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Abstract:

The objective of this paper is to study for the first time the foundational concepts of
number theory in 2-plithogenic rings of integers, where concepts such as symbolic

2-plithogenic congruencies, division, semi primes, and greatest common divisors.

In addition, many elementary properties will be discussed in details through many

theorems and examples.

Keywords: Symbolic 2-plithogenic integer, symbolic 2-plithogenic divison,
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Introduction and basic concepts

The concept of symbolic plithogenic sets was defined by Smarandache in [13-17,30], and he
suggested an algebraic approach of these sets. Laterally, the concept of symbolic
2-plithogenic rings [31]. In general, we can say that symbolic plithogenic structures are very
close to neutrosophic algebraic structures with many differences in the definition of
multiplication operation [1-10].

Let R be a ring, the symbolic 2-plithogenic ring is defined as follows:

2 —SPg ={ag + a1 Py + ayPy; a; € R, Pi* = P, Py X P, = P12y = Po ).

Smarandache has defined algebraic operations on 2 — SPy as follows:
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Addition:

[ag + a;P; + ayP,] + [by + b Py + b, Py] = (ag + by) + (a; + by)P; + (a, + by)P,.
Multiplication:

[ag + a,Py + a,P,).[by + byP; + b, P,] = agby + aghy Py + agb,P, + a;boP;* + a b, PP, +
a,boP, + a,by PiP, + ayb,Py% + a; by Py Py = agby + (aghy + a;by + aiby)P; + (agh, + a;b, +
a;by + a,b; + a;b,)P;,.

It is clear that (2 — SPg) is aring.

Also, if R is commutative, then 2 — SPy is commutative, and if R has a unity (1), than 2 —
SPg has the same unity (1).

If Ris a field, then 2 — SP; is called a symbolic 2-plithogenic field.

In this paper, we study the symbolic 2-plithogenicnumber theoretical concepts according to
many points of view, where congruencies, Euclidean division, Euler's function, and gratest
common divisors will be presented in terms of theorems. In addition, many examples will
be illustrated to explain the novelty of these ideas. In addition, we suggest many future
applications of symbolic 2-plithogenic integers in cryptography and public key

neutrosophic cryptography.

Main Discussion

Definition.

Let A=ay+ a;P; +ayP;, B = by + b, Py + b,P, € 2 —SP;, we say that A\ B if and only if
there exists C € 2 — SP, such that AX B = C.

Definition.

Let A=ay+a;P; +ayP,,B=Dbg+byP;+byP,,C =co+cPy+cP, be three symbolic
2-plithogenic integers, then A = B(mod C) if and only if C \ A — B.

Also, € = gcd(A,B) ifand onlyif C\ A and C\ B and forany D\ 4,D \ B, then D\ C.
Definition.

Wessay that A < B if ay < bg,ag +a; < by + by,a9 +a; +a, < by + by + by.

Theorem.

Let A=ay+a,P, +a,P;,B=by+ b;Py +b,P,,C =cy+c; Py +c,Py €2 — SPy, then:

1). () is a partial order relation.

2). A\ B ifand only if ag \ bg,ag +a; \ by + by, ay + a; + a, \ by + by + b,.
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3). gcd(A,B) = C if and only if gcd(ag, by) = ¢y, gcd(ag + ay, by + by) = ¢y + c1,gcd(ay +
aq +a2,b0 +b1 +b2) = (o +C1 +C2.
4). A = B(mod C) if and only if:

ag = by(mod cy)
ay+ ay = by + by(mod ¢y + ¢4)
ay+a,+a, =bg+ by +by(modcy+ ¢y +c3)

Proof.
1). A < A thatis because ay < ag,ag +a; < ap+aq,ap+a; +a, <ay+a; +a,.
If A< B and B < A4, then:

Ag < bo,bo < ao,thus g = bo
ag+a; <by+by,bg+ by <ag+aq,thus ay + ay = by + by, hence a; = by
ag+aq; +a; <by+ by +by,byg+ by +b, <ay+ay +ay thusag + a; +a, = by + by + by, hence a, = b,

Hence A = B.

