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Abstract: To overcome the limitations of both the conversion method based on the standard 

deviation and the decision flexibility in existing neutrosophic multi-valued decision-making models, 

this study aims to propose various new techniques including a conversion method, Aczel-Alsina 

aggregation operations, and a multi-attribute group decision making (MAGDM) model in the case 

of neutrosophic multi-valued sets (MVNSs). First, we propose a conversion method to convert 

neutrosophic multi-valued elements (MVNEs) into neutrosophic entropy elements (NEEs) based on 

the mean and normalized Shannon/probability entropy of truth, falsity, and indeterminacy 

sequences. Second, the score and accuracy functions of NEEs are defined for the ranking of NEEs. 

Third, the Aczel-Alsina t-norm and t-conorm operations of NEEs and the NEE Aczel-Alsina 

weighted arithmetic averaging (NEEAAWAA) and NEE Aczel-Alsina weighted geometric 

averaging (NEEAAWGA) operators are presented to reach the advantage of flexible operations by 

an adjustable parameter. Fourth, we propose a MAGDM model in light of the NEEAAWAA and 

NEEAAWGA operators and the score and accuracy functions in the case of NMVSs to solve flexible 

MAGDM problems with an adjustable parameter subject to decision makers’ preference. Finally, an 

illustrative example is given to verify the impact of different parameter values on the decision 

results of the proposed MAGDM model. Compared with existing techniques, the new techniques 

not only overcome the defects of existing techniques but also be broader and more versatile than 

existing techniques when dealing with MAGDM problems in the case of NMVSs. 

Keywords: neutrosophic multi-valued set; neutrosophic entropy element; Aczel-Alsina aggregation 

operator; group decision making 

 

 

1. Introduction 

In indeterminate and inconsistent situations, multi-valued neutrosophic sets (MVNSs) or 

neutrosophic hesitant fuzzy sets (NHFSs) can be depicted by the multi-valued sequences of the truth, 

falsity, and indeterminacy membership degrees, which were the extension of neutrosophic sets [1]. 

Then, relation operations, aggregation algorithms, and measure methods of MVNSs/NHFSs are 

critical research topics and play important roles in the fuzzy decision-making issues. Therefore, 

MVNSs/NHFSs have been used in medical diagnosis, decision making, engineering experiments, 

measurements, etc. Under the environment of NHFSs, some aggregation operators of single and 
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interval valued NHFSs were presented and utilized in multi-attribute decision making (MADM) 

problems [2-4]. Then, MADM models based on the extended grey relation analysis [5] and the TOPSIS 

method [6] were introduced in the setting of NHFSs. Under the environment of MVNSs, some 

aggregation operators of MVNSs were proposed for multi-valued neutrosophic MADM problems [7, 

8]. The Dice similarity measure of single-valued neutrosophic multisets (SVNMs) was introduced 

and used for medical diagnosis [9]. Furthermore, the correlation coefficient of dynamic SVNMs was 

presented for MADM problems [10]. The TODIM methods were introduced for MADM problems 

with MVNSs [11, 12]. However, there are the operational difficulty and complexity between different 

sequence lengths/cardinalities in multi-valued/hesitant sequences. To solve these issues, Fan et al. 

[13] introduced a conversion method from SVNMs to single-valued neutrosophic sets (SVNSs) by the 

average aggregation values of truth, indeterminacy, and falsity sequences, and then proposed the 

cosine similarity measure of SVNSs for MADM problems in the case of SVNMs. But this conversion 

method in [13] may result in some loss/distortion of information. To solve this problem, Ye et al. [14] 

further proposed a reasonable conversion method of neutrosophic multi-valued sets (NMVSs) 

(including MVNSs, NHFSs, and SVNMs) in light of the average values and consistency degrees 

(complement of standard deviation) of truth, indeterminacy, and falsity sequences to realize the 

reasonable information expression and operations of consistency neutrosophic sets/elements 

(CNS/CNEs), and then developed a multi-attribute group decision making (MAGDM) method using 

correlation coefficients of CNSs in the case of NMVSs. Then, the conversion method based on the 

average value and standard deviation [14] is only suitable for normal distribution, which indicates 

its limitation. Moreover, the existing MAGDM method based on two correlation coefficients of CNSs 

[14] lacks decision flexibility in the case of NMVSs. Therefore, it is difficult to satisfy the preference 

of decision makers and/or application needs. Under a probabilistic MVNS environment, Liu and 

Cheng [15] proposed a three-phase MAGDM method based on the multi-attributive border 

approximation area comparison (MABAC) method. Since the probability method needs a large 

number of evaluation values to reasonably give their probabilistic values in MAGDM problems, it is 

difficult to apply it in actual MAGDM problems. According to the theory of probability and statistics, 

it is seen that the probability value yielded from a few of the evaluation values (small-scale sample 

data) is unreasonable and may cause the probability distortion. Moreover, the three-phase MAGDM 

method also lacks its flexible decision-making feature in the setting of probabilistic MVNSs. 

Recently, many researchers have proposed various Aczel-Alsina aggregation operators and their 

decision-making approaches in various fuzzy circumstances because the operations based on the 

Aczel-Alsina t-norm and t-conorm [16, 17] reflect the advantage of changeability by an adjustable 

parameter. For example, Fu et al. [18] proposed the Aczel-Alsina aggregation operators of entropy 

fuzzy elements and their MAGDM model for renal cancer surgery options in the case of fuzzy multi-

sets. Yong et al. [19] introduced the Aczel-Alsina aggregation operators of simplified neutrosophic 

elements and their MADM approach. Senapati [20] proposed the Aczel-Alsina average aggregation 

operators of fuzzy picture elements and their MADM approach. Hussain et al. [21] presented the 

Aczel-Alsina aggregation operators of T-spherical fuzzy elements and their decision-making 

problems. Then, Senapati et al. [22-24] developed the Aczel-Alsina aggregation operators of (interval‐

valued) intuitionistic fuzzy elements and their MADM approach. Senapati et al. [25] introduced 

hesitant fuzzy aggregation operators and applied them to the assessment of cyclone disasters. 

