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1. Introduction 

Theory of probability, fuzzy sets, rough sets, vague sets etc. are the some established theories in the 

world to solve the problems related to uncertainty. Molodtstov introduced the Soft Set theory [32] 

as a parametric tool to deal the uncertain data of many mathematical problems. Later Maji, Roy and 

Biswas [24, 25] have further studied the theory of soft sets. Gradually research in soft set theory 

(SST) are grown up in many areas like algebra, entropy calculation, solving decision making 

problems etc. [27 - 30], for example). Prof. Florentine Smarandache [34] introduced the neutrosophic 

logic and sets. In this logic, every statement consists a degree of truth (T), a degree of indeterminacy 

(I) and a degree of falsity (F) and all of these degrees lie between, the non-standard unit intervals. 

Works on soft sets and neutrosophic sets are progressing very rapidly [10, 11, 19, 21, 28, 29, 30, 31, 

32, 33]. In 2013, P.K. Maji introduced the theory of Neutrosophic Soft (NS) sets [26]. Similarity 

measure technique is a well-known process to compare two sets. Similarity measure on Fuzzy sets, 

Soft sets, Neutrosophic sets etc. are done by several authors in their papers [14, 15, 16, 17, 18, 19, 22]. 

In this paper we have tried to build up the theory of similarity measures between two NS sets.  We 

organized the paper in the following manner. In Section 2, we have given some preliminary 

definitions and results. We have given a similarity measure of NS in Section 3. In Section 4 and 

Section 5 are devoted on weighted similarity measure of NS sets and measuring distances of NS sets 

respectively. We have discussed Distanced Based Similarity Measure of NS sets in Section 6. A real 

life application of similarity measure of two NS sets are shown in Section 8. Section 9 is the 

conclusion of our paper. 

2. Preliminaries  

Neutrosophic sets has several applications in different areas of physical systems, biological systems 

etc. and even in daily life problems. Most of the preliminary ideas can be easily found in any 
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standard reference say [1—11, 31, 34, 35] .However we will discuss some definitions and 

terminologies regarding neutrosophic sets which will be used in the rest of the paper. 

Definition 1 [34] Let 𝑋  be a universal set. A neutrosophic set 𝐴 on 𝑋  is characterized by a truth 

membership function 𝑡𝐴, an indeterminacy function  𝑖𝐴 and a falsity function  𝑓𝐴, where  𝑡𝐴, 𝑖𝐴 , 𝑓𝐴: →

 [0, 1], are functions and ∀ 𝑥 ∈  𝑋, 𝑥 =  𝑥(𝑡A(𝑥), 𝑖A(𝑥), 𝑓A(𝑥))  ∈  𝐴 is a single valued neutrosophic 

element of 𝐴. 

Definition 2 [25] Suppose 𝑈 be an initial universal set and let 𝐸 be a set of parameters. Let 𝑃 (𝑈 ) denote 

the power set of 𝑈 and   𝐴 ⊆  𝐸. A pair (F, A) is called a soft set over 𝑈 if and only if 𝐹 is a mapping given by 

𝐹 ∶  𝐴 →  𝑃 (𝑈 ). 

Example 3 As an illustration, consider the following example. Suppose a soft set (𝐹, 𝐸) describes choice of 

places which the authors are going to visit with his family. Consider U = the set of places under consideration 

= {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}. 𝐸 = {desert, forest, mountain, sea beach} = {𝑒1, 𝑒2, 𝑒3, 𝑒4}. Let 𝐹 (𝑒1)  =  {𝑥1, 𝑥2}, F(e2) = 

{x1, x2, x3}, F (e3) = {x4}, F (e4) = {x2, x5}. So, the soft set (F, E) is a family {F (ei); i = 1, . . ., 4} of U .In 

2012, P.K. Maji gives the idea of Neutrosophic Soft Set in his paper [26] as follows: 

 

Definition 4 [26] Let 𝑈 be an initial universe set and E be a set of parameters. Consider 𝐴 ⊆  𝐸. Let 𝑁 (𝑈 ) 

denotes the set of all neutrosophic sets of 𝑈 . The collection (𝐹, 𝐴) is termed to be the soft neutrosophic set 

over 𝑈, where F is a mapping given by 𝐹: 𝐴 →  𝑁 (𝑈). 

