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Abstract: Neutrosophic set is a powerful general formal framework. A lot of studies on 

neutrosophic had been proposed and recently, in multi-valued interval values. However, 

sometimes there is problem involving elements of ambiguity and uncertainties in which the 

function of membership is difficult to be set in a particular case. Clearly, these problems can be 

solved by soft set since it is able to solve the lack of parameterization tool of theory. Thus, this 

paper introduces a concept of multi-valued interval neutrosophic soft set which amalgamates 

multi-valued interval neutrosophic set and soft set. The proposed set extends the notions of fuzzy 

set, intuitionistic fuzzy set, neutrosophic set, interval-valued neutrosophic set, multi-valued 

neutrosophic set, soft set and neutrosophic soft set. Further, we study some basic operations such 

as complement, equality, inclusion, union, intersection, “AND” and “OR” for multi-valued interval 

neutrosophic soft elements and discuss its associated properties. Moreover, the derivation of its 

properties, related examples and some proofs on the propositions are included.  

Keywords: multi-valued interval neutrosophic set; multi-valued interval neutrosophic soft set; 

neutrosophic set, soft set 

1. Introduction 

Fuzzy set (FS) was firstly initiated by Zadeh [1] in order to solve the decision-making problems 

with fuzzy information. However, FS only considers single membership function to represent vague 

data. Moreover, the membership degree alone is unable to describe the information in some cases of 

decision-making problems. Thus, Atanassov [2] introduced intuitionistic fuzzy set (IFS) in order to 

measure both membership degree and non-membership degree of elements in universal set. Then, 

the IFSs have been extended by many researchers and have been applied in some real applications. 

However, the membership and non-membership degrees values in IFSs are independent with the 

sum of degrees of membership and non-membership is less than unity. Moreover, it is unable to 

cope with the indefinite and inconsistent information which exist in belief system. Both FSs and IFSs 
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may not deal with indeterminacy in real decision-making problem. Indeterminacy is an important 

part in decision-making process. For example, in a survey form, there are three choices ‘YES / NO/ 

N. A.’, while for gender, Male/ Female/ Others. So, different types of uncertainty and ambiguity with 

indeterminacy cannot be explained by the fuzzy concept or intuitionistic fuzzy concept. Thus, 

Smarandache [3] proposed the theory of neutrosophic set (NS) in 1995. The concept of NS which 

introduced by Smarandache [4] is a mathematical tool that handles the problems with inconsistent 

and imprecise data. It also has been proved that the NS is a continuation of the intuitionistic fuzzy 

sets [5]. An NS is represented by the truth-membership function, indeterminacy-membership 

function, and falsity-membership function respectively, where ] 0,1 [   is the non-standard interval. 

Basically, it is the generalization to the standard interval in the intuitionistic fuzzy sets [2] which is 

[0,1]. The uncertainty that represented by the indeterminacy factor is independent of truth and 

falsity values, while the integrated ambiguity is dependent of the degree of belongingness and the 

degree of non-belongingness in IFS. Nowadays, the studies on the NS theory have been developed 

actively [6]–[13]. However, since operators necessary to be specified, there is difficulty to apply NS 

in some real situations. Thus, Wang et al. [14] proposed single-valued neutrosophic set (SVNS) and 

since then, there are many researches related to SVNS have been conducted [9–18]. 

 Despite its success, the truth-membership, indeterminacy-membership and falsity-membership 

in SVNS may not be written in one specific number for some cases. Thus, interval-valued 

neutrosophic set (IVNS) was introduced by Wang et al. [25], so that the values of truth-membership, 

indeterminacy-membership and falsity-membership are determined in intervals rather than real 

numbers. Also, IVNS may represent the indefinite, inaccurate, inadequate and inconsistent 

information which is always exist in real world. Numerous real world applications of IVNS have 

been studied by number of researchers [20–25]. In another perspective, the value of neutrosophic 

elements also not always be a single real number. Thus, Wang and Li [32] generalized SVNS into 

multi-valued neutrosophic set (MVNS), where the values of truth-membership, 

indeterminacy-membership and falsity-membership are represented in several real numbers rather 

than one single real number [27–30]. Nevertheless, in some complicated decision problems, several 

decision makers can refuse to give any evaluation values if they are unfamiliar with the 

characteristics of decision-making. Consequently, Broumi et al. [37] proposed multi-valued interval 

neutrosophic set (MVINS) in order to cope with complex decision problems which involving 

multiple decision makers and the evaluation values of decision makers are given in form of 

multi-valued interval neutrosophic values. Then, it has been discussed by other scholars such as Fan 

and Ye [38], Yang and Pang [39] and Samuel and Narmadhagnanam [40]. 

 Apart from NS based sets, the soft set is just another set that can be used to deal with uncertain 

and vague information. Molodtsov [41] who is a Russian mathematician, had solved the difficult 

problem involving uncertainty by proposing a new mathematical tool called “soft set theory”. This 

theory is free from the difficulties on how to set the function of membership in a particular case and 

inadequacy of parameterization tool of theory. After Molodtsov’s work, the soft set (SS) theory has 

been studied widely in numerous applications, like lattices [36–38], topology [39–41], algebraic 

structures [42–46], game theory [47,48], medical diagnosis [55], perron integration [56], data analysis 

and operations research [51–54], optimization [61] and decision-making under uncertainty [56–59].  

In recent years, SS theory has been extended by embedding the ideas of other sets. For example, Maji 
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et al. [66] firstly integrated the beneficial properties of SS and FS. Theory of fuzzy soft set (FSS) has 

been studied by many scholars. For instance, Cagman et al. [67] defined the theory of fuzzy soft set 

(FSS) and studied the related properties. Roy and Maji [68] discussed some results on the 

implementation of FSS in solving the problem of object recognition. Kong et al. [69] gave a comment 

on Roy and Maji’s paper [68], by providing a counter-example to show the problem. Then, Maji [70] 

studied the theory of NS which proposed by Smarandache [4] and combined it with soft set to 

become a novel mathematical model, which is called neutrosophic soft set (NSS). After the 

introduction of the NSS, Karaaslan [71] redefined the NSS notion and its operations to make it 

become more useful. The NSS has been applied to solve decision-making problem. Mukherjee and 

Sarkar [72] also discussed about NSSs. They solved a medical diagnosis decision-making problem 

based on the NSS. Şahin and Küçük [73] introduced a novel style of NSS notion and studied some 

algebraic properties. Sumathi and Arockiarani [74] also studied the NSSs. Cuong et al. [75] 

reanalyzed the notion of NSS and discussed the basic properties of NSS, neutrosophic soft relations 

and neutrosophic soft compositions. Hussain and Shabir [76] investigated the algebraic operations 

of NSS and the properties related to the operations. Mukherjee and Sarkar [77] defined new 

similarity measure and weighted similarity measure between two NSSs. Maji [78] verified some 

operations of weighted NSSs. Chatterjee et al. [79] studied the single-valued NSSs and some 

uncertainty based measures. Marei [80] proposed single valued neutrosophic soft approach to rough 

sets based on neutrosophic right minimal structure. Then, some scholars generalized the NSS into 

interval form by combining the IVNS with SS. This combination is known as interval-valued 

neutrosophic soft set (IVNSS) and it can deal with the problem in interval form with uncertainty. 

Deli [81] firstly introduced the definitions and operations of IVNSS and developed decision-making 

approach based on level soft sets of IVNSS. Mukherjee and Sarkar [82] defined Hamming and 

Euclidean distance for two IVNSSs. They also studied the similarity measure based on set theoretic 

approach. Broumi et al. [83] introduced the relations on IVNSS and presented the several properties 

such as symmetry, reflexivity and transitivity of the proposed relations. Another extension of NSS 

set has been done by some researchers to solve the problem in several real numbers with 

uncertainty. The multi-valued neutrosophic soft set (MVNSS) was proposed by Alkhazaleh [84]. A 

theoretical study on MVNSS properties and operations have been made and an MCDM approach 

based on the proposed set has been provided. Alkhazaleh and Hazaymeh [85] also discussed about 

the MVNSS and introduced an MCDM approach based on the set. It can be seen that there are a lot 

of researches that integrate the NS theory with SS theory. However, the NSS need to be specified 

from a point of view and since very little information of MVINS combines with NS is available in 

literatures, thus, we fill this gap by presenting a new set which integrate two existing concepts of 

MVINS introduced by Broumi et al. [37] and SS introduced by Molodtsov [41]. To accompaniment 

the concept of MVINSS, some basic operations for MVINSS which namely complement, union, 

intersection, equality, inclusion, “AND” and “OR” operations the proposed. The structure of this 

paper is listed as follows. In section 2, the related definitions and concepts for developing MVINSS 

are presented. Some proving on the propositions are included. Section 3 proposes the MVINSS and 

its associated properties together with example. Finally, we conclude the paper in section 4. 