However, these Aczel-Alsina aggregation operators cannot deal with the aggregation operations and 

MAGDM issues of NMVSs. 

To solve the aforementioned limitations/deflects of the existing methods in the case of NMVSs, 

the purposes of this research are: (1) to propose a conversion method from a neutrosophic multi-

valued element (NMVE) to a neutrosophic entropy element (NEE) in light of the average values and 

Shannon/probability entropy of truth, falsity, and indeterminacy sequences, (2) to define score and 

accuracy functions of NEE and ranking laws of NEEs, (3) to propose the Aczel-Alsina t-norm and t-

conorm operations of NEEs and the NEE Aczel-Alsina weighted arithmetic averaging 

(NEEAAWAA) and NEE Aczel-Alsina weighted geometric averaging (NEEAAWGA) operators, and 



Neutrosophic Sets and Systems, Vol. 57, 2023     3  

 

 

Weiming Li, Jun Ye, Ezgi Türkarslan, MAGDM Model Using the Aczel-Alsina Aggregation Operators of Neutrosophic 
Entropy Elements in the Case of Neutrosophic Multi-Valued Sets 

(4) to develop a MAGDM method by the proposed NEEAAWAA and NEEAAWGA operators and 

score and accuracy functions to be effectively used for flexible decision-making issues with the 

information of NMVSs.  

In order to verify the impact of different parameter values on the decision results of the proposed 

MAGDM model, an illustrative example indicates the efficiency and rationality of the proposed 

MAGDM model. Then, comparative analysis shows that our new techniques not only overcome the 

defects of the existing techniques, but also are broader and more versatile than the existing techniques 

when dealing with MAGDM problems in the setting of NMVSs.  

However, the conversion method, the NEEAAWAA and NEEAAWGA operators, and the 

MAGDM model proposed in this research show new contributions and outstanding advantages of 

these new techniques. 

The remainder of this paper contains the following sections. Section 2 proposes a conversion 

method from NMVE to NEE in terms of the mean and Shannon entropy of the truth, indeterminacy 

and falsity sequences in NMVEs, and then defines score and accuracy functions of NEE, ranking laws 

of NEEs, and the Aczel-Alsina t-norm and t-conorm operations of NEEs. Section 3 presents the 

NEEAAWAA and NEEAAWGA operators and their properties. In Section 4, a MAGDM model is 

established by the NEEAAWAA and NEEAAWGA operators and the score and accuracy functions 

of NEEs in the NMVS setting. Section 5 introduces an illustrative example and comparison with 

existing techniques to show the efficiency and rationality of the new techniques. The last section 

contains conclusions and further work. 

2. NEEs Based on the Mean and Normalized Shannon Entropy in the Case of NMVSs 

In the setting of NMVSs, this section first presents a NEE concept by a conversion method based 

on the Shannon entropy and average values of truth, falsity and indeterminacy sequences, and then 

defines the score and accuracy functions and ranking laws of NEEs and the Aczel-Alsina t-norm and 

t-conorm operations of NEEs. 

Definition 1 [14]. Set Y = {yk| k = 1, 2, …, m} as a finite universe set. A NMVS M on Y is defined as 

 , ( ), ( ), ( ) |k T k I k F k kM y M y M y M y y Y  , 

where MT(yk), MI(yk) and MF(yk) are the truth, indeterminacy, and falsity sequences with the same 

and/or different fuzzy values, which are denoted by 1 2( ) ( ( ), ( ),..., ( ))kr

T k T k T k T kM y y y y   , 

1 2( ) ( ( ), ( ),..., ( ))kr

I k I k I k I kM y y y y    and 
1 2( ) ( ( ), ( ),..., ( ))kr

F k F k F k F kM y y y y    for yk  Y, 

along with the length of their sequence rk and 0 sup ( ) sup ( ) sup ( ) 3T k I k F kM y M y M y     (k 

= 1, 2, …, m). 

For convenience, the kth element , ( ), ( ), ( )k T k I k F ky M y M y M y  in M is denoted as the NMVE 

1 2 1 2 1 2, , ( , ,..., ), ( , ,..., ), ( , ,..., )k k kr r r

k Tk Ik Fk Tk Tk Tk Ik Ik Ik Fk Fk FkMs M M M            in decreasing 

sequences. 

First, the concept of the Shannon/probability entropy [26] is introduced below. 

Set  = {1, 2, …, n} as a probability distribution on a set of random variables. Then, the 

Shannon entropy of the probability distribution  is expressed as 

1

( ) ln( )
n

j j

j

P   


  .                                (1) 

where j  [0, 1] and 
1

1
n

jj



 . 

If all values of j (j = 1, 2, …, n) are the same, then the entropy P() reaches the maximum value, 

which means perfect consistency of j. Generally, there is an approximately linear relationship 

between entropy and standard deviation: the larger the standard deviation, the smaller the entropy. 
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In the following, we present the definition of NEE by a conversion method in light of the 

normalized Shannon entropy and average values of truth, falsity, and indeterminacy sequences in 

NMVE. 

Definition 2. Set 1 2 1 2 1 2, , ( , ,..., ), ( , ,..., ), ( , ,..., )k k kr r r

k Tk Ik Fk Tk Tk Tk Ik Ik Ik Fk Fk FkMs M M M            as the 

kth NMVE. Then, its NEE is represented as follows: 

( , ),( , ),( , )Ek Tk Tk Ik Ik Fk FkN e e e   , 

where Tk, Ik, Fk  [0, 1] are the average values of the truth, indeterminacy, and falsity sequences 

and eTk, eIk, eFk  [0, 1] are the normalized entropy values of the truth, indeterminacy, and falsity 

sequences, which are yielded by the following formulae: 

(1) 
1

1 kr
j

Tk Tk

jkr
 



   and 
1

1 1

1
ln

ln

k

k k

r j j

Tk Tk
Tk r r

j j jk
Tk Tk

j j

e
r

 

 

 

 
 
  
 
 
 


 

; 

(2) 
1

1 kr
j

Ik Ik

jkr
 



   and 
1

1 1

1
ln

ln

k

k k

r j j

Ik Ik
Ik r r

j j jk
Ik Ik

j j

e
r

 

 

 

 
 
  
 
 
 


 

; 

(3) 
1

1 kr
j

Fk Fk

jkr
 



   and 
1

1 1

1
ln

ln

k

k k

r j j

Fk Fk
Fk r r

j j jk
Fk Fk

j j

e
r

 

 

 

 
 
  
 
 
 


 

. 

