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Abstract: In this research, we introduce an algebraic approach to define the concept of neutrosophic 

maximum likelihood estimation method based on neutrosophic continuous probability 

distributions based on classical neutrosophic numbers of the form 𝑁 = 𝑎 + 𝑏𝐼; 𝐼2 = 𝐼  i.e., 𝐼  is a 

letter not a numerical set. We prove that the neutrosophic loglikelihood function gives the same 

estimators given by neutrosophic likelihood function. Also, we present the concept of neutrosophic 

moments estimation method which produces system of neutrosophic equations to derive the 

neutrosophic estimators using an algebraic isomorphism. Estimators based on two mentioned 

methods were derived successfully for some neutrosophic continuous probability distributions. 

Concept of neutrosophic Fisher information is also presented. Theorems were proved using an 

algebraic approach depending on the one-dimensional AH-Isometry. A simulation study is also 

presented to show the efficiency of the presented estimators. 

 

Keywords: AH Isometry; Neutrosophic Field of Reals; Maximum Likelihood; Moments; Probability 

Density Functions; Neutrosophic Fisher Information. 

 

 

1. Introduction 

Neutrosophic field of reals is an extension to field of reals adding new algebraic structure 𝐼 satisfies 

𝐼2 = 𝐼 so we get 𝑅(𝐼) = 𝑅 ∪ {𝐼} = {𝑎 + 𝑏𝐼 ; 𝑎, 𝑏 ∈ 𝑅 , 𝐼2 = 𝐼} which is neutrosophic field of reals. [1] 

Many mathematical studies were done based on the neutrosophic set of reals in many fields of 

abstract mathematics including abstract algebra, probability theory, topology, number theory, etc.[2-

7]. 

In [8] Abobala and Hatip presented an isometry called AH-Isometry which transfers mathematical 

problems from 𝑅(𝐼) to 𝑅 × 𝑅 and an inverse isometry transfers the mathematical problem from 𝑅 ×

𝑅 to 𝑅(𝐼). This isometry is very applicable to solve and study many types of mathematical problems 

including real analysis, complex analysis, algebraic structures, probability theory, operations 

research, etc. 
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Many previous studies about neutrosophic probability theory were done assuming that parameters 

of probability distribution functions are indeterminant, i.e. parameter 𝜃 is an interval neutrosophic 

number, so it can be noted by 𝜃𝑁 ∈ [𝜃𝐿 , 𝜃𝑈].[9-15] 

In [16], [17] Zahid Khan, Sultan Salem et al. presented neutrosophic lognormal model and studied its 

critical properties then applied this model to environmental data and in lifetime data where they 

treated problems with interval neutrosophic numbers, in [18] Zahid Khan et al. presented 

neutrosophic gamma distribution and applied it to a real dataset for the purpose of dealing with 

inaccurate statistical data which is also described by interval neutrosophic numbers. Many other 

extensions were done to other types of distributions like neutrosophic exponential distribution, 

neutrosophic maxwell distribution, etc. and these extensions were applied successfully in may real 

datasets. [19-21]. Notice that all the mentioned studies are done by using neutrosophic interval 

numbers 𝑁 = 𝑑 + 𝐼 where 𝐼 ∈ [𝑎, 𝑏] and not neutrosophic classical numbers of the form 𝑁 = 𝑎 +

𝑏𝐼, 𝐼2 = 𝐼 and this is the main difference between our study and the previous studies, so, we are going 

to study neutrosophic probability distribution assuming that there is uncertainty in its parameters 

and the random variable itself, i.e. 𝑓(𝑥; 𝜃) is 𝑓(𝑥𝑁; 𝜃𝑁) based on its algebraic structure, i.e. 𝑥𝑁 = 𝑥 +

𝑦𝐼, 𝜃𝑁 = 𝜃1 + 𝜃2𝐼 ; 𝑥, 𝑦, 𝜃1, 𝜃2 ∈ 𝑅 , 𝐼2 = 𝐼 , 0 ∙ 𝐼 = 0  by using AH-Isometry which will transfer each 

neutrosophic probability density function into two crisp probability distribution functions. Based on 

this transformation we have successfully defined the neutrosophic log-likelihood function and 

studied its properties then found estimators of neutrosophic probability distributions based on 

maximum likelihood estimation method, also on the same algorithm we have succeed to define 

moments estimation method and finally the neutrosophic fisher information about the estimated 

parameters. One can also define many other estimation methods based on the same algorithm 

presented in this paper. Many examples were solved successfully and estimators of many 

neutrosophic probability distributions were successfully derived. 

2. Preliminaries 

Definition 2.1 [5] [8] 

Let 𝑅(𝐼) = {𝑎 + 𝑏𝐼 ; 𝑎, 𝑏 ∈ 𝑅 , 𝐼2 = 𝐼, 0 ∙ 𝐼 = 0}  be the neutrosophic field of reals. The one-

dimensional AH-isometry is defined as follows: 

𝑇: 𝑅(𝐼) → 𝑅2 ∶  𝑇(𝑎 + 𝑏𝐼) = (𝑎, 𝑎 + 𝑏)    (1) 

And its inverse is defined as follows: 

𝑇−1: 𝑅2 → 𝑅(𝐼) ∶  𝑇−1(𝑎, 𝑏) = 𝑎 + (𝑏 − 𝑎)𝐼        (2) 

Remark: 

We will call the form 𝑎 + 𝑏𝐼 the formal of a neutrosophic number. 

Definition 2.2  [6] 

Let 𝑓: 𝑅(𝐼) → 𝑅(𝐼); 𝑓 = 𝑓(𝑥𝑁)  where 𝑥𝑁 = 𝑥 + 𝑦𝐼 ∈ 𝑅(𝐼)  then 𝑓  is called a neutrosophic real 

function with one neutrosophic variable. 

Definition 2.3 [1] 

A neutrosophic random variable can be defined as follows: [6] [22] 

𝑋𝑁 = 𝑋 + 𝑌𝐼 ; 𝐼2 = 𝐼 , 0 ∙ 𝐼 = 0          (3) 

Where 𝑋, 𝑌 are crisp random variables taking values on 𝑅. 

