.215) (0.080, 0.093, 0.435) (0.090, 0.002, 0.981)

z3 (0.087, 0.132, 0.156) (0.090, 0.123, 0.204) (0.340, 0.642, 0.131)

Table 9. P3FNS M1

M1

z1 (0.307, 0.202, 0.246) (0.002, 0.264, 0.326) (0.701, 0.253, 0.162)

z2 (0.542, 0.002, 0.254) (0.143, 0.876, 0.796) (0.214, 0.005, 0.214)

z3 (0.053, 0.007, 0.760) (0.320, 0.432, 0.324) (0.530, 0.241, 0.964)

Table 10. P3FNS M2

M2

z1 (0.701, 0.052, 0.101) (0.202, 0.160, 0.027) (0.811, 0.156, 0.042)

z2 (0.262, 0.001, 0.003) (0.290, 0.980, 0.017) (0.041, 0.126, 0.022)

z3 (0.754, 0.023, 0.100) (0.192, 0.360, 0.023) (0.408, 0.134, 0.702)

and

Table 11. P3FNS M3

M3

z1 (0.822, 0.001, 0.100) (0.417, 0.060, 0.007) (1.000, 0.052, 0.008)

z2 (0.143, 0.084, 0.098) (0.009, 0.170, 0.037) (0.000, 0.402, 0.064)

z3 (0.632, 0.340, 0.132) (0.128, 0.604, 0.215) (0.800, 0.322, 0.609)
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where M,M3,M4,M5 ∈̄ P3FN(Z
¯
). We use the metrics defined in Example 3.3, which is

M
¯
s(ð1, ð2) = 2m

√

√

√

√

m
∑

i=1

{

(k
¯
(i)
1 − k

¯
(i)
2 )2m + (I

¯
(i)
1 − I

¯
(i)
2 )2m + (̥

¯

(i)
1 −̥

¯

(i)
2 )2m

}

,

in Example 3.5, which is

M
¯
s
α(M1, N1) =

√

∑

i

{

(k
¯
(i)
1 − k

¯
(i)
2 )2 + (I

¯
(i)
1 − I

¯
(i)
2 )2 + (̥

¯

(i)
1 −̥

¯

(i)
2 )2

}

and that in Example 3.14, which is

M
¯
s
f (ð1, ð2) =

M
¯
s(ð1, ð2)

n+M
¯
s(ð1, ð2)

taking n = 2, to determine pattern similarity between M and Mi’s. The results so computed

are tabulated in Table 12.

Table 12. Metrics between M and Mi’s

Metric (M,M1) (M,M2) (M,M3)

M
¯
s 0.969 1.068 0.948

M
¯
s
α 1.753 1.880 1.650

M
¯
s
f 0.326 0.348 0.322

Above results show that pattern of M3 is most recognizable with M. These results are

depicted in Figure 1.

Figure 1. Chart of metrics between M and Mi’s
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5. Conclusion

We have inculcated the axiomatic definition of Pythagorean m-polar fuzzy neutrosophic

metric space with the help of Pythagorean m-polar neutrosophic sets and classical metric

space in this study. We provided a large number of examples to perceive the notion clearly.

The cases which are metrics in classical sets but fail to be so in the environment of Pythagorean

m-polar neutrosophic setting have also been made part of the study. The results presented also

hold good in the case of Pythagorean fuzzy neutrosophic sets. We presented an application of

the proposed metrics in pattern recognition. We computed three metrics there and exhibited

that these metrics yield the same optimal choice. The results computed are displayed with the

assistance of a statistical chart. We hope that this article will give new ideas to the researchers

to promote research in various fields.
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