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Abstract: Smarandache introduced neutrosophic quadruple sets and neutrosophic quadruple numbers 

[45] in 2015. These sets and numbers are real or complex number valued. In this study, we firstly intro-

duce set valued neutrosophic quadruple sets and numbers. We give some known and special opera-

tions for set valued neutrosophic quadruple numbers. Furthermore, Smarandache and Ali obtained 

neutrosophic triplet groups [30] in 2016. In this study, we firstly give neutrosophic triplet groups based 

on set valued neutrosophic quadruple number thanks to operations for set valued neutrosophic quad-

ruple numbers. In this way, we define new structures using the together set valued neutrosophic quad-

ruple number and neutrosophic triplet group. Thus, we obtain new results for set valued neutrosophic 

quadruple numbers and neutrosophic triplet groups based on set valued neutrosophic quadruple 

number. 

 

Keywords: Neutrosophic triplet set, neutrosophic triplet group, neutrosophic triplet quadruple set, 

neutrosophic triplet quadruple number, set valued neutrosophic triplet quadruple set, set valued neu-

trosophic triplet quadruple number 

1 Introduction   

Smarandache defined neutrosophic logic and neutrosophic set [1] in 1998. In neutrosophic logic and        

neutrosophic sets, there is T degree of membership, I degree of indeterminacy and F degree of non-

membership. These degrees are defined independently of each other. It has a neutrosophic value (T, I, 

F) form. In other words, a condition is handled according to both its accuracy and its inaccuracy and 

its uncertainty. Therefore, neutrosophic logic and neutrosophic set help us to explain many uncertain-

ties in our lives. In addition, many researchers have made studies on this theory [2 - 27] and [52-57]. 

In fact, fuzzy logic and fuzzy set [28] were obtained by Zadeh in 1965. In the concept of fuzzy logic 

and fuzzy sets, there is only a degree of membership. In addition, intuitionistic fuzzy logic and intui-

tionistic fuzzy set [29] were obtained by Atanassov in 1986. The concept of intuitionistic fuzzy logic 

and intuitionistic fuzzy set    includes membership degree, degree of indeterminacy and degree of 

non-membership. But these degrees are   defined dependently of each other. Therefore, neutrosophic 

set is a generalized state of fuzzy and intuitionistic fuzzy set. 

Furthermore, Smarandache and Ali obtained neutrosophic triplet set (NTS) and neutrosophic triplet 

groups (NTG) [30].  For every element “x” in NTS A, there exist a neutral of “x” and an opposite of 

“x”. Also, neutral of “x” must different from the classical neutral element. Therefore, the NTS is differ-

ent from the classical set. Furthermore, a neutrosophic triplet (NT) “x” is showed by   <x, neut(x), an-

ti(x)>. Also, many researchers have introduced NT structures [31-44] 

Also, Smarandache introduced neutrosophic quadruple sets (NQS) and neutrosophic quadruple 

number (NQN) [45]. The NQSs are generalized state of neutrosophic set. A NQS is shown by {(x, yT, 

zI, tF): x, y, z, t ∈ ℝ or ℂ}. Where, x is called the known part and (yT, zI, tF) is called the unknown part 



Neutrosophic Sets and Systems, Vol. 30, 2019  

 

M. Şahin and A. Kargın. Neutrosophic Triplet Group Based on Set Valued Neutrosophic Quadruple Numbers 
 

 123  

and T, I, F have their usual neutrosophic logic means. Recently, researchers studied NQS and NQN. 

Akinleye, Smarandache, Agboola studied NQ algebraic structures [46]; Jun, Song, Smarandache ob-

tained NQ BCK/BCI-algebras [47]; Muhiuddin, Al-Kenani, Roh, Jun introduced implicative NQ BCK-

algebras and ideals [48]; Li, Ma, Zhang, Zhang studied neutrosophic extended triplet group based on 

NQNs [49]; Ma, Zhang, and Smarandache studied neutrosophic quadruple rings [50]; Kandasamy, 

Kandasamy and Smarandache obtained neutrosophic quadruple vector spaces and their properties 

[51]. 

