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Abstract: In this research, we introduce an algebraic approach to define the concept of neutrosophic
maximum likelihood estimation method based on neutrosophic continuous probability
distributions based on classical neutrosophic numbers of the form N =a + bl;1 2=J14e,Iisa
letter not a numerical set. We prove that the neutrosophic loglikelihood function gives the same
estimators given by neutrosophic likelihood function. Also, we present the concept of neutrosophic
moments estimation method which produces system of neutrosophic equations to derive the
neutrosophic estimators using an algebraic isomorphism. Estimators based on two mentioned
methods were derived successfully for some neutrosophic continuous probability distributions.
Concept of neutrosophic Fisher information is also presented. Theorems were proved using an
algebraic approach depending on the one-dimensional AH-Isometry. A simulation study is also
presented to show the efficiency of the presented estimators.

Keywords: AH Isometry; Neutrosophic Field of Reals; Maximum Likelihood; Moments; Probability
Density Functions; Neutrosophic Fisher Information.

1. Introduction

Neutrosophic field of reals is an extension to field of reals adding new algebraic structure I satisfies
I?=1 soweget RU) =RU{I}={a+bl;abeR,I* =1} which is neutrosophic field of reals. [1]

Many mathematical studies were done based on the neutrosophic set of reals in many fields of
abstract mathematics including abstract algebra, probability theory, topology, number theory, etc.[2-
7].

In [8] Abobala and Hatip presented an isometry called AH-Isometry which transfers mathematical
problems from R(I) to R X R and an inverse isometry transfers the mathematical problem from R X
R to R(I). This isometry is very applicable to solve and study many types of mathematical problems
including real analysis, complex analysis, algebraic structures, probability theory, operations
research, etc.

Abdulrahman Astambli, Mohamed Bisher Zeina and Yasin Karmouta, On Some Estimation Methods of Neutrosophic
Continuous Probability Distributions Using One-Dimensional AH-1sometry


mailto:abdulrahman.est.96@gmail.com
mailto:bisher.zeina@gmail.com
mailto:yassinkarmouta@gmail.com

Neutrosophic Sets and Systems, Vol. 53, 2023 642

Many previous studies about neutrosophic probability theory were done assuming that parameters
of probability distribution functions are indeterminant, i.e. parameter # is an interval neutrosophic
number, so it can be noted by 6y € [6%,6Y].[9-15]

In [16], [17] Zahid Khan, Sultan Salem et al. presented neutrosophic lognormal model and studied its
critical properties then applied this model to environmental data and in lifetime data where they
treated problems with interval neutrosophic numbers, in [18] Zahid Khan et al. presented
neutrosophic gamma distribution and applied it to a real dataset for the purpose of dealing with
inaccurate statistical data which is also described by interval neutrosophic numbers. Many other
extensions were done to other types of distributions like neutrosophic exponential distribution,
neutrosophic maxwell distribution, etc. and these extensions were applied successfully in may real
datasets. [19-21]. Notice that all the mentioned studies are done by using neutrosophic interval
numbers N = d + 1 where [ € [a,b] and not neutrosophic classical numbers of the form N =a +
bl,I* = I and this is the main difference between our study and the previous studies, so, we are going
to study neutrosophic probability distribution assuming that there is uncertainty in its parameters
and the random variable itself, i.e. f(x;8) is f(xy;0y) based onits algebraic structure, i.e. xy = x +
yl,0y =01 +0,1;x,y,0,0, R, [>=1,0-1=0 by using AH-Isometry which will transfer each
neutrosophic probability density function into two crisp probability distribution functions. Based on
this transformation we have successfully defined the neutrosophic log-likelihood function and
studied its properties then found estimators of neutrosophic probability distributions based on
maximum likelihood estimation method, also on the same algorithm we have succeed to define
moments estimation method and finally the neutrosophic fisher information about the estimated
parameters. One can also define many other estimation methods based on the same algorithm
presented in this paper. Many examples were solved successfully and estimators of many
neutrosophic probability distributions were successfully derived.

