Neutrosophic Triplet Group Based on Set Valued Neutrosophic Quadruple Numbers

Memet Şahin ${ }^{1}$ and Abdullah Kargın²,*
${ }^{1}$ Department of Mathematics, Gaziantep University, Gaziantep 27310, Turkey. mesahin@gantep.edu.tr
2.* Department of Mathematics, Gaziantep University, Gaziantep 27310, Turkey. abdullahkargin27@gmail.com
*Correspondence: abdullahkargin27@gmail.com; Tel.:- 9005542706621

Abstract

Smarandache introduced neutrosophic quadruple sets and neutrosophic quadruple numbers [45] in 2015. These sets and numbers are real or complex number valued. In this study, we firstly introduce set valued neutrosophic quadruple sets and numbers. We give some known and special operations for set valued neutrosophic quadruple numbers. Furthermore, Smarandache and Ali obtained neutrosophic triplet groups [30] in 2016. In this study, we firstly give neutrosophic triplet groups based on set valued neutrosophic quadruple number thanks to operations for set valued neutrosophic quadruple numbers. In this way, we define new structures using the together set valued neutrosophic quadruple number and neutrosophic triplet group. Thus, we obtain new results for set valued neutrosophic quadruple numbers and neutrosophic triplet groups based on set valued neutrosophic quadruple number.

Keywords: Neutrosophic triplet set, neutrosophic triplet group, neutrosophic triplet quadruple set, neutrosophic triplet quadruple number, set valued neutrosophic triplet quadruple set, set valued neutrosophic triplet quadruple number

1 Introduction

Smarandache defined neutrosophic logic and neutrosophic set [1] in 1998. In neutrosophic logic and neutrosophic sets, there is T degree of membership, I degree of indeterminacy and F degree of nonmembership. These degrees are defined independently of each other. It has a neutrosophic value (T, I, F) form. In other words, a condition is handled according to both its accuracy and its inaccuracy and its uncertainty. Therefore, neutrosophic logic and neutrosophic set help us to explain many uncertainties in our lives. In addition, many researchers have made studies on this theory [2-27] and [52-57].
In fact, fuzzy logic and fuzzy set [28] were obtained by Zadeh in 1965. In the concept of fuzzy logic and fuzzy sets, there is only a degree of membership. In addition, intuitionistic fuzzy logic and intuitionistic fuzzy set [29] were obtained by Atanassov in 1986. The concept of intuitionistic fuzzy logic and intuitionistic fuzzy set includes membership degree, degree of indeterminacy and degree of non-membership. But these degrees are defined dependently of each other. Therefore, neutrosophic set is a generalized state of fuzzy and intuitionistic fuzzy set.
Furthermore, Smarandache and Ali obtained neutrosophic triplet set (NTS) and neutrosophic triplet groups (NTG) [30]. For every element "x" in NTS A, there exist a neutral of "x" and an opposite of " x ". Also, neutral of " x " must different from the classical neutral element. Therefore, the NTS is different from the classical set. Furthermore, a neutrosophic triplet (NT) " x " is showed by $<x$, $\operatorname{neut}(x)$, an$\mathrm{ti}(\mathrm{x})>$. Also, many researchers have introduced NT structures [31-44]
Also, Smarandache introduced neutrosophic quadruple sets (NQS) and neutrosophic quadruple number (NQN) [45]. The NQSs are generalized state of neutrosophic set. A NQS is shown by $\{(x, y T$, $\mathrm{zI}, \mathrm{tF}): \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t} \in \mathbb{R}$ or $\mathbb{C}\}$. Where, x is called the known part and ($\mathrm{yT}, \mathrm{zI}, \mathrm{tF}$) is called the unknown part
and T, I, F have their usual neutrosophic logic means. Recently, researchers studied NQS and NQN. Akinleye, Smarandache, Agboola studied NQ algebraic structures [46]; Jun, Song, Smarandache obtained NQ BCK/BCI-algebras [47]; Muhiuddin, Al-Kenani, Roh, Jun introduced implicative NQ BCKalgebras and ideals [48]; Li, Ma, Zhang, Zhang studied neutrosophic extended triplet group based on NQNs [49]; Ma, Zhang, and Smarandache studied neutrosophic quadruple rings [50]; Kandasamy, Kandasamy and Smarandache obtained neutrosophic quadruple vector spaces and their properties [51].
In this study, we firstly introduce set valued neutrosophic quadruple set (SVNQS) and set valued neutrosophic quadruple number (SVNQN). In the neutrosophic quadruples, real or complex numbers were taken as variables, while in this study we took sets as variables. So, we will expand the applications of neutrosophic quadruples. Because things or variables in any application will be more useful than real numbers or complex numbers. Also we give NT group (NTG) based on SVNQN. In Section 2, we give definitions and properties for NQS, NQN [45] and NTS, NTG [30]. In Section 3, we define SVNQS and SVNQN. Also, we give operations for these structures. In Section 4, we obtain some NTG based on SVNQN thanks to operations for SVNQN. In this way, we define new structures using the together SVNQN and NTG.

2 Preliminaries

Definition 2.1: [45] A NQN is a number of the form ($x, y T, z I, t F$), where T, I, F have their usual neutrosophic logic means and $x, y, z, t \in \mathbb{R}$ or \mathbb{C}. The $N Q S$ defined by $N Q=\{(x, y T, z I, t F): x, y, z, t \in \mathbb{R}$ or $\mathbb{C}\}$.

For a NQN ($\mathrm{x}, \mathrm{yT}, \mathrm{zI}, \mathrm{tF}$), representing any entity which may be a number, an idea, an object, etc., x is called the known part and ($\mathrm{yT}, \mathrm{zI}, \mathrm{tF}$) is called the unknown part.

Definition 2.2: [45] Let $\mathrm{a}=\left(a_{1}, a_{2} \mathrm{~T}, a_{3} \mathrm{I}, a_{4} \mathrm{~F}\right)$ and $\mathrm{b}=\left(b_{1}, b_{2} \mathrm{~T}, b_{3} \mathrm{I}, b_{4} \mathrm{~F}\right) \in \mathrm{NQ}$ be NQNs. We define the following:
$\mathrm{a}+\mathrm{b}=\left(a_{1}+b_{1},\left(a_{2}+b_{2}\right) \mathrm{T},\left(a_{3}+b_{3}\right) \mathrm{I},\left(a_{4}+b_{4}\right) \mathrm{F}\right)$
$\mathrm{a}-\mathrm{b}=\left(a_{1}-b_{1},\left(a_{2}-b_{2}\right) \mathrm{T},\left(a_{3}-b_{3}\right) \mathrm{I},\left(a_{4}-b_{4}\right) \mathrm{F}\right)$
Definition 2.3: [45] Consider the set \{T, I, F\}. Suppose in an optimistic way we consider the prevalence order $\mathrm{T}>\mathrm{I}>\mathrm{F}$. Then we have:
$\mathrm{TI}=\mathrm{IT}=\max \{\mathrm{T}, \mathrm{I}\}=\mathrm{T}$,
$\mathrm{TF}=\mathrm{FT}=\max \{\mathrm{T}, \mathrm{F}\}=\mathrm{T}$,
$\mathrm{FI}=\mathrm{IF}=\max \{\mathrm{F}, \mathrm{I}\}=\mathrm{I}$,
$\mathrm{TT}=T^{2}=\mathrm{T}$,
$\mathrm{II}=I^{2}=\mathrm{I}$,
$\mathrm{FF}=F^{2}=\mathrm{F}$.
Analogously, suppose in a pessimistic way we consider the prevalence order $\mathrm{T}<\mathrm{I}<\mathrm{F}$. Then we have:

$$
\begin{aligned}
& \mathrm{TI}=\mathrm{IT}=\max \{\mathrm{T}, \mathrm{I}\}=\mathrm{I}, \\
& \mathrm{TF}=\mathrm{FT}=\max \{\mathrm{T}, \mathrm{~F}\}=\mathrm{F}, \\
& \mathrm{FI}=\mathrm{IF}=\max \{\mathrm{F}, \mathrm{I}\}=\mathrm{F},
\end{aligned}
$$