In this study, we firstly introduce set valued neutrosophic quadruple set (SVNQS) and set valued neu-

trosophic quadruple number (SVNQN). In the neutrosophic quadruples, real or complex numbers 

were taken as variables, while in this study we took sets as variables. So, we will expand the applica-

tions of neutrosophic quadruples. Because things or variables in any application will be more useful 

than real numbers or complex numbers.  Also we give NT group (NTG) based on SVNQN. In Section 

2, we give definitions and properties for NQS, NQN [45] and NTS, NTG [30]. In Section 3, we define 

SVNQS and SVNQN. Also, we give operations for these structures. In Section 4, we obtain some NTG 

based on SVNQN thanks to operations for SVNQN. In this way, we define new structures using the 

together SVNQN and NTG. 

 
2 Preliminaries  
 

Definition 2.1: [45] A NQN is a number of the form (x, yT, zI, tF), where T, I, F have their usual neu-

trosophic logic means and x, y, z, t ∈ ℝ or ℂ. The NQS defined by NQ = {(x, yT, zI, tF): x, y, z, t ∈ ℝ or 

ℂ}. 

For a NQN (x, yT, zI, tF), representing any entity which may be a number, an idea, an object, etc., x is 

called the known part and (yT, zI, tF) is called the unknown part. 

Definition 2.2: [45] Let a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F) and b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ be NQNs. We define the        

following: 

a + b = (𝑎1 +𝑏1, (𝑎2+𝑏2)T, (𝑎3+𝑏3)I, (𝑎4+𝑏4)F) 

a - b = (𝑎1 - 𝑏1, (𝑎2 - 𝑏2)T, (𝑎3 - 𝑏3)I, (𝑎4 - 𝑏4)F) 

Definition 2.3: [45] Consider the set {T, I, F}. Suppose in an optimistic way we consider the prevalence 

order T>I>F. Then we have: 

TI = IT = max{T, I} = T, 

TF = FT = max{T, F} = T, 

FI = IF = max{F, I} = I, 

TT = 𝑇2 = T, 

II = 𝐼2 = I, 

FF = 𝐹2 = F. 

Analogously, suppose in a pessimistic way we consider the prevalence order T < I < F. Then we have: 

TI = IT = max{T, I} = I, 

TF = FT = max{T, F} = F, 

FI = IF = max{F, I} = F, 
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TT = 𝑇2 = T, 

II = 𝐼2 = I, 

FF = 𝐹2 = F. 

Definition 2.4: [45] Let 

a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F), 

b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ; 

T < I < F. 

Then a*b = ( 𝑎1 , 𝑎2 T, 𝑎3 I, 𝑎4 F)* ( 𝑏1 , 𝑏2 T, 𝑏3 I, 𝑏4 F) = ( 𝑎1𝑏1 , ( 𝑎1𝑏2  + 𝑎2𝑏1  + 𝑎2𝑏2 )T,                                            

(𝑎1𝑏3 + 𝑎2𝑏3 + 𝑎3𝑏1 + 𝑎3𝑏2 + 𝑎3𝑏3)I, (𝑎1𝑏4 + 𝑎2𝑏4 + 𝑎3𝑏4 + 𝑎4𝑏1 + 𝑎4𝑏2 + 𝑎4𝑏3 + 𝑎4𝑏4)F) 

Definition 2.5: [45] Let 

a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F), 

b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ, 

T > I > F 

Then a#b = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F) # (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) = (𝑎1𝑏1, (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏2 + 𝑎4𝑏2 + 𝑎2𝑏3 + 

𝑎2𝑏4)T, (𝑎1𝑏3 + 𝑎3𝑏3 + 𝑎3𝑏4 + 𝑎4𝑏3)I, (𝑎1𝑏4 +  𝑎4𝑏1 + 𝑎4𝑏4)F) 

Definition 2.6: [30]:  Let # be a binary operation. A NTS (X, #) is a set such that for x ∈ X, 

i) There exists neutral of “x” such that x#neut(x) = neut(x)#x = x, 

ii) There exists anti of “x” such that x#anti(x) = anti(x)#x = neut(x). 

Also, a neutrosophic triplet “x” is showed with (x, neut(x), anti(x)). 

