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Abstract: 

The objective of this paper is to answer the open problem proposed about the validity of 

phi-Euler’s theorem in the refined neutrosophic ring of integers 𝑍(𝐼1, 𝐼2) . This work 

presents an algorithm to compute the values of Euler’s function on refined neutrosophic 

integers, and it prove that phi-Euler’s theorem is still true in 𝑍(𝐼1, 𝐼2). 

On the other hand, we present a solution for another open question about the solutions of 

Fermat's Diophantine equation in refined neutrosophic ring of integers, where we 

determine the solutions of Fermat's Diophantine equation 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑛 ≥ 3 in 𝑍(𝐼1, 𝐼2). 

Key Words: refined Neutrosophic integer, Neutrosophic Euler's function, Neutrosophic 

Fermat's equation  

1. Introduction 

Neutrosophy is a new generalization of fuzzy ideas by considering three membership 

states (truth, falsity, and indeterminacy) founded by Smarandache in 1995 [1]. 
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In the literature [2], the indeterminacy element I was used to build some interesting 

extensions of algebraic rings. By adding I (with a logical property 𝐼2 = 𝐼) to any ring R, we 

get 𝑅(𝐼) the corresponding neutrosophic ring as follows: 

𝑅(𝐼) = {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑅}[2]. 

In [3], Agboola et.al, proposed the structure of refined neutrosophic rings. 

As a natural development, neutrosophic number theory was studied in [4,6], where we can 

find neutrosophic congruencies, Diophantine equations, primes, and neutrosophic Euler’s 

theorem. 

In [5], Ibrahim et.al, proposed the basic ideas in refined neutrosophic number theory, 

where they defined congruencies, Pell’s equation, and divisibility in 𝑍(𝐼1, 𝐼2). On the other 

hand, an interesting open question has been asked as follows: 

Define phi-Euler’s function in 𝑍(𝐼1, 𝐼2)? Is Euler’s theorem still true ?. 

Through this paper, we aim to solve this problem by proving that Euler's theorem is still 

true in refined neutrosophic number theory. 

Also, we find all possible solutions for The non-linear Fermat's Diophantine equation  

𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑛 ≥ 3, which was proposed as an open question in [7]. 

For more results and findings of neutrosophic number theory and algebraic structures, see 

[8-15]. 

For definitions and basic concepts in refined neutrosophic number theory, see [5]. 

 Main discussion : 

First of all, we will give an example to explain our idea. 
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Example : 

Let 𝑍(𝐼1, 𝐼2) be the refined neutrosophic ring of integers, consider 𝑥 = (3, 𝐼1, −𝐼2)𝜖𝑍(𝐼1, 𝐼2). 

To compute the value of 𝜑(𝑥), we have to know the number of refined neutrosophic 

integers: 

𝑦 = (𝑦0, 𝑦1𝐼1, 𝑦2𝐼2), with the property : 

{
gcd(𝑥, 𝑦) = (1,0,0)

0 < 𝑦 ≤ 𝑥
 

According to the definition of (gcd) in refined neutrosophic ring of integers, we get 

gcd(3, 𝑦0) = 1, gcd(2, 𝑦0 + 𝑦2) = 1, gcd(3, 𝑦0 + 𝑦1 + 𝑦2) = 1.Also, 𝑦 ≤ 𝑥 implies that: 

{

0 ≤ 𝑦 ≤ 3
0 ≤ 𝑦0 + 𝑦2 ≤ 2

0 ≤ 𝑦0 + 𝑦1 + 𝑦2 ≤ 3
 

The possible values of 𝑦0 are {1,2}. The possible values of 𝑦0 + 𝑦2 are {1}.The possible 

values of 𝑦0 + 𝑦1 + 𝑦2 are {1,2}. This implies that we get the following solutions : 

𝑦 = (1,0,0),   𝑦 = (1, 𝐼1, 0),   𝑦 = (2,0, 𝐼2),   𝑦 = (2, 𝐼1, −𝐼2) 

So, 𝜑(𝑥) = 4 which is equal to 𝜑(3) × 𝜑(2) ×  𝜑(3). Now, we are able to study the general 

case. 