Definition 2.4 [4] 

Let 𝑅(𝐼) be the neutrosophic field of reals, and let 𝑎𝑁 = 𝑎1 + 𝑎2𝐼, 𝑏𝑁 = 𝑏1 + 𝑏2𝐼 ∈ 𝑅(𝐼). We say 

that 𝑎𝑁 ≥𝑁 𝑏𝑁 iff: 
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𝑎1 ≥ 𝑏1 and 𝑎1 + 𝑎2 ≥ 𝑏1 + 𝑏2 

Definition 2.5 [22] 

Let 𝑅(𝐼) be the neutrosophic field of reals, the neutrosophic logarithmic function can be defined 

as: 

𝑙𝑛(𝑥 + 𝑦𝐼) = 𝑙𝑛 𝑥 + [𝑙𝑛(𝑥 + 𝑦) − 𝑙𝑛(𝑥)]𝐼, where 𝑥 + 𝑦𝐼 >𝑁 0. 

3. Results and Discussion 

Definition 3.1 

Suppose that 𝕏𝑁 = 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 is a sequence of neutrosophic random variables, we say that  

𝕏𝑁  is a neutrosophic random sample drawn from neutrosophic random variable 𝑋𝑁  if 

𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 are dependent and have the same probability distribution as 𝑋𝑁. 

Definition 3.2 

Let 𝕏𝑁 be a random sample drawn from 𝑋𝑁, we call the function: 

𝐿𝑁 = 𝐿(𝕏𝑁; Θ𝑁) = 𝑓(𝕏𝑁; Θ𝑁) = ∏ 𝑓(𝑋𝑖𝑁; Θ𝑁)𝑛
𝑖=1     (4) 

The neutrosophic likelihood function where Θ𝑁 = Θ1 + Θ2𝐼 = (𝜃1𝑁 , 𝜃2𝑁 , … , 𝜃𝑟𝑁)  is a vector of 

unknown parameters. 

Theorem 1 

The formal form of neutrosophic likelihood function 𝐿𝑁 is: 

𝐿𝑁 = 𝐿(𝕏𝑁; Θ𝑁) = 𝐿(𝕏; Θ1) + [𝐿(𝕏 + 𝕐; Θ1 + Θ2) − 𝐿(𝕏; Θ1)]𝐼  (5) 

Proof: 

Using the one-dimensional AH-Isometry: 

𝑇(𝐿(𝕏𝑁; Θ𝑁)) = 𝑇 (∏ 𝑓(𝑥𝑖 + 𝑦𝑖𝐼; Θ1 + Θ2𝐼)

𝑛

𝑖=1

) 

= ∏ 𝑓((𝑥𝑖 , 𝑥𝑖 + 𝑦𝑖); (Θ1, Θ1 + Θ2))

𝑛

𝑖=1

 

= (∏ 𝑓(𝑥𝑖 ; Θ1)𝑛
𝑖=1 , ∏ 𝑓(𝑥𝑖 + 𝑦𝑖; Θ1 + Θ2)𝑛

𝑖=1 )     (6) 

Now taking the inverse isometry 𝑇−1: 

𝐿(𝕏𝑁; Θ𝑁) = 𝑇−1 ((∏ 𝑓(𝑥𝑖 ; Θ1)

𝑛

𝑖=1

, ∏ 𝑓(𝑥𝑖 + 𝑦𝑖 ; Θ1 + Θ2)

𝑛

𝑖=1

)) 

= ∏ 𝑓(𝑥𝑖 , Θ1)

𝑛

𝑖=1

+ [∏ 𝑓(𝑥𝑖 + 𝑦𝑖 ; Θ1 + Θ2)

𝑛

𝑖=1

− ∏ 𝑓(𝑥𝑖 , Θ1)

𝑛

𝑖=1

] 𝐼 

= 𝐿(𝕏; Θ1) + [𝐿(𝕏 + 𝕐; Θ1 + Θ2) − 𝐿(𝕏; Θ1)]𝐼     (7) 

Definition 3.3 

We call  ℒ𝑁 = 𝑙𝑛 𝐿(𝕏𝑁; Θ𝑁) the neutrosophic loglikelihood function. 

Theorem 2 

The formal form of neutrosophic loglikelihood function is: 

ℒ𝑁 = ℒ(𝕏; Θ1) + [ℒ(𝕏 + 𝕐; Θ1 + Θ2) − ℒ(𝕏; Θ1)]𝐼  (8) 

Proof: 

Similar to theorem 1. 

Definition 3.4 
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The neutrosophic statistic Θ̂𝑁  based on random sample that maximize the neutrosophic 

likelihood function is called the neutrosophic likelihood estimator. 

Theorem 3 

The neutrosophic statistic based on random sample that maximize the neutrosophic likelihood 

function is the same statistic that maximize the neutrosophic loglikelihood function. 

Proof: 

The neutrosophic statistic Θ̂𝑁  that maximize the likelihood function fulfills the following 

conditions: 
𝜕

𝜕Θ𝑁
𝐿(𝕏𝑁; Θ𝑁)|Θ𝑁= Θ̂𝑁

= 0 ,
𝜕2

𝜕Θ𝑁
2 𝐿(𝕏𝑁; Θ𝑁)|Θ𝑁= Θ̂𝑁

<𝑁 0   (9) 

Using theorem 1 the conditions become: 
𝜕𝐿(𝕏;Θ1)|Θ1= Θ̂1

𝜕Θ1
+ [

𝜕𝐿(𝕏+𝕐;Θ1+Θ2)|Θ1+Θ2= Θ̂1+Θ̂2

𝜕(Θ1+Θ2)
−

𝜕𝐿(𝕏;Θ1)|Θ1= Θ̂1

𝜕Θ1
] 𝐼 = 0  (10) 

Which means that: 
𝜕

𝜕Θ1
𝐿(𝕏; Θ1)|Θ1= Θ̂1

= 0      (11) 

𝜕

𝜕(Θ1+Θ2)
𝐿(𝕏 + 𝕐; Θ1 + Θ2)|Θ1+Θ2=Θ̂1+Θ̂2

= 0  (12) 

The same to the second condition which yields to: 
𝜕2

𝜕Θ1
2 𝐿(𝕏; Θ1)|Θ1= Θ̂1

< 0      (13) 