Definition 2.7: [30] Let (X, #) be a NT set. Then, X is called a NTG such that 

a) for all a, b ∈ X, a*b ∈ X. 

b) for all a, b, c ∈ X, (a*b)*c = a*(b*c) 

 

3 Set Valued Neutrosophic Quadruple Numbers 
 

Definition 3.1: Let N be a non – empty set and P(N) be power set of N. A SVNQN shown by the form 

(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F). Where, T, I and F are degree of membership, degree of undeterminacy, degree of 

non-membership in neutrosophic theory, respectively. Also, 𝐴1, 𝐴2 , 𝐴3, 𝐴4  ∈ P(N). Then, a SVNQS 

shown by  𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)}. 

Where, similar to NQS, 𝐴1 is called the known part and (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) is called the unknown part. 

 

Definition 3.2: Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) and B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. We define the fol-

lowing operations, well known operators in set theory, such that 

A ∪ B = (𝐴1 ∪ 𝐵1, (𝐴2 ∪ 𝐵2)T, (𝐴3 ∪ 𝐵3)I, (𝐴4 ∪ 𝐵4)F) 

A ∩ B = (𝐴1 ∩ 𝐵1, (𝐴2 ∩ 𝐵2)T, (𝐴3 ∩ 𝐵3)I, (𝐴4 ∩ 𝐵4)F) 
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A \ B = (𝐴1 \  𝐵1, (𝐴2 \  𝐵2)T, (𝐴3 \  𝐵3)I, (𝐴4 \  𝐵4)F) 

𝐴′ = (𝐴′
1, 𝐴′

2T, 𝐴′
3I, 𝐴′

4F)  

Now, we define specific operations for SVNQN. 

Definition 3.3: Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs and T < I < F. We define 

the following operations  

A*1B = (𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F) *1 (𝐵1 , 𝐵2T, 𝐵3I, 𝐵4F) = (𝐴1 ∩ 𝐵1 , ((𝐴1 ∩ 𝐵2 ) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2))T, 

((𝐴1 ∩ 𝐵3) ∪ (𝐴2 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵1) ∪ (𝐴3 ∩ 𝐵2) ∪ (𝐴3 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩

𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4))F)  and 

A*2B = (𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F) *2 (𝐵1 , 𝐵2T, 𝐵3I, 𝐵4F) = (𝐴1 ∪ 𝐵1 , ((𝐴1 ∪ 𝐵2 ) ∩ (𝐴2 ∪ 𝐵1) ∩ (𝐴2 ∪ 𝐵2))T, 

((𝐴1 ∪ 𝐵3) ∩ (𝐴2 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵1) ∩ (𝐴3 ∪ 𝐵2) ∩ (𝐴3 ∪ 𝐵3))I, ((𝐴1 ∪ 𝐵4) ∩ (𝐴2 ∪ 𝐵4) ∩ ( 𝐴3 ∪ 𝐵4) ∩ (𝐴4 ∪

𝐵1) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵3) ∩ (𝐴4 ∪ 𝐵4))F). 

 

Definition 3.4: Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs and T > I > F. We define 

the following operations  

A #1B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) #1 (𝐵1 , 𝐵2T, 𝐵3I, 𝐵4F) = (𝐴1 ∩ 𝐵1 , ((𝐴1 ∩ 𝐵2) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2)  ∪ 

(𝐴3 ∩ 𝐵2)  ∪  (𝐴4 ∩ 𝐵2)  ∪  (𝐴2 ∩ 𝐵3)  ∪  (𝐴2 ∩ 𝐵4) )T, ((𝐴1 ∩ 𝐵3)  ∪  (𝐴3 ∩ 𝐵3)  ∪  (𝐴3 ∩ 𝐵4)  ∪  (𝐴4 ∩ 𝐵3) )I, 

((𝐴1 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵4))F)  and 

A#2B = (𝐴1 , 𝐴2 T, 𝐴3 I, 𝐴4 F) #2 (𝐵1 , 𝐵2 T, 𝐵3 I, 𝐵4 F) = (𝐴1 ∪ 𝐵1 , ((𝐴1 ∪ 𝐵2 ) ∩  (𝐴2 ∪ 𝐵1)  ∩  (𝐴2 ∪ 𝐵2) ∩          

(𝐴3 ∪ 𝐵2)  ∩  (𝐴4 ∪ 𝐵2)  ∩  (𝐴2 ∪ 𝐵3)  ∩  (𝐴2 ∪ 𝐵4) )T, ((𝐴1 ∪ 𝐵3)  ∩  (𝐴3 ∪ 𝐵3)  ∩  (𝐴3 ∪ 𝐵4)  ∩  (𝐴4 ∪ 𝐵3) )I, 

((𝐴1 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵4))F). 

