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Abstract:

Structural optimization in construction has attracted significant attention to sustainable
development. In reality, structural model is associated with different imprecise parameters. Several
factors influence the uncertain framework for optimization structural models. To tackle such
structural difficulties, an effective design and optimization configuration is required. In this
proposed work, we have created a solution procedure to solve multi objective problems under
neutrosophic-hesitant fuzzy (NHF) environment in context of structural design. The suggested
procedure is based on the NHF decision-making set that assigns a set of potential values for each
objective function’s membership, non-membership, and indeterminacy degrees in a NHF
environment. The efficiency, applicability, and utility of the proposed technique are presented here
by using a three-bar truss design model.

Keywords- Multi objective structural problem; Hesitant fuzzy optimization; Neotrosophic-hesitant
fuzzy optimization; Pareto optimal solution; Indeterminacy hesitant membership function

1. Introduction

When it comes to tackling optimization challenges, optimization techniques have a big impact
in real life. When dealing with real-life situations with various problems, various sorts of
mathematical models exist. As a result, the mathematical models are formed with single or multi
objective function/functions along with a branch of constraints. In multi-objective optimization
problem (MOOP), objective functions are conflicting in nature. The objective functions of this
mathematical models are maximization type or minimization type or mixed type. In this type of
problems, it is very difficult to identify the suitable feasible solutions. That is why, decision maker
(DM) prefers a compromise programming (CP) approach that currently meets each goal function is
available. As a result, the idea of CP approach has a significant impact on the global optimality
criterion. A large amount of research has been presented in the past era on the topic of MOOP. In
MOOP, the difficult task as a DM is to discover an appropriate compromised solution set from a set
of possible Pareto-optimal solutions.

Due to local and global optimal, multi-objective nonlinear programming problem (MONLPP) is
a complex problem as compare to linear multi-objective programming problem. Professor Zadeh
pioneered [2] the new idea of fuzzy set (FS) to address the uncertainty in 1965 and Professor
Zimmermann [4] proposed a fuzzy programming technique (FPT) for several objective
mathematical problem based on fuzzy set. The FPT was only concerned with the degree of
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acceptance, but it may be required to address the function of rejection in order to obtain more
practical outcomes.

The FS (fuzzy set) theory was used in structural model as well. A new concept was
implemented a sequence of optimal solution (OS) for structure with fuzzy constraints based on
alpha-cut method by Wang et al. [3]. Rao [5] discussed a four-bar generating mechanism with a
fuzzy goal function and fuzzy constraints. Yeh et al. [6] created structural optimization using
imprecise parameters. Xu [7] solved a nonlinear structural model using fuzzy two-phase method.
Shih et al. [8,9] suggested a novel approach to discover a unique solution using alpha-cut
approaches of the 1 and 2 types to the structural model in fuzzy environment farther they had
developed another alternative approach based on alpha-cut method to obtain the OS of a nonlinear
structural problem. Dey et al. [10] addressed multi-objective structural design issues using
generalized fuzzy programming. Also, a computational algorithm was developed by Dey et al. [11]
for a structural model with three bar using basic triangular norm in fuzzy environment. The
extension of ordinary fuzzy set (FS) or hesitant fuzzy set (HFS) was introduced by Torra et al. [12]. It
provided an opportunity to allow more feasible values of an element to a set. The potential values of
an element in HES is a subinterval of [0,1]. Many research scholars have recently investigated HFSs
and used them in different domains of research. In 2016, a computational programming technique
based on HFS was developed by G.L. Xu, et al. [13] for hybrid MCGDM model. In the same domain
another paper was published in 2017 by S.-P. Wan [14] based on hesitant fuzzy programming
method. L. Dymova, [15] created a user-friendly computer application using a fuzzy MCDM
technique. Farther, they [16] had applied this fuzzy MCDM technique in a rolled-steel heat treatment
metallurgical plant in 2021. But in structural design optimization, hesitant fuzzy set is likewise not
extensively utilized.