𝜕2

𝜕(Θ1+Θ2)2 𝐿(𝕏 + 𝕐; Θ1 + Θ2)|Θ1+Θ2= Θ̂1+Θ̂2
< 0 (14) 

If we apply the same conditions to the neutrosophic loglikelihood function we get: 
𝜕

𝜕Θ𝑁
ℒ𝑁 =

𝜕ℒ(𝕏;Θ1)|Θ1= Θ̂1

𝜕Θ1
+ [

𝜕ℒ(𝕏+𝕐;Θ1+Θ2)|Θ1+Θ2= Θ̂1+Θ̂2

𝜕(Θ1+Θ2)
−

𝜕ℒ(𝕏;Θ1)|Θ1= Θ̂1

𝜕Θ1
] 𝐼 = 0  (15) 

Since ℒ𝑁 = 𝑙𝑛 𝐿𝑁, we know that 
𝜕

𝜕Θ𝑁
ℒ𝑁 =

𝜕

𝜕Θ𝑁
𝑙𝑛𝐿𝑁 =

𝜕

𝜕Θ𝑁
𝐿𝑁

𝐿𝑁
  

So, the first condition become: 
𝜕

𝜕Θ1
𝐿(𝕏;Θ1)

𝐿(𝕏;Θ1)
|Θ1= Θ̂1

+ [

𝜕

𝜕(Θ1+Θ2)
𝐿(𝕏+𝕐;Θ1+Θ2)

𝐿(𝕏+𝕐;Θ1+Θ2)
|Θ1+Θ2= Θ̂1+Θ̂2

−

𝜕

𝜕Θ1
𝐿(𝕏;Θ1)

𝐿(𝕏;Θ1)
|Θ1= Θ̂1

] 𝐼 = 0 (16) 

Which means that both following equations hold: 
𝜕

𝜕Θ1
𝐿(𝕏;Θ1)

𝐿(𝕏;Θ1)
|Θ1= Θ̂1

= 0      (17) 
𝜕

𝜕(Θ1+Θ2)
𝐿(𝕏+𝕐;Θ1+Θ2)

𝐿(𝕏+𝕐;Θ1+Θ2)
|Θ1+Θ2= Θ̂1+Θ̂2

= 0   (18) 

And this yields to: 
𝜕

𝜕Θ1
𝐿(𝕏; Θ1)|Θ1= Θ̂1

= 0      (19) 

𝜕

𝜕(Θ1+Θ2)
𝐿(𝕏 + 𝕐; Θ1 + Θ2)|Θ1+Θ2= Θ̂1+Θ̂2

= 0  (20) 

And these are the same equations as (11), (12). 

Same proof can be applied to the second condition. 

Example 1:  

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density of neutrosophic 

power distribution: 

𝑓(𝑥𝑁; 𝜃𝑁) = 𝜃𝑁𝑥𝑁
𝜃𝑁−1

; 0 ≤𝑁 𝑥𝑁 ≤𝑁 1 

Let’s take AH-Isometry to 𝑓(𝑥𝑁; 𝜃𝑁): 

𝑇[𝑓(𝑥𝑁; 𝜃𝑁)] = 𝑇[𝜃𝑁𝑥𝑁
𝜃𝑁−1

] = 𝑇[(𝜃1 + 𝜃2𝐼)(𝑥 + 𝑦𝐼)(𝜃1+𝜃2𝐼)−1]       

         = 𝑇[(𝜃1 + 𝜃2𝐼)]𝑇[(𝑥 + 𝑦𝐼)(𝜃1+𝜃2𝐼)−1]             

 = 𝑇[(𝜃1 + 𝜃2𝐼)]𝑇[(𝑥 + 𝑦𝐼)]𝑇[(𝜃1+𝜃2𝐼)−1] 

= (𝜃1, 𝜃1 + 𝜃2)(𝑥, 𝑥 + 𝑦)(𝜃1,𝜃1+𝜃2)−(1,1)  
= (𝜃1𝑥𝜃1−1, (𝜃1 + 𝜃2)(𝑥 + 𝑦)(𝜃1+𝜃2)−1) 

= (𝑓(𝑥; 𝜃1), 𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)) 
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So, by applying equation (15) considering properties of probability density functions we get: 

𝑇 [
𝜕

𝜕𝜃𝑁

𝑙𝑛 𝐿(𝕏𝑁; 𝜃𝑁)] = (∑
𝜕

𝜕𝜃1

𝑙𝑛 𝑓(𝑥𝑖; 𝜃1)

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛 𝑓(𝑥𝑖 + 𝑦𝑖 ; 𝜃1 + 𝜃2)

𝑛

𝑖=1

) 

= (∑
𝜕

𝜕𝜃1

𝑙𝑛(𝜃1𝑥𝑖
𝜃1−1

)

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛 ((𝜃1 + 𝜃2)(𝑥𝑖 + 𝑦𝑖)(𝜃1+𝜃2)−1)

𝑛

𝑖=1

) 

= (∑
𝜕 𝑙𝑛 𝜃1

𝜕𝜃1

+
𝜕(𝜃1 − 1) 𝑙𝑛 𝑥𝑖

𝜕𝜃1

𝑛

𝑖=1

, ∑
𝜕 𝑙𝑛(𝜃1 + 𝜃2)

𝜕(𝜃1 + 𝜃2)
+

𝜕(𝜃1 + 𝜃2 − 1) 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)

𝜕(𝜃1 + 𝜃2)

𝑛

𝑖=1

) 

= (∑
1

𝜃1

+ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

, ∑
1

𝜃1 + 𝜃2

+ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1

) = (
𝑛

𝜃1

+ ∑ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

,
𝑛

𝜃1 + 𝜃2

+ ∑ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1

) 

𝑇 [
𝜕

𝜕𝜃𝑁

𝑙𝑛 𝐿(𝕏𝑁; 𝜃𝑁)] = 𝑇[0] 

(
𝑛

�̂�1

+ ∑ 𝑙𝑛 𝑥𝑖

𝑛

𝑖=1

,
𝑛

�̂�1 + �̂�2

+ ∑ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1

) = (0,0) 

(�̂�1, �̂�1 + �̂�2) = (−
𝑛

∑ 𝑙𝑛 𝑥𝑖
𝑛
𝑖=1

, −
𝑛

∑ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)𝑛
𝑖=1

) 