2. Preliminaries

Definition 2.1 [5] [8]

Let RI)={a+bl;a,b€eR,I*?=1,0-1=0} be the neutrosophic field of reals. The one-
dimensional AH-isometry is defined as follows:

T:R(I) > R?: T(a+bl) =(a,a+b) (1)
And its inverse is defined as follows:
T-%:RZ>R(): TXa,b)=a+ (b —a)l ()

Remark:
We will call the form a + bl the formal of a neutrosophic number.
Definition 2.2 [6]
Let f:R(I) » RU); f = f(xy) where xy = x +yl € R(I) then f is called a neutrosophic real
function with one neutrosophic variable.
Definition 2.3 [1]

A neutrosophic random variable can be defined as follows: [6] [22]
Xy=X+YI;12=1,0-1=0 3)
Where X,Y are crisp random variables taking values on R.

Definition 2.4 [4]

Let R(I) be the neutrosophic field of reals, and let ay = a; + a,I,by = by + b,I € R(I). We say
that ay =y by iff:
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a, = b, and a; +a, = b, + b,

Definition 2.5 [22]

Let R(I) be the neutrosophic field of reals, the neutrosophic logarithmic function can be defined
as:
In(x + yI) = Inx + [In(x + y) — In(x)]I, where x + yI >, 0.

3. Results and Discussion

Definition 3.1

Suppose that Xy = Xy, Xon, ..., Xpn s @ sequence of neutrosophic random variables, we say that
Xy is a neutrosophic random sample drawn from neutrosophic random variable X, if
Xin, Xony -, Xy are dependent and have the same probability distribution as Xy.

Definition 3.2

Let Xy be a random sample drawn from Xy, we call the function:

Ly = L(Xy; 0p) = f(Xy; Oy) = [Ti21 £ Kin; On) “4)
The neutrosophic likelihood function where Oy = 0; + 0,1 = (01y, 0y, ...,0,y) is a vector of
unknown parameters.

Theorem 1

The formal form of neutrosophic likelihood function Ly is:
Ly =L(Xy;0)) =L(X;0,) + [LX+Y;0, +0,) — L(X; 0]/ 5)
Proof:
Using the one-dimensional AH-Isometry:

T(L(XN; 91\1)) =T (Hf(xz +y:1;0, + @2I)>

i=1

n
= | [#(Gxi+y0 010, +0,)
i=1
= (ITie: f G ©1), [T f (i + 55,01 + 62)) (6)
Now taking the inverse isometry T~

L(Xy;0) =T (Hf(xi; 0, | [Fa+yso, + @2>>

= ﬁf(xi:®1) + ll[f(xi + ;01 +0;) — ﬁf(xi'el)ll

= L(X; @1) + [L(X +Y;0, + 92) - L(Xi @1)]1 (7)

Definition 3.3

Wecall Ly = InL(Xy; 0y) the neutrosophic loglikelihood function.

Theorem 2

The formal form of neutrosophic loglikelihood function is:
Ly=L(X;0,)+[LX+Y;0, +0,) — L(X;0,)]I (8)
Proof:
Similar to theorem 1.

Definition 3.4
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The neutrosophic statistic ®y based on random sample that maximize the neutrosophic
likelihood function is called the neutrosophic likelihood estimator.

Theorem 3

The neutrosophic statistic based on random sample that maximize the neutrosophic likelihood
function is the same statistic that maximize the neutrosophic loglikelihood function.