Ift A<B and B<C, then ay <by<cy, ap+a; <by+b;<co+c;,a0+a,+a, <by+
by + by <cy+c; +cy, thus A<C.

2).If A\ B, then there exists C such that A.C = B. This equivalents:

aoCo + Pi(age; + ayco + aycq) + Py(age, + aycy + aycy + agcy + azcq) = by + by Py + byP,
there for:

ayCo = bp ... (1)
apcy +a;co +ac; =by ... (2)
a()CZ + a2C0 + a2C2 + a1C2 + a2C1 = bz (3)

Weadd (1) to (2) and (1) to (2) to (3), to get:

aoCo = by
(ap +a1)(co+¢1) =bo + by
(ao + al + az)(CO + Cl + Cz) = bO + bl + b2

Thus ag \ bg,ag + a; \ bg + b1,a9 +ay +a, \ by + by + b,.

3). Assume that gcd(4,B) = C, then for any D = dy + d,P; + d,P, € 2 — SP; such that D\
A, D\ B implies D \ C.

According to (2), we get dy\cg,dp+d;\co+cy,dg+dy+dy\co+cg+c;, so that
gcd(ag, bg) = cg,gcd(ag + aq,bg + by) =co + ¢1,gcd(ag +a, + a,,bg+ by +by) =co+ ¢, +
Cy.

This implies that gcd(A,B) = gcd(ag, by) + Pilgcd(ag + a1, by + by) — ged(ay, by)] +
P,[gcd(ay + a; + ay, by + by + by) — ged(ay + aq, by + by)].

4). A = B(mod C) if and only if C \ A — B, thus:

co \ ag — bg,co +¢1\ (ag +ay) — (bg + by),co+ ¢y + 2\ (ag + a; +az) — (bg + by + by)
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So that:

ag = by(mod cy)
ag+a, = by + by(mod cy +¢y)
ag+a, +a, =by+ by +by(mod cy+c; +¢3)

Theorem.
Let A=ay+ a;P; +a,P;, B = by + by P; + b,P, € 2 — SP;, then gcd(A,B) =1 if and only if
gcd(ag, by) = 1,gcd(ay + aq, by + by) = 1,gcd(ag + ay + a, bg + by + by) = 1.
The proof is clear.
Theorem.
Let A,B,C,D,E € 2 — SP,, where:
A=aqg+aP;+ay,P;,B=D>by+bP; +byPy,C =cy+c1Py+c3P,,D=dy+d Py +d,P,E =
ey +e,Py +eyPy; ¢, a4, b, e,d; € Z, then:
1).If A= B(mod C),D = E(mod C),then A+ D =B+ E(mod C),A—D = B — E(mod C).
2). A.D = B.E(mod C).
3).If gcd(4,B) = 1, then:
A~Y(mod B) = aq"Y(mod by) + P;[(ay + a;) 1 (mod by + b;) — ag " (mod by)]
+ P,[(ag + a; + ay)~t(mod by + by + by) — (ag + a;)~t(mod by + by)]
Proof.
1). Assume that A = B(mod C),D = E(mod C), thus:

ag = bg(mod cy)
ay+ ay = by + by(mod ¢y + ¢4)
ap+a, +a, =by+ by +by(modcy+c; +¢3)

And

dy = eg(mod cy)
do+d, =ey+ e (modcy+cy)
do+di+d,=ey+e; +e,(modcy+cq+cy)

This implies:

ag +dy = by + eg(mod cy)
ag+a;+dy+d; =by+ by +ey+e(modcy+cq)
ay+a,+a,+dy+dy+d, =by+ by +by+eg+e; +ey(modcy+ci +cy)

