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Abstract: First of all, on the basis of complete lattice, the concept of neutrosophic pseudo-t-norm 

(NPT) is given. Definitions and examples of representable neutrosophic pseudo-t-norms (RNPTs) 

are given, while unrepresentable neutrosophic pseudo-t-norms (UNPTs) is also given. Secondly, 

De Morgan neutrosophic triples (DMNTs) consists of three operators: NPTs, neutrosophic negators 

(NNs) and neutrosophic pseudo-s-norms (NPSs), where NPTs and NPSs are dual about NNs. 

Again, we study the neutrosophic residual implications (NRIs) of NPTs, as well as their underlying 

properties. Finally, we give a method to get NPTs from neutrosophic implications (NIs) and 

construct non-commutative residuated lattices (NCRLs) based on NRIs and NPTs.  

Keywords: Neutrosophic set; Neutrosophic pseudo-t-norm; Neutrosophic residual implication; 

Non-commutative residuated lattices 

 

 

1. Introduction 

From the perspective of philosophy, Smarandache introduced neutrosophic sets (NSs). NSs is a 

expansion of fuzzy sets (FSs), and has universality [1]. Although NSs has expanded the expression of 

uncertain information, there are many inconveniences in practical application. From a scientific 

standpoint, so as to solve more practical problems, single valued neutrosophic sets (SVNSs) was put 

forward by Wang [2]. Some multi-attribute decision problems are solved by applying SVNSs. 

“SVNSs” is simply denoted as “NSs” in this article. 

The t-norms, s-norms, negators, pseudo-t-norms, pseudo-s-norms and implications operators 

are fundamental tools in FS theory. Pseudo-t-norm and pseudo-s-norm was proposed in [3], 

followed by their residual implication were put forward by Wang in [4]. Pseudo-t-norm has many 

applications, such as resolution of finite fuzzy relation equations, linear optimization problems of 

mixed fuzzy relation inequalities and so on [5-10].  

NSs has a lot of important neutrosophic logical operators, such as: NPTs, NPSs, NNs, NIs, 

NRIs and so on. In past few years, Smarandache [11] introduced n-conorm and n-norm in 

neutrosophic logic. Zhang et al. [12] introduced a new type of relation of inclusion for NSs. A new 

kind of residuated lattice obtained through neutrosophic t-norms and its derived NRIs was 

introduced by Hu and Zhang [13]. On the basis of neutrosophic t-norms, fuzzy reasoning triple I 

method was studied by Luo et al. [14]. Therefore, it is very meaningful to study the NRIs of NPTs. 



Neutrosophic Sets and Systems, Vol. 57, 2023     19 

 

 

Hongru Bu, Qingqing Hu and Xiaohong Zhang, Neutrosophic Pseudo-t-Norm and Its Derived Neutrosophic Residual 
Implication 

The basic framework of this paper: Section 2 presents the basics knowledge that will be useful 

for writing this paper. We defined NPTs, NPSs, NNs and so on in Section 3. Moreover, we also 

provide some useful typical examples and theorems. In Section 4, the definitions of NRIs generated 

from NPTs are obtained, and their basic properties are discussed in depth. In addition, this paper 

provides a new method to generate NPTs from NIs, and at the same time prove that system (D*; 1, 

1, , , ⇝ , 0D*, 1D*) is a NCRL. Section 5 concludes the whole content of this paper. 

2. Preliminaries  

Definition 2.1 ([3]) A mapping PT: [0, 1]2[0, 1] be a pseudo-t-norm iff, m, n, r[0, 1]: 

(PT1) PT(m, PT(n, r)) = PT(n, PT(m, r));  

(PT2) if m  n, then PT(m, r)  PT(n, r), PT(r, m)  PT(r, n); 

(PT3) PT(1, m) = m, PT(m, 1) = m. 

Definition 2.2 ([3]) A mapping PS: [0, 1][0, 1][0, 1] be a pseudo-s-norm iff, m, n, r[0, 1]: 

(PS1) PS(m, PS(n, r)) = PS(n, PS(m, r));  

(PS2) if m  n, then PS(m, r)  PS(n, r), PS(r, m)  PS(r, n); 

(PS3) PS(0, m) = m, PS(m, 0) = m. 

Definition 2.3 ([15]) An intuitionistic fuzzy set (IFS) W in nonempty set M is depicted through 

two mappings: μW(m) and νW(m): M[0, 1]. W is expressed as, when mM, 

 {( ( ) ( )) | }W WW m m m m M  , , , 

satisfy 0 ≤ μW(m)+νW(m) ≤ 1, where μW(m) is affiliation function, νW(m) is non-affiliation function. 

Definition 2.4 ([2]) Let the set M be nonempty. A SVNS W in M is depicted through TW(m), 

IW(m), and FW(m), all of which are functions defined on [0, 1]. Then, W is expressed as, when mM, 

{ ( ) ( ) ( ) | }W W WW m T m I m F m m M , , , , 

satisfy 0 ≤ TW(m)+IW(m)+FW(m) ≤ 3, where TW(m) is the function of truth-affiliation, IW(m) is the 

function of indeterminacy- affiliation, and FW(m) is the function of falsity- affiliation. 

Proposition 2.5 ([13]) The first type of inclusion relationship is discussed in this article. 

Definition 2.6 ([1,17,18]) Let the set M be nonempty. Give two NSs W, N in M, where W={⟨m, 

TW(m), IW(m), FW(m)⟩|mM}, N ={⟨m, TN(m), IN(m), FN(m)⟩| mM}. The algebraic operations of the first 

type of inclusion relation was given as shown below, mM, 

(1) W 1 N  TW(m) ≤ TN(m), IW(m) ≥ IN(m), FW(m) ≥ FN(m); 

(2) W ∪1 N = {⟨m, max(TW(m), TN(m)),min(IW(m), IN(m)),min(FW(m), FN(m))⟩|mM}; 

(3) W ∩1 N = {⟨m, min(TW(m), TN(m)),max(IW(m), IN(m)),max(FW(m), FN(m))⟩|mM}; 

(4) Wc = {⟨m, IW(m), 1- FW(m), TW(m)⟩|mM}. 