Proof:

The neutrosophic statistic @y that maximize the likelihood function fulfills the following
conditions:

a 92
mL(XNi 9N)|®N: oy — O:EL(XM 9N)|@N= oy <N 0 )

Using theorem 1 the conditions become:
OLOOlo, 6, | [PLOKHY0:1+02)l6, 10,2 0,40, _ ILKODlo, -0,
20, 3(01+03) 20,

I=0 (10)
Which means that:
F]
B_G)lL(X' @1)|@1=@1 =0 (11)

d
LX+Y;0;, +0,)|e,+0,-0,+0, =0 (12)

9(0,+67)
The same to the second condition which yields to:
02
6—@%L(X; 01)le,=5, <0 (13)
62
9(0,+0,)? LX+Y;0, + E‘)2)|G)1+(':)2= 8,40, < 0 (14)
If we apply the same conditions to the neutrosophic loglikelihood function we get:
a _0L(Xi0Dlg, g, | [LOHY01402)lg, so,- 0,40, OLGODlg 25,1,
oy N T 20, + [ 9(01+05) N 20, I'=0 (15)
2
i - 2 r =2 g, = 28
Since Ly = In Ly, we know that T Ly = 305 InLy = .
So, the first condition become:
2 2 2
T + 3o 10 X+Y01+02) e t%ew s li=0 o)
L(X;0,) '©1=01 L(X+Y;0;+03) 01+02=01+02 [ (x0,) '©1761
Which means that both following equations hold:
eoL(X01)
B —"loy-8, = 0 (17)
2
——————L(X+Y;0,+0;)
0(01+02) =
L(X+Y;0,+03) 01+0,=8,+8; — 0 (18)
And this yields to:
]
a_elL(X; 01)le,-8, =0 (19)
]
30,10, LX+Y;0; +0,)le,+0,=0,+0, = 0 (20)

And these are the same equations as (11), (12).
Same proof can be applied to the second condition.
Example 1:
Let X1y, Xon, -, Xun be aneutrosophic random sample drawn from the density of neutrosophic

power distribution:

fxen; Oy) = QNXZN_l;O Syxy =yl
Let’s take AH-Isometry to f(xy;0y):

T[f (xy; 0] = T[HNxSN_l] = T[(91 +60,D(x + yI)(91+921)_1]

= T[(6, + 6,D]T[(x + y)E1+02D-1]

= T[(6: + 6;DIT[(x + yD]TCr+o20-1

= (61,01 + 6,) (x, x + y)@rf1¥82)-(11)

= (913561_1' (6, +6)(x + )’)(91+92)_1)

= (f(X; 00, f(x+y; 60, + 92))
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So, by applying equation (15) considering properties of probability density functions we get:

d p) P
T [ﬁ In L(Xy; 91\/)] = (;a—gllnf(xi, 1) ;;mlnf(xi +yi;0, + 92))

- o 0 6,1 C 4] 00yt

9 1nd, .\ 900, — 1) Inx; ~an(6, +6,) . (6, + 0, — 1) In(x; + ;)

n n
n n
(Z +lnxl,zgl+92+ln(xl+yl > (9—1+Zlnxi,m+21:ln(xi+yi)>
1= =

T [ﬁm(xm GN)] — T[0]

"+Zn:l e +Zn:1( +y) | = (0,0
= nx;,, ~—=— n(x; i = ,
91 191+92 £ L yl

i=1

PO ~ n n
(91,91+92)=<— n — o )

i=1 Inx; = In(x; + 1)
o A A n n
T-Y0,,6,+0,)=T"1—- ,—
( Lot 2) < rnx (e + yi))
6 . [ e I ]1
=3 = —_-— —
N rnx; roln(g+y) X inx;

Example 2:
Let X1y, Xon, .., Xun be aneutrosophic random sample drawn from the density of neutrosophic
Maxwell distribution:

2 3 _19 X2
flxn; Oy) = EQ;xﬁ,e 2NN xy >y 0

So:
=9
( 1691 ——Inf(x;;0), Zmlnf(xl + ;0 + 92)) = (0,0)
i=
=9 2
s 2 ——61x 2 ——(91+92)(X+Y) —
.1691ln j; 252672 Za(el+92) f(91+92) 2(x + y)2e (0,0)
i=
) x; + = (0,0
(291 ZZ x; 2(61+92) Z(L ¥) ) 0,0)
(8,8, +8,) = < 3 3n )
e 2 l 1xl ]_(xl+yl)
Taking 77
~ A ~ 3n 3n
T‘1(91,91+92)=T‘1< el e +y))
l 17 i i
Oy = [ 3n ]1
N i x? X 1(xl+yl Ln=1xi2
Example 3:

Let X1y, Xon, .., Xun be a neutrosophic random sample drawn from the density of neutrosophic
exponential distribution:

1 _*n
f(xN'eN)__e O 5 xy >y 0
So:
=9
( agllnf(xueﬂ ZMMK%‘FY“%‘F%))—(OO)

i=1
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$ 0,1 & § 0 1
’ + = 050
1691"916 IZa(el+92)"el+aze 02 ) = (0.0)
= i=

i
n nX n nX +n¥
-+, — + — — = (0,0)
0, 6f 0:+0; (91 + 92)
(91, 91 + 92) = (X,X + Y)
T_l(él,él +§2) = T_l()?,)?'i'Y)
>0y =X+7I

Definition 3.5

Let Xy be a neutrosophic random variable, we call a;y = E(Xf) the k" moment of the
neutrosophic random variable X.

Definition 3.6

Let Xy, Xon, - Xnv be a neutrosophic random sample drawn from the neutrosophic random
variable Xy, we call 4,y(X) = e ™, XK the sample moment of order k.
n

Definition 3.7

The parameter that satisfies the following system of equations:
ey = Ay (X) 21)
Is called the moments estimator where k is the number of unknown parameters.

Theorem 4

Equations (21) can be written in R? in the following form:
(S22 2k f s 00) e, [77 G+ ) (x4 3305+ 6,) dCx +3)) = (SRR 2, 230 +9)F) (22)
Proof:
+o L

ey = ey (On) = EQXN) = [ 2 f Cen; Oy) doxy (23)
Taking AH-Isometry:

Tlaw] =TIEXH)] =T [ ] mx}sf(xN; Oy) de]

= (T2 5 (o) du, [+ ) f (e + 30, +8,)dx +3))  (24)
Also:
Ay(X) =~ X, (25)
And taking the AH-Isometry:
T[4 ()] = T[22, XK | = GEL 22, o +3)F)  (26)

n

Equations (24) and (26) proves the theorem.
e.g., for one parameter, we substitute k = 1:

(f_*j xf (x;6,) dx, [ Ce + y)f (x +y; 6, + 6,) d(x + y)) =X X+7) ()
for two parameters, we substitute k = 2:
(22 22 f (00 d, [ 17 G+ y)2 f x4+ y;61 + 02)dx +9) ) = (I, S B, G +91)2) - (28)

n
And so on.
Example 4:
Let X1y, Xon, -, Xun be aneutrosophic random sample drawn from the density given in example
1, then to find the moments estimator we have to solve the equation:
Gy = Ay

(jmxf(x; 61) dx.j+w(x +9)f(x+y; 6 +60,)d(x + y)> =X X+7)

—00
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1 1
(f x0,x0171 dx,f (x + )0, + 0,)(x + y)1+0%271d(x + y)) =X,X+V

6. 6,+80 _
<A 1 = 1A 2 )Z(,X-I-Y)
(0,5, +,) X X+¥
b2 1-X'1-(X+Y)
~ X X+Y
710,06, +6,)=T"1 _, _
(0,0, +6) (1—X 1—(X+Y))
Oy = 0, + 0,1 = X + X+¥ X I
NTRETRE T X 1 -X+Y) 1-X

Example 5:

Let X1y, Xon, oo, Xun be aneutrosophic random sample drawn from the density given in example
2, then to find the moments estimator we have to solve the equation:
Using equation (27):

+00 2 3 1 +0oo — —
f xj;efxze‘ng ax, f (x + y)f (6 +0,)2(x + )2 2CHIE 4 (x 1 y) | = (R, X +7)
0