Sothat A+ D = B + E(mod C).
We can prove that A — D = B — E(mod C) by a similar.
2). By using a similar discussion, we can write:

agdy = byeg(mod cy)
(ap +ay)(dg + dy) = (by + by)(ey + €1)(mod ¢y + ¢q)
(ag+a; +ay)(dy+dy +dy) =(by+ by +by)(eg+ e, +ey)(mod cy + ¢y +¢3)
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Thus A.D = B.E(mod C).
3). Suppose that gcd(4,B) =1, then gcd(ay, by) = gcd(ag + a1, by + by) = ged(ag + a; +
az, by + by +by)=1.
We put
T = ay"*(mod by) + P;[(ag + a;) " (mod by + by) — ay~*(mod by)]
+ P,[(ag + a; + az)"t(mod by + by + by) — (ay + a;)"t(mod by + by)]
A.T = agay t(mod by) + P;[(ag + a;)(ag + a;) " (mod by + by) — aga,~(mod by)]
+ Py[(ag + a; + az)(ay + a; + a;)"t(mod by + by + by)
—(ap +a)(ag+a)) t(mod by +b)]=1+P1—-1D+P,(1-1)=1
Thus T = A~1.
Example:
Consider A =5+ 4P; + 2P,,B =2+ P, + P,,C = 3 + 4P,, we have:
5=2(mod3),5+4=9=2+1)(mod3+0),5+4+2=11=2+1+1)(mod3+0+
4), thus A = B(mod C).
gcd(A,B) = gcd(5,2) + P;[gcd(9,3) — gcd(5,2)] + P,[gcd(11,4) — gcd(9,3)] =1+
P,(3—1)+P,(1—3) =1+ 2P, — 2P,.
Example.
Consider A =2+ P; + P,,B =3+ P, + P,, itis clear that gcd(4,B) = 1.
A~1(mod B) = 27 (mod 3) + P;[37 (mod 4) — 27 (mod 3)] + P,[4 1 (mod 5) —
37 '(mod4)]=2+P,(3—2)+P,(4—3)=2+P, +P,.
Definition.
Let A= ay + a;P; + a,P, > 0 be a symbolic 2-plithogenic integer, we define ¢g:2 — SP; -
2 — SP; such that:
@s(A) = p(ao) + Pilo(ag + a1) — ¢(ag)] + Polp(ao + a; + az) — ¢(ag + a1)].
Where ¢ is the classical phi-Euler's function.
Example.
Take A=3+5P, —P,, ay = 3,a, =5,a, = —1. We have:
ap=3>0,ap+a;,=8>0,ap+a;+a, =7>0,sothat A > 0.
p(ag) =2,¢0(ag +a;) = 4,9(ag + a4 + a;) = 6, hence:
@0s(A) =2 + P[4 — 2] + P,[6 — 4] = 2 + 2P, + 2P,.
Theorem.

Let A=ay+a,P; +a,P,,M = my + myP; + m,P, € 2 — SP, such that gcd(A, M) = 1, then
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A?sM) = 1(mod M).
Proof.
According to[ [:
APsM) = g @(mo) 4 P1[(ao + a,)Pmo+my) _ ao(p(mo)]
+ Py[(ag + ay + ap)?Motmitma) — (g 4 g, )¢(motma)]
Since gcd(A,M) =1, then gcd(ag, my) = gcd(ag + a;, mg + my) = ged(ag + a; + az,my +
my + my,) =1, so that:

ay®™0) = 1(mod my)
(ag + ay)?™o+™m) = 1(mod my + m,)
(ag + a; + ap)?Motmi+m2) = 1 (mod my + m; + m,)

Thus A?s™ =1+ P,(1—-1) + P,(1 — 1)(mod M) = 1(mod M)

Example.

Take A =2+3P, —2P,,M = 3 + 4P, + 4P,, we have gcd(4,M) = 1.

os(M) = 2 + P,(6 — 2) + P,(10 — 6) = 2 + 4P, + 4P,

APsM) = 22 4 p [56 — 22] + P,[310 — 56]

22 = 1(mod 3),5°% = 1(mod 7),3'° = 1(mod 11), thus A?s™ = 1(mod M)

Theorem.