 

Example 5 Let X and E be the set of buses and condition of buses i.e. the set of parameters 

respectively. Each parameter is either a neutrosophic word or sentence involving neutrosophic 

words. Consider E = {beautiful, eco-friendly, costly, good seating arrangement}. Now, to define a 

NS set means to sort out beautiful buses, eco-friendly buses etc. Suppose, there are four buses in 

the universe X given by 𝑈 =  {ℎ i ;  𝑖 =  1, 2, 3, 4 } and the set of parameters 𝐸 =  {𝑒 i ;  𝑖 =

 1, 2, 3, 4} ,  where 𝑒1 stands for the parameter beautiful, 𝑒 2  stands for the parameter eco-

friendly,  𝑒 3  stands for the parameter costly and the parameter 𝑒 4   stands for good seating 

arrangement. Let 

  F (beautiful) = {(h1, 0.4, 0.7, 0.3), (h2, 0.3, 0.6, 0.2), (h3, 0.4, 0.4, 0.2), (h4, 0.6, 

0.5, 0.4)}, 

F (eco - friendly) = {(h1, 0.6, 0.7, 0.8), (h2, 0.5, 0.5, 0.1), (h3, 0.2, 0.3, 0.6)}, 

F (costly) = {(h2, 0.3, 0.3, 0.4), (h3, 0.5, 0.4, 0.8), (h4, 0.8, 0.7, 0.8)}, 

   F (good - seating arrangement) = {(h1, 0.4, 0.1, 0.4), (h2, 0.3, 0.7, 0.4), (h4, 

0.9, 0.6, 0.8)}. 

Then (𝐹, 𝐸) is a neutrosophic soft set (NSS) over X. 

The most of the terminologies regarding Neutrosophic soft set can be found in [26]. Thus it is our 

request to follow the paper [26] thoroughly for terminologies, operations etc of NS set. Several 

authors have defined Similarity measure between two fuzzy sets. Prof. Chen have given the 

following definition of Similarity measure based on a matching function S. 

Definition 6 [12] Suppose 𝐴 and 𝐵 are two fuzzy sets with membership functions µ𝐴 and µ𝐵  respectively. 

Then the similarity measure between A and B is denoted by 𝑆(𝐴, 𝐵) and 
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𝑆(𝐴, 𝐵) =
𝐴.⃗⃗  ⃗  𝐵⃗ 

𝐴2 ⃗⃗ ⃗⃗  ⃗  ∨ 𝐵2⃗⃗ ⃗⃗  
 

where 
→−
𝐴 =  (µ𝐴(𝑥1), µ𝐴(𝑥2), , . . . , µ𝐴(𝑥𝑛) ) and 

→−
B = (µ𝐵(𝑥1), µ𝐵(𝑥2), . . , µ𝐵(𝑥𝑛) ). 

Prof P. Majumdar have defined similarity measure for two soft sets in his paper [27]. For details on 

similarity measures on two Soft sets, one can follow [27]. 

3. Similarity measure of two NS sets  

Consider the NS set (𝐹, 𝐸) over the set. Now we will express the NS set (𝐹, 𝐸) as a NS soft matrix 

𝑀 as follows: 

1 2 3 4

1

2

3

4

* ( ) ( ) ( ) ( )

(0.4,0.7,0.3) (0.6,0.7,0.8) (0,0,0) (0.4,0.1,0.4)

(0.2,0.3,0.6) (0.5,0.5,0.1) (0.3,0.3,0.4) (0.3,0.7,0.4)

(0.4,0.4,0.2) (0.2,0.3,0.6) (0.5,0.4,0.8) (0,0,0)

(0.6,0.5,0.4) (0,0,0) (0.8,

F e F e F e F e

h

hM

h

h



0.7,0.8) (0.9,0.6,0.8)

 
 
 
 
 
 
 
 

 

Then with the above interpretation the NS set (𝐹, 𝐸) is represented by the matrix 𝑀 and we write 

(𝐹, 𝐸) = M. Clearly, the complement of (𝐹, 𝐸), i.e. (𝐹, 𝐸)C will be represented by another matrix M C 

where 

1 2 3 4

1

2

3

4

* ( ) ( ) ( ) ( )

(0.3,0.7,0.4) (0.8,0.7,0.6) (0,0,0) (0.4,0.1,0.4)

(0.6,0.3,0.2) (0.1,0.5,0.5) (0.4,0.3,0.3) (0.4,0.7,0.3)