2. Preliminaries  



Neutrosophic Sets and Systems, Vol. 30, 2019    152  

 

Nor Liyana Amalini Mohd Kamal, Lazim Abdullah, Ilyani Abdullah, Shawkat Alkhazaleh and Faruk Karaaslan, 

Multi-Valued Interval Neutrosophic Soft Set: Formulation and Theory 

In this section, we present some definitions and properties which are related to neutrosophic set, 

single-valued neutrosophic set, interval-valued neutrosophic set, multi-valued neutrosophic set, soft 

set and neutrosophic soft set. 

2.1. Neutrosophic Set 

Definition 2.1 [3] Let U  be a universe of discourse, then NS A  can be defined as 

{ ( ), ( ), ( ) / , }A A AA y y y y y U       

where , , : ] 0, 1 [U  
 

  define the degree of truth-membership ( ),A y  degree of indeterminacy 

( )A y  and degree of falsity ( )A y  respectively and there is no restriction on the sum of ( ), ( )A Ay y   

and ( ),A y  so 0 ( ) ( ) ( ) 3 .A A Ay y y  
 

     

From philosophical point of view, the NS takes the value from real standard or non-standard subsets 

of ] 0, 1 [
  . Thus for technical applications, we need to take the interval [0, 1]   instead of ] 0, 1 [

   

because it is hard to apply in the real applications such as problems in scientific and engineering. 

2.2. Single-Valued Neutrosophic Set 

Definition 2.2 [14] Let U  be a universal set, with generic element of U  denoted by .y  An SVNS 

A  over U  is defined as { ( ), ( ), ( ) / , }A A AA y y y y y U       It is characterized by a 

truth-membership function ( ),A y  indeterminacy-membership function ( )A y  and 

falsity-membership function ( ),A y  with for each , ( ), ( ), ( ) [0,1]A A Ay U y y y     and 

0 ( ) ( ) ( ) 3.
A A A

y y y       

2.3. Interval-Valued Neutrosophic Set 

Definition 2.3 [25] Let U  be a space of points with generic elements in U  denoted by .y  An IVNS 

Â  over U  is characterized by truth-membership interval ˆˆ ( ),
A

y  indeterminacy-membership 

interval ˆ
ˆ ( )

A
y  and falsity-membership interval ˆ

ˆ ( ).
A

y  It can be defined as  

ˆ ˆ ˆ
ˆ ˆ ˆˆ{ ( ), ( ), ( ) / , }

A A A
A y y y y y U       

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) [ ( ), ( ) ], ( ) [ ( ), ( ) ], ( ) [ ( ), ( ) ] [0, 1]

A A A A A A A A A
y y y y y y y y y        

     
     and ˆ ˆ ˆ

ˆ ˆˆ0 [ ( ) ( ) ( ) ] 3, .
A A A

y y y y U  
  

      It 

only considers the subunitary interval of [0,1].  

2.4. Multi-Valued Neutrosophic Set 

Definition 2.4 [32] Let U  be a space of points (objects), with a generic element in U  denoted by .y  

An MVNS A  over U  is characterized by { ( ), ( ), ( ) / , }
l m n

A A A
A y y y y y U        

where 1 2

( ) ( ), ( ), , ( ),
l q

A A A A
y y y y   

1 2
( ) ( ), ( ), , ( )

m r

A A A A
y y y y     and 1 2

( ) ( ), ( ), , ( )
n s

A A A A
y y y y     are three sets 

in the form of subset of [0, 1],  denoting the truth-membership sequence 

( ),
l

A
y indeterminacy-membership sequence ( )

m

A
y  and falsity-membership sequence ( )

n

A
y  

respectively, satisfying 0 ( ), ( ), ( ) 1
l m n

A A A
y y y     and 0 ( ), ( ), ( ) 3

l m n

A A A
y y y     for 

1, 2, , ,l q 1, 2, , ,m r 1, 2, ,n s  for all .y U  Also, , ,l m n  are called as the dimension of 

MVNS. 

If U  has only one element, then A  is called a multi-valued neutrosophic number (MVNN), 

denoted by ( ), ( ), ( ) .l m n

A A A
A y y y    For convenience, an MVNN can be denoted by , , .l m n

A A A
A     

The set of all MVNNs is represented as MVNS. 
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2.5. Multi-Valued Interval Neutrosophic Set 

Definition 2.5 [37] Let U  be a space of points (objects), with a generic element in U  denoted by .y  

An MVINS A  over U  can be defined as  

{ ( ), ( ), ( ) / , }
l m n

A A A
A y y y y y U        

where 
1 1 2 2 1 1 2 2

( ) [ ( ), ( )], [ ( ), ( )], , [ ( ), ( )], ( ) [ ( ), ( )], [ ( ), ( )], , [ ( ),
l q q m r r

A A A A A A A A A A A A A
y y y y y y y y y y y y y             

          
  ( )],

A
y



1 1 2 2
( ) [ ( ), ( )], [ ( ), ( )], , [ ( ), ( )] }

n s s

A A A A A A A
y y y y y y y U      

     
   such that 0 ( ), ( ), ( ) 3,

l m n

A A A
y y y  

  
  for all 

1, 2, , ,l q 1, 2, , ,m r 1, 2, , .n s  

In this research, dimension of the interval truth-membership sequence ( ) ,
l

A
y  interval 

indeterminacy-membership sequence ( )
m

A
y and interval falsity-membership sequence ( )

n

A
y  of the 

element y  are considered as equal that is ,q r s   respectively. Also, , ,l m n  are called the 

dimension of MVINS .A  Obviously, when the values of upper and lower of ( ) , ( ) , ( )
l m n

A A A
y y y    are 

equal, then the MVINS is reduced to MVNS. 

2.6. Soft Set 

Definition 2.6 [41] Let U  be an initial universe set and E  be a set of parameters. Consider .A E  

Let ( )P U  denotes the power SS of .U  A pair ( , )L A  is called a SS over U  and the function L  is a 

mapping defined by : ( )L A P U  such that ( )( )L y   if .y U  

Here, ( )L  is called approximate function of the soft set ( , ),L A and the value ( )( )L y  is a set called 

x-element of the soft set for all .y U  The sets may be arbitrary, empty, or have non-empty 

intersection. 

2.7. Neutrosophic Soft Set 

Definition 2.7 [70] 

Let U  be an initial universe set and E  be a set of parameters. Consider .A E  Let ( )P U  denotes 

the set of all NSS of .U  The collection ( , )L A  is called an NSS over U  and the function ( )L   is a 

mapping defined by : ( )L A P U  such that ( )( )L y   if .y U  

( , )L A  is characterized by 
( ) ( )

( ), ( )
L L

y y
 

   and 
( )

( ).y


  in the form of subset of [0,1]  and here, ( )L   is 

called approximate function of the NSS ( , ),L A  such that 

( ) ( ) ( )( , ) { ( ), ( ), ( ) / ; , }L L LL A y y y y A y U            

where 
( ) ( )

( ), ( )
L L

y y
 

   and 
( )

( )
L

y


  are the truth-membership, indeterminacy-membership and 

falsity-membership values of object y  respectively that object y  holds on parameter .  