 

Definition 3.5: Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. If 𝐴1⊂ 𝐵1, 𝐴2⊂ 𝐵2, 𝐴3⊂ 

𝐵3, 𝐴4⊂ 𝐵4, then it is called that A is subset of B. It is shown by A⊂ B. 

 

Definition 3.6: Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs If A⊂ B and 𝐵⊂ 𝐴., then it 

is called that A is equal to B. It is shown by A = B. 

Example 3.7: Let X = {x, y, z} be a set. Thus, we have P(X) ={∅ , {x}, {y}, {z}, {y, z}, {x, z}, {x, y} ,{x, y, z}}. 

Also, 𝑋𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(X)} is a SVNQS. For example,  

𝐴1 = ({y, z}, {x, y, z}T, {x, y}I, {z}F) and 𝐴2 = ({ z}, {x, z}T, {x, y}I, ∅F) are two SVNQNs in 𝑋𝑞 .           

Furthermore, 

𝐴1 ∪ 𝐴2 = ({y, z}, {x, y, z}T, {x, y}I, {z}F) = 𝐴1.  

𝐴1 ∩ 𝐴2 = ({ z}, {x, z}T, {x, y}I, ∅F) = 𝐴2.  

Thus, we have 𝐴2 ⊂ 𝐴1. Also, 

𝐴1
′ = ({x}, ∅T, {z}I, {x, y}F) 
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𝐴1\ 𝐴2 = ({y}, { y}T, ∅I, {z}F) 

4 Neutrosophic Triplet Group Based on Set Valued Neutrosophic Quadruple Numbers 

 

Theorem 4.1: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then, 

a) (𝑁𝑞, ∪) is a NTS.  

b) (𝑁𝑞, ∩) is a NTS. 

Proof: 

a) Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) be a SVNQN in 𝑁𝑞. From Definition 3.2, it is clear that 

A ∪ A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) ∪ (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) =  (𝐴1 ∪ 𝐴1, (𝐴2 ∪ 𝐴2)T, (𝐴3 ∪ 𝐴)I, (𝐴4 ∪ 𝐴4)F) = (𝐴1, 𝐴2T, 

𝐴3I, 𝐴4F) = A.  

Hence, we can take neut(A) = A. Also, if neut(A) = A, then we have anti(A) = A. Thus, (𝑁𝑞, ∪) is a neu-

trosophic triplet set with neut(A) = A and anti(A) = A. 

b) a) Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) be a SVNQN in  𝑁𝑞. From Definition 3.2, it is clear that 

A ∩ A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) ∩ (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) = (𝐴1 ∩ 𝐴1, (𝐴2 ∩ 𝐴2)T, (𝐴3 ∩ 𝐴)I, (𝐴4 ∩ 𝐴4)F) = (𝐴1, 𝐴2T, 

𝐴3I, 𝐴4F) = A.  

Hence, we can take neut(A) = A. Also, if neut(A) = A, then we have anti(A) = A. Thus, (𝑁𝑞, ∩) is a neu-

trosophic triplet set with neut(A) = A and anti(A) = A. 

 

Theorem 4.2: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then, 

a) (𝑁𝑞, ∪) is a NTG.  

b) (𝑁𝑞, ∩) is a NTG. 

Proof: 

a) From Theorem 4.1, (𝑁𝑞, ∪) is a NTS with neut(A) = A and anti(A) = A. Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F),             

B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) and C = (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F) ∈  𝑁𝑞. 

i) We have that A ∪ B ∈ 𝑁𝑞 since P(N) is power set of N and A, B ∈ P(N). Because, if A, B ∈ P(X), then         

A ∪ B ∈ P(N). 

ii) (A ∪ B) ∪ C = [(𝐴1 ∪ 𝐵1, (𝐴2 ∪ 𝐵2)T, (𝐴3 ∪ 𝐵3)I, (𝐴4 ∪ 𝐵4)F)] ∪ (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F) = 