(0.2,0.4,0.4) (0.6,0.3,0.2) (0.8,0.4,0.5) (0,0,0)

(0.4,0.5,0.6) (0,0,0) (0.8

C

F e F e F e F e

h

hM

h

h



,0.7,0.8) (0.8,0.6,0.9)

 
 
 
 
 
 
 
 

 

Hence for any given matrix representation M, we can retrieve the NS set (F, E) and also vice versa in 

an obvious way. Henceforth, we will denote each column of membership matrix by the vector 𝐹(𝑒𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

or simply by 𝐹(𝑒𝑖)  

i.e. here  𝐹(𝑒1) = {(0.3, 0.7, 0.4), (0.6, 0.3, 0.2), (0.2, 0.4, 0.4), (0.4, 0.5, 0.6)} in 𝑀. Now we will define a  

similarity measure between two NS sets (𝐹1, 𝐸1) and (𝐹2, 𝐸2) over U.  We try to formulate with the 

help of a matching function S. 

 

Definition 7 The similarity between NS sets (𝐹1, 𝐸1) and (𝐹2, 𝐸2) is defined by 

𝑆(𝐹1, 𝐹2) =
∑ 𝐹1(𝑒𝑖).⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝐹2(𝑒𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑖

∑ [𝐹1(𝑒𝑖) 
2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ∨ 𝐹2(𝑒𝑖)

2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 ]

 

provided, 

(i) 𝐸1 = 𝐸2 

(ii) ∑ 𝐹1(𝑒𝑖).⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝐹2(𝑒𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖 = ∑ (𝑡𝐹1(𝑒𝑖)

. 𝑡𝐹2(𝑒𝑖)
+ 𝑖𝐹1(𝑒𝑖)

. 𝑖𝐹2(𝑒𝑖)
+ 𝑓𝐹1(𝑒𝑖)

. 𝑓𝐹2(𝑒𝑖) 
)𝑖  

(iii) ∑ [𝐹1(𝑒𝑖) 
2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ∨ 𝐹2(𝑒𝑖)

2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 ] = ∑ (𝒕𝐹1(𝑒𝑖) 

2 ∨ 𝑡𝐹2(𝑒𝑖) + 𝑖𝐹1(𝑒𝑖) 
2 ∨ 𝑖𝐹2(𝑒𝑖) 

2 + 𝑓𝐹1(𝑒𝑖) 
2 ∨𝑖

𝑓𝐹2(𝑒𝑖) 
2  ) 

If 𝐸1 ≠ 𝐸2 , 𝐸 = 𝐸1 ∩ 𝐸2 ≠ ∅, then we will consider 
−
𝐹1(𝑒1) = (0, 0, 0) for 𝑒1∈ 𝐸1\E and 𝐹2(𝑒2) = (0, 
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0, 0) for 𝑒2∈ 𝐸2\E.  Then the similarity measure 𝑆(𝐹1, 𝐹2) is obtained from Definition 7. 

Remark 8 If 𝐸1 ∩ 𝐸2=∅, then we have 𝑆(𝐹1 , 𝐹2) = 0. 

The following lemmas are quite obvious: 

Lemma 9 Suppose (𝐹1, 𝐸1) and (𝐹2, 𝐸2) be two NS sets over the same finite universe. Then we have the 

following: 

(𝑖) 𝑆 (𝐹1, 𝐹2)  =  𝑆 (𝐹2, 𝐹1)  (𝑖𝑖) 0 ≤  𝑆 (𝐹1, 𝐹2)  ≤  1  (𝑖𝑖𝑖) 𝑆 (𝐹1, 𝐹1)  =  1 

Lemma 10 Suppose (𝐹1, 𝐸), (𝐹2, 𝐸), (𝐹3, 𝐸) be three NS sets such that (𝐹1, 𝐸)  ⊆ (𝐹2, 𝐸)  ⊆ (𝐹3, 𝐸) then,  

𝑆(𝐹1, 𝐹3)  ≤  𝑆(𝐹2, 𝐹3). 