Remark 1. Since the entropy of rk components cannot exceed lnrk (rk > 1), the defined normalized 

Shannon entropy measures satisfy eTk, eIk, eFk  [0, 1], and also there exist the following results: 

1

1

1
k

k

r j

Tk

r
j j

Tk

j










, 
1

1

1
k

k

r j

Ik

r
j j

Ik

j










, 
1

1

1
k

k

r j

Fk

r
j j

Fk

j










, 

which can satisfy the Shannon entropy conditions. When all components in a multi-valued sequence 

are the same value, the normalized Shannon entropy is equal to one (the maximum value). 

Example 1. Let Ms = <(0.8, 0.7, 0.5), (0.3, 0.2, 0.1), (0.2, 0.2, 0.2)> be NMVE. Using the formulae (1)-(3) 

in Definition 2, we obtain the following NEE: 

NE = <(0.6667, 0.9835), (0.2, 0.9206), (0.2, 1)>. 

Then, we can give the definition of some relations of NEEs below. 

Definition 3. Set NE1 = <(T1, eT1), (I1, eI1), (F1, eF1)> and NE2 = <(T2, eT2), (I2, eI2), (F2, eF2)> as two NEEs. 

Then, their relations are defined as follows: 

(1) NE1  NE2  T1  T2, eT1  eT2, I2  I1, eI2  eI1, F2  F1, and eF2  eF1; 

(2) NE1 = NE2  NE1  NE2 and NE2  NE1; 

(3) 
1 2 1 2 1 2 1 2 1 2 1 2 1 2( , ),( , ),( , )E E T T T T I I I I F F F FN N e e e e e e            ; 

(4) 
1 2 1 2 1 2 1 2 1 2 1 2 1 2( , ),( , ),( , )E E T T T T I I I I F F F FN N e e e e e e            ; 
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(5)      1 1 1 1 1 1 1( ) , , 1 ,1 , ,c

E F F I I T TN e e e      (Complement of NE1). 

To sort NEEs, we define the score and accuracy functions and ranking laws of NEEs below. 

Definition 4. Let NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> for k = 1, 2 be two NEEs. Then, the score and 

accuracy functions of NEEs are defined as follows: 

( ) (2 ) / 3Ek Tk Tk Ik Ik Fk FkR N e e e          for ( ) [0,1]EkR N  ,        (2) 

( )Ek Tk Tk Fk FkQ N e e      for ( ) [ 1,1]EkQ N   .                 (3) 

Thus, the two NEEs NE1 and NE2 are ranked by the following laws: 

(1) If R(NE1) > R(NE2), then NE1 > NE2; 

(2) If R(NE1) = R(NE2) and Q(NE1) > Q(NE2), then NE1 > NE2; 

(3) If R(NE1) = R(NE2) and Q(NE1) = Q(NE2), then NE1 = NE2 

Example 2. There are two NEEs NE1 = <(0.6333, 0.6376), (0.1333, 0.6534), (0.3, 0.6783)> and NE2 = 

<(0.4667, 0.6464), (0.2, 0.6338), (0.2333, 0.7346)>. By Eq. (2), the score values and ranking of the two 

NEEs are given as follows: 

R(NE1) = (2+0.63330.6376  0.13330.6534  0.30.6783)/3 = 0.7044, 

R(NE2) = (2+0.46670.6464  0.20.6338  0.23330.7346)/3 = 0.6678. 

Since R(NE1) > R(NE2), the ranking of both is NE1 > NE2. 

Regarding the t-norm and t-conorm operations, Aczel and Alsina [16] and Alsina et al. [17] 

defined the Aczel-Alsina t-norms ( , )G c d : [0, 1]2  [0,1] and the Aczel-Alsina t-conorms 

( , )H c d : [0, 1]2  [0,1] for all c, d  [0, 1] and   0 as follows: 

(a) The Aczel-Alsina t-norms are defined as 

1/(( ln ) ( ln )

( , ), 0

( , ) min( , ),

, otherwise

D

c d

G c d if

G c d c d if

e
  







   

 


  



)

. 

(b) The Aczel-Alsina t-conorms are defined as 

1/(( ln(1 )) ( ln(1 ))

( , ), 0

( , ) max( , ),

1 , otherwise

D

c d

H c d if

H c d c d if

e
  







     

 


  



）

, 

where GD(c, d) and HD(c, d) are the drastic t-norm and the drastic t-conorm, respectively, which are 

denoted as 

, if 1

( , ) , if 1

0, otherwise

D

c d

G c d d c




 



 and 

, if 1

( , ) , if 1

1, otherwise

D

c d

H c d d c




 



. 

Since the operations based on the Aczel-Alsina t-norm and t-conorm [16, 17] reflect the 

advantage of changeability by an adjustable parameter , we can give the definition of the Aczel-

Alsina t-norm and t-conorm operations of NEEs. 