In 1986 [17], intuitionistic fuzzy set (IFS) was developed by Prof. Atanassov. IFS is an advanced
version of FS. In FS, the membership degree is only consideration whereas in IFS, both the level of
membership and non-membership are considered with the condition that the sum both membership
values is not greater than one. P. P. Angelov [18] used the optimization for the first time in a
widespread intuitionist fuzzy environment in 1997. B. Singh et al. [19] proposed an intuitionistic
fuzzy optimization technique based on structural model. M. Sarkar et al. [20] proposed a new
computational algorithm based on triangular-norm and triangular-conorm in intuitionistic fuzzy
environment to solve a welded beam design issue. Kabiraj ef al. [21] gave the utility of fuzzy logic
has been used in linear programming in 2019. In 2019, S.F.Zhang, et al. [22] proposed GRA based
IFMCGDM method for personnel selection. Kizilaslan et al. [23] proposed intuitionistic fuzzy
function approaches utilizing ordinary least square estimation rather than ridge regression in 2019.
Ahmadini and Ahmad [24] proposed intuitionistic fuzzy goal programming with preference
relations to address a multi-objective problem in 2021. A. Ebrahimnejad, [25] introduced a novel
approach to solve data envelopment analysis (DEA) models characterized by intuitionistic fuzzy
data. Recently, many researchers have worked with intuitionistic hesitant fuzzy (IHF) sets and
implemented them to many domains. S.K Bharati [26] in 2018 introduced hesitant fuzzy algorithm to
solve multi objective linear optimization problem (MOLOP).K.B. Shailendra, [27] introduced IHF
algorithm for MOOP in 2021. But in structural design optimization, IHF set is likewise not
extensively utilized. The concept of neutrosophic theory was revealed to address the importance of
indeterminacy in real life. In generalized FS and IFS were discussed about membership and
non-membership function only but there is no information about the indeterminacy. New concept of
neutrosophic theory was presented in front of researcher by Prof. Smarandache in 1995 [28], which is
a dialectics extension. The neutrosophic set (NS) can manage both uncertain and partial information,
whereas IFSs can only manage partial information. The word neutrosophic is derived from two
words: neutron (neutral in French) and Sophia (skill or wisdom in Greek). The NS is described by
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using three functions namely belonging (truth) function, belonging to a certain point
(indeterminacy) function, and not belonging (falsity) function. The Neutrosophical Programming
Approach (NPA), based on NS, was implemented, and is now widely utilized in real-world
applications. M. Sarkar et al. [35] applied neutrosophic fuzzy numbers in the area of structural
design and application. Abdel-Basset et al. [1] offered a new technique for solving a completely
neutral linear programming problem (LPP) that applies to production planning. In 2018, Ye et al.
[29] suggested an effective technique for addressing the issue of non-linear programming of the
neutrosophic number in neutrosophic numerical environments. An approach for solving MONLPPs
in IFS was introduced by Rani et al. [39]. The develop method has been was compared with other
existing methods that are already includes. Zhou and Xu [30] developed a novel portfolio selection
and investment technique at risk in a widespread and faltering environment. All the sets mentioned
above have their limits with respect to the presence of each component in the set. A new
optimization technique based on a single-valued neutrosophic hesitant fuzzy set (SVNHFES) was
proposed by Ahmad et al. [31]. This set includes the concept of truth hesitancy degrees, falsity
hesitant degrees as well as indeterminacy hesitant degrees for various objective functions. The
neutrosophic set of indeterminacy concepts examines potential future lines of research in the field of
real-life application. Many researchers have contributed to the field of neutrosophic optimization
techniques and real-world applications, including [36, 38]. In 2020, F. Ahmad, et al. [37] were
developed a computational approach based on modified neutrosophic fuzzy set (NFS) to optimize a
supply chain decision making problem. According to Giri et al. [40], TOPSIS for MADM has been
extended through the use of single valued neutrosophic fuzzy sets (SVNFS). B. Tanuwijaya et al [41]
developed fuzzy time series (FTS) model based on SVNESs in 2020. In 2021, F. Ahmad [42] proposed
interactive NPA based on Type-2 fuzzy in domain supplier selection problem. In order to tackle a PP
issue, Khan et al. [43] studied the IVTN value and employed NS and IFS approach. S. Gupta et al [44]
introduced Dash diet model and optimized the calorie consumption and minimized diet cost under
neutrosophic goal programming (NGP). The multi objective NGP was used to solve the diet model,
satisfy daily nutrient needs, and compared various approaches.