𝑇−1(�̂�1, �̂�1 + �̂�2) = 𝑇−1 (−
𝑛

∑ 𝑙𝑛 𝑥𝑖
𝑛
𝑖=1

, −
𝑛

∑ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)𝑛
𝑖=1

) 

⇒ �̂�𝑁 = −
𝑛

∑ 𝑙𝑛 𝑥𝑖
𝑛
𝑖=1

+ [−
𝑛

∑ 𝑙𝑛(𝑥𝑖 + 𝑦𝑖)𝑛
𝑖=1

+
𝑛

∑ 𝑙𝑛 𝑥𝑖
𝑛
𝑖=1

] 𝐼 

Example 2: 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density of neutrosophic 

Maxwell distribution: 

𝑓(𝑥𝑁; 𝜃𝑁) = √
2

𝜋
𝜃𝑁

3

2 𝑥𝑁
2 𝑒−

1

2
𝜃𝑁𝑥𝑁

2

; 𝑥𝑁 >𝑁 0 

So: 

(∑
𝜕

𝜕𝜃1

𝑙𝑛 𝑓(𝑥𝑖; 𝜃1)

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛 𝑓(𝑥𝑖 + 𝑦𝑖 ; 𝜃1 + 𝜃2)

𝑛

𝑖=1

) = (0,0) 

(∑
𝜕

𝜕𝜃1

𝑙𝑛 (√
2

𝜋
𝜃1

3

2𝑥2𝑒−
1

2
𝜃1𝑥2

)

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛 (√

2

𝜋
(𝜃1 + 𝜃2)

3

2(𝑥 + 𝑦)2𝑒−
1

2
(𝜃1+𝜃2)(𝑥+𝑦)2

)

𝑛

𝑖=1

) = (0,0) 

(
3𝑛

2�̂�1

−
1

2
∑ 𝑥𝑖

2

𝑛

𝑖=1

,
3𝑛

2(�̂�1 + �̂�2)
− ∑(𝑥𝑖 + 𝑦𝑖)2

𝑛

𝑖=1

) = (0,0) 

(�̂�1, �̂�1 + �̂�2) = (
3𝑛

∑ 𝑥𝑖
2𝑛

𝑖=1

,
3𝑛

∑ (𝑥𝑖 + 𝑦𝑖)2𝑛
𝑖=1

) 

Taking 𝑇−1: 

𝑇−1(�̂�1, �̂�1 + �̂�2) = 𝑇−1 (
3𝑛

∑ 𝑥𝑖
2𝑛

𝑖=1

,
3𝑛

∑ (𝑥𝑖 + 𝑦𝑖)2𝑛
𝑖=1

) 

�̂�𝑁 =
3𝑛

∑ 𝑥𝑖
2𝑛

𝑖=1

+ [
3𝑛

∑ (𝑥𝑖 + 𝑦𝑖)2𝑛
𝑖=1

−
3𝑛

∑ 𝑥𝑖
2𝑛

𝑖=1

] 𝐼 

Example 3: 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density of neutrosophic 

exponential distribution: 

𝑓(𝑥𝑁; 𝜃𝑁) =
1

𝜃𝑁

𝑒
−

𝑥𝑁
𝜃𝑁   ;    𝑥𝑁 >𝑁 0 

So: 

(∑
𝜕

𝜕𝜃1

𝑙𝑛 𝑓(𝑥𝑖; 𝜃1)

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛 𝑓(𝑥𝑖 + 𝑦𝑖 ; 𝜃1 + 𝜃2)

𝑛

𝑖=1

) = (0,0) 
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(∑
𝜕

𝜕𝜃1

𝑙𝑛
1

𝜃1

𝑒
−

𝑥

𝜃1

𝑛

𝑖=1

, ∑
𝜕

𝜕(𝜃1 + 𝜃2)
𝑙𝑛

1

𝜃1 + 𝜃2

𝑒
−

(𝑥+𝑦)

(𝜃1+𝜃2)

𝑛

𝑖=1

) = (0,0) 

(−
𝑛

�̂�1

+
𝑛�̅�

𝜃1
2 , −

𝑛

�̂�1 + �̂�2

+
𝑛�̅� + 𝑛�̅�

(�̂�1 + �̂�2)
2) = (0,0) 

(�̂�1, �̂�1 + �̂�2) = (�̅�, �̅� + �̅�) 

𝑇−1(�̂�1, �̂�1 + �̂�2) = 𝑇−1(�̅�, �̅� + �̅�) 

⇒ �̂�𝑁 = �̅� + �̅�𝐼 

Definition 3.5 

Let 𝑋𝑁  be a neutrosophic random variable, we call 𝛼𝑘𝑁 = 𝐸(𝑋𝑁
𝑘)  the kth moment of the 

neutrosophic random variable 𝑋𝑁. 

Definition 3.6 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the neutrosophic random 

variable 𝑋𝑁, we call 𝐴𝑘𝑁(𝑋) =
1

𝑛
∑ 𝑋𝑖𝑁

𝑘𝑛
𝑖=1  the sample moment of order k. 

Definition 3.7 

The parameter that satisfies the following system of equations: 

𝛼𝑘𝑁 = 𝐴𝑘𝑁(𝑋)     (21) 

Is called the moments estimator where k is the number of unknown parameters. 