[(𝐴1 ∪ 𝐵1) ∪ 𝐶1, ((𝐴2 ∪ 𝐵2) ∪ 𝐶2)T, ((𝐴3 ∪ 𝐵3) ∪ 𝐶3)I, ((𝐴4 ∪ 𝐵4) ∪ 𝐶4))F)] =  

[𝐴1 ∪ (𝐵1 ∪ 𝐶1), (𝐴2 ∪ (𝐵2 ∪ 𝐶2))T, (𝐴3 ∪ (𝐵3 ∪ 𝐶3))I, (𝐴4 ∪ (𝐵4 ∪ 𝐶4))F)] = A ∪ (B ∪ C). 

Thus, (𝑁𝑞, ∪) is a NTG. 

b) From Theorem 4.1, (𝑁𝑞, ∩) is a NTS with neut(A) = A and anti(A) = A. Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F),            

B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) and C = (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F) ∈ 𝑁𝑞. 

i) We have that A ∩ B ∈ 𝑁𝑞 since P(N) is power set of N and A, B ∈ P(N). Because, if A, B ∈ P(N), then          

A ∩ B ∈ P(N). 

iii) (A ∩ B) ∩ C = [(𝐴1 ∩ 𝐵1 , (𝐴2 ∩ 𝐵2)T, (𝐴3 ∩ 𝐵3)I, (𝐴4 ∩ 𝐵4)F)] ∩ (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F) =[(𝐴1 ∩ 𝐵1) ∩ 𝐶1 , 

((𝐴2 ∩ 𝐵2) ∩ 𝐶2)T, ((𝐴3 ∩ 𝐵3) ∩ 𝐶3)I, ((𝐴4 ∩ 𝐵4) ∩ 𝐶4))F)] = [𝐴1 ∩ (𝐵1 ∩ 𝐶1), (𝐴2 ∩ (𝐵2 ∩ 𝐶2))T, (𝐴3 ∩ (𝐵3 ∩

𝐶3))I, (𝐴4 ∩ (𝐵4 ∩ 𝐶4))F)] = A ∩ (B ∩ C). 

Thus, (𝑁𝑞, ∩) is a NTG. 

 

Theorem 4.3: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then,  

a) (𝑁𝑞, *1) is a NTS with binary operation *1 in Definition 3.3. 

b) (𝑁𝑞, *2) is a NTS with binary operation *2 in Definition 3.3. 

Proof: 

a) Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) be a SVNQN in 𝑁𝑞. From Definition 3.3, we obtain 

A *1 A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *1 (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) =  
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(𝐴1 ∩ 𝐴1, ((𝐴1 ∩ 𝐴2) ∪ (𝐴2 ∩ 𝐴1) ∪ (𝐴2 ∩ 𝐴2))T, ((𝐴1 ∩ 𝐴3) ∪ (𝐴2 ∩ 𝐴3) ∪ (𝐴3 ∩ 𝐴1) ∪ (𝐴3 ∩ 𝐴2) ∪ (𝐴3 ∩

𝐴3))I, ((𝐴1 ∩ 𝐴4) ∪ (𝐴2 ∩ 𝐴4) ∪ ( 𝐴3 ∩ 𝐴4) ∪ (𝐴4 ∩ 𝐴1) ∪ (𝐴4 ∩ 𝐴2) ∪ (𝐴4 ∩ 𝐴3) ∪ (𝐴4 ∩ 𝐴4))F) =  (𝐴1, 𝐴2T, 

𝐴3I, 𝐴4F) = A 

since 

 𝐴2 ∩ 𝐴2 = 𝐴2 and (𝐴1 ∩ 𝐴2), (𝐴2 ∩ 𝐴2) ⊂ 𝐴2; 

𝐴3 ∩ 𝐴3 = 𝐴3 and (𝐴1 ∩ 𝐴3), (𝐴2 ∩ 𝐴3), (𝐴3 ∩ 𝐴3) ⊂ 𝐴3; 

𝐴4 ∩ 𝐴4 = 𝐴4 and (𝐴1 ∩ 𝐴4), (𝐴2 ∩ 𝐴4), (𝐴3 ∩ 𝐴4), (𝐴4 ∩ 𝐴4) ⊂ 𝐴4. 