Definition 5. Let NE1 = <(T1, eT1), (I1, eI1), (F1, eF1)> and NE2 = <(T2, eT2), (I2, eI2), (F2, eF2)> be two 

NEEs,   1, and  > 0. Then, their operations are defined below: 
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(1) 

 

 

 

1/ 1/
1 2 1 2

1/ 1/
1 2 1 2

1/ 1/
1 2 1 2

(( ln(1 )) ( ln(1 )) ) (( ln(1 )) ( ln(1 )) )

(( ln ) ( ln ) ) (( ln ) ( ln ) )

1 2

(( ln ) ( ln ) ) (( ln ) ( ln ) )

1 ,1 ,

= , ,

,

T T T T

I I I I

F F F F

e e

e e

E E

e e

e e

N N e e

e e

     

     

     

 

 

 

           

       

       

 

 ; 

(2) 

 

 

1/ 1/
1 2 1 2

1/ 1/
1 2 1 2

1/
1 2 1

(( ln ) ( ln ) ) (( ln ) ( ln ) )

(( ln(1 )) ( ln(1 )) ) (( ln(1 )) ( ln(1 )) )

1 2

(( ln(1 )) ( ln(1 )) ) (( ln(1 )) ( ln(1

, ,

= 1 ,1 ,

1 ,1

T T T T

I I I I

F F F

e e

e e

E E

e e

e e

N N e e

e e

     

     

   

 

 

 

       

           

           

  

  
1/

2 )) )F
 

; 

(3) 
 

   

1/ 1/
1 1

1/ 1/ 1/ 1/
1 1 1 1

( ( ln(1 )) ) ( ( ln(1 )) )

1
( ( ln( )) ) ( ( ln ) ) ( ( ln ) ) ( ( ln ) )

1 ,1 ,
=

, , ,

T T

I I F F

e

E
e e

e e
N

e e e e

   

       

  

     


     

       

 
; 

(4) 

 

 

 

1/ 1/
1 1

1/ 1/
1 1

1/ 1/
1 1

( ( ln ) ) ( ( ln ) )

( ( ln(1 )) ) ( ( ln(1 )) )

1

( ( ln(1 )) ) ( ( ln(1 )) )

, ,

( ) = 1 ,1 ,

1 ,1

T T

I I

F F

e

e

E

e

e e

N e e

e e

   

   

   

  

  

  

   

     

     

 

 

. 

Example 3. Let NE1 = <(0.6333, 0.6376), (0.1333, 0.6534), (0.3, 0.6783> and NE2 = <(0.4667, 0.6464), (0.2, 

0.6338), (0.2333, 0.7346)> be two NEEs,  = 3, and  = 0.6. Using the operations (1)-(4) in Definition 5, 

we obtain the following operational results: 

(1) 

 

 

3 3 1/3 3 3 1/3

3 3 1/3 3 3 1/3

3 3 1/3

(( ln(1 0.6333)) ( ln(1 0.4667)) ) (( ln(1 0.6376)) ( ln(1 0.6464)) )

(( ln 0.1333) ( ln 0.2) ) (( ln 0.6534) ( ln 0.6338) )

1 2

(( ln 0.3) ( ln 0.2333) ) (( ln 0.6783

1 ,1 ,

= , ,

,

E E

e e

N N e e

e e

           

       

     

 



 
3 3 1/3) ( ln 0.7346) )

(0.6603, 0.7260), (0.0991, 0.5735), (0.1845, 0.6411)

 



; 

(2) 

 

 

3 3 1/3 3 3 1/3

3 3 1/3 3 3 1/3

3 3 1/3

(( ln 0.6333) ( ln 0.4667) ) (( ln 0.6376) ( ln 0.6464) )

(( ln(1 0.1333)) ( ln(1 0.2)) ) (( ln(1 0.6534)) ( ln(1 0.6338)) )

1 2

(( ln(1 0.3)) ( ln(1 0.2333)) )

, ,

= 1 ,1 ,

1 ,1

E E

e e

N N e e

e e

       

           

     

  

  
3 3 1/3(( ln(1 0.6783)) ( ln(1 0.7346)) )

(0.4434, 0.5721), (0.2143, 0.7278), (0.3299, 0.7898)

     



; 

(3) 

 

   

3 1/3 3 1/3

3 1/3 3 1/3 3 1/3 3 1/3

(0.6( ln(1 0.6333)) ) (0.6( ln(1 0.6376)) )

1
(0.6( ln 0.1333) ) (0.6( ln 0.6534) ) (0.6( ln 0.3) ) (0.6( ln 0.6783) )

1 ,1 ,
0.6 =

, , ,

(0.5709, 0.5752), (0.1827, 0.6984), (0.3622, 0

E

e e
N

e e e e

     

       

 

 .7208)

; 
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(4) 

 

 

 

3 1/3 3 1/3

3 1/3 3 1/3

3 1/3 3 1/3

(0.6( ln 0.6333) ) (0.6( ln 0.6376) )

0.6 (0.6( ln(1 0.1333)) ) (0.6( ln(1 0.6534)) )

1

(0.6( ln(1 0.3)) ) (0.6( ln(1 0.6783)) )

, ,

( ) = 1 ,1 ,

1 ,1

(0.6803, 0.6841), (0.1137, 0.590

E

e e

N e e

e e

   

     

     

 

 

 9), (0.2598, 0.6158)

. 

3. Aczel-Alsina Aggregation Operators of NEEs 

3.1 NEEAAWAA Operator 

This part proposes the NEEAAWAA operator according to the operations in Definition 5. 

Definition 6. Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs with the weight 

vector of NEk  = (1, 2, …, m) for k  [0, 1] and 
1

1
m

kk



 . Then, the definition of a NEEAAWAA 

operator is given by the following form: 

1 2
1

( , ,..., )
m

E E Em k Ek
k

NEEAAWAA N N N N


  .                   (4) 

Thus, the NEEAAWAA operator has the following theorem. 

Theorem 1. Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs with the weight 

vector of NEk  = (1, 2, …, m) for k  [0, 1] and 
1

1
m

kk



 . Then, the collected value of the 

NEEAAWAA operator is till NEE, which is given by the formula: 

1/ 1/

1 1

1/ 1/

1 1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

1 2
1

( ln

1 ,1 ,

( , ,..., ) , ,

m m

k Tk k Tk

k k

m m

k Ik k Ik

k k

k Fk

e

em

E E Em k Ek
k

e e

NEEAAWAA N N N N e e

e

 

 

 

 

  

  

 



 

 

   
        
   
   

   
      
   
   



 

 
  

 
 
 
 

 
  

  
 
 
 

1/ 1/

1 1

) ( ln )

,

m s

k Fk

k k

e

e

 

 
 

   
    
   
   

 
  

 
 
 

. (5) 

Proof. Theorem 1 is proved by mathematical induction below. 