$\mathrm{TT}=T^{2}=\mathrm{T}$,
$\mathrm{II}=I^{2}=\mathrm{I}$,
$\mathrm{FF}=F^{2}=\mathrm{F}$.
Definition 2.4: [45] Let
$\mathrm{a}=\left(a_{1}, a_{2} \mathrm{~T}, a_{3} \mathrm{I}, a_{4} \mathrm{~F}\right)$,
$\mathrm{b}=\left(b_{1}, b_{2} \mathrm{~T}, b_{3} \mathrm{I}, b_{4} \mathrm{~F}\right) \in \mathrm{NQ} ;$
T $<$ I $<\mathrm{F}$.
Then $\mathrm{a}^{*} \mathrm{~b}=\left(a_{1}, a_{2} \mathrm{~T}, a_{3} \mathrm{I}, a_{4} \mathrm{~F}\right)^{*}\left(b_{1}, b_{2} \mathrm{~T}, b_{3} \mathrm{I}, b_{4} \mathrm{~F}\right)=\left(a_{1} b_{1},\left(a_{1} b_{2}+a_{2} b_{1}+a_{2} b_{2}\right) \mathrm{T}\right.$, $\left.\left(a_{1} b_{3}+a_{2} b_{3}+a_{3} b_{1}+a_{3} b_{2}+a_{3} b_{3}\right) \mathrm{I},\left(a_{1} b_{4}+a_{2} b_{4}+a_{3} b_{4}+a_{4} b_{1}+a_{4} b_{2}+a_{4} b_{3}+a_{4} b_{4}\right) \mathrm{F}\right)$

Definition 2.5: [45] Let
$\mathrm{a}=\left(a_{1}, a_{2} \mathrm{~T}, a_{3} \mathrm{I}, a_{4} \mathrm{~F}\right)$,
$\mathrm{b}=\left(b_{1}, b_{2} \mathrm{~T}, b_{3} \mathrm{I}, b_{4} \mathrm{~F}\right) \in \mathrm{NQ}$,
T $>$ I $>$ F
Then a\#b $=\left(a_{1}, a_{2} \mathrm{~T}, a_{3} \mathrm{I}, a_{4} \mathrm{~F}\right) \#\left(b_{1}, b_{2} \mathrm{~T}, b_{3} \mathrm{I}, b_{4} \mathrm{~F}\right)=\left(a_{1} b_{1},\left(a_{1} b_{2}+a_{2} b_{1}+a_{2} b_{2}+a_{3} b_{2}+a_{4} b_{2}+a_{2} b_{3}+\right.\right.$ $\left.\left.a_{2} b_{4}\right) \mathrm{T},\left(a_{1} b_{3}+a_{3} b_{3}+a_{3} b_{4}+a_{4} b_{3}\right) \mathrm{I},\left(a_{1} b_{4}+a_{4} b_{1}+a_{4} b_{4}\right) \mathrm{F}\right)$

Definition 2.6: [30]: Let \# be a binary operation. A NTS ($X, \#$) is a set such that for $x \in X$,
i) There exists neutral of " x " such that $x \# n e u t(x)=\operatorname{neut}(x) \# x=x$,
ii) There exists anti of " x " such that $x \# a n t i(x)=\operatorname{anti}(x) \# x=\operatorname{neut}(x)$.

Also, a neutrosophic triplet " x " is showed with (x, neut (x), anti((x)).
Definition 2.7: [30] Let ($\mathrm{X}, \#$) be a NT set. Then, X is called a NTG such that
a) for all $a, b \in X, a^{*} b \in X$.
b) for all a, b, c $\in X,\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right)$

3 Set Valued Neutrosophic Quadruple Numbers

Definition 3.1: Let N be a non - empty set and $\mathrm{P}(\mathrm{N})$ be power set of N . A SVNQN shown by the form $\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)$. Where, T, I and F are degree of membership, degree of undeterminacy, degree of non-membership in neutrosophic theory, respectively. Also, $A_{1}, A_{2}, A_{3}, A_{4} \in \mathrm{P}(\mathrm{N})$. Then, a SVNQS shown by $N_{q}=\left\{\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right): A_{1}, A_{2}, A_{3}, A_{4} \in \mathrm{P}(\mathrm{N})\right\}$.

Where, similar to NQS, A_{1} is called the known part and $\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)$ is called the unknown part.

Definition 3.2: Let $\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)$ and $\mathrm{B}=\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)$ be SVNQNs. We define the following operations, well known operators in set theory, such that
$\mathrm{A} \cup \mathrm{B}=\left(A_{1} \cup B_{1},\left(A_{2} \cup B_{2}\right) \mathrm{T},\left(A_{3} \cup B_{3}\right) \mathrm{I},\left(A_{4} \cup B_{4}\right) \mathrm{F}\right)$
$\mathrm{A} \cap \mathrm{B}=\left(A_{1} \cap B_{1},\left(A_{2} \cap B_{2}\right) \mathrm{T},\left(A_{3} \cap B_{3}\right) \mathrm{I},\left(A_{4} \cap B_{4}\right) \mathrm{F}\right)$

$$
\begin{aligned}
& \mathrm{A} \backslash \mathrm{~B}=\left(A_{1} \backslash B_{1},\left(A_{2} \backslash B_{2}\right) \mathrm{T},\left(A_{3} \backslash B_{3}\right) \mathrm{I},\left(A_{4} \backslash B_{4}\right) \mathrm{F}\right) \\
& A^{\prime}=\left(A^{\prime}{ }_{1}, A^{\prime}{ }_{2} \mathrm{~T}, A^{\prime}{ }_{3} \mathrm{I}, A^{\prime}{ }_{4} \mathrm{~F}\right)
\end{aligned}
$$