2.8. Interval-Valued Neutrosophic Soft Set 

Definition 2.8 [81] 

Let U  be an initial universe set and E  be a set of parameters. Consider .A E  Let ( )P U  denotes 

the set of all IVNSS of .U  The collection ˆ( , )L A  is called an IVNSS over U  and the function ˆ( )L   is 

a mapping defined by ˆ : ( )L A P U  such that ˆ ( )( )L y   if .y U  

ˆ( , )L A  is characterized by  ˆ ˆ( ) ( )

ˆˆ ( ), ( )
L L

y y
 

   and ˆ ( )

ˆ ( )
L

y


  in the interval form of subset of ]1,0[  and here, 

ˆ ( )L   is called approximate function of the IVNSS ˆ( , ),L A  such that  

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆˆ ˆ( , ) { ( ), ( ), ( ) / ; , }
L L L

L A y y y y A y U
  

         
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where 
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆˆ ˆ ˆ( ) [ ( ), ( )], ( ) [ ( ), ( )]
L L L L L L

y y y y y y
     

     
      and 

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) [ ( ), ( )]
L L L

y y y
  

  
   are the interval 

truth-membership, interval indeterminacy-membership and interval falsity-membership 

respectively that object y  holds on parameter . s 

2.9. Multi-Valued Neutrosophic Soft Sets 

Definition 2.9 [86] Let U  be an initial universe set and E  be a set of parameters. Consider .A E  

Let ( )P U  denotes the set of all MVNSS of .U  The collection ( , )L A  is called an MVNSS over U  

and the function ( )L   is a mapping defined by : ( )L A P U  such that ( )( )L y   if .y U  

( , )L A  is characterized by 
( ) ( )

( ), ( )
L L

y y
 

   and 
( )

( )
L

y


  in the form of subset of [0,1]  and here, ( )L   is 

called approximate function of the MVNSS ( , ),L A  such that  

( ) ( ) ( )
( , ) { ( ), ( ), ( ) / ; , }

l m n

L L L
L A y y y y A y U

  
          

where 1 2 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ), ( ), , ( ), ( ) ( ), ( ), , ( )

l q m r

L L L L L L L L
y y y y y y y y

       
          and 1 2

( ) ( ) ( ) ( )
( ) ( ), ( ), , ( )

n s

L L L L
y y y y

   
     are 

the truth-membership sequence, indeterminacy-membership sequence and falsity-membership 

sequence respectively that object y  holds on parameter .  

3. Proposed Multi-Valued Interval Neutrosophic Soft Set  

In this section, we propose the definition of a multi-valued interval neutrosophic soft set (MVINSS) 

and its basic operations such as complement, inclusion, equality, union, intersection, “AND” and 

“OR” are defined as follows. 

Definition 3.1  

The pair ( , )L A  is called an MVINSS over ( ),P U  where L  is a mapping given by : ( ).L A P U  

( )P U  denotes the set of all MVINSS of  U  with parameters from A  and the function ( )L   is a 

mapping defined by 

: ( )L A P U  such that ( )( )L y   if .y U  

( , )L A  is characterized by 
L( ) L( )

( ), ( )y y
 

   and 
L( )

( )y


  in the form of subset of [0,1]  and can be defined 

as follows: 

 
( ) ( ) ( )

( , ) ( ) , ( ) , ( ) / ; ,
l m n

L L L
L A y y y y A y U

  
         

where 
1 1 2 2 1 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) [ ( ), ( )], [ ( ), ( )], , [ ( ), ( )], ( ) [ ( ), ( )], [ ( ),

l q q m

L L L L L L L L L L L
y y y y y y y y y y y

          
           

        

 
2

( )
( )],

L
y





( ) ( )
, [ ( ), ( )]

r r

L L
y y

 
 

   and 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) [ ( ), ( )], [ ( ), ( )], , [ ( ), ( )]

n s s

L L L L L L L
y y y y y y y

      
      

     

  are the interval 

truth-membership sequence, interval indeterminacy-membership sequence and interval 

falsity-membership sequence respectively that object  y  holds on parameter .   

An example of an MVINSS is given as follows. 

Example 3.1 Let  
1 2 3
, ,U y y y  be the set of laptops under consideration and A  is a set of 

parameters which describes the attractiveness of the laptop. Consider 

1 2 3 4{ , , , }.A thin light cheap large         Define a mapping : ( )L A P U  as 
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1

1

2

([0.2,0.6],[0.1,0.3]), ([0.3,0.5],[0.1,0.4]), ([0.2,0.6],[0.4,0.8])
( ) ,

([0.1,0.3],[0.2,0.4]), ([0.3,0.6],[0.4,0.8]), ([0.3,0.5],[0.2,0.7])
,

([0.1,0.6],[0.2,0.7]), ([0.2,0.5],[0.3,0.5]), ([0.5,0.

L
y

y







3

2

1

2

8],[0.3,0.8])
,

([0.4,0.6],[0.2,0.5]), ([0.2,0.6],[0.4,0.7]), ([0.6,0.9],[0.5,0.8])
( ) ,

([0.3,0.6],[0.3,0.5]), ([0.5,0.8],[0.5,0.7]), ([0.4,0.8], [0.6,0.9])
,

([0.6,0.9],[0.3,0.6]), ([0.1,0.4],

y

L
y

y








 


3

[0.4,0.8]), ([0.2,0.5],[0.7,0.9])
,

y





 

3

1

2

([0.5,0.9],[0.1,0.4]), ([0.2,0.4],[0.6,0.7]), ([0.3,0.7],[0.2,0.5])
( ) ,

([0.6,0.9],[0.1,0.5]), ([0.3,0.8],[0.5,0.8]), ([0.2,0.6], [0.1,0.5])
,

([0.1,0.4],[0.1,0.5]), ([0.6,0.8],[0.2,0.5]), ([0.6,0.

L
y

y




 


3

9],[0.6,0.8])
,

y





 

4

1

2

([0.1,0.5],[0.2,0.5]), ([0.2,0.5],[0.7,0.9]), ([0.3,0.5], [0.1,0.5])
( ) ,

([0.2,0.6],[0.3,0.7]), ([0.7,0.8],[0.2,0.5]), ([0.1,0.6],[0.4,0.7])
,

([0.6,0.8],[0.6,0.7]), ([0.3,0.6],[0.4,0.5]), ([0.6,0.

L
y

y







3

9],[0.2,0.4])
.

y





 

Then, the multi-valued interval neutrosophic soft set ( , )L A  can be written as the following 

collection of approximations: 
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1

1

2

([0.2,0.6],[0.1,0.3]), ([0.3,0.5],[0.1,0.4]), ([0.2,0.6],[0.4,0.8])
(L, ) , ,

([0.1,0.3],[0.2,0.4]), ([0.3,0.6],[0.4,0.8]), ([0.3,0.5],[0.2,0.7])
,

([0.1,0.6],[0.2,0.7]), ([0.2,0.5],[0.3,0.

A
y

y


 

  


3

5]), ([0.5,0.8],[0.3,0.8])
,

y






2

1

2

([0.4,0.6],[0.2,0.5]), ([0.2,0.6],[0.4,0.7]), ([0.6,0.9],[0.5,0.8])
, ,

([0.3,0.6],[0.3,0.5]), ([0.5,0.8],[0.5,0.7]), ([0.4,0.8],[0.6,0.9])
,

([0.6,0.9],[0.3,0.6]), ([0.1,0.4],[0.4,0.8]), ([0.2,0.5]

y

y


 
 



3

,[0.7,0.9])
,

y






3

1

2

([0.5,0.9],[0.1,0.4]), ([0.2,0.4],[0.6,0.7]), ([0.3,0.7],[0.2,0.5])
, ,

([0.6,0.9],[0.1,0.5]), ([0.3,0.8],[0.5,0.8]), ([0.2,0.6],[0.1,0.5])
,

([0.1,0.4],[0.1,0.5]), ([0.6,0.8],[0.2,0.5]), ([0.6,0.9]

y

y


 
 



3

4

1

2

,[0.6,0.8])
,

([0.1,0.5],[0.2,0.5]), ([0.2,0.5],[0.7,0.9]), ([0.3,0.5],[0.1,0.5])
, ,

([0.2,0.6],[0.3,0.7]), ([0.7,0.8],[0.2,0.5]), ([0.1,0.6],[0.4,0.7])
,

([0.6,0.8],[0.6,0.7]), ([0.3,0.6],

y

y

y








 
 



3

[0.4,0.5]), ([0.6,0.9],[0.2,0.4])
.

y

 
 

 

 

The MVINSS can be represented in tabular form. The entries are 
ij

c  corresponding to the laptop 
i

y  

and the parameter 
j

 where 
ij

c  refers to interval truth-membership sequence of 
i

y  interval The 

MVINSS can be represented in tabular form. The entries are indeterminacy-membership sequence of 