Example 11 Consider another NS set (𝐺, 𝐸) over the same universe 𝑈, where 𝐸 =  {𝑒1, 𝑒2, 𝑒3, 𝑒4} whose NS 

matrix representation 𝑁 is as following: 

1 2 3 4

1

2

3

4

* ( ) ( ) ( ) ( )

(0.3,0.7,0.3) (0.6,0.1,0.8) (0.5,0.1,0.5) (0.4,0.5,0.4)

(0.4,0.4,0.9) (0,0,0) (0.3,0.3,0.4) (0.3,0.7,0.4)

(0.2,0.6,0.2) (0.2,0.6,0.6) (0,0,0) (0.4,0.2,0.8)

(0.6,0.5,0.4) (0.3,0.9,0.5

F e F e F e F e

h

hN

h

h



) (0.8,0.7,0.8) (0.3,0.7,0.4)

 
 
 
 
 
 
 
 

 

Then we have 𝑆(𝐹, 𝐺)  =  0.22147. 

4. Weighted Similarity measure between two NS sets  

Definition 12 Suppose 𝑈 =  {𝑢1, 𝑢2, . . . , 𝑢𝑛} be the universe and 𝑤𝑖  be the weight of 𝑢𝑖 and 𝑤𝑖  ∈  [0, 1], 

but not all zero, 1 ≤  𝑖 ≤  𝑛. Suppose (𝐹1, 𝐸) and (𝐹2, 𝐸)be two NS sets over 𝑈. We define their weighted 

similarity as follows 

𝑊(𝐹1, 𝐹2) =
∑  𝑤𝑖    𝐹1(𝑒𝑖).⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝐹2(𝑒𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑖

∑  𝑤𝑖   [𝐹1(𝑒𝑖) 
2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ∨ 𝐹2(𝑒𝑖)

2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖

 

provided,  

(i) 𝐸1 = 𝐸2 

(ii) ∑ 𝐹1(𝑒𝑖).⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝐹2(𝑒𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 = ∑ (𝑡𝐹1(𝑒𝑖). 𝑡𝐹2(𝑒𝑖) + 𝑖𝐹1(𝑒𝑖). 𝑖𝐹2(𝑒𝑖) + 𝑓𝐹1(𝑒𝑖). 𝑓𝐹2(𝑒𝑖) )𝑖  

(iii) ∑ [𝐹1(𝑒𝑖) 
2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ∨ 𝐹2(𝑒𝑖)

2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 ] = ∑ (𝒕𝐹1(𝑒𝑖) 

2 ∨ 𝑡𝐹2(𝑒𝑖) + 𝑖𝐹1(𝑒𝑖) 
2 ∨ 𝑖𝐹2(𝑒𝑖) 

2 + 𝑓𝐹1(𝑒𝑖) 
2 ∨𝑖

𝑓𝐹2(𝑒𝑖) 
2  ) 

Example 13 Consider the two NS sets (𝐹, 𝐸) and (𝐺, 𝐸) in Example 11. We assign weights to the 

elements {𝑢i, 𝑖 =  1, . . ., 4} of 𝑋 i.e.  

𝑤(𝑢1)  =  0.3, 𝑤(𝑢2)  =  0.1, 𝑤(𝑢3)  =  0.4, 𝑤(𝑢4)  =  0.7. 

Then we have 𝑊 (𝐹, 𝐺)  =  0.13864. 

 

Definition 14 Consider the set of all NS sets 𝑁1(𝑈 ) over the set 𝑈. Suppose (𝐹1, 𝐸), (𝐹2, 𝐸)  ∈  𝑁1(𝑈 ). If  

𝑆(𝐹1, 𝐹2)  ≥  𝛼, 𝛼 ∈  (0, 1), then the two NS sets (𝐹1, 𝐸) and (𝐹2, 𝐸) are said to be 𝛼-similar and we 

denote the similarity relation between two aforesaid sets as (𝐹1, 𝐸)  ≅∝
 
(𝐹2, 𝐸). 
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It can be easily seen that similarity is an equivalence relation. 

Lemma 15 ≅∝ is a reflexive as well as symmetric relation but not an equivalence relation. 

From Lemma 9, we can easily see that ≅∝ is a reflexive as well as symmetric relation. To see 

that ≅∝ is not a transitive relation, we consider the following example: 

1 2 3 4

1

2

3

4

* ( ) ( ) ( ) ( )

(0.3,0.7,0.4) (0.8,0.7,0.8) (0.1,0.1,0.2) (0.6,0.2,0.8)

(0,0,0) (0,0,0) (0.5,0.6,0.1) (0,0,0)

(0.4,0.5,0.2) (0.4,0.1,0.2) (0,0,0) (0.4,0.2,0.8)

(0.8,0.4,0.8) (0.6,0.3,0.1) (0.5,0.6,0.