Now, we define specific operations for SVNQN.
Definition 3.3: Let $\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right), \mathrm{B}=\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)$ be SVNQNs and $\mathrm{T}<\mathrm{I}<\mathrm{F}$. We define the following operations
$\mathrm{A}^{*} \mathrm{~B}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right){ }^{*_{1}}\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)=\left(A_{1} \cap B_{1},\left(\left(A_{1} \cap B_{2}\right) \cup\left(A_{2} \cap B_{1}\right) \cup\left(A_{2} \cap B_{2}\right)\right) \mathrm{T}\right.$, $\left(\left(A_{1} \cap B_{3}\right) \cup\left(A_{2} \cap B_{3}\right) \cup\left(A_{3} \cap B_{1}\right) \cup\left(A_{3} \cap B_{2}\right) \cup\left(A_{3} \cap B_{3}\right)\right) \mathrm{I},\left(\left(A_{1} \cap B_{4}\right) \cup\left(A_{2} \cap B_{4}\right) \cup\left(A_{3} \cap B_{4}\right) \cup\left(A_{4} \cap\right.\right.$ $\left.\left.\left.B_{1}\right) \cup\left(A_{4} \cap B_{2}\right) \cup\left(A_{4} \cap B_{3}\right) \cup\left(A_{4} \cap B_{4}\right)\right) \mathrm{F}\right)$ and
$\mathrm{A}^{*} \mathrm{~B}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right){ }^{*}\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)=\left(A_{1} \cup B_{1},\left(\left(A_{1} \cup B_{2}\right) \cap\left(A_{2} \cup B_{1}\right) \cap\left(A_{2} \cup B_{2}\right)\right) \mathrm{T}\right.$, $\left(\left(A_{1} \cup B_{3}\right) \cap\left(A_{2} \cup B_{3}\right) \cap\left(A_{3} \cup B_{1}\right) \cap\left(A_{3} \cup B_{2}\right) \cap\left(A_{3} \cup B_{3}\right)\right) I,\left(\left(A_{1} \cup B_{4}\right) \cap\left(A_{2} \cup B_{4}\right) \cap\left(A_{3} \cup B_{4}\right) \cap\left(A_{4} \cup\right.\right.$ $\left.\left.\left.B_{1}\right) \cap\left(A_{4} \cup B_{2}\right) \cap\left(A_{4} \cup B_{3}\right) \cap\left(A_{4} \cup B_{4}\right)\right) F\right)$.

Definition 3.4: Let $\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right), \mathrm{B}=\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)$ be SVNQNs and $\mathrm{T}>\mathrm{I}>\mathrm{F}$. We define the following operations
$\mathrm{A} \#_{1} \mathrm{~B}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right) \#_{1}\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)=\left(A_{1} \cap B_{1},\left(\left(A_{1} \cap B_{2}\right) \cup\left(A_{2} \cap B_{1}\right) \cup\left(A_{2} \cap B_{2}\right) \cup\right.\right.$ $\left.\left(A_{3} \cap B_{2}\right) \cup\left(A_{4} \cap B_{2}\right) \cup\left(A_{2} \cap B_{3}\right) \cup\left(A_{2} \cap B_{4}\right)\right) \mathrm{T},\left(\left(A_{1} \cap B_{3}\right) \cup\left(A_{3} \cap B_{3}\right) \cup\left(A_{3} \cap B_{4}\right) \cup\left(A_{4} \cap B_{3}\right)\right) \mathrm{I}$, $\left.\left(\left(A_{1} \cap B_{4}\right) \cup\left(A_{4} \cap B_{2}\right) \cup\left(A_{4} \cap B_{4}\right)\right) F\right)$ and
$\mathrm{A} \#_{2} \mathrm{~B}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right) \#_{2}\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)=\left(A_{1} \cup B_{1},\left(\left(A_{1} \cup B_{2}\right) \cap\left(A_{2} \cup B_{1}\right) \cap\left(A_{2} \cup B_{2}\right) \cap\right.\right.$ $\left.\left(A_{3} \cup B_{2}\right) \cap\left(A_{4} \cup B_{2}\right) \cap\left(A_{2} \cup B_{3}\right) \cap\left(A_{2} \cup B_{4}\right)\right) \mathrm{T},\left(\left(A_{1} \cup B_{3}\right) \cap\left(A_{3} \cup B_{3}\right) \cap\left(A_{3} \cup B_{4}\right) \cap\left(A_{4} \cup B_{3}\right)\right) \mathrm{I}$, $\left.\left(\left(A_{1} \cup B_{4}\right) \cap\left(A_{4} \cup B_{2}\right) \cap\left(A_{4} \cup B_{4}\right)\right) F\right)$.

Definition 3.5: Let $\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right), \mathrm{B}=\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)$ be SVNQNs. If $A_{1} \subset B_{1}, A_{2} \subset B_{2}, A_{3} \subset$ $B_{3}, A_{4} \subset B_{4}$, then it is called that A is subset of B . It is shown by $\mathrm{A} \subset \mathrm{B}$.

Definition 3.6: Let $\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right), \mathrm{B}=\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)$ be $\mathrm{SVNQNs} \mathrm{If} \mathrm{A} \subset \mathrm{B}$ and $B \subset A$., then it is called that A is equal to B. It is shown by $A=B$.

Example 3.7: Let $X=\{x, y, z\}$ be a set. Thus, we have $P(X)=\{\varnothing,\{x\},\{y\},\{z\},\{y, z\},\{x, z\},\{x, y\},\{x, y, z\}\}$. Also, $X_{q}=\left\{\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right): A_{1}, A_{2}, A_{3}, A_{4} \in \mathrm{P}(\mathrm{X})\right\}$ is a SVNQS. For example,
$A_{1}=(\{\mathrm{y}, \mathrm{z}\},\{\mathrm{x}, \mathrm{y}, \mathrm{z}\} \mathrm{T},\{\mathrm{x}, \mathrm{y}\} \mathrm{I},\{\mathrm{z}\} \mathrm{F})$ and $A_{2}=(\{\mathrm{z}\},\{\mathrm{x}, \mathrm{z}\} \mathrm{T},\{\mathrm{x}, \mathrm{y}\} \mathrm{I}, \emptyset \mathrm{F})$ are two SVNQNs in X_{q}. Furthermore,
$A_{1} \cup A_{2}=(\{\mathrm{y}, \mathrm{z}\},\{\mathrm{x}, \mathrm{y}, \mathrm{z}\} \mathrm{T},\{\mathrm{x}, \mathrm{y}\} \mathrm{I},\{\mathrm{z}\} \mathrm{F})=A_{1}$.
$A_{1} \cap A_{2}=(\{\mathrm{z}\},\{\mathrm{x}, \mathrm{z}\} \mathrm{T},\{\mathrm{x}, \mathrm{y}\} \mathrm{I}, \emptyset \mathrm{F})=A_{2}$.
Thus, we have $A_{2} \subset A_{1}$. Also,

$$
A_{1}{ }^{\prime}=(\{\mathrm{x}\}, \emptyset \mathrm{T},\{\mathrm{z}\} \mathrm{I},\{\mathrm{x}, \mathrm{y}\} \mathrm{F})
$$

$$
A_{1} \backslash A_{2}=(\{y\},\{\mathrm{y}\} \mathrm{T}, \emptyset \mathrm{I},\{\mathrm{z}\} \mathrm{F})
$$

4 Neutrosophic Triplet Group Based on Set Valued Neutrosophic Quadruple Numbers

Theorem 4.1: Let N be a non - empty set and $N_{q}=\left\{\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right): A_{1}, A_{2}, A_{3}, A_{4} \in \mathrm{P}(\mathrm{N})\right\}$ be a SVNQS. Then,
a) $\left(N_{q}, U\right)$ is a NTS.
b) $\left(N_{q}, \cap\right)$ is a NTS.