,
i

y  and interval falsity-membership sequence of ,
i

y  in ( ).
j

L   

The tabular representation of multi-valued interval neutrosophic soft set ( , )L A  is as follow: 

Table 1. The tabular representation of ( , )L A  

 

U  1 thin   
2 light   

1y  ([0.2, 0.6],[0.1, 0.3]), ([0.3, 0.5],[0.1, 0.4]), ([0.2, 0.6],[0.4, 0.8])  ([0.4, 0.6],[0.2, 0.5]), ([0.2, 0.6],[0.4, 0.7]), ([0.6, 0.9],[0.5, 0.8])  

2y  ([0.1, 0.3],[0.2, 0.4]), ([0.3, 0.6],[0.4, 0.8]), ([0.3, 0.5],[0.2, 0.7])   ([0.3, 0.6],[0.3, 0.5]), ([0.5, 0.8],[0.5, 0.7]), ([0.4, 0.8],[0.6, 0.9])  

3y  ([0.1, 0.6],[0.2, 0.7]), ([0.2, 0.5],[0.3, 0.5]), ([0.5, 0.8],[0.3, 0.8])   ([0.6, 0.9],[0.3, 0.6]), ([0.1, 0.4],[0.4, 0.8]), ([0.2, 0.5],[0.7, 0.9])  

U  3 cheap   
4 large   

1y  ([0.5, 0.9],[0.1, 0.4]), ([0.2, 0.4],[0.6, 0.7]), ([0.3, 0.7],[0.2, 0.5])       ([0.6, 0.9],[0.1, 0.5]), ([0.3, 0.8],[0.5, 0.8]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.1, 0.5],[0.2, 0.5]), ([0.2, 0.5],[0.7, 0.9]), ([0.3, 0.5],[0.1, 0.5])  ([0.2, 0.6],[0.3, 0.7]), ([0.7, 0.8],[0.2, 0.5]), ([0.1, 0.6],[0.4, 0.7])  

3y  ([0.1, 0.4],[0.1, 0.5]), ([0.6, 0.8],[0.2, 0.5]), ([0.6, 0.9],[0.6, 0.8])  ([0.6, 0.8],[0.6, 0.7]), ([0.3, 0.6],[0.4, 0.5]), ([0.6, 0.9],[0.2, 0.4])  
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Suppose ( , )L A  is a multi-valued interval neutrosophic soft set in ( )MVINSS U  where 

 
1 2 3
, , .U y y y  The basic operations on MVINSS are given as follows: 

We also define the complement operation for MVINSS and give an illustrative example. 

Definition 3.2 The complement of a multi-valued interval neutrosophic soft set ( , )L A  is denoted by 

( , )CL A  and is defined as ( , ) ( , )C CL A L A  where : ( )CL A MVINSS U  is a mapping given by 

( ) ( ( )),CL c L   so that 
( ) ( )

( , ) { ( ), 1 ( ) , ( ) / ; ; }.
C

L L
L A y y y y A y U

 
            

Example 3.2 Consider Example 3.1, then ( , )CL A  is given by  

1

1

2

([0.2,0.6],[0.4,0.8]), ([0.5,0.7],[0.6,0.9]), ([0.2,0.6],[0.1,0.3])
(L, ) , ,

([0.3,0.5],[0.2,0.7]), ([0.4,0.7],[0.2,0.6]), ([0.1,0.3],[0.2,0.4])
,

([0.5,0.8],[0.3,0.8]), ([0.5,0.8],[0.5,0

CA
y

y


 

  


3

2

1

2

.7]), ([0.1,0.6],[0.2,0.7])
,

([0.6,0.9],[0.5,0.8]), ([0.4,0.8],[0.3,0.6]), ([0.4,0.6],[0.2,0.5])
, ,

([0.4,0.8],[0.6,0.9]), ([0.2,0.5],[0.3,0.5]), ([0.3,0.6],[0.3,0.5])
,

([0.2,0.5],[0.7,0.

y

y

y








 
 



3

9]), ([0.6,0.9],[0.2,0.6]), ([0.6,0.9],[0.3,0.6])
,

y






 

3

1

2

([0.3,0.7],[0.2,0.5]), ([0.6,0.8],[0.3,0.4]), ([0.5,0.9],[0.1,0.4])
, ,

([0.2,0.6],[0.1,0.5]), ([0.2,0.7],[0.2,0.5]), ([0.6,0.9],[0.1,0.5])
,

([0.6,0.9],[0.6,0.8]), ([0.2,0.4],[0.5,0.8]), ([0.1,0.4]

y

y


 
 



3

,[0.1,0.5])
,

y






 

4

1

2

([0.3,0.5],[0.1,0.5]), ([0.5,0.8],[0.1,0.3]), ([0.1,0.5],[0.2,0.5])
, ,

([0.1,0.6],[0.4,0.7]), ([0.2,0.3],[0.5,0.8]), ([0.2,0.6],[0.3,0.7])
,

([0.6,0.9],[0.2,0.4]), ([0.4,0.7],[0.5,0.6]), ([0.6,0.8]

y

y


 
 



3

,[0.6,0.7])
.

y

 
 

 

 

We will next define the subset hood of two MVINSS and give an illustrative example. 

Definition 3.3 Let ( , )L A  and ( , )M B  be two multi-valued interval neutrosophic soft sets over the 

common universe .U  ( , )L A  is a multi-valued interval neutrosophic soft subset of ( , )M B  denoted 

by ( , ) ( , )L A M B  if and only if A B  and ,A   ( )L   is a multi-valued interval neutrosophic 

soft subset of ( ).M   

Example 3.3 Consider Table 1 and ( , )M B  is another MVINSS over the common universe .U  Let B  

be a set of parameters which describes the size of the laptops. Consider 
4 5{ , }B large small     and 

given ( , )M B  is represented in tabular form as follows. 
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Table 2. The tabular representation of (M, )B  

It is clear that ( , ) ( , ).M B L A  

Definition 3.4 Let ( , )L A  and ( , )M B  be two multi-valued interval neutrosophic soft sets over the 

common universe .U  ( , )L A  is equal to ( , )M B  denoted by ( , ) ( , )L A M B  if and only if 

( , ) ( , )L A M B  and ( , ) ( , ).M B L A   

In the following, we define the union of two NVSSs and give an illustrative example. 

Definition 3.5 Let ( , )L A  and ( , )M B be two multi-valued neutrosophic soft sets over the common 

universe .U  Then the union of ( , )L A  and ( , )M B  is denoted by '( , ) ( , ) 'L A M B  and is defined by 

( , ) ( , ) ( , )L A M B N C   where C A B  and 
( ) ( ) ( )

( , ) { ( ), ( ), ( ) / ; }
l m n

N N N
N C y y y y y U

  
      such that 

( )
( )

l

N
y




 
= 11 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

q q

L L L L L L
y y y y y y

     
     

     

 
if ;A B     

 = 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

q q

M M M M M M
y y y y y y

     
     

     

 
if ;B A    

 = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , , [ ( ) ( ), ( ) ( )];

q q q q

L M L M L M L M
y y y y y y y y

       
       

       

   
 

if ;A B    

( )
( )

m

N
y




 
= 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

r r

L L L L L L
y y y y y y

     
     

         
 

if ;A B    

 = 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

r r

M M M M M M
y y y y y y

     
     

     

 
if ;B A    

 = 
1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )] [ ( ) ( ), ( ) ( )]

, ,, , ;
2 2 2 2

r r r r

L M L M L M L M
y y y y y y y y

       
       

       

   

 
if ;A B  

 

( )
( )

n

N
y




 
= 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

s s

L L L L L L
y y y y y y

     
     

     

 
if ;A B  

 
 = 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

s s

M M M M M M
y y y y y y

     
     

     

 
if ;B A    

 = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , , [ ( ) ( ), ( ) ( )];

s s s s

L M L M L M L M
y y y y y y y y

       
       

       

   
 

if ;A B    

It can be simplified as: 

( ) ( )

( ) ( ) ( ) ( )

( )

( )( , )( )

( ) ( )
max( (y), ), , min( (y), )

2

if ;

if ;

if .
L M

L M L M

M

L

N C

y y

A B

B A

A B
 

   





 
   









  


  

  


 

Refer to Example 3.3, the union of ( , )L A  and ( , )M B  can be represented as follows. 