Proposition 2.7 ([13]) We consider that set D* defined by, 

*

1 2 3 1 2 3{ ( ) | [0 1]}D m m m m m m m  , , , , , . 

m, nD*, the order relation we define 1 on D* is shown below: 

m 1 n  m1 ≤ n1, m2 ≥ n2, m3 ≥ n3. 

Proposition 2.8 ([13]) (D*; 1) is a partially ordered set. 
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Proposition 2.9 ([13]) m, nD*, m 1 n is called maximum lower bound of m, n, and expressed 

as inf(m, n); m 1 n is called minimum upper bound of m, n, and expressed as sup(m, n). In other 

word, (D*; 1) is a lattice. 

The content of definition of operators 1 and 1 refers to proposition 2 in [13]. 

Proposition 2.10 ([13]) (D*; 1) is a complete lattice. 

The maximun of D* is indicated as 1D* = (1,0,0), the minimun of D* is indicated as 0D* = (0,1,1). 

Definition 2.11 ([16]) A pseudo-t-norm PT: LLL on (L; L) be undecreasing and associative 

mapping that meets PT(1L, m) = m = PT(m, 1L), which mL. A pseudo-s-norm PS: L2L on (L; L) be 

associative and undecreasing mapping that meets PS(0L, m) = m = PS(m, 0L), m L. 

Definition 2.12 ([13]) For every mD*, we define a complement of m as follows: 

mc = (m3, 1-m2, m1). 

Proposition 2.13 ([13]) The system (D*; 1, 1, c, 0D*, 1D*) is a De Morgan algebra.  

3. NPTs On (D*; 1) 

Definition 3.1 A binary function PT: D*D*D* is called NPT, m, n, u, v, rD*, if PT satisfies: 

(NPT1) PT(m, PT (n, r)) = PT(n, PT (m, r)); 

(NPT2) PT(m, n) 1 PT (u, v) and PT(n, m) 1 PT(v, u), where m 1 u, n 1 v;  

(NPT3) PT(1D*, m) = m, PT(m, 1D*) = m.

Definition 3.2 A binary function PS: D*D*D* is called NPS, m, n, u, v, rD*, if PS satisfies: 

(NPS1) PS(m, PS (n, r)) = PS(n, PS(m, r)); 

(NPS2) PS(m, n) 1 PS(u, v) and PS(n, m) 1 PS(v, u), where m 1 u, n 1 v;  

(NPS3) PS(0D*, m) = m, PS(m, 0D*) = m. 

Example 3.3 ([3,19]) Table 1 below gives part pseudo-t-norms, and its derived residual 

implications. 

Table 1. Eaxmple of part pseudo-t-norms 

Pseudo-t-norms Residual implications 

1 1

1

1 1

0     if  [0 ] [0 ]
( )

min( ) otherwise

where 0 1

m a n b
PT m n

m n

a b

 
 


  

, , , ,
,

, ,

.

 

1 1

1 1

1 1

1 1

max( ) if  ,

( ) if  ,

1 if  

if  

( ) if  

1 if  

L

R

a n m b m n

I m n n m b m n

m n

b m a m n

I m n n m a m n

m n

 


  
 

 


  
 

, ,

, ,

.

, ,

, , ,

.

 

2

min( )  if  sin( ) 1
2

( )

0      if  sin( ) 1
2

m n m n

PT m n

m n


 

 
  



, ,

,

.

 

2

2

1 if  

( ) 2
max{ arcsin(1 )}if  

1 if  

( )
max{ 1 sin( )}     if  

2

L

R

m n

I m n
n m m n

m n

I m n
n m m n




 
  




  
 



,

,
, .

,

,
, .
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2 3

3 2 3

min( )     if  1
( )

0         if  1

m n m n
PT m n

m n

  
 

 

, ,
,

.
 

3 3

3 3 2

1      if  
( )

max{ 1 }    if  

1      if  
( )

max{ 1 }    if  

L

R

m n
I m n

n m m n

m n
I m n

n m m n


 

 


 

 

,
,

, .

,
,

, .

  

4

min( )     if  1
( )

0         if  1

m n m n
PT m n

m n

  
 

 

, ,
,

.
  

4

4 2

1      if  
( )

max{ 1 }     if  

1      if  
( )

max{ (1 ) }    if  

L

R

m n
I m n

n m m n

m n
I m n

n m m n


 

 


 

 

,
,

, .

,
,

, .

 

Example 3.4 Table 2 below gives part pseudo-s-norms, and its derived residual co-implications. 

Table 2. Example of part pseudo-s-norms  

Pseudo-s-norms Residual co-implications 

1 1

1

1 1

1 if  
( )

max( ) otherwise

where 0< 1

m a n b
PS m n

m n

a b

 
 


 

, ,
,

, ,

.

  

1 1

1 1

1 1

1 1

if  ,

( ) if  ,

0 if  

min( ) if  

( ) if  

0 if  

L

R

a m b m n

J m n n m b m n

m n

a n m a m n

J m n n m a m n

m n

 


  
 

 


  
 

,

, ,

.

, , ,

, , ,

.

  

2

max( )   if  sin( ) 1
2

( )

1       if  sin( ) 1
2

m n m n

PS m n

m n


 

 
  



, ,

,

.

  

2

2

0   if  

( ) 2
min{ arcsin(1 )}  if  

0   if  

( )
min{ 1 sin( )}       if  

2

L

R

m n

J m n
n m m n

m n

J m n
n m m n




 
  




  
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

,

,
, .

,

,
, .

  

2 3

3 2 3

max( )     if  1
( )

1         if  1

m n m n
PS m n

m n

  
 

 

, ,
,

.
 

3 3

3 3 2

0      if  
( )

min{ 1 }    if  

0      if  
( )

min{ 1 }    if  

L

R

m n
J m n

n m m n

m n
J m n

n m m n


 

 


 

 

,
,

, .

,
,

, .