Proof:

a) Let $\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)$ be a SVNQN in N_{q}. From Definition 3.2, it is clear that
$\mathrm{A} \cup \mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right) \cup\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)=\left(A_{1} \cup A_{1},\left(A_{2} \cup A_{2}\right) \mathrm{T},\left(A_{3} \cup A\right) \mathrm{I},\left(A_{4} \cup A_{4}\right) \mathrm{F}\right)=\left(A_{1}, A_{2} \mathrm{~T}\right.$, $\left.A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)=\mathrm{A}$.
Hence, we can take neut $(\mathrm{A})=\mathrm{A}$. Also, if neut $(\mathrm{A})=\mathrm{A}$, then we have anti(A) = A. Thus, $\left(N_{q}, \mathrm{U}\right)$ is a neutrosophic triplet set with neut $(\mathrm{A})=\mathrm{A}$ and anti $(\mathrm{A})=\mathrm{A}$.
b) a) Let $\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)$ be a SVNQN in N_{q}. From Definition 3.2, it is clear that
$\mathrm{A} \cap \mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right) \cap\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)=\left(A_{1} \cap A_{1},\left(A_{2} \cap A_{2}\right) \mathrm{T},\left(A_{3} \cap A\right) \mathrm{I},\left(A_{4} \cap A_{4}\right) \mathrm{F}\right)=\left(A_{1}, A_{2} \mathrm{~T}\right.$, $\left.A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)=\mathrm{A}$.
Hence, we can take neut $(\mathrm{A})=\mathrm{A}$. Also, if neut $(\mathrm{A})=\mathrm{A}$, then we have $\operatorname{anti}(\mathrm{A})=\mathrm{A}$. Thus, $\left(N_{q}, \mathrm{n}\right)$ is a neutrosophic triplet set with neut $(\mathrm{A})=\mathrm{A}$ and anti(A$)=\mathrm{A}$.

Theorem 4.2: Let N be a non - empty set and $N_{q}=\left\{\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right): A_{1}, A_{2}, A_{3}, A_{4} \in \mathrm{P}(\mathrm{N})\right\}$ be a SVNQS. Then,
a) $\left(N_{q}, \mathrm{U}\right)$ is a NTG.
b) $\left(N_{q}, \cap\right)$ is a NTG.

Proof:

a) From Theorem 4.1, $\left(N_{q}, \mathrm{U}\right)$ is a NTS with neut(A) $=\mathrm{A}$ and anti(A) $=\mathrm{A}$. Let $\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)$, $\mathrm{B}=\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)$ and $\mathrm{C}=\left(C_{1}, C_{2} \mathrm{~T}, C_{3} \mathrm{I}, C_{4} \mathrm{~F}\right) \in N_{q}$.
i) We have that $\mathrm{A} \cup \mathrm{B} \in N_{q}$ since $\mathrm{P}(\mathrm{N})$ is power set of N and $\mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{N})$. Because, if $\mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{X})$, then $A \cup B \in P(N)$.
ii) $(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\left[\left(A_{1} \cup B_{1},\left(A_{2} \cup B_{2}\right) \mathrm{T},\left(A_{3} \cup B_{3}\right) \mathrm{I},\left(A_{4} \cup B_{4}\right) \mathrm{F}\right)\right] \cup\left(C_{1}, C_{2} \mathrm{~T}, C_{3} \mathrm{I}, C_{4} \mathrm{~F}\right)=$
$\left.\left.\left[\left(A_{1} \cup B_{1}\right) \cup C_{1},\left(\left(A_{2} \cup B_{2}\right) \cup C_{2}\right) \mathrm{T},\left(\left(A_{3} \cup B_{3}\right) \cup C_{3}\right) \mathrm{I},\left(\left(A_{4} \cup B_{4}\right) \cup C_{4}\right)\right) \mathrm{F}\right)\right]=$ $\left.\left[A_{1} \cup\left(B_{1} \cup C_{1}\right),\left(A_{2} \cup\left(B_{2} \cup C_{2}\right)\right) \mathrm{T},\left(A_{3} \cup\left(B_{3} \cup C_{3}\right)\right) \mathrm{I},\left(A_{4} \cup\left(B_{4} \cup C_{4}\right)\right) \mathrm{F}\right)\right]=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$. Thus, $\left(N_{q}, \cup\right)$ is a NTG.
b) From Theorem 4.1, $\left(N_{q}, \mathrm{\cap}\right)$ is a NTS with neut(A) $=\mathrm{A}$ and anti(A) $=\mathrm{A}$. Let $\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)$, $\mathrm{B}=\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)$ and $\mathrm{C}=\left(C_{1}, C_{2} \mathrm{~T}, C_{3} \mathrm{I}, C_{4} \mathrm{~F}\right) \in N_{q}$.
i) We have that $\mathrm{A} \cap \mathrm{B} \in N_{q}$ since $\mathrm{P}(\mathrm{N})$ is power set of N and $\mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{N})$. Because, if $\mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{N})$, then $A \cap B \in P(N)$.
iii) $(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\left[\left(A_{1} \cap B_{1},\left(A_{2} \cap B_{2}\right) \mathrm{T},\left(A_{3} \cap B_{3}\right) \mathrm{I},\left(A_{4} \cap B_{4}\right) \mathrm{F}\right)\right] \cap\left(C_{1}, C_{2} \mathrm{~T}, C_{3} \mathrm{I}, C_{4} \mathrm{~F}\right)=\left[\left(A_{1} \cap B_{1}\right) \cap C_{1}\right.$, $\left.\left.\left.\left(\left(A_{2} \cap B_{2}\right) \cap C_{2}\right) \mathrm{T},\left(\left(A_{3} \cap B_{3}\right) \cap C_{3}\right) \mathrm{I},\left(\left(A_{4} \cap B_{4}\right) \cap C_{4}\right)\right) \mathrm{F}\right)\right]=\left[A_{1} \cap\left(B_{1} \cap C_{1}\right),\left(A_{2} \cap\left(B_{2} \cap C_{2}\right)\right) \mathrm{T},\left(A_{3} \cap\left(B_{3} \cap\right.\right.\right.$ $\left.\left.\left.\left.C_{3}\right)\right) \mathrm{I},\left(A_{4} \cap\left(B_{4} \cap C_{4}\right)\right) \mathrm{F}\right)\right]=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})$.
Thus, $\left(N_{q}, \cap\right)$ is a NTG.
Theorem 4.3: Let N be a non - empty set and $N_{q}=\left\{\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right): A_{1}, A_{2}, A_{3}, A_{4} \in \mathrm{P}(\mathrm{N})\right\}$ be a SVNQS. Then,
a) $\left(N_{q},{ }_{1}\right)$ is a NTS with binary operation ${ }_{1}$ in Definition 3.3.
b) $\left(N_{q},{ }_{2}\right)$ is a NTS with binary operation ${ }_{2}$ in Definition 3.3.