Table 3. The union of ( , )L A  and ( , )M B  

 

U  4 large   
5 small   

1y  ([0.3, 0.6],[0.3, 0.5]), ([0.5, 0.8],[0.5, 0.7]), ([0.4, 0.8],[0.6, 0.9])  ([0.6, 0.9],[0.1, 0.5]), ([0.3, 0.8],[0.5, 0.8]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.2, 0.6],[0.1, 0.3]), ([0.3, 0.5],[0.1, 0.4]), ([0.2, 0.6],[0.4, 0.8])  ([0.2, 0.6],[0.3, 0.7]), ([0.7, 0.8],[0.2, 0.5]), ([0.1, 0.6],[0.4, 0.7])  

3y  ([0.5, 0.9],[0.1, 0.4]), ([0.2, 0.4],[0.6, 0.7]), ([0.3, 0.7],[0.2, 0.5])  ([0.1, 0.5],[0.2, 0.5]), ([0.2, 0.5],[0.7, 0.9]), ([0.3, 0.5],[0.1, 0.5])  

U  1 thin   
2 light   

1y  ([0.2, 0.6],[0.1, 0.3]), ([0.3, 0.5],[0.1, 0.4]), ([0.2, 0.6],[0.4, 0.8])  ([0.4, 0.6],[0.2, 0.5]), ([0.2, 0.6],[0.4, 0.7]), ([0.6, 0.9],[0.5, 0.8])  

2y  ([0.1, 0.3],[0.2, 0.4]), ([0.3, 0.6],[0.4, 0.8]), ([0.3, 0.5],[0.2, 0.7])  ([0.3, 0.6],[0.3, 0.5]), ([0.5, 0.8],[0.5, 0.7]), ([0.4, 0.8],[0.6, 0.9])  

3y  ([0.1, 0.6],[0.2, 0.7]), ([0.2, 0.5],[0.3, 0.5]), ([0.5, 0.8],[0.3, 0.8])  ([0.6, 0.9],[0.3, 0.6]), ([0.1, 0.4],[0.4, 0.8]), ([0.2, 0.5],[0.7, 0.9])  
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Then, we present the definition of intersection operation and give an illustrative example. 

Let ( , )L A  and ( , )M B  be two multi-valued interval neutrosophic soft sets over the common 

universe .U  Then the intersection of ( , )L A  and ( , )M B  is denoted by '( , ) ( , ) 'L A M B  and is 

defined by ( , ) ( , ) ( , )L A M B N C   where C A B  and 
( ) ( ) ( )

( , ) { ( ), ( ), ( ) / ; }
l m n

N N N
N C y y y y y U

  
      such 

that for every ,C   

 

Refer to Example 3.3, the intersection of ( , )L A  and ( , )M B  can be represented as follows. 

Table 4. The intersection of ( , )L A  and ( , )M B  

 

 

 

 

Some properties of union and intersection are derived as follows. 

Proposition 3.1 

Idempotency Laws: 

(1) ( , ) ( , ) ( , )L A L A L A   

(2) ( , ) ( , ) ( , ).F A F A F A   

Commutative Laws: 

(3) ( , ) ( , ) ( , ) ( , )L A M B M B L A    

(4) ( , ) ( , ) ( , ) ( , )L A M B M B L A    

Proof 1 

Let   be an arbitrary element of ( , ) ( , )L A L A . Then, ( , )L A   or ( , )L A  . Hence ( , )L A  . Thus, 

( , ) ( , ) ( , )L A L A L A  . Conversely, if   is an arbitrary element of ( , )L A , then ( , ) ( , )L A L A    since 

it is in ( , ).L A  Therefore ( , ) ( , ) ( , ).L A L A L A   

( , ) ( , ) ( , )L A L A L A       

U  3 cheap   
4 large   

1y  ([0.5, 0.9],[0.1, 0.4]), ([0.2, 0.4],[0.6, 0.7]), ([0.3, 0.7],[0.2, 0.5])  ([0.6, 0.9],[0.3, 0.5]), ([0.4, 0.8],[0.5, 0.75]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.1, 0.5],[0.2, 0.5]), ([0.2, 0.5],[0.7, 0.9]), ([0.3, 0.5],[0.1, 0.5])  ([0.2, 0.6],[0.3, 0.7]), ([0.5, 0.65],[0.15, 0.45]), ([0.1, 0.6],[0.4, 0.7])  

3y  ([0.1, 0.4],[0.1, 0.5]), ([0.6, 0.8],[0.2, 0.5]), ([0.6, 0.9],[0.6, 0.8])  ([0.6, 0.9],[0.6, 0.7]), ([0.25, 0.5],[0.5, 0.6]), ([0.3, 0.7],[0.2, 0.4])  

U  5 small   

1y  ([0.6, 0.9],[0.1, 0.5]), ([0.3, 0.8],[0.5, 0.8]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.2, 0.6],[0.3, 0.7]), ([0.7, 0.8],[0.2, 0.5]), ([0.1, 0.6],[0.4, 0.7])  

3y  ([0.1, 0.5],[0.2, 0.5]), ([0.2, 0.5],[0.7, 0.9]), ([0.3, 0.5],[0.1, 0.5])  

( )
( )

l

N
y


  = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , [ ( ) ( ), ( ) ( )];

q q q q

L M L M L M L M
y y y y y y y y

       
       

       

     

( )
( )

m

N
y


   = 

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )] [ ( ) ( ), ( ) ( )]

, ,, , ;
2 2 2 2

r r r r

L M L M L M L M
y y y y y y y y

       
       

       

   
 

( )
( )

l

N
y


  = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , [ ( ) ( ), ( ) ( )];

s s s s

L M L M L M L M
y y y y y y y y

       
       

       

     

U  4 large   

1y  ([0.3, 0.6],[0.1, 0.5]), ([0.4, 0.8],[0.5, 0.75]), ([0.4, 0.8],[0.6, 0.9])  

2y  ([0.2, 0.6],[0.1, 0.3]), ([0.5, 0.65],[0.15, 0.45]), ([0.2, 0.6],[0.4, 0.8])  

3y  ([0.5, 0.8],[0.1, 0.4]), ([0.25, 0.5],[0.5, 0.6]), ([0.6, 0.9],[0.2, 0.5])  
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Proof 2 

Let   be an arbitrary element of ( , ) ( , ).L A L A  Then, ( , )L A   and ( , ).L A   Hence 

( , ).L A  Thus, ( , ) ( , ) ( , ).L A L A L A   Conversely, if ( , )L A   is arbitrary, then ( , )L A   and 

( , )L A  . Therefore ( , ) ( , ) ( , ).L A L A L A  .  

( , ) ( , ) ( , )L A L A L A       

Proof 3 

Let   is any element in ( , ) ( , ).L A M B  Then, by definition of union, ( , )L A   or ( , ).M B   But, if 

  is in ( , )L A  or ( , ),M B then it is in ( , ),M B  or ( , )L A  and by definition of union, this means 

( , ) ( , ).L A M B    Therefore, ( , ) ( , ) ( , ) ( , ).L A M B M B L A    

The other inclusion is identical. If    is any element of ( , ) ( , ).M B L A  Then, ( , )M B   or ( , ).L A   

But, ( , )M B   or ( , ).L A   implies that   is in ( , )L A  or ( , ).M B  Hence, ( ,B) ( , ).M L B    
Therefore ( , ) ( , ) ( , ) ( , ).M B L A L A M B    

( , ) ( , ) ( , ) ( , )L A M B M B L A     
Proof 4 

Let   is any element in ( , ) ( , ).L A M B  Then, by definition of intersection, ( , )L A   and ( , ).M B   

Hence, ( , ).M B   and ( , ).L A   So, ( , ) ( , ).M B L A    Therefore, ( , ) ( , ) ( , ) ( , ).L A M B M B L A    

The reverse inclusion is again identical. If   is any element of ( , ) ( , ).M B L A  Then, ( , ).M B   and 

( , ).L A   Hence, ( , ).L A   and ( , ).M B   This implies ( , ) ( , ).L A M B    Therefore 

( , ) ( , ) ( , ) ( , ).M B L A L A M B    

( , ) ( , ) ( , ) ( , )L A M B M B L A     

For three multi-valued neutrosophic soft sets ( , ), ( , )L A M B  and ( , )N C  over the common universe 

,U  we have the following propositions: 

Proposition 3.2 

Associative Laws: 