F e F e F e F e

h

hN

h

h



5) (0.1,0.8,0.8)

 
 
 
 
 
 
 
 

 

Example 16 Consider a NS set (𝐻, 𝐸) over the same universe, where 𝐸 =  {𝑒1, 𝑒2, 𝑒3, 𝑒4} who’s NS matrix 

representation N is as above. Then 𝑆(𝐺, 𝐹 )  =  0.22147, 𝑆(𝐹, 𝐻)  =  0.88609, 𝑆(𝐺, 𝐻)  =  0.54576. 

Definition 17 Suppose (𝐹1, 𝐸1) and (𝐹2, 𝐸2) be two NS sets over the set  . Then the two NS sets (𝐹1, 𝐸1)  

and (𝐹2, 𝐸2) are said to be significantly similar if 

𝑆(𝐹1, 𝐹2) > 1
2⁄  

Example 18 𝑆(𝐹, 𝐻) is significantly similar whereas 𝑆(𝐹, 𝐺) is not similar. 

 

5. Two sets and their measuring distances. 

Throughout this section, we will consider 𝑼  to be finite, namely 𝑼 =  {𝒉 1 , 𝒉 2 , . . . , 𝒉n}  and 

universal parameter set 𝑬 =  {𝒆1, 𝒆2, . . . , 𝒆m}. Now for any NS set (𝑭, 𝑨)є𝑵(𝑼), 𝑨 is a subset of 

𝑬. Consider an extension of the NS set (𝑭, 𝑨) to the NS set (𝑭̂ , 𝑬) where 𝑭 ̂(ei) {𝒉j }= φ where 

𝒆i ∉ 𝑨. Now onwards we will take the parameter subset of any NS set over 𝑵 (𝑼 ) to be the 

same as the parameter set 𝑬 without loss of generality. 

Definition 19: For two NS sets (𝐹̂, 𝐸) and (𝐺̂, 𝐸), 

(i) The mean Hamming distance DS (F, G)  between two NS sets is defined as follows 

𝐷𝑆 
(𝐹, 𝐺) =

1

𝑚
{∑ ∑ |𝐹(𝑒𝑖)(𝑥𝑗) − 𝐺(𝑒𝑖)(𝑥𝑗)|

𝑛
𝑗=1

𝑚
𝑖=1 } 

=
1

𝑚
{∑∑ |𝑡𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑡𝐺(𝑒𝑖)(𝑥𝑗)
| + |𝑖𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑖𝐺(𝑒𝑖)(𝑥𝑗)
| + |𝑓𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑓𝐺(𝑒𝑖)(𝑥𝑗)
|

𝑛

𝑗=1

𝑚

𝑖=1

} 

(ii) The normalized Hamming distance LS(F, G) is defined as follows: 

       𝐿𝑆
 
(𝐹, 𝐺) =

1

𝑚𝑛
{∑ ∑ |𝐹(𝑒𝑖)(𝑥𝑗) − 𝐺(𝑒𝑖)(𝑥𝑗)|

𝑛
𝑗=1

𝑚
𝑖=1 } 

=
1

𝑚𝑛
{∑∑ |𝑡𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑡𝐺(𝑒𝑖)(𝑥𝑗)
| + |𝑖𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑖𝐺(𝑒𝑖)(𝑥𝑗)
| + |𝑓𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑓𝐺(𝑒𝑖)(𝑥𝑗)
|

𝑛

𝑗=1

𝑚

𝑖=1

} 

(iii) The Euclidean distance ES (F, G) is defined as follows: 

𝐸𝑆 
(𝐹, 𝐺) =√

1

𝑚
{∑ ∑ |𝐹(𝑒𝑖)(𝑥𝑗) − 𝐺(𝑒𝑖)(𝑥𝑗)|

2𝑛
𝑗=1

𝑚
𝑖=1 } 

= √
1

𝑚
{∑ ∑ |𝑡𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑡𝐺(𝑒𝑖)(𝑥𝑗)
|
2

+ |𝑖𝐹(𝑒𝑖)(𝑥𝑗)
− 𝑖𝐺(𝑒𝑖)(𝑥𝑗)

|
2

+ |𝑓𝐹(𝑒𝑖)(𝑥𝑗)
− 𝑓𝐺(𝑒𝑖)(𝑥𝑗)

|
2

𝑛
𝑗=1

𝑚
𝑖=1 }. 
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(iv) The normalized Euclidean distance QS (F, G) is defined as follows: 