Proof:

a) Let $\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)$ be a SVNQN in N_{q}. From Definition 3.3, we obtain $\mathrm{A}{ }_{1} \mathrm{~A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right){ }^{*}\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)=$
$\left(A_{1} \cap A_{1},\left(\left(A_{1} \cap A_{2}\right) \cup\left(A_{2} \cap A_{1}\right) \cup\left(A_{2} \cap A_{2}\right)\right) T,\left(\left(A_{1} \cap A_{3}\right) \cup\left(A_{2} \cap A_{3}\right) \cup\left(A_{3} \cap A_{1}\right) \cup\left(A_{3} \cap A_{2}\right) \cup\left(A_{3} \cap\right.\right.\right.$ $\left.\left.\left.A_{3}\right)\right) \mathrm{I},\left(\left(A_{1} \cap A_{4}\right) \cup\left(A_{2} \cap A_{4}\right) \cup\left(A_{3} \cap A_{4}\right) \cup\left(A_{4} \cap A_{1}\right) \cup\left(A_{4} \cap A_{2}\right) \cup\left(A_{4} \cap A_{3}\right) \cup\left(A_{4} \cap A_{4}\right)\right) \mathrm{F}\right)=\left(A_{1}, A_{2} \mathrm{~T}\right.$, $\left.A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)=\mathrm{A}$
since
$A_{2} \cap A_{2}=A_{2}$ and $\left(A_{1} \cap A_{2}\right),\left(A_{2} \cap A_{2}\right) \subset A_{2}$;
$A_{3} \cap A_{3}=A_{3}$ and $\left(A_{1} \cap A_{3}\right),\left(A_{2} \cap A_{3}\right),\left(A_{3} \cap A_{3}\right) \subset A_{3} ;$
$A_{4} \cap A_{4}=A_{4}$ and $\left(A_{1} \cap A_{4}\right),\left(A_{2} \cap A_{4}\right),\left(A_{3} \cap A_{4}\right),\left(A_{4} \cap A_{4}\right) \subset A_{4}$.
Hence, we can take neut $(\mathrm{A})=\mathrm{A}$. Also, if $\operatorname{neut}(\mathrm{A})=\mathrm{A}$, then we have anti(A) = A. Thus, $\left(N_{q},{ }^{*}\right)$ is a NTS with $\operatorname{neut}(\mathrm{A})=\mathrm{A}$ and anti(A) $=\mathrm{A}$.
b) Let $\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)$ be a SVNQN in N_{q}. From Definition 3.3, we obtain
$\mathrm{A}{ }^{*} \mathrm{~A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right){ }^{*}\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)=\left(A_{1} \cup A_{1},\left(\left(A_{1} \cup A_{2}\right) \cap\left(A_{2} \cup A_{1}\right) \cap\left(A_{2} \cup A_{2}\right)\right) \mathrm{T},\left(\left(A_{1} \cup\right.\right.\right.$ $\left.\left.A_{3}\right) \cap\left(A_{2} \cup A_{3}\right) \cap\left(A_{3} \cup A_{1}\right) \cap\left(A_{3} \cup A_{2}\right) \cap\left(A_{3} \cup A_{3}\right)\right) \mathrm{I},\left(\left(A_{1} \cup A_{4}\right) \cap\left(A_{2} \cup A_{4}\right) \cap\left(A_{3} \cup A_{4}\right) \cap\left(A_{4} \cup\right.\right.$ $\left.\left.\left.A_{1}\right) \cap\left(A_{4} \cup A_{2}\right) \cap\left(A_{4} \cup A_{3}\right) \cap\left(A_{4} \cup A_{4}\right)\right) \mathrm{F}\right)=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right)=\mathrm{A}$
since
$A_{2} \cup A_{2}=A_{2}$ and $\left(A_{1} \cup A_{2}\right),\left(A_{2} \cup A_{2}\right) \supset A_{2} ;$
$A_{3} \cup A_{3}=A_{3}$ and $\left(A_{1} \cup A_{3}\right),\left(A_{2} \cup A_{3}\right),\left(A_{3} \cup A_{3}\right) \supset A_{3} ;$
$A_{4} \cup A_{4}=A_{4}$ and $\left(A_{1} \cup A_{4}\right),\left(A_{2} \cup A_{4}\right),\left(A_{3} \cup A_{4}\right),\left(A_{4} \cup A_{4}\right) \supset A_{4}$.
Hence, we can take neut $(\mathrm{A})=\mathrm{A}$. Also, if neut $(\mathrm{A})=\mathrm{A}$, then we have anti(A) = A. Thus, $\left(N_{q},{ }^{*}\right)$ is a NTS with $\operatorname{neut}(\mathrm{A})=\mathrm{A}$ and anti(A) = A.
Theorem 4.4: Let N be a non - empty set and $N_{q}=\left\{\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right): A_{1}, A_{2}, A_{3}, A_{4} \in \mathrm{P}(\mathrm{N})\right\}$ be a SVNQS. Then,
a) $\left(N_{q},{ }^{*}\right)$ is a NTG with binary operation $*_{1}$ in Definition 3.3.
b) $\left(N_{q},{ }^{*}\right)$ is a NTG with binary operation ${ }_{2}$ in Definition 3.3.

Proof:

a) From Theorem 4.3, $\left(N_{q},{ }^{*}\right)$ is a neutrosophic triplet set. Let
$\mathrm{A}=\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right), \mathrm{B}=\left(B_{1}, B_{2} \mathrm{~T}, B_{3} \mathrm{I}, B_{4} \mathrm{~F}\right)$ and $\mathrm{C}=\left(C_{1}, C_{2} \mathrm{~T}, C_{3} \mathrm{I}, C_{4} \mathrm{~F}\right) \in N_{q}$,
i) We obtain $\mathrm{A}{ }_{1} \mathrm{~B} \in N_{q}$ since $\mathrm{P}(\mathrm{N})$ is power set of N and $\mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{N})$.
ii)
$\left(\mathrm{A} *_{1} \mathrm{~B}\right){ }_{1} \mathrm{C}=$
$\left(A_{1} \cap B_{1},\left(\left(A_{1} \cap B_{2}\right) \cup\left(A_{2} \cap B_{1}\right) \cup\left(A_{2} \cap B_{2}\right)\right) \mathrm{T},\left(\left(A_{1} \cap B_{3}\right) \cup\left(A_{2} \cap B_{3}\right) \cup\left(A_{3} \cap B_{1}\right) \cup\left(A_{3} \cap B_{2}\right) \cup\right.\right.$
$\left.\left.\left(A_{3} \cap B_{3}\right)\right) \mathrm{I},\left(\left(A_{1} \cap B_{4}\right) \cup\left(A_{2} \cap B_{4}\right) \cup\left(A_{3} \cap B_{4}\right) \cup\left(A_{4} \cap B_{1}\right) \cup\left(A_{4} \cap B_{2}\right) \cup\left(A_{4} \cap B_{3}\right) \cup\left(A_{4} \cap B_{4}\right)\right) \mathrm{F}\right){ }^{*} \quad\left(C_{1}\right.$,
$\left.C_{2} \mathrm{~T}, C_{3} \mathrm{I}, C_{4} \mathrm{~F}\right)=$
$\left(\left[A_{1} \cap B_{1}\right] \cap C_{1}\right.$,
$\left(\left(\left[A_{1} \cap B_{1}\right] \cap C_{2}\right) \cup\left(\left[\left(A_{1} \cap B_{2}\right) \cup\left(A_{2} \cap B_{1}\right) \cup\left(A_{2} \cap B_{2}\right)\right] \cap C_{1}\right) \cup\left(\left[\left(A_{1} \cap B_{2}\right) \cup\left(A_{2} \cap B_{1}\right) \cup \quad\left(A_{2} \cap\right.\right.\right.\right.$ $\left.\left.\left.\left.B_{2}\right)\right] \cap C_{2}\right)\right) \mathrm{T}$,
$\left(\left[A_{1} \cap B_{1}\right] \cap C_{3}\right) \cup\left(\left[\left(A_{1} \cap B_{2}\right) \cup\left(A_{2} \cap B_{1}\right) \cup\left(A_{2} \cap B_{2}\right)\right] \cap C_{3}\right) \cup\left(\left[A_{1} \cap B_{3}\right) \cup \quad\left(A_{2} \cap B_{3}\right) \cup\left(A_{3} \cap\right.\right.$ $\left.\left.\left.B_{1}\right) \cup\left(A_{3} \cap B_{2}\right) \cup\left(A_{3} \cap B_{3}\right)\right] \cap C_{1}\right) \cup\left(\left[A_{1} \cap B_{3}\right) \cup\left(A_{2} \cap B_{3}\right) \cup\left(A_{3} \cap B_{1}\right) \cup\left(A_{3} \cap B_{2}\right) \cup\left(A_{3} \cap B_{3}\right)\right] \cap$
$\left.\left.\left.C_{2}\right) \cup\left(\left[A_{1} \cap B_{3}\right) \cup\left(A_{2} \cap B_{3}\right) \cup\left(A_{3} \cap B_{1}\right) \cup\left(A_{3} \cap B_{2}\right) \cup\left(A_{3} \cap B_{3}\right)\right] \cap C_{3}\right)\right) \mathrm{I}$,
$\left(\left(\left[A_{1} \cap B_{1}\right] \cap C_{4}\right) \cup\left(\left[\left(A_{1} \cap B_{2}\right) \cup\left(A_{2} \cap B_{1}\right) \cup\left(A_{2} \cap B_{2}\right)\right] \cap C_{4}\right) \cup\left(\left[A_{1} \cap B_{3}\right) \cup\left(A_{2} \cap B_{3}\right) \cup\left(A_{3} \cap\right.\right.\right.$
$\left.\left.\left.B_{1}\right) \cup\left(A_{3} \cap B_{2}\right) \cup\left(A_{3} \cap B_{3}\right)\right] \cap C_{4}\right) \cup\left(\left[\left(A_{1} \cap B_{4}\right) \cup\left(A_{2} \cap B_{4}\right) \cup\left(A_{3} \cap B_{4}\right) \cup\left(A_{4} \cap B_{1}\right) \cup\left(A_{4} \cap B_{2}\right) \cup\right.\right.$
$\left.\left.\left(A_{4} \cap B_{3}\right) \cup\left(A_{4} \cap B_{4}\right)\right] \cap C_{1}\right) \cup\left(\left[\left(A_{1} \cap B_{4}\right) \cup\left(A_{2} \cap B_{4}\right) \cup\left(A_{3} \cap B_{4}\right) \cup\left(A_{4} \cap B_{1}\right) \cup\left(A_{4} \cap B_{2}\right) \cup\left(A_{4} \cap B_{3}\right) \cup\right.\right.$ $\left.\left.\left(A_{4} \cap B_{4}\right)\right] \cap C_{2}\right) \cup\left(\left[\left(A_{1} \cap B_{4}\right) \cup\left(A_{2} \cap B_{4}\right) \cup\left(A_{3} \cap B_{4}\right) \cup\left(A_{4} \cap B_{1}\right) \cup\left(A_{4} \cap B_{2}\right) \cup\left(A_{4} \cap B_{3}\right) \cup\left(A_{4} \cap B_{4}\right)\right] \cap\right.$ $\left.\left.\left.C_{3}\right) \cup\left(\left[\left(A_{1} \cap B_{4}\right) \cup\left(A_{2} \cap B_{4}\right) \cup\left(A_{3} \cap B_{4}\right) \cup\left(A_{4} \cap B_{1}\right) \cup\left(A_{4} \cap B_{2}\right) \cup\left(A_{4} \cap B_{3}\right) \cup\left(A_{4} \cap B_{4}\right)\right] \cap C_{4}\right)\right) \mathrm{F}\right)=$ $\left(A_{1} \cap\left[B_{1} \cap C_{1}\right]\right.$,
$\left(\left(A_{1} \cap\left[\left(B_{1} \cap C_{2}\right) \cup\left(B_{2} \cap C_{1}\right) \cup\left(B_{2} \cap C_{2}\right)\right]\right) \cup\left(A_{2} \cap\left[B_{1} \cap C_{1}\right]\right) \cup\left(A_{2} \cap\left[\left(B_{1} \cap C_{2}\right) \cup\left(B_{2} \cap C_{1}\right) \cup\left(B_{2} \cap C_{2}\right)\right]\right)\right) T$, $\left(\left(A_{1} \cap\left[\left(B_{1} \cap C_{3}\right) \cup\left(B_{2} \cap C_{3}\right) \cup\left(B_{3} \cap C_{1}\right) \cup\left(B_{3} \cap C_{2}\right) \cup\left(B_{3} \cap C_{3}\right)\right]\right) \cup\left(A_{2} \cap\left[\left(B_{1} \cap C_{3}\right) \cup\left(B_{2} \cap C_{3}\right) \cup\right.\right.\right.$ $\left.\left.\left(B_{3} \cap C_{1}\right) \cup\left(B_{3} \cap C_{2}\right) \cup\left(B_{3} \cap C_{3}\right)\right]\right) \cup\left(A_{3} \cap\left[B_{1} \cap C_{1}\right]\right) \cup\left(A_{3} \cap\left[\left(B_{1} \cap C_{2}\right) \cup\left(B_{2} \cap C_{1}\right) \cup\left(B_{2} \cap\right.\right.\right.$ $\left.\left.\left.\left.C_{2}\right)\right]\right) \cup\left(A_{3} \cap\left[\left(B_{1} \cap C_{3}\right) \cup\left(B_{2} \cap C_{3}\right) \cup\left(B_{3} \cap C_{1}\right) \cup\left(B_{3} \cap C_{2}\right) \cup\left(B_{3} \cap C_{3}\right)\right]\right)\right) \mathrm{I}$,
$\left(\left(A_{1} \cap\left[\left(B_{1} \cap C_{4}\right) \cup\left(B_{2} \cap C_{4}\right) \cup\left(B_{3} \cap C_{4}\right) \cup\left(B_{4} \cap C_{1}\right) \cup\left(B_{4} \cap C_{2}\right) \cup\left(B_{4} \cap C_{3}\right) \cup\left(B_{4} \cap C_{4}\right)\right] \cup\left(A_{2} \cap\right.\right.\right.$ $\left.\left[\left(B_{1} \cap C_{4}\right) \cup\left(B_{2} \cap C_{4}\right) \cup\left(B_{3} \cap C_{4}\right) \cup\left(B_{4} \cap C_{1}\right) \cup\left(B_{4} \cap C_{2}\right) \cup\left(B_{4} \cap C_{3}\right) \cup\left(B_{4} \cap C_{4}\right)\right]\right) \cup \quad\left(A_{3} \cap\right.$
$\left.\left[\left(B_{1} \cap C_{4}\right) \cup\left(B_{2} \cap C_{4}\right) \cup\left(B_{3} \cap C_{4}\right) \cup\left(B_{4} \cap C_{1}\right) \cup\left(B_{4} \cap C_{2}\right) \cup\left(B_{4} \cap C_{3}\right) \cup\left(B_{4} \cap C_{4}\right)\right]\right) \cup\left(A_{4} \cap\left[B_{1} \cap\right.\right.$ $\left.\left.C_{1}\right]\right) \cup\left(A_{4} \cap\left[\left(B_{1} \cap C_{2}\right) \cup\left(B_{2} \cap C_{1}\right) \cup\left(B_{2} \cap C_{2}\right)\right]\right) \cup\left(A_{4} \cap\left[\left(B_{1} \cap C_{3}\right) \cup\left(B_{2} \cap C_{3}\right) \cup\left(B_{3} \cap C_{1}\right) \cup\left(B_{3} \cap C_{2}\right) \cup\right.\right.$ $\left.\left.\left.\left.\left(B_{3} \cap C_{3}\right)\right]\right) \cup\left(A_{4} \cap\left[\left(B_{1} \cap C_{4}\right) \cup\left(B_{2} \cap C_{4}\right) \cup\left(B_{3} \cap C_{4}\right) \cup\left(B_{4} \cap C_{1}\right) \cup\left(B_{4} \cap C_{2}\right) \cup\left(B_{4} \cap C_{3}\right) \cup\left(B_{4} \cap C_{4}\right)\right]\right)\right) \mathrm{F}\right)$ $=A *_{1}\left(B{ }_{1} C\right)$.
Thus, $\left(N_{q},{ }^{*}\right)$ is a NTG with binary operation ${ }_{1}$ in Definition 3.3.
b) This proof can be made similar to a.