1. ( , ) [( , ) ( , )] [( , ) ( , )] ( , ).L A M B N C L A M B N C      

2. ( , ) [( , ) ( , )] [( , ) ( , )] ( , ).L A M B N C L A M B N C      

Distributive Laws: 

3. ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C       

4. ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C       

Proof 1 

Let ( , ) [( , ) ( , )].L A M B N C     If ( , ) [( , ) ( , )],L A M B N C     
then   is either in ( , )L A  or in [( , )M B  or ( , )].N C  

( , )L A   or [( , )M B   or ( , )]N C   

( , )L A   or { ( , )M B   or ( , )}N C   
{ ( , )L A   or ( , )}M B   or { ( , )L A   or ( , )}N C   

[( , )L A   or ( , )]M B  or [( , )L A   or ( , )]N C  

[( , ) ( , )]L A M B    [( , ) ( , )]L A N C    
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[( , ) ( , )] [( , ) ( , )]L A M B L A N C      

( , ) [( , ) ( , )]L A M B N C     

[( , ) ( , )] [( , ) ( , )]L A M B L A N C      
Since ( , ) [( , ) ( , )]L A M B N C     such that [( , ) ( , )] [( , ) ( , )],L A M B L A N C      

therefore ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C        

Let [( , ) ( , )] [( , ) ( , )].L A M B L A N C      If [( , ) ( , )] [( , ) ( , )],L A M B L A N C       

then   is in [( , )L A  or ( , )]M B  or   is in [( , )L A  or ( , )].N C   

( , )L A  or ( , )]M B  or ( , )L A   or ( , )]N C  
{ ( , )L A   or ( , )}M B   or { ( , )L A   or ( , )}N C     

( , )L A   or { ( , )M B   or ( , )}N C      

( , )L A   or { [( , )M B   or ( , )]}N C   

( , ) { [( , ) ( , )]}L A M B N C       

( , ) [( , ) ( , )]L A M B N C     

Since [( , ) ( , )] [( , ) ( , )]L A M B L A N C      such that ( , ) [( , ) ( , )],L A M B N C     

therefore [( , ) ( , )] [( , ) ( , )] ( , ) [( , ) ( , )].L A M B L A N C L A M B N C                            

( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )]L A M B N C L A M B L A N C        

Proof 2 

Let ( , ) [( , ) ( , )].L A M B N C     If ( , ) [( , ) ( , )],L A M B N C     
then   is either in ( , )L A  and in [( , )M B  and ( , )].N C  

( , )L A   and [( , )M B   and ( , )]N C   

( , )L A   and { ( , )M B   and ( , )}N C   
{ ( , )L A   and ( , )}M B   and { ( , )L A   and ( , )}N C   

[( , )L A   and ( , )]M B  and [( , )L A   and ( , )]N C  

[( , ) ( , )]L A M B    [( , ) ( , )]L A N C    
[( , ) ( , )] [( , ) ( , )]L A M B L A N C      

( , ) [( , ) ( , )]L A M B N C     

[( , ) ( , )] [( , ) ( , )]L A M B L A N C      
Since ( , ) [( , ) ( , )]L A M B N C     such that [( , ) ( , )] [( , ) ( , )],L A M B L A N C      

therefore ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C        

Let [( , ) ( , )] [( , ) ( , )].L A M B L A N C      If [( , ) ( , )] [( , ) ( , )],L A M B L A N C       

then   is in [( , )L A  and ( , )]M B  and   is in [( , )L A  and ( , )].N C   

( , )L A   and ( , )]M B  and ( , )L A   and ( , )]N C  
{ ( , )L A   and ( , )}M B   and { ( , )L A   and ( , )}N C     

( , )L A   and { ( , )M B   and ( , )}N C      

( , )L A   and { [( , )M B   and ( , )]}N C   

( , ) { [( , ) ( , )]}L A M B N C       

( , ) [( , ) ( , )]L A M B N C     

Since [( , ) ( , )] [( , ) ( , )]L A M B L A N C      such that ( , ) [( , ) ( , )],L A M B N C     

therefore [( , ) ( , )] [( , ) ( , )] ( , ) [( , ) ( , )].L A M B L A N C L A M B N C                            

( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )]L A M B N C L A M B L A N C        
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Proof 3 

Let ( , ) [( , ) ( , )].L A M B N C     If ( , ) [( , ) ( , )],L A M B N C     
then   is either in ( , )L A  or in [( , )M B  and ( , )].N C  

( , )L A   or [( , )M B   and ( , )]N C   

( , )L A   or { ( , )M B   and ( , )}N C   
{ ( , )L A   or ( , )}M B   and { ( , )L A   or ( , )}N C   

[( , )L A  or ( , )]M B  and [( , )L A   or ( , )]N C  

[( , ) ( , )] [( , ) ( , )]L A M B L A N C        
[( , ) ( , )] [( , ) ( , )]L A M B L A N C      

( , ) [( , ) ( , )]L A M B N C     

[( , ) ( , )] [( , ) ( , )]L A M B L A N C      
Since ( , ) [( , ) ( , )]L A M B N C     such that [( , ) ( , )] [( , ) ( , )],L A M B L A N C      

therefore ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C        

Let [( , ) ( , )] [( , ) ( , )].L A M B L A N C      If [( , ) ( , )] [( , ) ( , )],L A M B L A N C       

then   is in [( , )L A  or ( , )]M B  and   is in [( , )L A  or ( , )].N C   

[( , )L A  or ( , )]M B  and [( , )L A   or ( , )]N C  
{ ( , )L A   or ( , )}M B   and { ( , )L A   or ( , )}N C     

[( , )L A   or { ( , )M B   and ( , )}N C      

[( , )L A   or { [( , )M B   and ( , )]}N C  

( , ) { [( , ) ( , )]}L A M B N C       

( , ) ( , ) ( , )]L A M B N C     
Since [( , ) ( , )] [( , ) ( , )]L A M B L A N C      

such that ( , ) ( , ) ( , )],L A M B N C     

therefore [( , ) ( , )] [( , ) ( , )] ( , ) ( , ) ( , )].L A M B L A N C L A M B N C                            

( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C        

Proof 4 

Let ( , ) [( , ) ( , )].L A M B N C     If ( , ) [( , ) ( , )],L A M B N C     
then   is in ( , )L A  and [( , )M B  or ( , )].N C  

( , )L A   and [( , )M B   or ( , )]N C   

( , )L A   and { ( , )M B   or ( , )}N C   
{ ( , )L A   and ( , )}M B   or { ( , )L A   and ( , )}N C   

[( , )L A   and ( , )]M B  or [( , )L A   and ( , )]N C  

[( , ) ( , )] [( , ) ( , )]L A M B L A N C        
[( , ) ( , )] [( , ) ( , )]L A M B L A N C      

( , ) [( , ) ( , )]L A M B N C     

[( , ) ( , )] [( , ) ( , )]L A M B L A N C      
Since ( , ) [( , ) ( , )]L A M B N C     such that [( , ) ( , )] [( , ) ( , )],L A M B L A N C      

therefore ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C        

Let [( , ) ( , )] [( , ) ( , )].L A M B L A N C      If [( , ) ( , )] [( , ) ( , )],L A M B L A N C       

then   is in [( , )L A  and ( , )]M B  or   is in [( , )L A  and ( , )].N C   

[( , )L A  and ( , )]M B  or [( , )L A   and ( , )]N C  
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{ ( , )L A   
and ( , )}M B   or { ( , )L A   and ( , )}N C     

[( , )L A   and { ( , )M B   or ( , )}N C      

[( , )L A   and { [( , )M B   or ( , )]}N C  

( , ) { [( , ) ( , )]}L A M B N C       

( , ) ( , ) ( , )]L A M B N C     
Since [( , ) ( , )] [( , ) ( , )]L A M B L A N C      such that ( , ) ( , ) ( , )],L A M B N C     

therefore [( , ) ( , )] [( , ) ( , )] ( , ) ( , ) ( , )].L A M B L A N C L A M B N C                              

( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )]L A M B N C L A M B L A N C        

Then, we introduce the definition of ‘AND’ and ‘OR’ operations and give the illustrative example. 