Theorem 4 

Equations (21) can be written in 𝑅2 in the following form: 

(∫ 𝑥𝑘𝑓(𝑥; 𝜃1)
+∞

−∞
𝑑𝑥, ∫ (𝑥 + 𝑦)𝑘𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)

+∞

−∞
𝑑(𝑥 + 𝑦)) = (

1

𝑛
∑ 𝑥𝑖

𝑘𝑛
𝑖=1 ,

1

𝑛
∑ (𝑥𝑖 + 𝑦𝑖)𝑘𝑛

𝑖=1 ) (22) 

Proof: 

𝛼𝑘𝑁 = 𝛼𝑘𝑁(𝜃𝑁) = 𝐸(𝑋𝑁
𝑘) = ∫ 𝑥𝑁

𝑘 𝑓(𝑥𝑁; 𝜃𝑁)
+∞

−∞
𝑑𝑥𝑁   (23) 

Taking AH-Isometry: 

𝑇[𝛼𝑘𝑁] = 𝑇[𝐸(𝑋𝑁
𝑘)] = 𝑇 [∫ 𝑥𝑁

𝑘 𝑓(𝑥𝑁; 𝜃𝑁)
+∞

−∞

𝑑𝑥𝑁] 

= (∫ 𝑥𝑘𝑓(𝑥; 𝜃1)
+∞

−∞
𝑑𝑥, ∫ (𝑥 + 𝑦)𝑘𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)

+∞

−∞
𝑑(𝑥 + 𝑦))  (24) 

Also: 

𝐴𝑘𝑁(𝑋) =
1

𝑛
∑ 𝑋𝑖𝑁

𝑘𝑛
𝑖=1     (25) 

And taking the AH-Isometry: 

𝑇[𝐴𝑘𝑁(𝑋)] = 𝑇 [
1

𝑛
∑ 𝑋𝑖𝑁

𝑘𝑛
𝑖=1 ] = (

1

𝑛
∑ 𝑥𝑖

𝑘𝑛
𝑖=1 ,

1

𝑛
∑ (𝑥𝑖 + 𝑦𝑖)𝑘𝑛

𝑖=1 )  (26) 

Equations (24) and (26) proves the theorem. 

e.g., for one parameter, we substitute 𝑘 = 1: 

(∫ 𝑥𝑓(𝑥; 𝜃1)
+∞

−∞
𝑑𝑥, ∫ (𝑥 + 𝑦)𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)

+∞

−∞
𝑑(𝑥 + 𝑦)) = (�̅�, �̅� + �̅�) (27) 

for two parameters, we substitute 𝑘 = 2: 

(∫ 𝑥2𝑓(𝑥; 𝜃1)
+∞

−∞
𝑑𝑥, ∫ (𝑥 + 𝑦)2𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)

+∞

−∞
𝑑(𝑥 + 𝑦)) = (

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ,

1

𝑛
∑ (𝑥𝑖 + 𝑦𝑖)2𝑛

𝑖=1 ) (28) 

And so on. 

Example 4: 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density given in example 

1, then to find the moments estimator we have to solve the equation: 

α1𝑁 = 𝐴1𝑁 

(∫ 𝑥𝑓(𝑥; 𝜃1)
+∞

−∞

𝑑𝑥, ∫ (𝑥 + 𝑦)𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2)
+∞

−∞

𝑑(𝑥 + 𝑦)) = (�̅�, �̅� + �̅�) 
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(∫ 𝑥𝜃1𝑥𝜃1−1
1

0

𝑑𝑥, ∫ (𝑥 + 𝑦)(𝜃1 + 𝜃2)(𝑥 + 𝑦)𝜃1+𝜃2−1
1

0

𝑑(𝑥 + 𝑦)) = (�̅�, �̅� + �̅�) 

(
�̂�1

�̂�1 + 1
,

�̂�1 + �̂�2

�̂�1 + �̂�2 + 1
) = (�̅�, �̅� + �̅�) 

(�̂�1, �̂�1 + �̂�2) = (
�̅�

1 − �̅�
,

�̅� + �̅�

1 − (�̅� + �̅�)
) 

𝑇−1(�̂�1, �̂�1 + �̂�2) = 𝑇−1 (
�̅�

1 − �̅�
,

�̅� + �̅�

1 − (�̅� + �̅�)
) 

�̂�𝑁 = �̂�1 + �̂�2𝐼 =
�̅�

1 − �̅�
+ [

�̅� + �̅�

1 − (�̅� + �̅�)
−

�̅�

1 − �̅�
] 𝐼 

Example 5: 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density given in example 

2, then to find the moments estimator we have to solve the equation: 

Using equation (27): 

(∫ 𝑥√
2

𝜋
𝜃1

3

2𝑥2𝑒−
1

2
𝜃1𝑥2

+∞

0

𝑑𝑥, ∫ (𝑥 + 𝑦)√
2

𝜋
(𝜃1 + 𝜃2)

3

2(𝑥 + 𝑦)2𝑒−
1

2
(𝜃1+𝜃2)(𝑥+𝑦)2

+∞

0

𝑑(𝑥 + 𝑦)) = (�̅�, �̅� + �̅�) 

(√
8

𝜋�̂�1

, √
8

𝜋(�̂�1 + 𝜃2)
) = (�̅�, �̅� + �̅�) 

(�̂�1, �̂�1 + �̂�2) = (
8

𝜋�̅�2
,

8

𝜋(�̅� + �̅�)2
) 

�̂�𝑁 = 𝑇−1 (
8

𝜋�̅�2
,

8

𝜋(�̅� + �̅�)2
) =

8

𝜋�̅�2
+ [

8

𝜋(�̅� + �̅�)2
−

8

𝜋�̅�2
] 𝐼 

Example 6: 

Let 𝑋1𝑁 , 𝑋2𝑁 , … , 𝑋𝑛𝑁 be a neutrosophic random sample drawn from the density given in example 

3, then to find the moments estimator we have to solve the equation: 

Using equation (27): 

(∫ 𝑥
1

𝜃1

𝑒
−

𝑥

𝜃1

+∞

0

𝑑𝑥, ∫ (𝑥 + 𝑦)
1

𝜃1 + 𝜃2

𝑒
−

(𝑥+𝑦)

(𝜃1+𝜃2)

+∞

0

𝑑(𝑥 + 𝑦)) = (�̅�, �̅� + �̅�) 

(�̂�1, �̂�1 + �̂�2) = (�̅�, �̅� + �̅�) 

𝑇−1(�̂�1, �̂�1 + �̂�2) = 𝑇−1(�̅�, �̅� + �̅�) 

�̂�𝑁 = �̅� + �̅�𝐼 

Definition 3.8 

We call the partial derivative of neutrosophic log-likelihood function the neutrosophic score 

function and we denote it by: 

𝑈(𝕏𝑁; 𝜃𝑁) =
𝜕

𝜕𝛩𝑁
ℒ𝑁      (29) 

Remark: 

Notice that equation (29) is a neutrosophic random sample since it is a function of 𝕏N. 

Theorem 5 

Expected value of neutrosophic score function is equal to zero. 