Definition: 

Let 0 < 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2)𝜖𝑍(𝐼1, 𝐼2), we define Euler’s function as follows: 

𝜑(𝑥) = |{𝑦 = (𝑦0, 𝑦1𝐼1, 𝑦2𝐼2)𝜖𝑍(𝐼1, 𝐼2): gcd(𝑥, 𝑦) = (1,0,0)𝑎𝑛𝑑 0 < 𝑦 ≤ 𝑥}|. 

Theorem:: 

Let 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2)  be any positive refined neutrosophic integer, hence:  𝜑(𝑥) =

 𝜑(𝑥0) × 𝜑(𝑥0 + 𝑥2) ×  𝜑(𝑥0 + 𝑥1 + 𝑥2). 
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Proof: 

Let 𝑦 = (𝑦0, 𝑦1𝐼1, 𝑦2𝐼2) be a refined neutrosophic integer with {
0 ≤ 𝑦 ≤ 𝑥

gcd(𝑥, 𝑦) = (1,0,0)
 

We have, ( 𝑦0 ≤ 𝑥0, 𝑦0 + 𝑦2 ≤ 𝑥0 + 𝑥2,   𝑦0 + 𝑦1 + 𝑦2 ≤ 𝑥0 + 𝑥1 + 𝑥2 ) and ( gcd(𝑥0 , 𝑦0) =

gcd(𝑥0 + 𝑥2, 𝑦0 + 𝑦2) =  gcd( 𝑥0 + 𝑥1 + 𝑥2, 𝑦0 + 𝑦1 + 𝑦2) = (1,0,0). This implies that we have 

𝜑(𝑥0) ways to chose 𝑦0, 𝜑(𝑥0 + 𝑥2) ways to chose 𝑦0 +  𝑦2 and 𝜑(𝑥0 + 𝑥1 + 𝑥2) ways to 

chose 𝑦0 + 𝑦1 + 𝑦2 . By using the essential concept in combinatory, we get  𝜑(𝑥) =

 𝜑(𝑥0) × 𝜑(𝑥0 + 𝑥2) ×  𝜑(𝑥0 + 𝑥1 + 𝑥2). 

Example: 

Let 𝑥 = (4,0,2𝐼2), we have : 

𝜑(4) = 2,   𝜑(4 + 2) =  𝜑(6) = 2  , 𝜑(4 + 0 + 2) = 𝜑(6) = 2. 

Hence 𝜑(𝑥) = 2 × 2 × 2 = 8. 

We shall find the 8 refined neutrosophic integers with the property {
0 ≤ 𝑦 ≤ 𝑥

gcd(𝑥, 𝑦) = (1,0,0)
 

Let 𝑦 = (𝑦0, 𝑦1𝐼1, 𝑦2𝐼2) , we have 

:{

𝑦0 ≤ 4,   gcd(𝑦0 , 4) = 1 ⟹ 𝑦0 ∈ {1,3}

𝑦0 + 𝑦2 ≤ 6,   gcd(𝑦0 + 𝑦2 , 6) = 1 ⟹ 𝑦0 + 𝑦2 ∈ {1,5}

𝑦0 + 𝑦1 + 𝑦2 ≤ 6,   gcd(𝑦0 + 𝑦1 + 𝑦2 , 6) = 1 ⟹ 𝑦0 + 𝑦1 + 𝑦2 ∈ {1,5}
 

The possible solutions are: 

1) 𝑦 = (1,0,0). 

2) 𝑦 = (1, −4𝐼1, 4𝐼2). 

3) 𝑦 = (1,0,4𝐼2). 

4) 𝑦 = (1,4𝐼1, 0). 

5) 𝑦 = (3,0, −2𝐼2). 
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6) 𝑦 = (3,4𝐼1, −2𝐼2). 

7) 𝑦 = (1, −4𝐼1, 2𝐼2). 

8) 𝑦 = (1,0,2𝐼2). 

The following theorem clarifies how to compute natural powers in 𝑍(𝐼1, 𝐼2). 

Theorem : 

Let 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2) ∈ 𝑍(𝐼1, 𝐼2), let n be any positive integer, hence 𝑥𝑛 = (𝑥0
𝑛, 𝐼1[(𝑥0 +

𝑥1 + 𝑥2)𝑛 − (𝑥0 + 𝑥2)𝑛], 𝐼2[(𝑥0 + 𝑥2)𝑛 − 𝑥0
𝑛]). 