Definition 3.6  

Let ( , )L A  and ( , )M B  be two multi-valued interval neutrosophic soft sets over the common 

universe .U  Then the ‘AND’ operation between ( , )L A  and ( , )M B  is denoted by '( , ) ( , ) 'L A M B  

and is defined by '( , ) ( , ) ' ( , )L A M B N A B    where 
( , ) ( , ) ( , )

( , ) { ( ), ( ), ( ) / ; }
l m n

N N N
N A B y y y y y U

     
        such 

that for every , , .A B y U     

Refer to Example 3.3, the ‘AND’ operation of ( , )L A  and ( , )M B  can be represented as follows. 

Table 5. The ‘AND’ operation of ( , )L A  and ( , )M B  

 

 

 

 

( , )
( )

l

N
y

 
  = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , [ ( ) ( ), ( ) ( )];

q q q q

L M L M L M L M
y y y y y y y y

       
       

       

     

( , )
( )

m

N
y

 
   = 

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )] [ ( ) ( ), ( ) ( )]

, ,, , ;
2 2 2 2

r r r r

L M L M L M L M
y y y y y y y y

       
       

       

   
 

( , )
( )

n

N
y

 
  = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , [ ( ) ( ), ( ) ( )];

s s s s

L M L M L M L M
y y y y y y y y

       
       

       

     

U  ( , )thin large  ( , )thin small  

1y  ([0.3, 0.6],[0.1, 0.5]), ([0.4, 0.73],[0.4, 0.65]), ([0.4, 0.8],[0.6, 0.9])  ([0.6, 0.9], [0.1, 0.5]), ([0.3, 0.7], [0.4, 0.7]), ([0.2, 0.6], [0.1, 0.5])  

2y  ([0.2, 0.6],[0.1, 0.3]), ([0.4, 0.6],[0.2, 0.53]), ([0.2, 0.6],[0.4, 0.8])  ([0.2, 0.6],[0.3, 0.7]), ([0.6, 0.75],[0.25, 0.58]), ([0.1, 0.6],[0.4, 0.7])  

3y  ([0.1, 0.6],[0.1, 0.4]), ([0.2, 0.45],[0.55, 0.7]), ([0.3, 0.7],[0.2, 0.5])  ([0.1, 0.5], [0.2, 0.5]), ([0.2, 0.5], [0.6, 0.8]), ([0.3, 0.5], [0.1, 0.5])  

U  ( , )light large  ( , )light small  

1y  ([0.3, 0.6],[0.2, 0.5]), ([0.35, 0.7],[0.45, 0.7]), ([0.6, 0.9],[0.6, 0.9])  ([0.4, 0.6],[0.1, 0.5]), ([0.25, 0.7],[0.45, 0.75]), ([0.6, 0.9],[0.5, 0.8])  

2y  ([0.2, 0.6],[0.1, 0.3]), ([0.4, 0.65],[0.3, 0.55]), ([0.4, 0.8],[0.6, 0.9])  ([0.2, 0.6], [0.3, 0.5]), ([0.6, 0.8], [0.35, 0.6]), ([0.4, 0.8], [0.6, 0.9])  

3y  ([0.5, 0.9],[0.1, 0.4]), ([0.15, 0.4],[0.5, 0.75]), ([0.3, 0.7],[0.7, 0.9])  ([0.1, 0.5],[0.2, 0.5]), ([0.15, 0.45],[0.55, 0.85]), ([0.3, 0.5],[0.7, 0.9])  

U  ( , )cheap large  ( , )cheap small  

1y  ([0.3, 0.6],[0.1, 0.4]), ([0.35, 0.6],[0.55, 0.7]), ([0.4, 0.8],[0.6, 0.9])  ([0.5, 0.9],[0.1, 0.4]), ([0.25, 0.6],[0.55, 0.75]), ([0.3, 0.7],[0.2, 0.5])  

2y  ([0.1, 0.5],[0.1, 0.3]), ([0.25, 0.5],[0.4, 0.65]), ([0.3, 0.6],[0.4, 0.8])  ([0.1, 0.5],[0.2, 0.5]), ([0.45, 0.65],[0.45, 0.7]), ([0.3, 0.6],[0.4, 0.7])  

3y  ([0.1, 0.4], [0.1, 0.4]), ([0.4, 0.6], [0.4, 0.6]), ([0.6, 0.9], [0.6, 0.8])  ([0.1, 0.4],[0.1, 0.5]), ([0.4, 0.65], [0.45, 0.7]), ([0.6, 0.9],[0.6, 0.8])  
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Definition 3.7 Let ( , )L A  and ( , )M B  be two multi-valued interval neutrosophic soft sets over the 

common universe .U  Then, the ‘OR’ operation between ( , )L A  and ( , )M B  is denoted by 

'( , ) ( , ) 'L A M B  and is defined by ( , ) ( , ) ( , )L A M B N A B    

where
( , ) ( , ) ( , )

( , ) { ( ), ( ), ( ) / ; }
l m n

N N N
N A B y y y y y U

     
        such that for every , , ,A B y Y     

Refer to Example 3.3, the ‘OR’ operation of ( , )L A  and ( , )M B  can be represented as follows. 

Table 6. The ‘OR’ operation of ( , )L A  and ( , )M B  

 

 

 

For three multi-valued interval neutrosophic soft sets ( , ),L A ( , )M B  and ( , )N C  over the common 

universe, then De Morgan’s Law are given as follows. 

U  ( , )large large  ( , )large small  

1y  ([0.3, 0.6], [0.1, 0.5]), ([0.4, 0.8], [0.5, 0.75]), ([0.4, 0.8], [0.6, 0.9])  ([0.6, 0.9], [0.6, 0.5]), ([0.3, 0.8], [0.5, 0.8]), ([0.2, 0.6], [0.1, 0.5])  

2y  ([0.2, 0.6],[0.1, 0.3]), ([0.5, 0.65],[0.15, 0.45]), ([0.2, 0.6],[0.4, 0.8])  ([0.2, 0.6], [0.3, 0.7]), ([0.7, 0.8], [0.2, 0.5]), ([0.1, 0.6], [0.4, 0.7])  

3y  ([0.5, 0.8], [0.1, 0.4]), ([0.25, 0.5], [0.5, 0.6]), ([0.6, 0.9], [0.2, 0.5])  ([0.1, 0.5],[0.2, 0.5]), ([0.25, 0.55],[0.55, 0.7]), ([0.6, 0.9],[0.2, 0.5])  
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       

     
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2 2 2 2

r r r r

L M L M L M L M
y y y y y y y y

       
       

       

   
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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L M L M L M L M
y y y y y y y y

       
       

       

     

U  ( , )thin large  ( , )thin small  

1y  ([0.3, 0.6],[0.3, 0.5]), ([0.4, 0.73],[0.4, 0.65]), ([0.2, 0.6],[0.4, 0.8])  ([0.6, 0.9], [0.1, 0.5]), ([0.3, 0.7], [0.4, 0.7]), ([0.2, 0.6], [0.1, 0.5])  

2y  ([0.2, 0.6],[0.2, 0.4]), ([0.4, 0.6],[0.2, 0.53]), ([0.2, 0.5],[0.2, 0.7])  ([0.2, 0.6],[0.3, 0.7]), ([0.6, 0.75],[0.25, 0.58]), ([0.1, 0.5],[0.2, 0.7])  

3y  ([0.5, 0.9],[0.2, 0.7]), ([0.2, 0.45],[0.55, 0.7]), ([0.3, 0.7],[0.2, 0.5])  ([0.1, 0.6], [0.2, 0.7]), ([0.2, 0.5], [0.6, 0.8]), ([0.3, 0.5], [0.1, 0.5])  

U  ( , )light large  ( , )light small  

1y  ([0.4, 0.6],[0.3, 0.5]), ([0.35, 0.7],[0.45, 0.7]), ([0.4, 0.8],[0.5, 0.8])  ([0.6, 0.9],[0.2, 0.5]), ([0.25, 0.7], [0.45, 0.75]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.3, 0.6],[0.3, 0.5]), ([0.4, 0.65],[0.3, 0.55]), ([0.2, 0.6],[0.4, 0.8])  ([0.3, 0.6], [0.3, 0.7]), ([0.6, 0.8], [0.35, 0.6]), ([0.1, 0.6], [0.4, 0.7])  