  

4

max( )     if  1
( )

1         if  1

m n m n
PS m n

m n

  
 

 

, ,
,

.
  

4

4 2

0      if  
( )

min{ 1 }     if  

0      if  
( )

min{ (1 ) }    if  

L

R

m n
J m n

n m m n

m n
J m n

n m m n


 

 


 

 

,
,

, .

,
,

, .

 

Example 3.5 Suppose that PTi (i=1,2,3,4) are pseudo-t-norms as shown in Example 3.3 and PSi 

(i=1,2,3,4) are pseudo-s-norms as shown in Example 3.4. Then, the binary function PTi (i=1,2,3,4,5,6) 

defined on D* are NPTs as follows: 

(1) 
1 1 1 1 1 2 2 1 3 3
( , ) ( ( , ), ( , ), ( , ));m n PT m n PS m n PS m n=PT   
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(2) 
2 2 1 1 2 2 2 2 3 3
( , ) ( ( , ), ( , ), ( , ));m n PT m n PS m n PS m n=PT  

(3) 
3 3 1 1 3 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , ));m n PT m n PS m n PS m n=PT  

(4) 
4 4 1 1 4 2 2 4 3 3
( , ) ( ( , ), ( , ), ( , ));m n PT m n PS m n PS m n=PT  

(5) 
5 1 1 1 2 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , ));m n PT m n PS m n PS m n=PT  

(6) 
6 1 1 1 3 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , )).m n PT m n PS m n PS m n=PT  

Example 3.6 Suppose that PTi (i=1,2,3,4) are pseudo-t-norms as shown in Example 3.3 and PSi 

(i=1,2,3,4) are pseudo-s-norms as shown in Example 3.4. Then, the binary function PSi (i=1,2,3,4,5,6) 

defined on D* are NPSs as follows: 

(1) 
1 1 1 1 1 2 2 1 3 3
( , ) ( ( , ), ( , ), ( , ));m n PS m n PT m n PT m n=PS   

(2) 
2 2 1 1 2 2 2 2 3 3
( , ) ( ( , ), ( , ), ( , ));m n PS m n PT m n PT m n=PS  

(3) 
3 3 1 1 3 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , ));m n PS m n PT m n PT m n=PS  

(4) 
4 4 1 1 4 2 2 4 3 3
( , ) ( ( , ), ( , ), ( , ));m n PS m n PT m n PT m n=PS  

(5) 
5 1 1 1 2 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , ));m n PS m n PT m n PT m n=PS  

(6) 
6 1 1 1 3 2 2 3 3 3
( , ) ( ( , ), ( , ), ( , )).m n PS m n PT m n PT m n=PS  

Theorem 3.7 Give a binary function PT: D*D*D*, two pseudo-s-norms PSi (i=1,2) and a 

pseudo-t-norm PT. Then, m, nD*, 

1 1 1 2 2 2 3 3
( , ) ( ( , ), ( , ), ( , ))m n PT m n PS m n PS m n=PT  

is a NPT. 

Proof. m, u, n, v, rD*, have following: 

(NPT1) According to item (PT1) of Definition 2.1 and item (PS1) of Definition 2.2, it is obvious 

that PT(m, PT(n, r)) = PT(m, (PT(n1, r1), PS1(n2, r2), PS2(n3, r3))) = (PT(m1, PT(n1, r1)), PS1(m2, PS1(n2, r2)), 

PS2(m3, PS2(n3, r 3))) = (PT(n1, PT(m1, r1)), PS1(n2, PS1(m2, r2)), PS2(n3, PS2(m3, r3))) = PT(n, PT(m, r)); 

(NPT2) If m 1 u, n 1 v, then PT(m1, n1) ≤ PT(u1, v1), PS1(m2, n2) ≥ PS1(u2, v2), PS2(m3, n3) ≥ PS2(u3, 

v3). Therefore, PT(m, n) 1 PT(u, v). Likewise, we can also get PT(n, m) 1 PT(v, u). 

(NPT3) PT(m, 1D*) = (PT(m1, 1), PS1(m2, 0), PS2(m3, 0)) = (m1, m2, m3) = m. Similarly, PT(1D*, m) = m. 

Thus, PT(m, n) is a NPT. 

Theorem 3.8 Give a binary function PS: D*D*D*, two pseudo-t-norms PTi (i=1,2) and a 

pseudo-s-norm PS. Then, 

1 1 1 2 2 2 3 3( , ) ( ( , ), ( , ), ( , ))m n PS m n PT m n PT m n=PS  

is a NPS, for arbitrary m, nD*. 

Theorem 3.7 provieds a idea for constructing NPT on D* with pseudo-s-norm and 

pseudo-t-norm. However, the reverse is not able to find two pseudo-s-norms PSi (i=1,2) and a 

pseudo-t-norm PT to make PT = (PT, PS1, PS2).  

In order to make a clear distinction between the two types of NPTs, so put forward a concept of 

RNPT. 

Definition 3.9 If m, nD*, there exists two pseudo-s-norms PSi (i=1,2) and a pseudo-t-norm PT 

such that PT holds with respect to the following equation:  

1 1 1 2 2 2 3 3( , ) ( ( , ), ( , ), ( , )).m n PT m n PS m n PS m n=PT  

Then PT is said to be representable. 



Neutrosophic Sets and Systems, Vol. 57, 2023     23 

 

 

Hongru Bu, Qingqing Hu and Xiaohong Zhang, Neutrosophic Pseudo-t-Norm and Its Derived Neutrosophic Residual 
Implication 

Definition 3.10 If m, nD*, there exists pseudo-s-norm PS and pseudo-t-norm PT such that PT 

holds with respect to the following equation: 

1 1 2 2 3 3( , ) ( ( , ), ( , ), ( , )).m n PT m n PS m n PS m n=PT  

Then PT is said to be standard representable. 

These NPTs given in Example 3.5 are representable. 

Definition 3.11 If m, nD*, there exists two pseudo-t-norms PTi (i=1,2) and a pseudo-s-norm 

PS such that PS holds with respect to the following equation:  

1 1 1 2 2 2 3 3( , ) ( ( , ), ( , ), ( , )).m n PS m n PT m n PT m n=PS  

Then PS is said to be representable. 