(1) Let k = 2. According to Definition 5 and Eq. (4), the operational results are given as 
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   

   

   

 
1/ 1/ 1/

1 1 1 1 2 2 2

1/ 1/

1 1 1 1

1/ 1/

1 1 1 1

1 2 1 1 2 2

( ln(1 )) ( ln(1 )) ( ln(1 )) ( ln(1

( ln ) ( ln )

( ln ) ( ln )

( , )

1 ,1 , 1 ,1

, ,

,

T T T T

I I

F F

E E E E

e e

e

e

NEEAAWAA N N N N

e e e e

e e

e e

  
  

 
 

 
 

     

  

  

 

           

   

   

 

 
    

 

 
  

 

 
 
 

 

   

   

1/

2

1/ 1/

2 2 2 2

1/ 1/

2 2 2 2

1/ 1/
2 2

1 1

2

1

))

( ln ) ( ln )

( ln ) ( ln )

( ln(1 )) ( ln(1 ))

( ln )

,

, ,

,

1 ,1 ,

I I

F F

k Tk k Tk

k k

k Ik

k

e

e

e

e e

e e

e e

e




 
 

 
 

 

 



  

  

  

 

 



   

   

   
        
   
   

 
 

 

 
 
 

 
 
 

 
 
 

 
  

 
 
 
 




1/ 1/
2

1

1/ 1/
2 2

1 1

( ln )

( ln ) ( ln )

, , .

,

k Ik

k

k Fk k Fk

k k

e

e

e

e e

 



 

 



  



 

 
   
  

 

   
      
   
   

 
 

 
 
 

 
  

 
 
 

 (6) 

(2) Assume Eq. (5) for k = s exists. Then, there exists the following result: 

1/ 1/

1 1

1/ 1/

1 1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

1 2
1

( ln

1 ,1 ,

( , ,..., ) , ,

s s

k Tk k Tk

k k

s s

k Ik k Ik

k k

k F

e

es

E E Es k Ek
k

e e

NEEAAWAA N Nz N N e e

e

 

 

 

 

  

  

 



 

 

   
        
   
   

   
      
   
   



 

 
  

 
 
 
 

 
  

  
 
 
 

1/ 1/

1 1

) ( ln )

,

s s

k k Fk

k k

e

e

 

 
 

   
    
   
   

 
  

 
 
 

. (7) 

(3) Let k = s+1. By Eqs. (6) and (7), there is the following result: 
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1/ 1/

1 1

1/ 1/

1 1

1

1 2 1
1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

( l

( , ,..., , )

1 ,1 ,

, ,

s s

k Tk k Tk

k k

s s

k Ik k Ik

k k

k

s

s s k Ek
k

e

e

NEEAAWAA N N N N N

e e

e e

e

 

 

 

 

  

  





 

 






   
        
   
   

   
      
   
   

 

 

 
  

 
 
 
 

 
  


 
 
 

   

   

 

1/ 1/

1 1 1 1

1/ 1/

1 1 1 1

1/

1 1 11/ 1/

1 1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

( ln ) (

n ) ( ln )

1 ,1 ,

, ,

,

,

m Tm m Tm

m Im m Im

m Fm m
s s

Fk k Fk

k k

e

e

e

e e

e e

e e

e

 
 

 
 




 

 

  

  

  

 

   

   

  

 

     

   

   

   
    
   
   

 
  

 

 
  

 

 
  

 
 
 

 
1/

1

1/ 1/
s+1 s+1

1 1

1/ 1/
s+1 s+1

1 1

s+1

1

ln )

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

( ln )

1 ,1 ,

, ,

Fm

k Tk k Tk

k k

k Ik k Ik

k k

k Fk

k

e

e

e

e e

e e

e




 

 

 

 



  

  

 



 

 



   
        
   
   

   
      
   
   


 

 
 
 

 
  

 
 
 
 

 
  


 
 
 


1/ 1/

s+1

1

( ln )

.

,
k Fk

k

e

e

 




  
    
   
   

 
 

 
 
 

 

Based on the above (1)-(3), Eq. (5) can hold for any k.  

Moreover, the NEEAAWAA operator of Eq. (5) implies the following properties. 

Theorem 2. The NEEAAWAA operator contains the properties (P1)-(P4): 

(P1) Idempotency: Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs. If NEk = NE 

(k = 1, 2, …, m), there is NEEAAWAA(NE1, NE2, …, NEm) = NE. 

(P2) Commutativity: Assume that a group of NEEs 1 2 , ...( , )' ' '

E E EmN N N,  is any permutation of (NE1, 

NE2, …, NEm). Then,  1 2 1 2, ...( ),  =   ' ' '

E E Em EE mENEEAAWAA N N N NEEAAWAA N ,N , ,N,  can exist. 

(P3) Boundedness: If the maximum and minimum NEEs are specified as follows: 

     max max( ),max( ) , min( ),min( ) , min( ),min( )E Tk Tk Ik Ik Fk Fk
k k k kk k

N e e e   , 

     min min( ),min( ) , max( ),max( ) , max( ),max( )E Tk Tk Ik Ik Fk Fk
k k k k k k

N e e e   , 

then NEmin ≤ NEEAAWAA(NE1, NE2, …, NEm) ≤ NEmax can exist. 

(P4) Monotonicity: If 
*

Ek EkN N  (k = 1, 2, …, m), there is NEEAAWAA(NE1, NE2, …, NEm) ≤ 

NEEAAWAA(
* * *

1 2, ,...,E E EmN N N ). 