Theorem 4.5: Let N be a non - empty set and $N_{q}=\left\{\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right): A_{1}, A_{2}, A_{3}, A_{4} \in \mathrm{P}(\mathrm{N})\right\}$ be a SVNQS. Then,
a) $\left(N_{q},{ }_{1}\right)$ is a NTS with binary operation $\#_{1}$ in Definition 3.4.
b) $\left(N_{q},{ }^{*}\right)$ is a NTS with binary operation \#2 in Definition 3.4.

Proof: These proofs can be made similar to Theorem 4.3.
Theorem 4.6: Let N be a non - empty set and $N_{q}=\left\{\left(A_{1}, A_{2} \mathrm{~T}, A_{3} \mathrm{I}, A_{4} \mathrm{~F}\right): A_{1}, A_{2}, A_{3}, A_{4} \in \mathrm{P}(\mathrm{N})\right\}$ be a SVNQS. Then,
a) $\left(N_{q},{ }^{*}\right)$ is a NTG with binary operation $\#_{1}$ in Definition 3.4.
b) $\left(N_{q}, *_{2}\right)$ is a NTG with binary operation $\#_{2}$ in Definition 3.4.

Proof: These proofs can be made similar to Theorem 4.4.

Conclusion

In this study, we firstly obtain set valued neutrosophic quadruple sets and numbers. Also, we introduce some known and special operations for set valued neutrosophic quadruple numbers. In the neutrosophic quadruples, real or complex numbers were taken as variables, while in this study we took sets as variables. So, we will expand the applications of neutrosophic quadruples. Because things or variables in any application will be more useful than real numbers or complex numbers. Furthermore, we give some neutrosophic triplet groups based on set valued neutrosophic quadruple number thanks to operations for set valued neutrosophic quadruple numbers. Thus, we have added a new structure to neutrosophic triplet structures and neutrosophic quadruple structures. Thanks to set valued neutrosophic quadruple sets and numbers other neutrosophic triplet structures can be defined similar to this study. For example, neutrosophic triplet metric space based on set valued neutrosophic quadruple numbers; neutrosophic triplet vector space based on set valued neutrosophic quadruple numbers; neutrosophic triplet normed space based on set valued neutrosophic quadruple numbers. Also, set valued neutrosophic quadruple sets can be used decision making applications due to the its set valued structure. For example, in a medical application in which more than one drug is used, this structure may be used.

Abbreviations

NT: Neutrosophic triplet
NTS: Neutrosophic triplet set
NTG: Neutrosophic triplet group
NQ: Neutrosophic quadruple
NQS: Neutrosophic quadruple set
NQN: Neutrosophic quadruple number
SVNQS: Set valued neutrosophic quadruple set
SVNQN: Set valued neutrosophic quadruple number

Acknowledgements

The authors are highly grateful to the Referees for their constructive suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. F. Smarandache, Neutrosophy: Neutrosophic Probability, Set and Logic, Rehoboth, Amer. Research Press (1998).
2. W. B. V. Kandasamy and F. Smarandache, Basic neutrosophic algebraic structures and their applications to fuzzy and neutrosophic models, Hexis, Frontigan (2004) p 219
3. W. B. V. Kandasamy and F. Smarandache, Some neutrosophic algebraic structures and neutrosophic nalgebraic structures, Hexis, Frontigan (2006) p 219.
4. F. Smarandache and M. Ali, Neutrosophic triplet as extension of matter plasma, unmatter plasma and antimatter plasma, APS Gaseous Electronics Conference (2016), doi: 10.1103/BAPS.2016.GEC.HT6.110
5. F. Smarandache and M. Ali, The Neutrosophic Triplet Group and its Application to Physics, presented by F. S. to Universidad Nacional de Quilmes, Department of Science and Technology, Bernal, Buenos Aires, Argentina (02 June 2014).
6. F. Smarandache and M. Ali, Neutrosophic triplet group. Neural Computing and Applications, (2016) 1-7.
7. F. Smarandache and M. Ali, Neutrosophic Triplet Field Used in Physical Applications, (Log Number: NWS17-2017-000061), 18th Annual Meeting of the APS Northwest Section, Pacific University, Forest Grove, OR, USA (June 1-3, 2017)
8. F. Smarandache and M. Ali, Neutrosophic Triplet Ring and its Applications, (Log Number: NWS17-2017000062), 18th Annual Meeting of the APS Northwest Section, Pacific University, Forest Grove, OR, USA (June 1-3, 2017).
9. M. Şahin and A. Kargın, Neutrosophic triplet normed space, Open Physics, 2017, 15:697-704 10. S. Broumi, A. Bakali, M. Talea and F. Smarandache, Single Valued Neutrosophic Graphs: Degree, Order and

Size. IEEE International Conference on Fuzzy Systems (2016) pp. 2444-2451. 11. S. Broumi, A. Bakali, M. Talea and F. Smarandache, Decision-Making Method Based On the Interval Valued Neutrosophic Graph, Future Technologies, IEEE International Conference on Fuzzy Systems (2016) pp 44-50. 12. S. Broumi, A. Bakali, M. Talea, F. Smarandache and L. Vladareanu, Computation of Shortest Path Problem in a Network with SV-Trapezoidal Neutrosophic Numbers, Proceedings of the 2016 International Conference on Advanced Mechatronic Systems, Melbourne, Australia, (2016) pp.417-422. 13. P. Liu and L. Shi, The Generalized Hybrid Weighted Average Operator Based on Interval Neutrosophic Hesitant Set and Its Application to Multiple Attribute Decision Making, Neural Computing and Applications, 2015b 26(2): 457-471
14. P. Liu and L. Shi, Some Neutrosophic Uncertain Linguistic Number Heronian Mean Operators and Their Application to Multi-attribute Group Decision making, Neural Computing and Applications, 2015, doi:10.1007/s00521-015-2122-6.
15. P. Liu and G. Tang, Some power generalized aggregation operators based on the interval neutrosophic numbers and their application to decision making, Journal of Intelligent \& Fuzzy Systems ,2016, 30,2517-2528 16. P. Liu and G. Tang, Multi-criteria group decision-making based on interval neutrosophic uncertain linguistic variables and Choquet integral, Cognitive Computation, 2016, 8(6) 1036-1056 17. P. Liu and Y. Wang, Interval neutrosophic prioritized OWA operator and its application to multiple attribute decision making, journal of systems science \& complexity 2016, 29(3): 681-697 18. P. Liu and F. Teng, Multiple attribute decision making method based on normal neutrosophic generalized weighted power averaging operator, Internal journal of machine learning and cybernetics 2015, Doi 10.1007/s13042-015-0385-y.
19. P. Liu P., L. Zhang, X. Liu, and P. Wang, Multi-valued Neutrosophic Number Bonferroni mean Operators and