Proof: 

𝑇[∫ 𝐿(𝕩𝑁; 𝛩𝑁)
+∞

−∞
𝑑𝕩𝑁] = 𝑇[1]  (30) 

Where ∫ 𝐿(𝕩𝑁; Θ𝑁)
+∞

−∞
𝑑𝕩𝑁 = 1  because 𝐿(𝕩𝑁; Θ𝑁)  is a neutrosophic probability density 

function. 

𝑇 [
𝜕

𝜕Θ𝑁
∫ 𝐿(𝕩𝑁; Θ𝑁)

+∞

−∞
𝑑𝕩𝑁] = 𝑇 [

𝜕

𝜕𝛩𝑁
1]  (31) 
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(
𝜕

𝜕Θ1
∫ 𝐿(𝕩; Θ1)

+∞

−∞
𝑑𝕩,

𝜕

𝜕(Θ1+Θ2)
∫ 𝐿(𝕩 + 𝕪; Θ1 + Θ2)

+∞

−∞
𝑑(𝕩 + 𝕪)) = (0,0) (32) 

(∫
𝜕

𝜕Θ1
𝑙𝑛 𝐿(𝕩; Θ1) 𝐿(𝕩; Θ1)

+∞

−∞
𝑑𝑥1, ∫

𝜕

𝜕(Θ1+Θ2)
𝑙𝑛 𝐿(𝕩 + 𝕪; Θ1 + Θ2) 𝐿(𝕩 + 𝕪; Θ1 + Θ2)

+∞

−∞
𝑑(𝕩 + 𝕪)) =

(0,0) (33) 

(𝐸 [
𝜕

𝜕Θ1
𝑙𝑛 𝐿(𝕏; Θ1)] , 𝐸 [

𝜕

𝜕(Θ1+Θ2)
𝑙𝑛 𝐿(𝕏 + 𝕐; Θ1 + Θ2)]) = (0,0)  (34) 

(𝐸[𝑈(𝕏; Θ1)], 𝐸[𝑈(𝕏 + 𝕐; Θ1 + Θ2)]) = (0,0)  (35) 

Taking 𝑇−1 get: 

𝐸(𝑈(𝕏𝑁; 𝜃𝑁)) = 0   (36) 

Definition 3.9 

We will call variance of neutrosophic score function the neutrosophic Fisher information about 

the neutrosophic parameter 𝛩𝑁 (𝑁𝐹𝐼𝑛(𝛩𝑁)) i.e.: 

𝑁𝐹𝐼𝑛(𝛩𝑁) = 𝑉𝑎𝑟(𝑈(𝕏𝑁; 𝜃𝑁)) = 𝐸(𝑈2(𝕏𝑁; 𝜃𝑁))   (37) 

Theorem 6 

𝑉𝑎𝑟(𝑈(𝕏𝑁; 𝜃𝑁)) = 𝐸([𝑈(𝕏𝑁; 𝜃𝑁)]2) = −𝑛𝐸 (
𝜕

2
𝑙𝑛 𝑓(𝑥𝑁;𝜃𝑁)

𝜕𝜃𝑁
2 )   (38) 

Proof: 
𝜕

𝜕Θ𝑁
𝐸(𝑈(𝕏𝑁; 𝜃𝑁)) = 0    (39) 

𝑇 [
𝜕

𝜕Θ𝑁
𝐸(𝑈(𝕏𝑁; 𝜃𝑁))] = 𝑇[0]   (40) 

(
𝜕

𝜕Θ1
∫

𝜕

𝜕Θ1
𝑙𝑛 𝐿(𝕩; Θ1) 𝐿(𝕩; Θ1)

+∞

−∞
𝑑𝕩,

𝜕

𝜕(Θ1+Θ2)
∫

𝜕

𝜕(Θ1+Θ2)
𝑙𝑛 𝐿(𝕩 + 𝕪; Θ1 + Θ2) 𝐿(𝕩 + 𝕪; Θ1 +

+∞

−∞

Θ2) 𝑑(𝕩 + 𝕪))       (41) 

(∫ (
𝜕2 𝑙𝑛 𝐿(𝕩;Θ1)𝐿(𝕩;Θ1)

𝜕Θ1
2 +

𝜕𝐿(𝕩;Θ1)

𝜕Θ1

𝜕 𝑙𝑛 𝐿(𝕩;Θ1)

𝜕Θ1
)

+∞

−∞
𝑑𝕩, (∫

𝜕2 𝑙𝑛 𝐿(𝕩+𝕪;Θ1+Θ2)𝐿(𝕩+𝕪;Θ1+Θ2)

𝜕(Θ1+Θ2)2

+∞

−∞
+

𝜕𝐿(𝕩+𝕪;Θ1+Θ2)

𝜕(Θ1+Θ2)

𝜕 𝑙𝑛 𝐿(𝕩+𝕪;Θ1+Θ2)

𝜕(Θ1+Θ2)
) 𝑑(𝕩 + 𝕪)) = (0,0)   (42) 

( ∫ (
𝜕2 𝑙𝑛 𝐿(𝕩;Θ1)𝐿(𝕩;Θ1)

𝜕Θ1
2 + (

𝜕 𝑙𝑛 𝐿(𝕩;Θ1)

𝜕Θ1
)

2

𝐿(𝕩; Θ1))
+∞

−∞
𝑑𝕩, ∫  

+∞

−∞
(

𝜕2 𝑙𝑛 𝐿(𝕩+𝕪;Θ1+Θ2)𝐿(𝕩+𝕪;Θ1+Θ2)

𝜕(Θ1+Θ2)2 +

(
𝜕 𝑙𝑛 𝐿(𝕩+𝕪;Θ1+Θ2)

𝜕(Θ1+Θ2)
)

2

𝐿(𝕩 + 𝕪; Θ1 + Θ2)) 𝑑(𝕩 + 𝕪)) = (0,0)    (43) 

(𝐸 (
𝜕2 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
2 ) + 𝐸 (

𝜕 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
)

2

, 𝐸 (
𝜕2 𝑙𝑛 𝐿(𝕏+𝕐;Θ1+Θ2)

𝜕(Θ1+Θ2)2 ) + 𝐸 (
𝜕 𝑙𝑛 𝐿(𝕏+𝕐;Θ1+Θ2)