Proof. (P1) If NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> = NE (k = 1, 2, …, m), by Eq. (4) we yield the result: 



Neutrosophic Sets and Systems, Vol. 57, 2023     10  

 

 

Weiming Li, Jun Ye, Ezgi Türkarslan, MAGDM Model Using the Aczel-Alsina Aggregation Operators of Neutrosophic 
Entropy Elements in the Case of Neutrosophic Multi-Valued Sets 

1/ 1/

1 1

1/ 1/

1 1

1 2
1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

( ln

( , ,..., )

1 ,1 ,

, ,

m m

k Tk k Tk

k k

m m

k Ik k Ik

k k

k Fk

m

E E Em k Ek
k

e

e

NEEAAWAA N N N N

e e

e e

e

 

 

 

 

  

  

 



 

 



   
        
   
   

   
      
   
   

 

 

 
  

 
 
 
 

 
  


 
 
 

1/ 1/

1 1

1/ 1/

1 1

1/ 1/

1 1

( ln(1 )) ( ln(1 ))

( ln ) ( ln )

) ( ln )

1 ,1 ,

,

,
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(P2) The property (P2) is straightforward. 

(P3) Since the inequalities min ( ) max ( )Tk Tk Tk
k k

    , min ( ) max ( )Tk Tk Tk
k k

e e e  , 
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e e e  , min ( )  max ( )Fk Fk Fk
k k

    , and 

min ( )  max ( )Fk Fk Fk
k k

e e e   exist based on the maximum and minimum NEEs, there are the 

following inequalities: 
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Regarding the property (P1) and the score value of Eq. (2), we can obtain NEmin ≤ 
1

m

k Ek
k

N

  ≤ 

NEmax, then there is NEmin ≤ NEEAAWAA(NE1, NE2, …, NEm) ≤ NEmax.  

(P4) When 
*

Ek EkN N  (k = 1, 2, …, m), there exists 
*

1 1

m m

k Ek k Ek
k k

N N 
 
   . Thus, 

NEEAAWAA(NE1, NE2, …, NEm) ≤ NEEAAWAA(
* * *

1 2, ,...,E E EmN N N ) can exist.  

Especially when  = 1, the NEEAAWAA operator of Eq. (5) is reduced to the NEE weighted 

arithmetic averaging (NEEWAA) operator: 
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3.2 NEEAAWGA Operator 

This part presents the NEEAAWGA operator according to the operations in Definition 5. 

Definition 7. Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs with the weight 

vector of NEk  = (1, 2, …, m) for k [0, 1] and 
1

1
m

kk



 . Thus, a NEEAAWGA operator is defined 

as 
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


  .                 (9) 

Then, the NEEAAWGA operator shows the following theorem. 

Theorem 3. Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs with the weight 

vector of NEk  = (1, 2, …, m) for k [0, 1] and 
1

1
m

kk



 . Then, the collected value of the 

NEEAAWGA operator is also NEE, which is obtained by the following formula: 
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. (10) 

By the similar proof way of Theorem 1, we can easily verify Theorem 3, which is omitted. 

Similarly, the NEEAAWGA operator also contains some properties. 

Theorem 4. The NEEAAWGA operator includes these properties (P1)-(P4): 

(P1) Idempotency: Set NEk = <(Tk, eTk), (Ik, eIk), (Fk, eFk)> (k = 1, 2, …, m) as a group of NEEs. When NEk 

= NE (k = 1, 2, …, m), NEEAAWGA(NE1, NE2, …, NEm) = NE exists. 

(P2) Commutativity: Assume that a group of NEEs 1 2 , ...( , )' ' '

E E EmN N N,  is any permutation of (NE1, 

NE2, …, NEm). Then,  1 2 1 2, ...( ),  =   ' ' '

E E Em EE mENEEAAWGA N N N NEEAAWGA N ,N , ,N,  can exist. 

(P3) Boundedness: If the maximum and minimum NEEs are specified below: 

     max max( ),max( ) , min( ),min( ) , min( ),min( )E Tk Tk Ik Ik Fk Fk
k k k kk k

N e e e   ,  

     min min( ),min( ) , max( ),max( ) , max( ),max( )E Tk Tk Ik Ik Fk Fk
k k k k k k

N e e e   , 

then NEmin ≤ NEEAAWGA(NE1, NE2, …, NEm) ≤ NEmax can hold. 

(P4) Monotonicity: Set 
*

Ek EkN N  (k = 1, 2, …, m). Then, NEEAAWGA(NE1, NE2, …, NEm) ≤ 

NEEAAWGA(
* * *

1 2, ,...,E E EmN N N ) exists. 

By the similar proof method of Theorem 2, we can easily verify Theorem 4, which is not repeated 

here. 
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Especially when  = 1, the NEEAAWGA operator is reduced to the NEE weighted geometric 

averaging (NEEWGA) operator: 
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4. MAGDM Model Based on the NEEAAWAA and NEEAAWGA Operators and the Score and 

Accuracy Functions 

In this section, a MAGDM model is established by the proposed NEEAAWAA and 

NEEAAWGA operators and score and accuracy functions to solve MAGDM problems in the NMVS 

setting. 

Regarding a MAGDM problem, a set of s alternatives L = {L1, L2, …, Ls} is preliminarily provided 

and satisfactorily evaluated by a set of m attributes B = {b1, b2, …, bm}. Then, the importance of various 

attributes bk (k = 1, 2, …, m) is assigned by a weight vector  = (1, 2, …, m) with k  [0, 1] and 

1
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kk
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
 . The satisfactory evaluation values of each alternative Li (i = 1, 2, …, s) over each 

attribute bk (k = 1, 2, …, m) are assigned by a group of experts/decision makers, then the evaluated 

truth, indeterminacy, and falsity sequences are denoted as the NMVE 
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j

Tik , 
j
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Fik  [0, 1] (j = 1, 2, …, rk; i = 1, 2, …, s; k = 

1, 2, …, m). Then, the evaluated NMVEs are represented as the decision matrix of NMVEs MD = 

(Msik)sm. 

Regarding this MAGDM problem, we give the decision steps below. 

Step 1: By the formulae (1)-(3) in Definition 2, all NMVEs in the decision matrix MD are 

conversed into the NEEs NEik = <(Tik, eTik), (Iik, eIik), (Fik, eFik)> for Tik, Iik, Fik  [0, 1] and eTik, eIik, eFik  

[0, 1] (i = 1, 2, …, s; k = 1, 2, …, m), which are constructed as the decision matrix of NEEs ND = (NEik)sm. 