3y  ([0.6, 0.9],[0.3, 0.6]), ([0.15, 0.4],[0.5, 0.75]), ([0.2, 0.5],[0.2, 0.5])  ([0.6, 0.9],[0.3, 0.6]), ([0.15, 0.45],[0.55, 0.85]), ([0.2, 0.5],[0.1, 0.5])  

U  ( , )cheap large  ( , )cheap small  

1y  ([0.5, 0.9],[0.3, 0.5]), ([0.35, 0.6],[0.55, 0.7]), ([0.3, 0.7],[0.2, 0.5])  ([0.6, 0.9],[0.1, 0.5]), ([0.25, 0.6],[0.55, 0.75]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.2, 0.6],[0.2, 0.5]), ([0.25, 0.5],[0.4, 0.65]), ([0.2, 0.5],[0.1, 0.5])  ([0.2, 0.6],[0.3, 0.7]), ([0.45, 0.65],[0.45, 0.7]), ([0.1, 0.5],[0.1, 0.5])  

3y  ([0.5, 0.9], [0.1, 0.5]), ([0.4, 0.6], [0.4, 0.6]), ([0.3, 0.7], [0.2, 0.5])  ([0.1, 0.5],[0.2, 0.5]), ([0.4, 0.65], [0.45, 0.7]), ([0.3, 0.5],[0.1, 0.5])  

U  ( , )large large  ( , )large small  

1y  ([0.6, 0.9], [0.3, 0.5]), ([0.4, 0.8], [0.5, 0.75]), ([0.2, 0.6], [0.1, 0.5])  ([0.6, 0.9], [0.1, 0.5]), ([0.3, 0.8], [0.5, 0.8]), ([0.2, 0.6], [0.1, 0.5])  

2y  ([0.2, 0.6],[0.3, 0.7]), ([0.5, 0.65],[0.15, 0.45]), ([0.1, 0.6],[0.4, 0.7])  ([0.2, 0.6], [0.3, 0.7]), ([0.7, 0.8], [0.2, 0.5]), ([0.1, 0.6], [0.4, 0.7])  

3y  ([0.6, 0.9], [0.6, 0.7]), ([0.25, 0.5], [0.5, 0.6]), ([0.3, 0.7], [0.2, 0.4])  ([0.6, 0.8],[0.6, 0.7]), ([0.25, 0.55],[0.55, 0.7]), ([0.3, 0.5],[0.1, 0.4])  
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Preposition 3 

(1)   ( , ) ( , ) [( , ) ( , )]C C CL A M B L A M B    

(2)   ( , ) ( , ) [( , ) ( , )]C C CL A M B L A M B    

(3)   ( , ) ( , ) ( , ) [( , ) ( , ) ( , )]C C C CL A M B N C L A M B N C      

(4)   ( , ) ( , ) ( , ) [( , ) ( , ) ( , )]C C C CL A M B N C L A M B N C      

Proof 1 

Let ( , ) ( , )C CL A M B     

( , )CL A   or ( , )CM B   

( , )L A   or ( , )M B   

( , ) ( , )L A M B    

[( , ) ( , )]CL A M B    

Since ( , ) ( , )C CL A M B    such that [( , ) ( , )] ,CL A M B    

Therefore ( , ) ( , ) [( , ) ( , )] .C C CL A M B L A M B    

Then consider [( , ) ( , )]CL A M B      

( , ) ( , )L A M B    

( , )L A   or ( , )M B   

( , )CL A   or ( , )CM B   

( , ) ( , )C CL A M B    

Since [( , ) ( , )]CL A M B    such that ( , ) ( , ) ,C CL A M B    

Therefore [( , ) ( , )] ( , ) ( , ) .C C CL A M B L A M B    

( , ) ( , ) [( , ) ( , )]C C CL A M B L A M B     

Proof 2 

Let ( , ) ( , )C CL A M B     

( , )CL A   and ( , )CM B   

( , )L A   and ( , )M B   

( , ) ( , )L A M B    

[( , ) ( , )]CL A M B    

Since ( , ) ( , )C CL A M B    such that [( , ) ( , )] ,CL A M B    

Therefore ( , ) ( , ) [( , ) ( , )] .C C CL A M B L A M B    

Then consider [( , ) ( , )]CL A M B      

( , ) ( , )L A M B    

( , )L A   and ( , )M B   

( , )CL A   and ( , )CM B   

( , ) ( , )C CL A M B    

Since [( , ) ( , )]CL A M B    such that ( , ) ( , ) ,C CL A M B    

Therefore [( , ) ( , )] ( , ) ( , ) .C C CL A M B L A M B    

( , ) ( , ) [( , ) ( , )]C C CL A M B L A M B     

Proof 3 

Let ( , ) ( , ) ( , )C C CL A M B N C     
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( , )CL A   or ( , )CM B   or ( , )CN C   

( , )L A   or ( , )M B   or ( , )N C   

[( , ) ( , )]L A M A    or ( , )N C   

[( , ) ( , ) ( , )]L A M A N C     

[( , ) ( , ) ( , )]CL A M A N C     

Since ( , ) ( , ) ( , )C C CL A M B N C     such that [( , ) ( , ) ( , )] ,CL A M A N C     

Therefore ( , ) ( , ) ( , ) [( , ) ( , ) ( , )] .C C C CL A M B N C L A M B N C      

Then consider [( , ) ( , ) ( , )]CL A M A N C     

[( , ) ( , ) ( , )]L A M A N C     

[( , ) ( , )]L A M A    or ( , )N C   

( , )L A   or ( , )M B   or ( , )N C   

( , )CL A   or ( , )CM B   or ( , )CN C   

( , ) ( , ) ( , )C C CL A M B N C     

Since [( , ) ( , ) ( , )]CL A M A N C     such that ( , ) ( , ) ( , ) ,C C CL A M B N C     

Therefore [( , ) ( , ) ( , )] ( , ) ( , ) ( , ) .C C C CL A M B N C L A M B N C      

( , ) ( , ) ( , ) [( , ) ( , ) ( , )]C C C CL A M B N C L A M B N C         

Proof 4 

Let ( , ) ( , ) ( , )C C CL A M B N C     

( , )CL A   and ( , )CM B   and ( , )CN C   

( , )L A   and ( , )M B   and ( , )N C   

[( , ) ( , )]L A M A    and ( , )N C   

[( , ) ( , ) ( , )]L A M A N C     

[( , ) ( , ) ( , )]CL A M A N C     

Since ( , ) ( , ) ( , )C C CL A M B N C     such that [( , ) ( , ) ( , )] ,CL A M A N C     

Therefore ( , ) ( , ) ( , ) [( , ) ( , ) ( , )] .C C C CL A M B N C L A M B N C      

Then consider [( , ) ( , ) ( , )]CL A M A N C     

[( , ) ( , ) ( , )]L A M A N C     

[( , ) ( , )]L A M A    and ( , )N C   

( , )L A   and ( , )M B   and ( , )N C   

( , )CL A   and ( , )CM B   and ( , )CN C   

( , ) ( , ) ( , )C C CL A M B N C     

Since [( , ) ( , ) ( , )]CL A M A N C     such that ( , ) ( , ) ( , ) ,C C CL A M B N C     

Therefore [( , ) ( , ) ( , )] ( , ) ( , ) ( , ) .C C C CL A M B N C L A M B N C      

( , ) ( , ) ( , ) [( , ) ( , ) ( , )]C C C CL A M B N C L A M B N C         

The definition of MVINSS, its arithmetic operations and properties would provide a good insight in 

mining a new knowledge of NS.  

4. Conclusions  
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In this paper, the concept of multi-valued interval neutrosophic soft set (MVINSS) has been 

successfully proposed by integrating the multi-valued interval neutrosophic set and soft set. It is 

already known that neutrosophic soft set considers the indeterminate and inconsistent information. 

But the proposed set was introduced to improve the result in decision-making problem with 

multi-valued interval neutrosophic soft elements. The proposed set has several significant features. 

Firstly, it emphasized the hesitant, indeterminate and uncertainty and can be used more practical to 

solve decision-making problem. Secondly, some basic properties of MVINSS such as complement, 

equality, inclusion, union, intersection, “AND” and “OR” were well defined. The propositions 

related to the proposed properties were mathematically proven and some examples were provided. 

For future work, this novel proposed set can be applied and utilized in solving supply chain, time 

series forecasting and decision-making problem such as partner selection, wastewater treatment 

selection and renewable energy selection. 
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