Let C = gcd(A, B) € 2 — SP,, then there exists M,N € 2 — SP, such that C = MA + NB.
Proof.

We assume that C = gcd (A4, B), then:

¢o = ged(ag, by)
¢, = ged(ag + ag, by + by) — ged(ag, by)
Cy = ng(aO + aq + az,bo + bl + bz) - gcd(ao + al,bo + bl)

So there exists mg, ng, mq,nq, My, Ny € Z such that:

CO = mOaO + nobo
CO + Cl = ml(ao + al) + nl(no + Tll)
CO + C1 + Cy = mz(ao + aq + az) + nz(bo + b1 + bz)

We put M =mg+ (my —mgy)P; + (my; —my)P,, N = ng + (ng —ng)P; + (n; —ny)P,, now
let us compute:
M.A = [my + (my — mo)Py + (my —my)Ps][ag + a1 Py + a,P,]
M.A = myay + Py(myay + myag — myag + mya; — mya,)

+ P,(mya, + myay, — myay, + mya, —mya; + mya, — mya, + mya, — mya,)
M.A = myay + Py(myag + mya; — myayg)

+ P,(myay — myay + mya, —mya; + mya, + mya,)

N.B = nyby + Py(n by + nyby — nyby) + P,(nybg — nyby + nyby —nyb +nyby, +nyby)
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MA + NB = (mgay + ngbg) + P;[my(ag + a;) + ny(by + by) — ngby — myay]
+ Py[my(ag + ay + az) + na(bg + by + by) —my(ag + as) — ny(bo + by)]
=cgt+ciPi+c P =C

Example.

Consider A =3+ 2P; + P,,B = 3 + P; + 3P,, we have:

ay=3,a; =2,a,=1,by=3,b; =1,b, = 3.

gcd(ag, by) = 3,gcd(ag + ay, by + b1) = ged(5,4) = 1,gcd(ag + a4 + az, by + by + by)
=gcd(6,7) =1

Thus gcd(A,B) =3 + (1 —3)P, + (1 — 1)P, = 3 — 2P,.

On the other hand, we have:

3=1340.3hencemy=1,n,=0
1=15—14hencem; =1,n; = -1
1=-16+ 17 hencem, =-1,n,=1

Thus M=1+(1—=3)P,+(-1— 1P, =1—2P,, N=0+ (=1 —0)P, + (1+ 1)P, = —P, +
2P,
We can see that:
MA+ NB = (1 —2P,)(3 + 2P, + P,) + (=P, + 2P,)(3 + P, + 3P,)
=34 2P, + P, — 6P, — 4P, — 2P, — 3P, — P, — 3P, + 6P, + 2P, + 6P,
=3—2P, =C = gcd(4,B)
Definition.
Let S = s¢ + s1P; + 5,P, € 2 — SP;, we say that S is a 2-plithogenic semi prime if s¢, sy +
51,50 + s1 + s, are primes.
Example.
The 2-plithogenic integer S =2 + P; + 2P, is a semi prime, that is because sy = 2,5, +
s1 = 3,89 + 51 +5, =5 are primes.
Application In Future Studies
Symbolic 2-plithogenic number theory as a new research direction maybe very useful
branches of knowledge.
We suggest the following research points that symbolic 2-plithogenic integers may have a
very big effect on it.
1-). How can we use symbolic 2-plithogenic integers in the improvement of crypto-systems
[39-41], for example:
a). How can we build a 2-plithogenic version of RSA algorithm.

b). How can we build a 2-plithogenic version of Diffie-Hellman key exchange algorithm.
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). How can we build a 2-plithogenic version of EL-Gamal algorithm for cryptography.

2-). How can we a solve non-linear symbolic 2-plithogenic Diophantine equations

and congruencies.
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