Theorem: 

 Let 𝑍(𝐼1, 𝐼2) be the refined neutrosophic ring of integers. Let 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2),  𝑦 =

(𝑦0, 𝑦1𝐼1, 𝑦2𝐼2) ∈ 𝑍(𝐼1, 𝐼2) with gcd(𝑥, 𝑦)=1, hence 𝑥𝜑(𝑦) = 1(𝑚𝑜𝑑 𝑦). 

Proof: 

According to the assumption , we have : 

𝑥𝜑(𝑦) = 𝑥𝜑(𝑦0)×𝜑(𝑦0+𝑦2)×𝜑(𝑦0+𝑦1+𝑦2) = (𝑥0
𝜑(𝑦)

, 𝐼1[(𝑥0 + 𝑥1 + 𝑥2)𝜑(𝑦) − (𝑥0 + 𝑥2)𝜑(𝑦)], 𝐼2[(𝑥0 +

𝑥2)𝜑(𝑦) − 𝑥0
𝜑(𝑦)

]). 

Now, let’s compute the following : 

𝑥0
𝜑(𝑦)

= [𝑥0
𝜑(𝑦0)

]𝜑(𝑦0+𝑦2)×𝜑(𝑦0+𝑦1+𝑦2) ≡ 1𝜑(𝑦0+𝑦2)×𝜑(𝑦0+𝑦1+𝑦2)(𝑚𝑜𝑑 𝑦0) ≡ 1(𝑚𝑜𝑑 𝑦0) . 

(That is because gcd(𝑥0, 𝑦0) = 1) 

(𝑥0 + 𝑥2)𝜑(𝑦) = [(𝑥0 + 𝑥2)𝜑(𝑦0+𝑦2)]𝜑(𝑦0)×𝜑(𝑦0+𝑦1+𝑦2) ≡ 1(𝑚𝑜𝑑 𝑦0 + 𝑦2). 

(That is because gcd(𝑥0 + 𝑥2, 𝑦0 + 𝑦2) = 1) 

(𝑥0 + 𝑥1 + 𝑥2)𝜑(𝑦) = [(𝑥0 + 𝑥1 + 𝑥2)𝜑(𝑦0+𝑦1+𝑦2)]𝜑(𝑦0)×𝜑(𝑦0+𝑦2) ≡ 1(𝑚𝑜𝑑 𝑦0 + 𝑦1 + 𝑦2). 

(That is because gcd(𝑥0 + 𝑥1 + 𝑥2, 𝑦0 + 𝑦1 + 𝑦2) = 1). 

We get that: 

𝑥0
𝜑(𝑦)

≡ 1(𝑚𝑜𝑑 𝑦0), 

𝑥0
𝜑(𝑦)

+ [(𝑥0 + 𝑥2)𝜑(𝑦) − 𝑥0
𝜑(𝑦)

] = (𝑥0 + 𝑥2)𝜑(𝑦) ≡ 1(mod 𝑦0 + 𝑦2), 
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𝑥0
𝜑(𝑦)

+ [(𝑥0 + 𝑥2)𝜑(𝑦) − 𝑥0
𝜑(𝑦)

] + [(𝑥0 + 𝑥1 + 𝑥2)𝜑(𝑦) − (𝑥0 + 𝑥2)𝜑(𝑦) = (𝑥0 + 𝑥1 + 𝑥2)𝜑(𝑦) ≡

1(mod 𝑦0 + 𝑦1 + 𝑦2), 

Under the definition of congruencies in refined neutrosophic rings we can write: 

𝑥𝜑(𝑦) ≡ (1,0,0) (𝑚𝑜𝑑 𝑦). 

This implies that Euler’s theorem is true in 𝑍(𝐼1, 𝐼2). 

Definition : [7] 

Let R be a ring, 𝐹 = (𝑋, 𝑌, 𝑍) be a triple, where 𝑋, 𝑌, 𝑍 ∈ 𝑅. F is called a general Fermat's 

triple if and only if 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑛 ≥ 3 . 

This is equivalent to the condition that (𝑋, 𝑌, 𝑍) is a solution of Fermat's equation.  