Step 2: Using one of Eq. (5) and Eq. (10), the aggregated NEE NEi (i = 1, 2, …, s) for Li is given by 

one of two formulae: 
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Step 3: The score values of R(NEi) (the accuracy values of Q(NEi) subject to necessary) (i = 1, 2, …, 

s) are obtained by Eq. (2) (Eq. (3)).  

Step 4: All alternatives are sorted based on the ranking laws and the best one is chosen. 

Step 5: End. 

5. Illustrative Example and Comparison with Existing Techniques 

5.1 Example on the Performance Assessment of Service Robots  

Service robotics contain many application fields, such as industrial service robots, home service 

robots, and medical service robots. They are improving our daily lives in various ways. Then, most 

of them have unique designs and different degrees of automation (from full teleoperation to fully 

autonomous operation) to affect the quality of our work and lives. However, the performance 

evaluation of the service robots is an important issue for users. To indicate the applicability of the 

developed MAGDM model under the environment of NMVSs, this subsection applies the developed 

MAGDM model to the performance assessment of service robots. 

Suppose that there are four kinds of service robots/alternatives, which are denoted as their set L 

= {L1, L2, L3, L4}. Then, they must satisfy the requirements of the four performance indices/attributes: 

mobility (b1), dexterity (b2), working ability (b3), and communication and control capability (b4). The 

weight vector of the four attributes is given as  = (0.25, 0.24, 0.26, 0.25) by experts/decision makers. 

The assessment of four types of service robots over the four attributes is performed by three 

experts/decision makers, where their evaluation values are assigned by the NMVEs 
1 2 1 2 1 2, , ( , ,..., ), ( , ,..., ), ( , ,..., )k k kr r r

ik Tik Iik Fik Tik Tik Tik Iik Iik Iik Fik Fik FikMs M M M            (consisting of the 

truth, indeterminacy, and falsity sequences) for 0 sup sup sup 3Tik Iik FikM M M     and 
j

Tik , 

j

Iik ,
j

Fik  [0, 1] (j = 1, 2, 3; i, k = 1, 2, 3, 4; rk = 3). Thus, all assessed NMVEs can be expressed as the 

following decision matrix of NMVEs MD = (Msik)44: 

1

2

3

4

(0.8,0.7,0.7), (0.8,0.7,0.6), (0.7,0.7,0.6), (0.7,0.7,0.7),

(0.3,0.2,0.1), (0.3,0.1,0.1), (0.3,0.3,0.3), (0.3,0.1,0.1),

(0.2,0.2,0.1) (0.4,0.3,0.2) (0.3,0.2,0.2) (0.3,0.3,0.3)

(0.7,0.7,0.6

D

M

M
M

M

M

 
 
  
 
 
 

), (0.7,0.7,0.7), (0.8,0.8,0.7), (0.8,0.8,0.8),

(0.2,0.2,0.1), (0.3,0.3,0.2), (0.1,0.1,0.1), (0.2,0.1,0.1),

(0.2,0.2,0.1) (0.3,0.1,0.1) (0.3,0.2,0.2) (0.4,0.3,0.3)

(0.8,0.7,0.6), (0.7,0.

(0.3,0.3,0.2),

(0.3,0.2,0.2)

7,0.6), (0.8,0.7,0.7), (0.8,0.8,0.7),

(0.2,0.1,0.1), (0.1,0.1,0.1), (0.2,0.1,0.1),

(0.3,0.3,0.1) (0.2,0.1,0.1) (0.4,0.4,0.3)

(0.8,0.8,0.6), (0.9,0.8,0.8), (0

(0.2,0.2,0.1), (0.1,0.1,0.1),

(0.3,0.2,0.2) (0.3,0.2,0.1)

.8,0.7,0.7), (0.7,0.7,0.7),

(0.4,0.4,0.2), (0.2,0.1,0.1),

(0.5,0.3,0.3) (0.2,0.2,0.1)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 
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In the MAGDM example, the proposed MAGDM model is given by the following decision 

process. 

First, using the formulae (1)-(3) in Definition 2 for the decision matrix MD = (Msik)44, we obtain 

the NEE decision matrix ND: 

(0.7333, 0.9981), (0.2000, 0.9206), (0.1667, 0.9602) (0.7000, 0.9938), (0.1667, 0.8650), (0.3000, 0.9656)

(0.6667, 0.9977), (0.1667, 0.9602), (0.1667, 0.9602) (0.7000, 1.0000), (0.2667, 0.9851), (0.16
DN 

67, 0.8650)

(0.7000, 0.9938), (0.2667, 0.9851), (0.2333, 0.9821) (0.6667, 0.9977), (0.1333, 0.9464), (0.2333, 0.9141)

(0.7333, 0.9922), (0.1667, 0.9602), (0.2333, 0.9414) (0.8333, 0.9986), (0.1000, 1.0000), (0.2000, 0.9206)

(0.6667, 0.9977), (0.3000, 1.0000), (0.2333, 0.9821) (0.7000, 1.0000), (0.1667, 0.8650), (0.3000, 1.0000)

(0.7667, 0.9983), (0.1000, 1.0000), (0.2333, 0.9821) (0.8000, 1.0000), 








(0.1333, 0.9464), (0.3333, 0.9461)

(0.7333, 0.9981), (0.1000, 1.0000), (0.1333, 0.9464) (0.7667, 0.9983), (0.1333, 0.9464), (0.3667, 0.9922)

(0.7333, 0.9981), (0.3333, 0.9602), (0.3667, 0.9713) (0.7000, 1.0000), (0.1333, 0.9464), (0.1667, 0.9602)








. 

Then using one of Eqs. (12) and (13), the aggregated NEEs NEi (i = 1, 2, …, s) are calculated 

corresponding to various values of , and then score values of NEi (i = 1, 2, …, s) for Li and ranking 

orders of the four alternatives are given by Eq. (2) and the ranking laws, which are shown in Tables 

1 and 2. 