Hence, we can take neut(A) = A. Also, if neut(A) = A, then we have anti(A) = A. Thus, (𝑁𝑞, *1) is a NTS 

with neut(A) = A and anti(A) = A. 

b) Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) be a SVNQN in 𝑁𝑞. From Definition 3.3, we obtain 

A *2 A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *2 (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) = (𝐴1 ∪ 𝐴1, ((𝐴1 ∪ 𝐴2) ∩ (𝐴2 ∪ 𝐴1) ∩ (𝐴2 ∪ 𝐴2))T, ((𝐴1 ∪

𝐴3) ∩ (𝐴2 ∪ 𝐴3) ∩ (𝐴3 ∪ 𝐴1) ∩ (𝐴3 ∪ 𝐴2) ∩           (𝐴3 ∪ 𝐴3))I, ((𝐴1 ∪ 𝐴4) ∩ (𝐴2 ∪ 𝐴4) ∩ ( 𝐴3 ∪ 𝐴4) ∩ (𝐴4 ∪

𝐴1) ∩ (𝐴4 ∪ 𝐴2) ∩ (𝐴4 ∪ 𝐴3) ∩ (𝐴4 ∪ 𝐴4))F) =  (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) = A 

since 

 𝐴2 ∪ 𝐴2 = 𝐴2 and (𝐴1 ∪ 𝐴2), (𝐴2 ∪ 𝐴2) ⊃ 𝐴2; 

𝐴3 ∪ 𝐴3 = 𝐴3 and (𝐴1 ∪ 𝐴3), (𝐴2 ∪ 𝐴3), (𝐴3 ∪ 𝐴3) ⊃ 𝐴3; 

𝐴4 ∪ 𝐴4 = 𝐴4 and (𝐴1 ∪ 𝐴4), (𝐴2 ∪ 𝐴4), (𝐴3 ∪ 𝐴4), (𝐴4 ∪ 𝐴4) ⊃ 𝐴4. 

Hence, we can take neut(A) = A. Also, if neut(A) = A, then we have anti(A) = A. Thus, (𝑁𝑞, *2) is a NTS 

with neut(A) = A and anti(A) = A. 

Theorem 4.4: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then,  

a) (𝑁𝑞, *1) is a NTG with binary operation *1 in Definition 3.3. 

b) (𝑁𝑞, *2) is a NTG with binary operation *2 in Definition 3.3. 

Proof: 

a) From Theorem 4.3, (𝑁𝑞, *1) is a neutrosophic triplet set. Let  

A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) and C = (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F) ∈ 𝑁𝑞, 

i) We obtain A *1 B ∈ 𝑁𝑞since P(N) is power set of N and A, B ∈ P(N).  

ii)  