𝑄𝑆 
(𝐹, 𝐺) =√

1

𝑚𝑛
{∑ ∑ |𝐹(𝑒𝑖)(𝑥𝑗) − 𝐺(𝑒𝑖)(𝑥𝑗)|

2𝑛
𝑗=1

𝑚
𝑖=1 } 

= √
1

𝑚𝑛
{∑∑ |𝑡𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑡𝐺(𝑒𝑖)(𝑥𝑗)
|
2

+ |𝑖𝐹(𝑒𝑖)(𝑥𝑗)
− 𝑖𝐺(𝑒𝑖)(𝑥𝑗)

|
2

+ |𝑓𝐹(𝑒𝑖)(𝑥𝑗)
− 𝑓𝐺(𝑒𝑖)(𝑥𝑗)

|
2𝑛

𝑗=1

𝑚

𝑖=1

} 

Example 20 Consider the two NS sets (F, E) and (G, E) in Example 11. Then we have the following: 

(i) DS (G, H) = 2.8. 

(ii) LS (F, G) = 1.67. 

(iii) ES (F, G) = 1.09. 

(iii) QS (F, G) = 0.544. 

 

The following result is quite obvious. 

Lemma 21 For any two NS sets (F, E) and (G, E) of N (U), the following inequalities hold. 

(i) DS (F, G) ≤ n. 

(ii) LS (F, G) ≤ 1. 

(iii) ES (F, G) ≤√n. 

(iv) QS (F, G) ≤ 1. 

The following theorem can also be easily proved. 

Theorem 22 The functions DS, LS, ES, QS: N (U)           𝑅+ given by Definition 19 respectively 

are metrics, where R+ is the set of all nonnegative numbers. 

6. Distance based similarity measure of NS sets 

We have defined several types of distances between a pair of NS sets (F, E) and (G, E) over the set N (U) 

in the previous section. Now using these distances we can also define similarity measures for NS sets. In the 

following, we now define a similarity measure based on Hamming Distance. 

𝑆′(𝐹, 𝐺) =
1

1 + 𝐷𝑆(𝐹, 𝐺)
 

Also we can define another similarity measure as: 𝑆′(𝐹, 𝐺) = 𝑒−𝛼𝐷𝑆(𝐹,𝐺), where α is a positive real 

number (parameter) called the steepness measure. Similarly using Euclidian distance, similarity 

measure can be defined as follows: 

𝑆′′(𝐹, 𝐺) =
1

1 + 𝐸𝑆(𝐹, 𝐺)
 

Also we can define another similarity measure as: 𝑆′′(𝐹, 𝐺) = 𝑒−𝛼𝐸𝑆(𝐹,𝐺), where α is a positive real 

number (parameter) called the steepness measure. 
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Lemma 23 For a pair of NS sets (𝐹, 𝐸) and (𝐺, 𝐸) over the set 𝑁 (𝑈 ), the following holds: 

(𝑖)   0 ≤  𝑆’ (𝐹, 𝐺)  ≤  1. 

(ii) 𝑆’ (𝐹, 𝐺)  =  𝑆’ (𝐺, 𝐹). 

(iii) 𝑆’(𝐹, 𝐺)  =  1 ⇐⇒ (𝐹,𝐺)  =  (𝐺, 𝐹 ). 

The proof of the above lemma easily follows from definition. 

7. Comparison between 𝑺 (𝑭, 𝑮) and 𝑺’ (𝑭, 𝑮): 

Suppose 𝑆𝑀,𝑁  denote the similarity measure between two NS sets (𝐹, 𝐸)  and (𝐺, 𝐸)  whose 

membership matrices are 𝑀  and  𝑁 .  Now we compare the properties of the two measures of 

similarity of NS sets discussed here. Although most of the properties are common between them 

but some of these are different. Here we have the following: 

(i) 𝐶𝑜𝑚𝑚𝑜𝑛 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠: 𝑆𝑀,𝑁 = 𝑆𝑁,𝑀, 0 ≤  𝑆𝑀,𝑁 ≤  1, 𝑆𝑀,𝑁 =  1 𝑖𝑓 𝑀 =  𝑁. 

(ii) 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦: 𝑆𝑀,𝑁 =  1 =⇒  𝑀 =  𝑁. 