Table 1. Decision results based on Eq. (12) and Eq. (2) 

 Score value Ranking The best one 

1 0.7594, 0.7953, 0.7863, 0.7909 L2 > L4 > L3 > L1 L2 

3 0.7673, 0.8067, 0.7981, 0.8038 L2 > L4 > L3 > L1 L2 

5 0.7730, 0.8148, 0.8066, 0.8133 L2 > L4 > L3 > L1 L2 

7 0.7777, 0.8209, 0.8130, 0.8206 L2 > L4 > L3 > L1 L2 

9 0.7815, 0.8255, 0.8178, 0.8264 L4 > L2 > L3 > L1 L4 

11 0.7846, 0.8290, 0.8217, 0.8309 L4 > L2 > L3 > L1 L4 

Table 2. Decision results based on Eq. (13) and Eq. (2) 

 Score value Ranking The best one 

1 0.7448, 0.7820, 0.7717, 0.7728 L2 > L4 > L3 > L1 L2 

3 0.7340, 0.7617, 0.7496, 0.7446 L2 > L3 > L4 > L1 L2 

5 0.7250, 0.7455, 0.7326, 0.7247 L2 > L3 > L4 > L1 L2 

7 0.7183, 0.7341, 0.7212, 0.7123 L2 > L3 > L1 > L4 L2 

9 0.7135, 0.7262, 0.7134, 0.7043 L2 > L1 > L3 > L4 L2 

11 0.7100, 0.7207, 0.7079, 0.6988 L2 > L1 > L3 > L4 L2 

 

According to the decision results in Tables 1 and 2, the ranking orders produced by Eq. (12) and 

Eq. (13) show their difference, then the best alternative L2 is the same by taking  = 1, 3. Moreover, in 

the proposed MAGDM model, using different values of  and different aggregation operators can 

affect the ranking orders of alternatives and show its decision flexibility, then the change of the 

parameter  is sensitive to the ranking impact of alternatives. However, the best alternative of the 

example is L2 or L4 depending on a preference selection of decision makers. 

5.2 Comparison with existing techniques in the setting of NMVSs 
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In this part, we compare our new techniques with existing techniques [14] in the setting of 

NMVSs.  

On the one hand, the characteristic comparison between our new techniques and the existing 

techniques is indicated in Table 3. 

Table 3. Characteristic comparison between our new techniques and the existing techniques 

Method 
Evaluation 

information 
Conversion form 

Decision-making 

model with an 

adjustable parameter 

Using 

condition 

Existing 

techniques [14] 
NMVS/NMVE 

CNE based on the 

mean and 

consistency degree 

(complement of 

standard deviation) 

No 
Normal 

distribution 

Our new 

techniques 
NMVS/NMVE 

NEE based on the 

mean and Shannon 

entropy 

Yes No limitation 

 

Regarding the comparative results of Table 3, our new techniques are often broader and more 

versatile than the existing techniques when dealing with MAGDM problems in the setting of NMVSs. 

On the other hand, we can apply the existing MAGDM model using two consistency 

neutrosophic correlation coefficients [14] to the above example. By the existing MAGDM model using 

two consistency neutrosophic correlation coefficients, we give all decision results, which are shown 

in Table 4. 

Table 4. Decision results of the existing MAGDM model using two correlation coefficients 

Existing decision-making model Ranking The best one 

Correlation coefficient 1 [14] L2 > L3 > L4 > L1 L2 

Correlation coefficient 2 [14] L1 > L3 > L4 > L2 L1 

 

Although there is the same ranking order between the existing MAGDM model using the 

correlation coefficient 1 [14] and our proposed MAGDM model using the NEEAAWGA operator for 

 = 3, 5, the existing MAGDM model lacks its decision flexibility. Furthermore, in the existing 

MAGDM model, the conversion technique based on the mean and standard deviation only is suitable 

for the normal distribution of multi-valued sequences in NMVEs. Therefore, our proposed model can 

not only overcome the limitation and insufficiency of the existing model [14], but also show its 

outstanding advantage of diversified decision results to satisfy the preference order of decision 

makers in actual applications. However, our new conversion method and decision-making model are 

superior to the existing ones in the setting of NMVSs. 

6. Conclusions 

To overcome the shortcomings of existing MAGDM method under the environment of NMVSs, 

this study proposed a NEE concept based on the normalized Shannon extropy and average values of 

the truth, falsity, and indeterminacy sequences in NMVSs to overcome the limitation of the existing 

conversion method based on the mean and standard deviation of the truth, falsity, and indeterminacy 

sequences. Then, the proposed ranking laws based on the score and accuracy functions of NEEs and 
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the proposed Aczel-Alsina t-norm and t-conorm operations and NEEAAWAA and NEEAAWGA 

operators provided important mathematical tools for solving flexible decision-making issues in the 

case of NMVSs. The developed MAGDM model can effectively carry out flexible decision-making 

issues with the information of NMVSs, where various parameter values can affect ranking orders of 

alternatives to satisfy decision makers’ preference requirements. Finally, an illustrative example was 

given to verify the efficiency and rationality of the developed MAGDM model. Compared with the 

existing techniques, our proposed techniques are broader and more versatile than the existing 

techniques when dealing with MAGDM problems in the case of NMVSs. However, in this study, the 

proposed information expression, operations, and aggregation operators of NEEs and the established 

MAGDM method show the highlighting advantages of these new techniques. 

Regarding these new techniques, we have many future researches to be performed in various 

areas, such as image processing, medical diagnosis, and information fusion. Meanwhile, the 

proposed Aczel-Alsina t-norm and t-conorm operations and aggregation operators of NEEs are also 

extended to cubic neutrosophic sets, refined neutrosophic sets, consistency neutrosophic sets, 

neutrosophic rough sets, etc. Then, they can be applied in engineering management, slope 

risk/stability evaluation, as well as clustering analysis, information retrieval, data mining, and so on 

in the case of NMVSs. 
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