𝜕(Θ1+Θ2)
)

2

) = (0,0) (44) 

𝐸 [
𝜕2 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
2 ] + 𝐸 [(

𝜕 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
)

2

] + [𝐸 [(
𝜕2 𝑙𝑛 𝐿(𝕏+𝕐;Θ1+Θ2)

𝜕(Θ1+Θ2)2 )
2

] + 𝐸 [(
𝜕 𝑙𝑛 𝐿(𝕏+𝕐;Θ1+Θ2)

𝜕(Θ1+Θ2)
)

2

] −

(𝐸 [
𝜕2 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
2 ] + 𝐸 [(

𝜕 𝑙𝑛 𝐿(𝕏;Θ1)

𝜕Θ1
)

2

])] 𝐼 = 0      (45) 

𝐸 [
𝜕2

𝜕Θ𝑁
2 𝑙𝑛 𝐿(𝕏𝑁; Θ𝑁)] + 𝐸 [(

𝜕

𝜕Θ𝑁
𝑙𝑛 𝐿(𝕏𝑁; Θ𝑁))

2

] = 0  (46) 

𝐸([𝑈(𝕏𝑁; 𝜃𝑁)]2) = −𝑛𝐸 (
𝜕

2
𝑙𝑛 𝑓(𝑥𝑁;𝜃𝑁)

𝜕𝜃𝑁
2 )    (47) 

Theorem 7 

Neutrosophic Fisher information can be written in the following form: 

𝑁𝐹𝐼𝑛(𝜃𝑁) = 𝐹𝐼𝑛(𝜃1) + [𝐹𝐼𝑛(𝜃1 + 𝜃2) − 𝐹𝐼𝑛(𝜃1)]𝐼   (48) 

Where: 

𝐹𝐼𝑛(𝜃) = 𝑛𝐸
𝜕2

𝜕𝜃2 𝑙𝑛 𝑓(𝑥; 𝜃)     (49) 
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Proof: 

Using equations (47) and properties of AH-Isometry we get: 

𝑁𝐹𝐼𝑛(𝜃𝑁) = 𝐸([𝑈(𝕏𝑁; 𝜃𝑁)]2) = −𝑛𝐸 (
𝜕

2
𝑙𝑛 𝑓(𝑥𝑁;𝜃𝑁)

𝜕𝜃𝑁
2 )  (50) 

𝑇(𝑁𝐹𝐼𝑛(𝜃𝑁)) = 𝑇 (−𝑛𝐸 (
𝜕2

𝜕(𝜃1 + 𝜃2𝐼)2
𝑙𝑛 𝑓(𝑥 + 𝑦𝐼; 𝜃1 + 𝜃2𝐼))) 

= (−𝑛𝐸
𝜕2

𝜕𝜃1
2 𝑙𝑛 𝑓(𝑥; 𝜃1) , −𝑛𝐸

𝜕2

𝜕(𝜃1+𝜃2)2 𝑙𝑛 𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃1))  (51) 

Taking 𝑇−1get: 

𝑁𝐹𝐼𝑛(𝜃𝑁) = 𝑇−1 (−𝑛𝐸
𝜕2

𝜕𝜃1
2 𝑙𝑛 𝑓(𝑥; 𝜃1) , −𝑛𝐸

𝜕2

𝜕(𝜃1 + 𝜃2)2
𝑙𝑛 𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃1)) 

= −𝑛𝐸
𝜕2

𝜕𝜃1
2 𝑙𝑛 𝑓(𝑥; 𝜃1) + [−𝑛𝐸

𝜕2

𝜕(𝜃1 + 𝜃2)2
𝑙𝑛 𝑓(𝑥 + 𝑦; 𝜃1 + 𝜃2) + 𝑛𝐸

𝜕2

𝜕𝜃1
2 𝑙𝑛 𝑓(𝑥; 𝜃1)] 𝐼 

= 𝐹𝐼𝑛(𝜃1) + [𝐹𝐼𝑛(𝜃1 + 𝜃2) − 𝐹𝐼𝑛(𝜃1)]𝐼   (52) 

Example 7: 

Let 𝕏N be a neutrosophic random sample of distribution given in example 3, then: 

𝑇(𝑓(𝑥𝑁; 𝜃𝑁)) = (
1

𝜃1

𝑒
−

𝑥

𝜃1 ,
1

(𝜃1 + 𝜃2)
𝑒

−
(𝑥+𝑦)

(𝜃1+𝜃2)) 

𝑇(𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁)) = (− 𝑙𝑛 𝜃1 −
𝑥

𝜃1

, − 𝑙𝑛(𝜃1 + 𝜃2) −
(𝑥 + 𝑦)

(𝜃1 + 𝜃2)
) 

𝑇 (
𝜕

𝜕𝜃𝑁

𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁)) = (−
1

𝜃1

+
𝑥

𝜃1
2 , −

1

(𝜃1 + 𝜃2)
+

(𝑥 + 𝑦)

(𝜃1 + 𝜃2)2
) 

𝑇 (
𝜕2

𝜕𝜃𝑁
2 𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁)) = (

1

𝜃1
2 −

2𝑥

𝜃1
3 ,

1

(𝜃1 + 𝜃2)2
−

2(𝑥 + 𝑦)

(𝜃1 + 𝜃2)3
) 

𝑇 (−𝑛𝐸 (
𝜕2

𝜕𝜃𝑁
2 𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁))) = (−𝑛𝐸 (

1

𝜃1
2 −

2𝑥

𝜃1
3) , −𝑛𝐸 (

1

(𝜃1 + 𝜃2)2
−

2(𝑥 + 𝑦)

(𝜃1 + 𝜃2)3
)) 

𝑇 (−𝑛𝐸 (
𝜕2

𝜕𝜃𝑁
2 𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁))) = (

𝑛

𝜃1
2 ,

𝑛

(𝜃1 + 𝜃2)2
) 

−𝑛𝐸 (
𝜕2

𝜕𝜃𝑁
2 𝑙𝑛 𝑓(𝑥𝑁; 𝜃𝑁)) = 𝑇−1 ((

𝑛

𝜃1
2 ,

𝑛

(𝜃1 + 𝜃2)2
)) =

𝑛

𝜃1
2 + [

𝑛

(𝜃1 + 𝜃2)2
−

𝑛

𝜃1
2] 𝐼 = 𝑁𝐼𝐹𝑛(𝜃𝑁) 