Definition 3.12 If m, nD*, there exists pseudo-s-norm PS and pseudo-t-norm PT such that PS 

holds with respect to the following equation: 

1 1 2 2 3 3( , ) ( ( , ), ( , ), ( , )).m n PS m n PT m n PT m n=PS  

Then PS is said to be standard representable. 

These NPSs given in Example 3.6 are representable. 

Propositions 3.13 and 3.14 below demonstrate a approach to construct new RNPTs (RNPSs) 

with intuitionistic fuzzy t-norms (IFTs) and intuitionistic fuzzy s-norms (IFSs). 

Proposition 3.13 x = (x1, x3)L, y = (y1, y3)L, T(x, y) = (t(x1, y1), s2(x3, y3)) is a representable IFT, 

which t and s2 are t-norm and s-norm, respectively. If m, nD*, there is a pseudo-s-norm ps1 that 

makes 0 ≤ t(m1, n1)+ps1(m2, n2)+s2(m3, n3) ≤ 3 true, then PT(m, n) = (t(m1, n1), ps1(m2, n2), s2(m3, n3)) is a 

RNPT. 

Proposition 3.14 x = (x1, x3)L, y = (y1, y3)L, S(x, y) = (s(x1, y1), t2(x3, y3)) is a representable IFS, 

where s and t2 are s-norm and t-norm, respectively. If m, n D*, there is a pseudo-t-norm pt1 that 

makes 0 ≤ s(m1, n1)+pt1(m2, n2)+t2(m3, n3) ≤ 3 true, then PS(m, n) = (s(m1, n1), pt1(m2, n2), t2(m3, n3)) is a 

RNPS. 

Example 3.15 ([20]) Table 3 below gives part t-norms, and its derived residual implications. 

Table 3. Example of the part t-norms  

t-norms Residual implications 

( ) min( )MT m n m n, ,  
1 if  

( )
if 

GD

m n
I m n

n m n


 



,
,

.
 

( )PT m n m n ,  

1 if  

( )
if 

GG

m n

I m n n
m n

m




 




,

,
.

 

( ) max( 1 0)LKT m n m n  , ,  ( ) min(1 1 )LKI m n m n  , ,   

Example 3.16 ([20]) Table 4 below gives part s-norms, and its derived residual co-implications. 

Table 4. Example of the part s-norms 

s-norms Residual co-implications 
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( ) max( )MS m n m n, ,   
0 if  

( )
if 

GD

m n
J m n

n m n


 



,
,

.
  

( )PS m n m n m n   ,   

0 if  

( )
if 

1

GG

m n

J m n n m
m n

m




 
 

,

,
.

 

( ) min( )LKS m n m n , ,1  ( ) max(0 )LKJ m n n m , ,   

Example 3.17 Let PSi (i=1,2,4) are pseudo-s-norms as shown in Example 3.4, TM, TP, TLK are 

t-norms as shown in Example 3.15, and SM, SP, SLK are s-norms as shown in Example 3.16. Then, the 

binary function PTi (i=7,8,9) constructed by IFTs defined on D* are RNPTs as follows: 

(1) 7 1 1 4 2 2 3 3( , ) ( ( , ), ( , ), ( , ));M LKm n T m n PS m n S m n=PT  

(2) 8 1 1 2 2 2 3 3( , ) ( ( , ), ( , ), ( , ));P Mm n T m n PS m n S m n=PT  

(3) 9 1 1 1 2 2 3 3( , ) ( ( , ), ( , ), ( , )).LK Pm n T m n PS m n S m n=PT  

Example 3.18 Let PTi (i=1,2,4) are pseudo-t-norms as shown in Example 3.3, TM, TP, TLK are 

t-norms as shown in Example 3.15, and SM, SP, SLK are s-norms as shown in Example 3.16. Then, the 

binary function PSi (i=7,8,9) constructed by IFSs defined on D* are RNPSs as follows:  

(1) 7 1 1 4 2 2 3 3( , ) ( ( , ), ( , ), ( , ));M LKm n S m n PT m n T m n=PS  

(2) 8 1 1 2 2 2 3 3( , ) ( ( , ), ( , ), ( , ));P Mm n S m n PT m n T m n=PS  

(3) 9 1 1 1 2 2 3 3( , ) ( ( , ), ( , ), ( , )).LK Pm n S m n PT m n T m n=PS  

Definition 3.19 ([13]) A mapping N: D*D* be known as NN if satisfies, m, nD*:  

(NN1) m 1 n iff N(m)1 N(n); 

(NN2) N(1D*) = 0D*; 

(NN3) N(0D*) = 1D*. 

If N(N(m)) = m holds with mD*, then N is said to be involutive NN. 

The function NS: D*D* defined by, (m1, m2, m3)D*, 

NS(m1, m2, m3) = (m3, 1-m2, m1) 

is a involutive NN, which is also called standard NN. Meanwhile, N(m) = (m2, 1-m3, m1), N(m) = (m2, 

m1, m1), N(m) = (m2, 1-m2, m1) are NNs. 

Definition 3.20 Assume that PT is a NPT, N is a NN and PS is a NPS. m, nD*, if the triple 

(PT, N, PS) satisfied the following conditions: 

N(PS(m, n)) = PT(N(m), N(n)). 

N(PT(m, n)) = PS(N(m), N(n)); 

Then, we call the triple (PT, N, PS) is a DMNT. 

Theorem 3.21 Suppose N is involutive. If exists a NPS PS, then such that PT be defined as 

PT(m, n) = N (PS(N(m), N(n))) 

is NPT. Besides, (PT, N, PS) is a DMNT.  