8. A real life application 

The process of measuring similarity between two Neutrosophic soft sets can be applied to solve real 

life situations. A particular disease occurs to a patient or not can be easily determined by us using 

similarity measure. To see, consider the following problem: India is a polio-effected country in the 

last century. After taking several measurement by Govt of India, WHO declares India as a Polio-Free 

Nation from 2015. It is seen in the past that several situations like high population, literacy factor, 

socio-economic background, Govt initiative etc. are quite responsible for polio disease. Suppose 𝑈 

be the set of only three elements h1, h2, h3 where h1, h2, h3 denotes symptoms of the high growth of 

polio disease, average growth of polio disease, and low growth of polio disease. 

We have tried to formulate the problem in terms of NS sets. .  Here we list the set of parameters E 

is the factors which are responsible for polio disease. Suppose 𝐸= {𝑒1, 𝑒2, 𝑒3, 𝑒4 } where 𝑒1, 𝑒2, 𝑒3, 𝑒4  

denotes high population, literacy factor, socio-economic background, Govt initiative of a 

Murshidabad District, West Bengal, India. Now consider a NS matrix 𝑃 of a neutrosophic set (𝐹, 𝐸) 

of a polio effected patient 𝑋1based on the data available from a Govt. report [33] as follows: 

1 2 3 4

1

2

3

* ( ) ( ) ( ) ( )

(0.7,0.2,0.3) (0.6,0.1,0.3) (0.8,0.3,0.5) (0.7,0.2,0.4)

(0.6,0.3,0.2) (0.1,0.5,0.5) (0.4,0.3,0.3) (0.4,0.7,0.3)

(0.2,0.6,0.7) (0.2,0.4,0.4) (0,1,0) (0.3,0.2,0.7)

F e F e F e F e

h
P

h

h

 
 
 
 
 
 

 

Here the entry 𝐹 (e1)(h1) in the matrix 𝑃 denotes the positive impact, the uncertainties impact, and 

negative impact of high population to positive growth of polio symptoms respectively. Consider two 

persons Rajibul and Rupam, both live in Bhagabangola village of Murshidabad District but belongs 

to different category. Both of them have polio disease symptoms with some positive, average, low 

growth rate. Let we denote both Rajibul and Rupam’s health condition with two NS set (𝐺, 𝐸) and 

(𝐻, 𝐸) over U whose NS matrices 𝑄, 𝑆 respectively are given below: 
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1 2 3 4

1

2

3

* ( ) ( ) ( ) ( )

(0.8,0.3,0.5) (0.7,0.4,0.3) (0.8,0.6,0.7) (1,0,0)

(0.2,0.5,0.6) (0.1,0.1,0.8) (0.4,0.1,0.5) (0.3,0.3,0.4)

(0,0,0) (0.1,0.3,0.3) (1,1,0) (0,0,0)

F e F e F e F e

h
Q

h

h

 
 
 
 
 
 

 

 

1 2 3 4

1

2

3

* ( ) ( ) ( ) ( )

(0.8,0.4,0.8) (0.6,0.3,0.1) (0.5,0.6,0.5) (0.7,0.2,0.4)

(0,0,0) (0,1,1) (0.3,0.1,0.1) (0.2,0.5,0.4)

(0.2,0.6,0.2) (0.2,0.6,0.6) (0,0,0) (0.4,0.2,0.8)

F e F e F e F e

h
S

h

h

 
 
 
 
 
 

 

After calculating similarity measure, we have 𝑆(𝐹, 𝐺)  =  0.64, 𝑆(𝐹, 𝐻)  =  0.69. From this result we 

can conclude that Rajibul and Rupam both have the chances to be effected by polio disease. Both of 

their symptoms are significantly similar to a natural polio effected person. Beside this, Rupam’s 

condition is more significantly similar than Rajibul condition since𝑆(𝐹, 𝐺)  =  0.64 <  𝑆(𝐹, 𝐻)  =

 0.69. 

9. Conclusion 

To deal with uncertain real life situations, Molodtstov gave the concept of soft set theory in his paper 

[32]. Later on Prof P.K. Maji introduced NSS theory and have shown the properties and application 

of NSS ([26]). In this paper we have defined similarity measure properties of two NS sets and studied 

some of its important properties and applied it in a decision making problem. In future, we will 

study some another applications of similarity measures of two NS sets and will try to solve the 

uncertainty using NS similarity measure technique. One may try to solve many realistic health 

diagnosis problem using the similarity measure technique between NS sets. 
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