(A *1 B) *1 C =   

 (𝐴1 ∩ 𝐵1 , ( (𝐴1 ∩ 𝐵2 ) ∪  (𝐴2 ∩ 𝐵1)  ∪  (𝐴2 ∩ 𝐵2) )T, ( (𝐴1 ∩ 𝐵3)  ∪  ( 𝐴2 ∩ 𝐵3)  ∪  (𝐴3 ∩ 𝐵1)  ∪  (𝐴3 ∩ 𝐵2)  ∪          

(𝐴3 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4))F) *1       (𝐶1, 

𝐶2T, 𝐶3I, 𝐶4F) = 

 ([𝐴1 ∩ 𝐵1] ∩ 𝐶1, 

 ( ([𝐴1 ∩ 𝐵1] ∩ 𝐶2 ) ∪  ( [(𝐴1 ∩ 𝐵2)  ∪  (𝐴2 ∩ 𝐵1)  ∪  (𝐴2 ∩ 𝐵2)] ∩ 𝐶1)  ∪  ([(𝐴1 ∩ 𝐵2)  ∪    (𝐴2 ∩ 𝐵1)  ∪     (𝐴2 ∩

𝐵2)] ∩ 𝐶2))T, 

 ([ 𝐴1 ∩ 𝐵1] ∩ 𝐶3)  ∪  ( [(𝐴1 ∩ 𝐵2)  ∪    (𝐴2 ∩ 𝐵1)  ∪  (𝐴2 ∩ 𝐵2)] ∩ 𝐶3)  ∪  ([𝐴1 ∩ 𝐵3)  ∪     (𝐴2 ∩ 𝐵3)  ∪  (𝐴3 ∩

𝐵1)  ∪  (𝐴3 ∩ 𝐵2)  ∪  (𝐴3 ∩ 𝐵3)] ∩ 𝐶1) ∪  ([𝐴1 ∩ 𝐵3)  ∪  (𝐴2 ∩ 𝐵3)  ∪  (𝐴3 ∩ 𝐵1)  ∪  (𝐴3 ∩ 𝐵2)  ∪  (𝐴3 ∩ 𝐵3)] ∩

𝐶2) ∪ ([𝐴1 ∩ 𝐵3)  ∪  (𝐴2 ∩ 𝐵3)  ∪  (𝐴3 ∩ 𝐵1)  ∪  (𝐴3 ∩ 𝐵2)  ∪  (𝐴3 ∩ 𝐵3)] ∩ 𝐶3))I, 

 ( ([𝐴1 ∩ 𝐵1] ∩ 𝐶4)  ∪  ([(𝐴1 ∩ 𝐵2)  ∪  (𝐴2 ∩ 𝐵1)  ∪  (𝐴2 ∩ 𝐵2)] ∩ 𝐶4 ) ∪  ( [𝐴1 ∩ 𝐵3)  ∪     (𝐴2 ∩ 𝐵3)  ∪  (𝐴3 ∩

𝐵1)  ∪  (𝐴3 ∩ 𝐵2)  ∪  (𝐴3 ∩ 𝐵3)] ∩ 𝐶4) ∪ ([(𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪   ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2 ) ∪ 

(𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4)] ∩ 𝐶1) ∪ ([(𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ 