Proof. According to known condition, there are as follows, m, u, n, v, rD*: 

(NPT1)According to item (NPS1) of Definition 3.2, naturally there is PT(m, PT(n, r)) = PT(m, 

N(PS(N(n), N(r)))) = N(PS(N(m), N(N(PS(N(n), N(r)))))) = N(PS(N(m), PS(N(n), N(r)))) = N(PS(N(n), 

PS(N(m), N(r)))) = PT(n, PT(m, r)). 
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(NPT2) If m 1 u, n 1 v, so N(m) 1 N(u), N(n) 1 N(v). From (NPS2) of Definition 3.2 and (NN1) 

of Definition 3.19, we get PS(N(m), N(n)) 1 PS(N(u), N(v)) and PS(N(n), N(m)) 1 PS(N(v), N(u)). 

Thus, N(PS(N(m), N(n))) 1 N(PS(N(u), N(v))) and N(PS(N(n), N(m))) 1 N(PS(N(v), N(u))), that is, 

PT(m, n) 1 PT(u, v) and PT(n, m) 1 PT(v, u). 

(NPT3) PT(1D*, m) = N(PS(N(1D*), N(m))) = N(PS(0D*, N(m))) = N(N(m)) = m. Similarly, PT (m, 1D*) 

= m. 

Therefore, the statement that PT is NPT is proved. 

Besides, (PT, N, PS) is a DMNT. 

Theorem 3.22 Assume N is involutive. If exists a NPT PT, then such that PS be defined as 

PS(m, n) = N(PT(N(m), N(n))) 

being NPS. Moreover, (PT, N, PS) is a DMNT.  

Example 3.23 A few NPTs and NPSs are dual about NS. 

(1) PT1(m, n) = (PT1(m1, n1), PS1(m2, n2), PS1(m3, n3)), PS1(m, n) = (PS1(m1, n1), PT1(m2, n2), PT1(m3, 

n3)). 

    Indeed, PT1(NS(m), NS(n)) = PT1((m3, 1-m2, m1), (n3, 1-n2, n1)) = (PT1(m3, n3), PS1(1-m2, 1-n2), PS1(m1, 

n1)), then NS(PT1(NS(m), NS(n))) = (PS1(m1, n1), 1-PS1(1-m2, 1-n2), PT1(m3, n3)) = (PS1(m1, n1), PT1(m2, n2), 

PT1(m3, n3)) = PS1(m, n).  

(2) PT3(m, n) = (PT3(m1, n1), PS3(m2, n2), PS3(m3, n3)), PS3(m, n) = (PS3(m1, n1), PT3(m2, n2), PT3(m3, 

n3)). 

The theorem about UNPT is given next: 

Theorem 3.24 Let PT: D*D*D* being a function. m, nD*, 

*

*

1 1 1 1 3 3

1

( ) 1

(min(2 ) max(1 2 1 ) max( )) otherwise.

D

D

m n

m n n m

m n m n m n




 
  

,

, ,

, , , , ,

PT  

is a UNPT. 

Proof. First, we show that PT is a NPT, m, u, n, v, rD*. 

(NPT1) If m = 1D* or n = 1D*, then PT satisfies the associative law. If m ≠ 1D*, n ≠ 1D*, PT(m, PT(n, 

r)) = (min(2m1, min(2n1, r1)), max(1-2m1, 1-min(2n1, r1)), max(m3, max(n3, r3))) = (min(2m1, 2n1, r1), 

max(1-2m1, 1-2n1, 1-r1,), max(m3, n3, r3)) = (min(2n1, min(2m1, r1)), max(1-2n1, 1-min(2m1, r1)), max(n3, 

max(m3, r3))) = PT(n, PT(m, r)). 

(NPT2) If m = 1D* or n = 1D*, we can prove PT is undecreasing in each variable. If m ≠ 1D*, n ≠ 1D*, 

at the same time satisfy m 1 u, n 1 v, and m1  u1, n1  v1, m3  u3, n3  v3. Thus, min(2m1, n1)  min(2u1, 

v1), max(1-2m1, 1-n1)  max(1-2u1, 1-v1), max(m3, n3)  max(u3, v3). That is, PT(m, n) 1 PT(u, v). 

Likewise, we can also have PT(n, m) 1 PT(v, u).  

(NPT3) PT(m, 1D*) = m, PT(1D*, m) = m. Therefore, PT is a NPT. 

Second, assume NPT PT is representable, m = (m1, m2, m3)D*, n = (n1, n2, n3)D*, there are a 

pseudo-t-norm PT and two pseudo-s-norms PSi (i=1,2) such that PT(m, n) = (PT(m1, n1), PS1(m2, n2), 

PS2(m3, n3)). Let m = (0.2, 0.5, 0.4), u = (0.4, 0.3, 0.2), n = (0.5, 0.7, 0.6). From PT(m, n) = (0.4, 0.6, 0.6) 

and PT(u, n) = (0.5, 0.5, 0.6), we get PS1(m2, n2) = 0.6 and PS1(u2, n2) = 0.5, so PS1(m2, n2) ≠ PS1(u2, n2). 

Thus PS1(m, n) is not independent from m1, that is to say PT is UNPT. 

Moreover, m, nD*, the dual of NPT PT about standard NN NS is NPS PS, which be defined 

as: 
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*

*

1 1 3 3 3 3

0

( ) 0

(max( ) min(2 ) min(2 )) otherwise.

D

D

m n

m n n m

m n m n m n




 



,

, ,

, , , , ,

PS  

Then, PS is unrepresentable. 

Remark 3.25 On the one hand, suppose PT and NS are UNPT and standard NN on D*, 

respectively. The dual of PT about NS is PS. Then, we have that PS is UNPS. On the other hand, let N 

be involutive NN, the dual NPT about N of UNPS is unrepresentable.  

4. NRI Induced by NPT on D* 

Definition 4.1 ([13]) A NI is a mapping I: D*D*D*, m, u, n, vD*, if it satisfies: 

(NI1) m 1 u  I(m, n) 1 I(u, n); 

(NI2) n 1 v  I(m, n) 1 I(m, v); 

(NI3) I(1D*, 1D*) = I(0D*, 0D*) = 1D*;  

(NI4) I(1D*, 0D*) = 0D*. 

Since NPT without commutativity, we can define left and right NRIs which satisfy the residual 

property induced by NPT. 