\/7 /1‘[(91+92 = ®X+

(0,6,+0,) =

"<I

1TX2 m(X + Y)2>

~ . 8 8 _ 8 8 8
=1 (o e ye) = e * e~ el
Example 6:
Let Xin,Xon, -, Xnn be aneutrosophic random sample drawn from the density given in example
3, then to find the moments estimator we have to solve the equation:
Using equation (27):
e 1 _x oo 1 (xty) -
(fo xo-e 91dx,J(; (x+y)61+9 e (91+92)d(x+y)) XX+1

1

(§1,§1+§2) = (X,X+Y)
T_l(él, 91 + 92) = T_l()?,)? + 7)

Definition 3.8

We call the partial derivative of neutrosophic log-likelihood function the neutrosophic score
function and we denote it by:

2
UXy; 0y) = WLN (29)
N
Remark:
Notice that equation (29) is a neutrosophic random sample since it is a function of Xy.

Theorem 5

Expected value of neutrosophic score function is equal to zero.
Proof:
T[S Lxw; On) dxy] = T[] (30)
Where f L(xy;0y)dxy =1 because L(xy;0y) is a neutrosophic probability density

function.

T%f L(XN,@N)dXN] T[ ] (31)

Abdulrahman Astambli, Mohamed Bisher Zeina and Yasin Karmouta, On Some Estimation Methods of Neutrosophic
Continuous Probability Distributions Using One-Dimensional AH-1sometry



Neutrosophic Sets and Systems, Vol. 53, 2023 648

(a‘; [ L ) dx, Wf L(x+y; 0, + 0,) d(x +y)) =(0,0) (32

(f*“’iln LG 0,) LG 0,) dxy, [ InL(x+y;0; +0;) L(x +y;0, +0,)d(x + S>’)>

© 9o oo 6(@ +0;)
0,0  (33)
( [— In L(X; @1)],5 [mln LX+Y;0, + @2)]) = (0,0) (34)
(E[UX; 0] E[lUX +Y;0; +0,)]) = (0,0) (35)
Taking T ! get:
E(UXy;0y)) =0 (36)

Definition 3.9

We will call variance of neutrosophic score function the neutrosophic Fisher information about
the neutrosophic parameter @y (NFI,(0y)) i.e.

NFI,(0y) = Var(U(Xy; 8y)) = E(U?(Xy; 6y)) (37)
Theorem 6
2
d 1 ;0
Var(U(Xy; 0)) = E(WU(Xy; 0x)]?) = —nE (%) (38)
Proof:
a
—E(U(XN; 8y)) =0 (39)
[—E(U(XN, eN))] T[0] (40)
9 400 9 i) +0o0 a
(5 o Eln L(x;0,) L(x; 0,) dx, 30,505 - 30,700 mnL(x+vy;0,+0,)L(x+vVy;0;, +
0;)d(x + y)) (41)
+00 (32InL(x;0)L(x;0,) . OL(x;01) dInL(x;0,) +00 92 In L(x+y;01+0)L(x+y;01+03)
(f—oo ( 202 + 00, 00, )d ’(f—w 9(01+0,)2 +
OL(x+y;01403) 0 In L(x+y;01+03) _
3(0,+05) 3(0,+05) )d(x + W) = (0.0) (42)
+o0 [ 92 InL(x;01)L(x;01) 9InL(x;01) 02 In L(x+y;01 +02)L(x+y;0,+05)
( - ( 202 +( 804 ) L(x; @1)> dx, f ( 8(0,+0,)2 +
9 In L(x+y;01+05)\ 2
(P ®2) L (x +v; 0, + 92)) d(x+y)) = (0,0) (43)
32 InL(X;01) 9 InL(X;0,))2 82 In L(X+Y;0,+0,) dInL(X+Y;0,+02)\%) _
(E( 202 )+E( 90, ) E( 8(01+0,)2 )+E( 8(01+0;) ) )_ (0,0) (44)
92 InL(X;01) 3 L(X;0,)\2 82 In L(X+Y;0,+02)\ > 8 In L(X+Y;0,+0,)\ 2
E[ 202 ]+E[( 20, ) ]+ [E [( 9(0,+0,)2 ) ]+E[( 9(0,+03) ) ]_
92 InL(X;04) aan(x @1) _
(5[] 4 | (i) )]s < 0 (45)
92 2
E [mln L(Xy; @N)] + E[ mln L(Xy; @N)) ] =0 (46)
2
EU(Xy; 0,)17) = —nE (%) 7)
N
Theorem 7
Neutrosophic Fisher information can be written in the following form:
NFL,(6y) = FL,(6;) + [Fln(91 +6;) — FIn(91)]I (48)
Where:
FIL,(0) = nE aezlnf(x 9) (49)
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Proof:
Using equations (47) and properties of AH-Isometry we get:

NFL(8y) = E([U(Xy; 0,)]?) = —nE (‘”+N”9”)) (50)

d
T(NFI,(6y)) =T (—nE <W Inf(x+yl;0; + 921)))

aZ
= (—nE@lnf(x; 91) B —nE mln f(x + y; 91 + 91)> (51)
Taking T 'get:

82 2

NFIH(HN)Z < nEWlnf(x;Ql),—nEmlnf(x+y;01+01))
92 92 a?
= —nEa—glzlnf(x; 0,) + —nEmlnf(x +y;6,+6,)+ nE lnf(x 0|1
= FI,(61) + [FL,(6, + 6,) — FL,(6)]1 (52)
Example 7:
Let Xy be a neutrosophic random sample of distribution given in example 3, then:
1 _x 1 _ (x+y
T(f(xy; 0 = (—e 01, ——¢ (91+92)>
Uaiow) =G e ™ Gy

,— (8 + 6) (x”))

(6, +6,)
5 x 1 (x+y)
(ae Inf(xy; HN)) <‘9_1 + 62 (6, +6,) (6, + 92)2)

02 | 0 1 2x 1 2(x+vy)
<692 nf G N)) (9_12_ 63" (6, +6,)7 (6, + 92)3>

9? 3 1 2x 1 2(x+y)
T(—nE (aez Inf ey 9N))> = (—nE (92 g_f)’_nE ((91 O, 92)3>>
7 (-ne (2 o)) = (=, —
" <aeN i “) - (e_ @ + w)

E 62l g n—n —n —n nI—NIFH
" (ae,v nf ’”) <€'<Hl+ez>2> ‘e‘f*[wlwz)fe_f] = NIE(6n)

Simulation Analysis:

In this part, performance of two estimation methods was evaluated based on Monte Carlo
simulation to the three studied neutrosophic probability distributions using R software with various
sample sizes and with total replication of N = 10000 times with sample sizes of 5,15,30,50 and 100
and with fixed parameter 6y = 2 + I. Goodness of estimation was assessed depending on average

T(n f (xy: Oy)) = <— In6, — —
0,

bias and root mean square error defined below: [18]
Zliv=1(9Ni - BN)
N
~ 2
ZIL'V:1(9Ni - eN)
N

Table (1) shows results of simulation analysis for neutrosophic power distribution and compares
the two proposed estimation methods, notice that average bias of moments estimator is decreasing
faster than maximum likelihood’s average bias, which proves by simulation that moments estimator

AB =

RMSE =

is asymptotically unbiased.
Table 1: Simulation performance of Neutrosophic Power Distribution.

n Maximum Likelihood Moments

RMSE AB Average 8 RMSE AB Average Gy

5 1.48 4+ 0.761 | 0.4992 + 0.2356] 2.50 + 1.241 1.45+ 0.751 | 0.3877 + 0.2213] | 2.39 + 1.22]
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15 | 0.61+0.291 | 0.1443 + 0.0638/ 2.14 + 1.061 0.63 +0.28] | 0.1101 + 0.05597 | 2.11 + 1.06]