Theorem : 

Let 𝑍(𝐼1, 𝐼2) be the refined neutrosophic ring of integers. The Equation 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑛 ≥

3 has only 27 solutions. 

Proof: 

𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛 ⟺ {

𝑥0
𝑛 + 𝑦0

𝑛 = 𝑧0
𝑛 … (1)

(𝑥0 + 𝑥2)𝑛 + (𝑦0 + 𝑦2)𝑛 = (𝑧0 + 𝑧2)𝑛 … (2)

(𝑥0 + 𝑥1 + 𝑥2)𝑛 + (𝑦0 + 𝑦1 + 𝑦2)𝑛 = (𝑧0 + 𝑧1 + 𝑧2)𝑛 … (3)
 

Now, solutions of (1) is. 

{

𝑥0 = 𝑦0 = 𝑧0 = 0 … (𝑎)
𝑥0 = 𝑧0 = 1, 𝑦0 = 0 … (𝑏)
𝑦0 = 𝑧0 = 1, 𝑥0 = 0 … (𝑐)

 

solutions of (2) is. 

{

𝑥0 + 𝑥2 = 𝑦0 + 𝑦2 = 𝑧0 + 𝑧2 = 0 … (𝑑)
𝑥0 + 𝑥2 = 𝑧0 + 𝑧2 = 1, 𝑦0 + 𝑦2 = 0 … (𝑒)
𝑦0 + 𝑦2 = 𝑧0 + 𝑧2 = 1, 𝑥0 + 𝑥2 = 0 … (𝑓)

 

solutions of (3) is. 

{

𝑥0 + 𝑥1 + 𝑥2 = 𝑦0 + 𝑦1 + 𝑦2 = 𝑧0 + 𝑧1 + 𝑧2 = 0 … (𝑔)
𝑥0 + 𝑥1 + 𝑥2 = 𝑧0 + 𝑧1 + 𝑧2 = 1, 𝑦0 + 𝑦1 + 𝑦2 = 0 … (ℎ)
𝑦0 + 𝑦1 + 𝑦2 = 𝑧0 + 𝑧1 + 𝑧2 = 1, 𝑥0 + 𝑥1 + 𝑥2 = 0 … (𝑖)

 

We discuss possible cases. 

Case1. If (𝑎), (𝑑), (𝑔), then 𝑋 = 𝑌 = 𝑍 = (0,0,0). 

Case2. If (𝑎), (𝑑), (ℎ), then 𝑋 = (0,1,0), 𝑍 = (0,1,0), 𝑌 = (0,0,0). 

Case3. If (𝑎), (𝑑), (𝑖), then 𝑋 = (0,0,0), 𝑍 = (0, 𝐼1, 0), 𝑌 = (0, 𝐼1, 0). 

Case4. If (𝑎), (𝑒), (𝑔), then 𝑋 = (0, −𝐼1, 𝐼2), 𝑍 = (0, −𝐼1, 𝐼2), 𝑌 = (0,0,0). 
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Case5. If (𝑎), (𝑒), (𝑔), then 𝑋 = (0, −𝐼1, 𝐼2), 𝑍 = (0,0, 𝐼2), 𝑌 = (0,0,0). 

Case6. If (𝑎), (𝑒), (ℎ), then 𝑋 = (0,0, 𝐼2), 𝑍 = (0,0, 𝐼2), 𝑌 = (0,0,0). 

Case7. If (𝑎), (𝑓), (𝑔), then 𝑋 = (0,0,0), 𝑍 = (0, −𝐼1, 𝐼2), 𝑌 = (0, −𝐼1, 𝐼2). 

Case8. If (𝑎), (𝑓), (ℎ), then 𝑋 = (0, 𝐼1, 0), 𝑍 = (0, −𝐼1, 𝐼2), 𝑌 = (0, −𝐼1, 𝐼2). 

Case9. If (𝑎), (𝑓), (𝑖), then 𝑋 = (0,0,0), 𝑍 = (0,0, 𝐼2), 𝑌 = (0,0, 𝐼2). 

Case10. If (𝑏), (𝑑), (𝑔), then 𝑋 = (1,0, −𝐼2), 𝑍 = (1,0, −𝐼2), 𝑌 = (0,0,0). 