Definition 4.2 Let PT be a NPT. Define two functions I(L), I(R): D*D*D*, 

I(L)(m, n) = sup{k | kD*, PT(k, m) 1 n}; 

I(R)(m, n) = sup{k | kD*, PT(m, k) 1 n}. 

Then, I(L) (I(R)) is called left NRI (right NRI) induced by PT. 

We note that the two NRIs induced by PT as IPT(L), IPT(R). 

Besides, Let PT be a NPT, then m, n, kD*, PT satisfies the residual criteria iff, 

PT(k, m) 1 n iff k 1 IPT(L)(m, n); 

PT(m, k) 1 n iff k 1 IPT(R)(m, n). 

Likewise, the concept of neutrosophic co-implications (NCIs) and related knowledge are also 

given as follows: 

Definition 4.3 ([13]) A NCI is a binary function J: (D*)2D*, m, u, n, vD*, if it satisfies: 

(NJ1) m 1 u  J(m, n) 1 J(u, n); 

(NJ2) n 1 v  J(m, n) 1 J(m, v); 

(NJ3) J(0D*, 0D*) = J(1D*, 1D*) =0D*; 

(NJ4) J(0D*, 1D*) = 1D*. 

Analogously, we can also define left and right neutrosophic residual co-implications (NRCIs) 

which satisfie the residual property induced by NPS. 

Definition 4.4 Suppose that PS is a NPS. Define two functions J(L), J(R): D*D*D*, 

J(L)(m, n) = inf{k | kD*, PS(k, m) 1 n}; 

J(R)(m, n) = inf{k | kD*, PS(m, k) 1 n}. 

Then, J(L) (J(R)) is called left NRCI (right NRCI) induced by PS. 

We remark that two NRCIs induced by PS as JPS(L), JPS(R). 

Let PS be a NPS, then m, n, kD*, PS satisfies the residual criteria iff  
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PS(k, m) 1 n iff k 1 JPS(L)(m, n); 

PS(m, k) 1 n iff k 1 JPS(R)(m, n). 

Through learning above definitions, we give the NRIs (NRCIs) of NPTs (NPSs) discussed in 

Section 3 as follows: 

Example 4.5 Suppose that IiL (i=1,2,3,4) and IiR (i=1,2,3,4) are left and right residual implications 

induced by pseudo-t-norms PTi (i=1,2,3,4) as shown in Example 3.3; JiL (i=1,2,3,4) and JiR (i=1,2,3,4) are 

left and right residual co-implications induced by pseudo-s-norms PSi (i=1,2,3,4) as shown in 

Example 3.4. Then, the binary functions IPT(i)(L) (i=1,2,3,4,5,6) and IPT(i)(R) (i=1,2,3,4,5,6) induced by 

RNPTs PTi (i=1,2,3,4,5,6) of Example 3.5 defined on D* are left and right NRIs as follows: 

(1) ( )
1 1 1 1 2 2 1 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
1PT

I ; 

   ( )
1 1 1 1 2 2 1 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
1PT

I ; 

(2) ( )
2 1 1 2 2 2 2 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
2PT

I ; 

   ( )
2 1 1 2 2 2 2 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
2PT

I ; 

(3) ( )
3 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
3PT

I ; 

   ( )
3 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
3PT

I ; 

(4) ( )
4 1 1 4 2 2 4 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
4PT

I ; 

   ( )
4 1 1 4 2 2 4 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
4PT

I ; 

(5) ( )
1 1 1 2 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
5PT

I ; 

   ( )
1 1 1 2 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
5PT

I ; 

(6) ( )
1 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n I m n J m n J m n=
6PT

I ; 

   ( )
1 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n I m n J m n J m n=
6PT

I . 

Example 4.6 Suppose that IiL (i=1,2,3,4) and IiR (i=1,2,3,4) are left and right residual implications 

induced by pseudo-t-norms PTi (i=1,2,3,4) as shown in Example 3.3; JiL (i=1,2,3,4) and JiR (i=1,2,3,4) are 

left and right residual co-implications induced by pseudo-s-norms PSi (i=1,2,3,4) as shown in 

Example 3.4. Then, the binary functions JPS(i)(L) (i=1,2,3,4,5,6) and JPS(i)(R) (i=1,2,3,4,5,6) induced by 

RNPSs PSi (i=1,2,3,4,5,6) of Example 3.6 defined on D* are left and right NRCIs as follows: 

(1) ( )
1 1 1 1 2 2 1 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n J m n I m n I m n=
1PS

J ; 

   ( )
1 1 1 1 2 2 1 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
1PS

J ; 

(2) ( )
2 1 1 2 2 2 2 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n J m n I m n I m n=
2PS

J ; 

   ( )
2 1 1 2 2 2 2 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
2PS

J ; 

(3) ( )
3 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n J m n I m n I m n=
3PS

J ; 

   ( )
3 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
3PS

J ; 

(4) ( )
4 1 1 4 2 2 4 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n J m n I m n I m n=
4PS

J ; 

   ( )
4 1 1 4 2 2 4 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
4PS

J ; 

(5) ( )
1 1 1 2 2 2 3 3 3

( , ) ( ( , ), , ), ( , ))L
L L L

m n J m n I m n I m n=
5PS

J ; 

   ( )
1 1 1 2 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
5PS

J ; 

(6) ( )
1 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))L
L L L

m n J m n I m n I m n=
6PS

J ; 

   ( )
1 1 1 3 2 2 3 3 3

( , ) ( ( , ), ( , ), ( , ))R
R R R

m n J m n I m n I m n=
6PS

J . 
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Because NPS PS are dual operator of NPT PT about NS, so the NRIs induced by NPT and the 

NRCIs induced by NPS are dual. For Examples 3.5 and 3.6 given above, If PS and PT are dual, then 

the NRCIs JPS derived by PS is the dual operator of the NRIs IPT induced by PT. 

The following we will show an important theorem which proves sufficient conditions that the 

residual operator derived by a NPT is always a NI. 