(𝐴4 ∩ 𝐵4)]∩ 𝐶2) ∪ ([(𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4)]∩

𝐶3) ∪ ([(𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4)]∩ 𝐶4))F) =  

(𝐴1 ∩ [𝐵1 ∩ 𝐶1], 

((𝐴1 ∩[(𝐵1 ∩ 𝐶2) ∪ (𝐵2 ∩ 𝐶1) ∪ (𝐵2 ∩ 𝐶2)])∪ (𝐴2 ∩ [𝐵1 ∩ 𝐶1]) ∪ (𝐴2 ∩  [(𝐵1 ∩ 𝐶2) ∪ (𝐵2 ∩ 𝐶1) ∪ (𝐵2 ∩ 𝐶2)]))T, 

 ((𝐴1 ∩[(𝐵1 ∩ 𝐶3) ∪ (𝐵2 ∩ 𝐶3) ∪ (𝐵3 ∩ 𝐶1) ∪ (𝐵3 ∩ 𝐶2) ∪ (𝐵3 ∩ 𝐶3)])  ∪    (𝐴2 ∩ [(𝐵1 ∩ 𝐶3)  ∪  (𝐵2 ∩ 𝐶3)  ∪

 (𝐵3 ∩ 𝐶1)  ∪  (𝐵3 ∩ 𝐶2)  ∪  (𝐵3 ∩ 𝐶3)])  ∪   (𝐴3 ∩  [ 𝐵1 ∩ 𝐶1 ])  ∪  (𝐴3 ∩ [(𝐵1 ∩ 𝐶2)  ∪  (𝐵2 ∩ 𝐶1)  ∪  (𝐵2 ∩

𝐶2)])  ∪  (𝐴3 ∩[(𝐵1 ∩ 𝐶3) ∪ (𝐵2 ∩ 𝐶3) ∪ (𝐵3 ∩ 𝐶1) ∪ (𝐵3 ∩ 𝐶2) ∪ (𝐵3 ∩ 𝐶3)])) I, 

 ( (𝐴1 ∩ [(𝐵1 ∩ 𝐶4)  ∪  (𝐵2 ∩ 𝐶4)  ∪  ( 𝐵3 ∩ 𝐶4)  ∪  (𝐵4 ∩ 𝐶1)  ∪  (𝐵4 ∩ 𝐶2)  ∪  (𝐵4 ∩ 𝐶3)  ∪  (𝐵4 ∩ 𝐶4)] ∪  (𝐴2 ∩

[(𝐵1 ∩ 𝐶4)  ∪  (𝐵2 ∩ 𝐶4)  ∪  ( 𝐵3 ∩ 𝐶4)  ∪  (𝐵4 ∩ 𝐶1)  ∪  (𝐵4 ∩ 𝐶2)  ∪  (𝐵4 ∩ 𝐶3)  ∪  (𝐵4 ∩ 𝐶4)])  ∪    ( 𝐴3 ∩
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[(𝐵1 ∩ 𝐶4)  ∪  (𝐵2 ∩ 𝐶4)  ∪  ( 𝐵3 ∩ 𝐶4)  ∪  (𝐵4 ∩ 𝐶1)  ∪  (𝐵4 ∩ 𝐶2)  ∪  (𝐵4 ∩ 𝐶3)  ∪  (𝐵4 ∩ 𝐶4)])  ∪  ( 𝐴4 ∩ [𝐵1 ∩

𝐶1]) ∪ (𝐴4 ∩[(𝐵1 ∩ 𝐶2) ∪ (𝐵2 ∩ 𝐶1) ∪ (𝐵2 ∩ 𝐶2)]) ∪ (𝐴4 ∩[(𝐵1 ∩ 𝐶3) ∪ (𝐵2 ∩ 𝐶3) ∪ (𝐵3 ∩ 𝐶1) ∪ (𝐵3 ∩ 𝐶2) ∪ 

(𝐵3 ∩ 𝐶3)]) ∪ (𝐴4 ∩[(𝐵1 ∩ 𝐶4) ∪ (𝐵2 ∩ 𝐶4) ∪ ( 𝐵3 ∩ 𝐶4) ∪ (𝐵4 ∩ 𝐶1) ∪ (𝐵4 ∩ 𝐶2) ∪ (𝐵4 ∩ 𝐶3) ∪ (𝐵4 ∩ 𝐶4)]  ))F) 

=  A *1 (B *1 C). 

Thus, (𝑁𝑞, *1) is a NTG with binary operation *1 in Definition 3.3. 

b) This proof can be made similar to a. 

 

Theorem 4.5: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then,  

a) (𝑁𝑞, *1) is a NTS with binary operation #1 in Definition 3.4. 

b) (𝑁𝑞, *2) is a NTS with binary operation #2 in Definition 3.4. 

Proof: These proofs can be made similar to Theorem 4.3. 

 

Theorem 4.6: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then,  

a) (𝑁𝑞, *1) is a NTG with binary operation #1 in Definition 3.4. 

b) (𝑁𝑞, *2) is a NTG with binary operation #2 in Definition 3.4. 

Proof: These proofs can be made similar to Theorem 4.4. 
                                                                                     

Conclusion  

In this study, we firstly obtain set valued neutrosophic quadruple sets and numbers. Also, we intro-

duce some known and special operations for set valued neutrosophic quadruple numbers. In the neu-

trosophic quadruples, real or complex numbers were taken as variables, while in this study we took 

sets as variables. So, we will expand the applications of neutrosophic quadruples. Because things or 

variables in any application will be more useful than real numbers or complex numbers. Furthermore, 

we give some neutrosophic triplet groups based on set valued neutrosophic quadruple number thanks 

to operations for set valued neutrosophic quadruple numbers. Thus, we have added a new structure 

to neutrosophic triplet structures and neutrosophic quadruple structures. Thanks to set valued neu-

trosophic quadruple sets and numbers other neutrosophic triplet structures can be defined similar to 

this study. For example, neutrosophic triplet metric space based on set valued neutrosophic quadruple 

numbers; neutrosophic triplet vector space based on set valued neutrosophic quadruple numbers;     

neutrosophic triplet normed space based on set valued neutrosophic quadruple numbers. Also, set 

valued neutrosophic quadruple sets can be used decision making applications due to the its set valued 

structure. For example, in a medical application in which more than one drug is used, this structure 

may be used. 

 

Abbreviations 

NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTG: Neutrosophic triplet group 

NQ: Neutrosophic quadruple 

NQS: Neutrosophic quadruple set 

NQN: Neutrosophic quadruple number 

SVNQS: Set valued neutrosophic quadruple set 

SVNQN: Set valued neutrosophic quadruple number 
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