Simulation Analysis: 

In this part, performance of two estimation methods was evaluated based on Monte Carlo 

simulation to the three studied neutrosophic probability distributions using R software with various 

sample sizes and with total replication of 𝑁 = 10000 times with sample sizes of 5,15,30,50 and 100 

and with fixed parameter 𝜃𝑁 = 2 + 𝐼. Goodness of estimation was assessed depending on average 

bias and root mean square error defined below: [18] 

𝐴𝐵 =
∑ (�̂�𝑁𝑖 − 𝜃𝑁)𝑁

𝑖=1

𝑁
 

𝑅𝑀𝑆𝐸 = √∑ (�̂�𝑁𝑖 − 𝜃𝑁)
2𝑁

𝑖=1

𝑁
 

Table (1) shows results of simulation analysis for neutrosophic power distribution and compares 

the two proposed estimation methods, notice that average bias of moments estimator is decreasing 

faster than maximum likelihood’s average bias, which proves by simulation that moments estimator 

is asymptotically unbiased. 

Table 1: Simulation performance of Neutrosophic Power Distribution. 

n Maximum Likelihood Moments 

 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 

5 1.48 + 0.76𝐼 0.4992 + 0.2356𝐼 2.50 + 1.24𝐼 1.45 + 0.75𝐼 0.3877 + 0.2213𝐼 2.39 + 1.22𝐼 
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15 0.61 + 0.29𝐼 0.1443 + 0.0638𝐼 2.14 + 1.06𝐼 0.63 + 0.28𝐼 0.1101 + 0.0559𝐼 2.11 + 1.06𝐼 

30 0.39 + 0.22𝐼 0.0678 + 0.0422𝐼 2.07 + 1.04𝐼 0.41 + 0.21𝐼 0.0505 + 0.0406𝐼 2.05 + 1.04𝐼 

50 0.29 + 0.16𝐼 0.0386 + 0.0204𝐼 2.04 + 1.02𝐼 0.31 + 0.15𝐼 0.0282 + 0.0193𝐼 2.03 + 1.02𝐼 

100 0.21 + 0.10𝐼 0.0192 + 0.0126𝐼 2.02 + 1.01𝐼 0.22 + 0.10𝐼 0.0147 + 0.0104𝐼 2.01 + 1.01𝐼 

Table (2) shows results of simulation analysis for neutrosophic Exponential distribution and 

compares the two proposed estimation methods and we see that both methods give the same 

estimators. 

 

Table 2: Simulation performance of Neutrosophic Exponential Distribution. 

n Maximum Likelihood Moments 

 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 

5 0.89 + 0.46𝐼 −0.0046 + 0.0097𝐼 2.00 + 1.01𝐼 0.89 + 0.46𝐼 −0.0046 + 0.0097𝐼 2.00 + 1.01𝐼 

15 0.61 + 0.29𝐼 0.0067 − 0.0178𝐼 2.01 + 0.98𝐼 0.61 + 0.29𝐼 0.0067 − 0.0178𝐼 2.01 + 0.98𝐼 

30 0.39 + 0.22𝐼 −0.0024 + 0.0121𝐼 2.00 + 1.01𝐼 0.39 + 0.22𝐼 −0.0024 + 0.0121𝐼 2.00 + 1.01𝐼 

50 0.29 + 0.16𝐼 −0.0024 − 0.0013𝐼 2.00 + 1.00𝐼 0.29 + 0.16𝐼 −0.0024 − 0.0013𝐼 2.00 + 1.00𝐼 

100 0.21 + 0.10𝐼 −0.0008 + 0.0033𝐼 2.00 + 1.00𝐼 0.21 + 0.10𝐼 −0.0008 + 0.0033𝐼 2.00 + 1.00𝐼 

Table (3) shows results of simulation analysis for neutrosophic Maxwell distribution and 

compares the two proposed estimation methods, notice that average bias of moments estimator is 

decreasing faster than maximum likelihood’s average bias, which proves by simulation that moments 

estimator is asymptotically unbiased. 

 

Table 3: Simulation performance of Neutrosophic Maxwell Distribution. 

n Maximum Likelihood Moments 

 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 𝑹𝑴𝑺𝑬 𝑨𝑩 Average �̂�𝑵 

5 1.04 + 0.49𝐼 0.3119 + 0.1552𝐼 2.31 + 1.16𝐼 1.02 + 0.48𝐼 0.2470 + 0.1260𝐼 2.25 + 1.13𝐼 

15 0.47 + 0.23𝐼 0.0882 + 0.0568𝐼 2.09 + 1.06𝐼 0.47 + 0.24𝐼 0.0687 + 0.0488𝐼 2.07 + 1.05𝐼 

30 0.31 + 0.16𝐼 0.0429 + 0.0185𝐼 2.04 + 1.02𝐼 0.32 + 0.16𝐼 0.0351 + 0.0113𝐼 2.04 + 1.01𝐼 

50 0.24 + 0.12𝐼 0.0274 + 0.0105𝐼 2.03 + 1.01𝐼 0.24 + 0.12𝐼 0.0231 + 0.0073𝐼 2.02 + 1.01𝐼 

100 0.17 + 0.08𝐼 0.0160 + 0.0046𝐼 2.02 + 1.00𝐼 0.17 + 0.08𝐼 0.0135 + 0.0032𝐼 2.01 + 1.00𝐼 

6. Conclusions and future research directions 

In this paper we have introduced the concept of neutrosophic likelihood estimation method and neutrosophic 

moments estimation method and studied its properties based on AH-Isometry. We also presented theorems on 

these two estimation methods. We see that two estimation methods yields to different estimators. We also 

presented the concept of neutrosophic fisher information and presented some theorems related to it. In future 

work we are looking forward to study the properties of estimators like biasness, consistency and sufficiency. 

This paper opens the way to study the theory of neutrosophic statistical inference which is using neutrosophic 

classical numbers 𝑁 = 𝑎 + 𝑏𝐼; 𝐼2 = 𝐼 (not interval neutrosophic numbers).  
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