Theorem 4.7 Assume PT be a NPT on D*. Then, m, nD*, 

IPT(L)(m, n) = sup{k | kD*, PT(k, m) ≤1 n}; 

IPT(R)(m, n) = sup{k | kD*, PT(m, k) ≤1 n}. 

are NIs. 

Proof. First give the proof that IPT (L) is a NI, m, u, n, vD*: 

We get IPT(L)(m, 1D*) = sup{k | kD*, PT(k, m) 1 1D*} = 1D* by Definition 4.2. Thus IPT (L)(1D*, 1D*) = 

1D*. From (NPT2) in Definition 3.1, we get IPT(L)(1D*, 0D*) = sup{k | kD*, PT(k, 1D*) 1 0D*} = 0D*. 

IPT(L)(0D*, 0D*) = sup{k | kD*, PT(k, 0D*) 1 0D*} = 1D*.  

If m 1 u. By (NPT2) in Definition 3.1, {k | kD*, PT(k, m) 1 n} 1 {k | kD*, PT(k, u) 1 n}, then 

sup{k | kD*, PT(k, m) 1 n} 1 sup{k | kD*, PT(k, u) 1 n}. Thus, IPT(L)(m, n) 1 IPT(L)(u, n).  

If n 1 v. Since the undecreasingness of PT, we have {k | kD*, PT(k, m) 1 n} 1 {k | kD*, PT(k, 

m) 1 v }, then sup{k | kD*, PT(k, m) 1 n} 1 sup{k | kD*, PT(k, m) 1 v}. Thus, IPT (L)(m, n) 1 IPT(L)(m, 

v).  

To sum up, IPT(L) is a NI. Likewise, IPT(R) is a NI can also be proved. 

Some relevant properties of NRI are given below. 

Theorem 4.8 Suppose that PT be a NPT on D*, IPT(L), IPT(R) are NRIs. Then, m, n, rD*, 

(1) IPT(L)(0D*, n) = 1D*; 

(2) IPT(L)(m, 1D*) = 1D*; 

(3) IPT(L)(m, m) = 1D*; 

(4) IPT(L)(1D*, n) = n; 

(5) IPT(L)(m, n) 1 n; 

(6) IPT(L)(m, n) = 1D* iff m 1 n; 

(7) IPT(L)(PT(m, n), PT(m, r)) 1 IPT(L)(n, r); 

(8) m 1 IPT(L)(n, PT(m, n)). 

Similarly, IPT(R) also satisfies the properties (1)-(7) in Theorem 4.8. However, it should be noted 

that NI induced by NPT, because pseudo-t-norm removes commutativity, leads to the difference in 

property (8) in the corresponding Theorem 4.8 of IPT(R), as shown below: 

(8) m 1 IPT(R)(n, PT(n, m)). 

Proof. The proofs of (1)-(4) are straightforward to obtain by Definition 4.2, so the proof is 

ignored. 

(5) From (NI1) in Definition 4.1, we get that IPT(L)(m, n) 1 IPT(L)(1D*, n) = n. 

(6) () if IPT(L)(m, n) = 1D*, then PT(1D*, m) 1 n. Thus, m 1 n. () since m 1 n, PT(1D*, m) 1 n. 

Thus, IPT(L)(m, n) 1 1D*, that is IPT(L)(m, n) = 1D*. 

(7) IPT(L)(PT(m, n), PT(m, r)) = sup{k | kD*, PT(k, PT(m, n)) 1 PT(m, r)} = sup{k | kD*, PT(m, 

PT(k, n)) 1 PT(m, r)} 1 sup{k | kD*, PT(k, n) 1 r} = IPT(L)(n, r). 

(8) Since PT(m, n) 1 PT(m, n), so we get m 1 IPT(L)(n, PT(m, n)). 

The proof which IPT(R) satisfies the properties (1)-(8) is similar to the proof of IPT(L).  

In the same way, we give two theorems about NPS on D*. 
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Theorem 4.9 Let PS be a NPS on D*. Then, m, nD*, 

JPS(L)(m, n) = inf{k | kD*, PS(k, m) 1 n}; 

JPS(R)(m, n) = inf{k | kD*, PS(m, k) 1 n}. 

are NCIs.  

Proof. According to the Definition 4.4, we can use the proof of Theorem 4.7 method to prove it. 

Theorem 4.10 Let PS is a NPS on D*, JPS(L), JPS(R) are NRCIs. Then, m, n, rD*, 

(1) JPS(L)(1D*, n) = 0D*; 

(2) JPS(L)(m, 0D*) = 0D*; 

(3) JPS(L)(m, m) = 0D*; 

(4) JPS(L)(0D*, n) = n; 

(5) JPS(L)(m, n) 1 n; 

(6) JPS(L)(m, n) = 0D* iff m 1 n; 

(7) JPS(L)(PS(m, n), PS(m, r)) 1 JPS(L)(n, r); 

(8) m 1 JPS(L)(n, PS(m, n)). 

Similarly, JPS(R) also satisfies the properties (1)-(7) in Theorem 4.10. However, it should be noted 

that NCI induced by NPS, because pseudo-s-norm removes commutativity, leads to the difference in 

property (8) in the corresponding Theorem 4.10 of JPS(R), as shown below: 

(8) m 1 JPS(R) (n, PS (n, m)). 

Definition 4.11 Let I(L), I(R): D*D*D* are NIs. m, nD*, the induced operators PTI
(L), PTI

(R) 

by I(L), I(R) are defined as follows: 

PTI
(L)(m, n) = inf{k | kD*, m 1 I(L)(n, k)}; 

PTI
(R)(m, n) = inf{k | kD*, n 1 I(R)(m, k)}. 

Theorem 4.12 Let I(L), I(R) are NIs on D*. m, n, rD*, if I(L), I(R) satisfies below conditions: 

(a) r 1 I(L)(n, m) iff n 1 I(R)(r, m); 

(b) I(L)(m, I(L)(n, r)) = I(L)(n, I(L)(m, r)); I(R)(m, I(R)(n, r)) = I(R)(n, I(R)(m, r)); 

(c) I(L)(m, n) = 1D* iff m 1 n; I(R) (m, n) = 1D* iff m 1 n; 

(d) I(L)(1D*, m) = m; I(R)(1D*, m) = m. 