Their Application in Multiple Attribute Group Decision Making,Iinternal journal of information technology \mathcal{E} decision making 2016, 15(5) 1181-1210.
20. M, Sahin, I. Deli and V. Ulucay, Similarity measure of bipolar neutrosophic sets and their application to multiple criteria decision making, Neural Comput \& Applic. 2016, DOI 10. 1007/S00521.
21. H. Wang, F. Smarandache, Y. Q. Zhang, R. Sunderraman. Single valued neutrosophic sets. Multispace Multistructure. 2010, 4, 410-413.
22. M. Şahin, N. Olgun, V. Uluçay, A. Kargın and Smarandache, F., A new similarity measure on falsity value between single valued neutrosophic sets based on the centroid points of transformed single valued neutrosophic numbers with applications to pattern recognition, Neutrosophic Sets and Systems, 2017, 15, 31-48, doi: org/10.5281/zenodo570934.
23. M. Şahin, O. Ecemiş, V. Uluçay, and A. Kargın, Some new generalized aggregation operators based on centroid single valued triangular neutrosophic numbers and their applications in multi-attribute decision making, Asian Journal of Mathematics and Computer Research 2017, 16(2): 63-84.
24. R. Chatterjee, P. Majumdar, and S. K. Samanta. "Similarity Measures in Neutrosophic Sets-I." Fuzzy Multicriteria Decision-Making Using Neutrosophic Sets. Springer, Cham, 2019, 249-294.
25. K. Mohana, and M. Mohanasundari. On Some Similarity Measures of Single Valued Neutrosophic Rough Sets. Neutrosophic Sets and Systems, 2019, 24, 10-22
26. F. Smarandache, et al. Word-level neutrosophic sentiment similarity. Applied Soft Computing, 2019, 80, 167-176.
27. J. Ye, Similarity measures between interval neutrosophic sets and their applications in multicriteria decision making. J. Intell. Fuzzy Syst. 2014, 26 (1), 165-172
28. A. L. Zadeh, Fuzzy sets, Information and control ,1965, 8.3 338-353,
29. T. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst, 1986, 20:87-96
30. F. Smarandache and M. Ali, Neutrosophic triplet group. Neural Computing and Applications, 2016 ,29, 595-601.
31. M. Ali, F. Smarandache, M. Khan, Study on the development of neutrosophic triplet ring and neutrosophic triplet field, Mathematics, 2018 6(4), 46
32. M. Şahin and A. Kargın, Neutrosophic triplet metric topology, Neutrosophic Set and Systems, 2019 27, 154-162
33. M. Şahin and A. Kargın, Neutrosophic triplet inner product space, Neutrosophic Operational Research, 2 (2017), 193-215,
34. Smarandache F., Şahin M., Kargın A. Neutrosophic Triplet G- Module, Mathematics, 2018, 6, 53
35. M. Şahin, A. Kargın, Neutrosophic triplet b - metric space, Neutrosophic Triplet Research 1, (2019)
36. Şahin M., Kargın A., Çoban M. A., Fixed point theorem for neutrosophic triplet partial metric space, Symmetry 2018, 10, 240
37. Şahin M., Kargın A., Neutrosophic triplet v - generalized metric space, Axioms 2018 7, 67.
38. M. Şahin, A. Kargın, F. Smarandache, Neutrosophic triplet topology, Neutrosophic Triplet Research 1, (2019)
39. Şahin M., Kargın A., Neutrosophic triplet normed ring space, Neutrosophic Set and Systems, (2018), 21, 20 27
40. M. Şahin, A. Kargın, Neutrosophic triplet partial inner product space, Neutrosophic Triplet Research 1, (2019), 10-21
41. N. Olgun, M. Çelik, Neutrosophic triplet R - module, Neutrosophic Triplet Research 1, (2019), 35 -42
42. M. Şahin, A. Kargın, Neutrosophic triplet partial v-generalized metric space, Neutrosophic Triplet Research 1, (2019), 22 - 34
43. M. Şahin, A. Kargın, Neutrosophic triplet Lie Algebra, Neutrosophic Triplet Research 1, (2019), 68 -78
44. M. Şahin, A. Kargın, Isomorphism theorems for Neutrosophic triplet G - module, Neutrosophic Triplet Research 1, (2019), 54-67
45.Smarandache F., Neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, and the multiplication of neutrosophic quadruple numbers, Neutrosophic Set and Systems, 2015, 10, 96 -98
46. Akinleye, S. A., Smarandache, F., Agboola, A. A. A. On neutrosophic quadruple algebraic structures. Neutrosophic Sets and Systems, 2016, 12, 122-126.
47. Jun, Y., Song, S. Z., Smarandache, F., \& Bordbar, H. Neutrosophic quadruple BCK/BCI-algebras. Axioms, 2018 7(2), 385
48. Muhiuddin, G., Al-Kenani, A. N., Roh, E. H., \& Jun, Y. B. Implicative neutrosophic quadruple BCK-algebras and ideals. Symmetry, 2019, 11(2), 277.
49. Li, Q., Ma, Y., Zhang, X., \& Zhang, J. Neutrosophic Extended Triplet Group Based on Neutrosophic Quadruple Numbers. Symmetry, 2019, 11(5), 696.
50. Ma, Y., Zhang, X., Smarandache, F., \& Zhang, J. The Structure of Idempotents in Neutrosophic Rings and Neutrosophic Quadruple Rings. Symmetry 2019 11(10), 1254.
51. Kandasamy, W., Kandasamy, I, \& Smarandache. F. Neutrosophic Quadruple Vector Spaces and Their Properties. Mathematics 2019 7.8, 758.
52. Abdel-Basset, M., El-hoseny, M., Gamal, A., \& Smarandache, F. A Novel Model for Evaluation Hospital Medical Care Systems Based on Plithogenic Sets. Artificial Intelligence in Medicine, 2019, 101710.
53. Abdel-Basset, M., Manogaran, G., Gamal, A., \& Chang, V.. A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT. IEEE Internet of Things Journal, 2019
54. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., \& Smarandache, F. A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry, 2019, 11(7), 903.
55. Abdel-Basset, M., Nabeeh, N. A., El-Ghareeb, H. A., \& Aboelfetouh, A. Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Information Systems, 2019 1-21.
56. Nabeeh, N. A., Abdel-Basset, M., El-Ghareeb, H. A., \& Aboelfetouh, A. Neutrosophic multi-criteria decision making approach for iot-based enterprises. IEEE Access, 2019, 7, 59559-59574.
57. Abdel-Basset, M., Saleh, M., Gamal, A., \& Smarandache, F. An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied Soft Computing, 2019 77, 438-452.

Received: Oct 20, 2019. Accepted: Dec 05, 2019