Case11. If (𝑏), (𝑑), (ℎ), then 𝑋 = (1, 𝐼1, −𝐼2), 𝑍 = (1, 𝐼1, −𝐼2), 𝑌 = (0,0, 𝐼2). 

Case12. If (𝑎), (𝑑), (𝑖), then 𝑋 = (1,0, −𝐼2), 𝑍 = (1, 𝐼1, 𝐼2), 𝑌 = (0, 𝐼1, 0). 

Case13. If (𝑏), (𝑒), (𝑔), then 𝑋 = (1, −𝐼1, 0), 𝑍 = (1, −𝐼1, 0), 𝑌 = (0,0,0). 

Case14. If (𝑏), (𝑒), (ℎ), then 𝑋 = (1,0,0), 𝑍 = (1,0,0), 𝑌 = (0, 𝐼1, 0). 

Case15. If (𝑏), (𝑒), (𝑖), then 𝑋 = (1, −𝐼1, 0), 𝑍 = (1,0,0), 𝑌 = (0, 𝐼1, 0). 

Case16. If (𝑏), (𝑓), (𝑔), then 𝑋 = (1,0, −𝐼2), 𝑍 = (1, −𝐼1, 0), 𝑌 = (0, −𝐼1, 𝐼2). 

Case17. If (𝑏), (𝑓), (ℎ), then 𝑋 = (1, 𝐼1, 𝐼2), 𝑍 = (1,0,0), 𝑌 = (0, −𝐼1, 𝐼2). 

Case18. If (𝑏), (𝑓), (𝑖), then 𝑋 = (1,0, −𝐼2), 𝑍 = (1,0,0), 𝑌 = (0,0, 𝐼2). 

Case19. If (𝑐), (𝑑), (ℎ), then 𝑋 = (0, 𝐼1, 0), 𝑍 = (1, 𝐼1, −𝐼2), 𝑌 = (1,0, −𝐼2). 

Case20. If (𝑐), (𝑑), (𝑔), then 𝑋 = (0,0,0), 𝑍 = (1,0, −𝐼2), 𝑌 = (1,0, −𝐼2). 

Case21. If (𝑐), (𝑑), (𝑖), then 𝑋 = (0,0,0), 𝑍 = (1, 𝐼1, −𝐼2), 𝑌 = (1, 𝐼1, −𝐼2). 

Case22. If (𝑐), (𝑒), (𝑔), then 𝑋 = (0, −𝐼1, 𝐼2), 𝑍 = (1, −𝐼1, 0), 𝑌 = (1,0, −𝐼2). 

Case23. If (𝑎), (𝑒), (ℎ), then 𝑋 = (0,0, −𝐼2), 𝑍 = (1,0,0), 𝑌 = (1,0, −𝐼2). 

Case24. If (𝑐), (𝑒), (𝑖), then 𝑋 = (0, −𝐼1, 𝐼2), 𝑍 = (1,0,0), 𝑌 = (1, 𝐼1, 𝐼2). 

Case25. If (𝑐), (𝑓), (𝑔), then 𝑋 = (0,0,0), 𝑍 = (1, −𝐼1, 0), 𝑌 = (1, −𝐼1, 0). 

Case26. If (𝑐), (𝑓), (ℎ), then 𝑋 = (0, 𝐼1, 0), 𝑍 = (1,0,0), 𝑌 = (1, −𝐼1, 0). 

Case27. If (𝑐), (𝑓), (𝑖), then 𝑋 = (0,0,0), 𝑍 = (1,0,0), 𝑌 = (1,0,0). 

 

 Conclusion 

 

In this paper, we have defined the Euler's function in the refined neutrosophic ring of 

integers (𝐼1, 𝐼2) , as well as, we have presented an algorithm to compute the values of this 
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function. 

Also, we have proved that Euler's famous theorem is still true in the case of refined 

neutrosophic number theory. 

In particular, we have determined the possible solutions of Fermat's equation in the refined 

neutrosophic ring of integers. 

As a future research direction, we aim to study the Euler's theorem in n-refined 

neutrosophic number theory and n-cyclic refined neutrosophic integers, as well as Fermat's 

equation in these rings. 
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