Then, the induced operators PTI
(L), PTI

(R) by I(L), I(R) in Definition 4.11 are NPTs. 

Proof. m, u, n, v D*, there are below: 

(NPT1) From (a) and (b), PTI
(L)(m, PTI

(L)(n, r)) = inf{k | kD*, m 1 I(L)(PTI
(L)(n, r), k)} = inf{k | 

kD*, PTI
(L)(n, r) 1 I(R)(m, k)} = inf{k | kD*, r 1 I(R)(n, I(R)(m, k))} = inf{k | kD*, r 1 I(R)(m, I(R)(n, k))} = 

inf{k | kD*, PTI
(L)(m, r) 1 I(R)(n, k)} = inf{k | kD*, n 1 I(L)(PTI

(L)(m, r), k)} = PTI
(L)(n, PTI

(L)(m, r)).  

(NPT2) If m 1 u, n 1 v. So I(L)(v, k) 1 I(L)(n, k) for kD*. k0{k | kD*, u 1 I(L)(v, k)}, it can be 

concluded that u 1 I(L)(v, k0). Since m 1 u, and I(L)(v, k0) 1 I(L)(n, k0), m 1 I(L)(n, k0), namely k0{k | 

kD*, m 1 I(L)(n, k)}. Thus, {k | kD*, u 1 I(L)(v, k)} 1 {k | kD*, m 1 I(L)(n, k)}. Hence, inf{k | kD*, m 

1 I(L)(n, k)} 1 inf{k | kD*, u 1 I(L)(v, k)}, that is, PTI
(L)(m, n) 1 PTI

(L)(u, v). Likewise, we can prove that 

PTI
(L)(n, m) 1 PTI

(L)(v, u). 

(NPT3) PTI
(L)(1D*, m) = inf{k | kD*, 1D* 1 I(L)(m, k)} = inf{k | kD*, I(L)(m, k) = 1D*} = inf{k | kD*, m 

1 k} = m; PTI
(L) (m, 1D*) = inf{k | kD*, m 1 I(L)(1D*, k)} = inf{k | kD*, m 1 k} = m. 

Therefore PTI
(L) is a NPT, and in the same way, we can also show that PTI

(R) is a NPT. 

Theorem 4.13 If PT is a NPT on D*, so there is PT = PTI
(L) = PTI

(R). 
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Proof. m, nD*, from Definitions 4.2 and 4.11, we get PTI
(L) (m, n) = inf{k | kD*, m 1 I(L) (n, 

k)} = inf{k | kD*, PT(m, n) 1 k } = PT(m, n) and PTI
(R)(m, n) = inf{k | kD*, n 1 I(R)(m, k)} = inf{k | 

kD*, PT(m, n) 1 k } = PT(m, n). Thus, PT = PTI
(L) = PTI

(R). 

Definition 4.14 ([21]) An algebraic system S=(S; , , , , ⇝ , 0, 1) is said to be a NCRL, m, n, 

rS, if S satisfies: 

(1) (S; , , 0, 1) be a bounded lattice on S, its corresponding order is , 0 is minimal element 

and 1 is maximal element of S; 

(2) (S; , 1) be non-commutative monoid and its neutral element is 1; 

(3) mn  r  m  nr  n  m⇝ r. 

Sections 3 and 4 focus on NPTs and their NRIs. Next, a NCRL is established, which is 

constructed from three neutrosophic logic operators. 

Theorem 4.15 Suppose (D*; 1, 1, c, 0D*, 1D*) is a system and PT is a NPT on D*. m, nD*, 

define the following three equations: 

mn = PT(m, n); mn = IPT(L)(m, n); m⇝n = IPT(R)(m, n). 

Then, (D*; 1, 1, , , ⇝ , 0D*, 1D*) is NCRL. 

Proof. First, by Proposition 2.9, we get that (D*; 1, 1, 0D*, 1D*) be a bounded lattice on D*. 

Second, the fact that (D*; , 1D*) is non-commutative monoid is proved. (1) m1D* = inf{k | 

kD*, m 1 I(L)(1D*, k)} = inf{k | kD*, m 1 k} = m and 1D*m = inf{k | kD*, 1D* 1 I(L)(m, k)} = inf{k | 

kD*, I(L)(m, k) = 1D*} = inf{k | kD*, m 1 k} = m, i.e. mD*, the equation 1D*m = m1D* = m is true. 

(2) Theorem 4.13 proves that PTI
(L) = PT is a NPT. Thus, PT does not satisfy the commutative law. (3) 

From (NPT1) of Definition 3.1,  satisfies the associative law. 

Finally, m, n, kD*, we prove the below equivalence relation 

mn 1 k  m  nk  n  m⇝ k 

holds. On the one hand, by what we know about , there are mn = inf{k | kD*, m 1 I(L)(n, k)}, 

mn 1 k. Thus, there are n  m⇝ k and m  nk. On the other hand, by what we know about , we 

get nk = sup{t | tD*, PT(t, n) 1 k}. Since m  nk, therefore mn 1 k. Likewise, there are n  m⇝

kmn 1 k. 

Thus, (D*; 1, 1, , , ⇝ , 0D*, 1D*) is NCRL. 

5. Conclusions  

Neutrosophic logic is an important part of NS theory. Common neutrosophic logic operators 

are: NPTs, NPSs NIs, NNs and so on. On the basis of complete lattice (D*; 1), We define NPTs and 

NPSs. In addition, DMNTs are defined, describing that NPT and NPS are dual with regard to the 

standard NN. Then, on the basis of complete lattice (D*; 1), the concepts of NRI and NRCI is given, 

and we present a theorem which states that residual operators derived by NPTs must be NIs, and 

further study their fundamental properties. Finally, we provide a method to get NPT from NI and 

construct NCRLs. In the future, we will investigate neutrosophic inference methods and 

neutrosophic pseudo overlap functions based on some new results [22-36], and further study their 

fundamental properties. 
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