30 | 0.39+0.22] | 0.0678 + 0.0422] 2.07 + 1.041 0.41 +0.21] | 0.0505 + 0.0406/ | 2.05 + 1.04]

50 | 0.29+0.16/ | 0.0386 + 0.02041 2.04 +1.021 0.31+ 0.15/ | 0.0282 + 0.0193/ | 2.03 + 1.02]

100 | 0.21 +0.10/ | 0.0192 + 0.0126/ 2.02 +1.011 0.22 +0.107 | 0.0147 + 0.0104/ | 2.01 + 1.01]

Table (2) shows results of simulation analysis for neutrosophic Exponential distribution and
compares the two proposed estimation methods and we see that both methods give the same
estimators.

Table 2: Simulation performance of Neutrosophic Exponential Distribution.

n Maximum Likelihood Moments

RMSE AB Average By RMSE AB Average 8

5 0.89 + 0.461 | —0.0046 + 0.00971 | 2.00 + 1.01/ | 0.89 + 0.461 | —0.0046 + 0.00971 | 2.00 + 1.01/

15 0.61+0.291 | 0.0067 —0.0178 | 2.01+0.98/ | 0.61+ 0.291 0.0067 — 0.01781 | 2.01 + 0.98]

30 0.39 + 0.22] | —0.0024 + 0.01211 | 2.00 + 1.01/ | 0.39+ 0.22] | —0.0024 + 0.0121/ | 2.00 + 1.01/

50 0.29 + 0.16I | —0.0024 — 0.0013] | 2.00 + 1.00/ | 0.29 + 0.16] | —0.0024 — 0.0013/ | 2.00 + 1.00!

100 | 0.21+ 0.107 | —0.0008 + 0.00337 | 2.00 + 1.00/ | 0.21+ 0.10I | —0.0008 + 0.0033[ | 2.00 + 1.00/

Table (3) shows results of simulation analysis for neutrosophic Maxwell distribution and
compares the two proposed estimation methods, notice that average bias of moments estimator is
decreasing faster than maximum likelihood’s average bias, which proves by simulation that moments
estimator is asymptotically unbiased.

Table 3: Simulation performance of Neutrosophic Maxwell Distribution.

n Maximum Likelihood Moments

RMSE AB Average By RMSE AB Average By

5 1.04 + 0.49/ | 0.3119 + 0.1552/ | 2.31+1.16/ | 1.02+ 0.48] | 0.2470 + 0.1260/ | 2.25+ 1.13]

15 0.47 + 0.231 | 0.0882 + 0.0568] | 2.09 + 1.06/ | 0.47 + 0.24/ | 0.0687 + 0.0488/ | 2.07 + 1.05/

30 0.31+0.16/ | 0.0429 + 0.0185] | 2.04 + 1.02/ | 0.32+ 0.16/ | 0.0351 + 0.0113/ | 2.04 + 1.01/

50 0.24+0.12] | 0.0274 + 0.0105/ | 2.03 +1.01] | 0.24 + 0.12/ | 0.0231 + 0.0073[ | 2.02 + 1.01/

100 | 0.17 +0.08/ | 0.0160 + 0.0046/ | 2.02 + 1.00/ | 0.17 + 0.08/ | 0.0135 + 0.0032/ | 2.01 + 1.00/

6. Conclusions and future research directions

In this paper we have introduced the concept of neutrosophic likelihood estimation method and neutrosophic
moments estimation method and studied its properties based on AH-Isometry. We also presented theorems on
these two estimation methods. We see that two estimation methods yields to different estimators. We also
presented the concept of neutrosophic fisher information and presented some theorems related to it. In future
work we are looking forward to study the properties of estimators like biasness, consistency and sufficiency.
This paper opens the way to study the theory of neutrosophic statistical inference which is using neutrosophic
classical numbers N = a + bl;I? = I (not interval neutrosophic numbers).
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