A wide range of methods have been used in the literature in order to solve the uncertainty in
structural design problems, such as fuzzy, intuitionistic fuzzy and neutrosophic fuzzy
optimization. But combination with HFS and NFS is very rare in literature survey in context of
structural design.

This research is prompted by NHF emerging as a novel field of study with the capacity to attract the
individuals responsible for making decisions. The subsequent are the impacts of the study:
e It serves as a supplementary addition to the existing literature on MOSOP.
e A case study is presented in which solution processes for MOSOP methodologies are
documented.
e In this work, a novel technique based on NHF under various membership functions has
been used.

e The method is contrasted with HFS and IHFS, and the findings indicate that the proposed study
is effective.

e The proposed neutrosophic hesitant fuzzy programming approaches (NHFPAs) utilizing
the neutrosophic fuzzy decision set is quite simple and easy.

The synopsis of rest of the manuscript is highlighted below: Section 2: we have highlighted the
multi-objective structural optimization model (MOSOM). In section 3, we give some basic concepts
about FS, IFS, SVNS, HFS, and SVNHEFS. Section 4 proposes a computational algorithm to solve a
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MOOP using neutrosophic hesitant fuzzy optimization technique (NHFOT). Section 5 outlines the
approach for resolving the multi-objective structural model using NHFOT. An illustrative example
is studies in section 6 which reflects the applicability and validity of the proposed method
effectively. Finally, section 7 highlights the concluding remarks and finding based on the present
work.

2. Mathematical Form of Multi-Objective Structural Optimization Problem (MOSOP)

In structural model, the basic parameters of a bar truss structure system (such as Young's
modulus, material density, maximum permissible stress, and so on) are established, and the
objective is to find the cross section area of the bar truss so that we can find the lightest weight of the
structure and smallest node displacement under loading condition.

The MOSOP is formulated as follows:

Minimize W (A)
Minimize p(A) )
st o(A)<[o] @
Ae [Anin ' Anax]

where n number design variables A=[A, A,,....., A, ]T are considered. The design parameters are the

n
cross-sectional area of the truss bar, the total structural weight isW (A) = Zi:1§i AL, the deflection of

loaded joint is p(A), length of bar= |, cross section area= A, and the i"" group bars density=5, ,
respectively. Under different conditions, the stress constraint=0(A) and maximum allowable stress

of the group bars=[0], cross section area (minimum)= A _ and cross section area (maximum)

= A, respectively.
3. Preliminaries

Definition 1. [32] (Neutrosophic Set (NS)) Assume, U be the universe discourse such thatxeU . A

NS A in U is characterized by the membership functions as, truth Tf; (X) , indeterminacy
If; (X) and a falsity Ff; (X)and is denoted by the following form:
A={(x.Tf, (X), I (x),Ff, (x)):xeU}
Where the subsets Tf; (x), If;(X) and Ff, () are truth, indeterminacy and falsity membership
function lies in E =]0",1°[ ,also given as, Tf; (X):U > E,If, (x):U > E,and Ff, (x):U > E .There is
no restriction on the sum of Tf; (x), If; (X)and Ff; (X),s0 we have,
0" <supTf, (x)+1f; (x)+sup Ff, (x) <3

Definition 2. [32] Let U be a universe set. A single valued neutrosophic set (SVNS) A over U is
given by A={(x,Tf (x), If, (x),Ff, (x)):xeU}

WhereTf; (x), If ; (X) and Ff; (X) liesin [0,1]and 0<Tf; (x)+1f; (x)+Ff; (X) <3 foreveryxeU .
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Definition 3. [33] (Hesitant Fuzzy Set (HFS) Torra et al. [12], created a new tool called HESs and
which allow the acceptance degree to the set of various possible values. The HES is as follows:

Let U be a universe set, then a HFS on U is expressed asY ={< XJ,hY( )>|x €U}, where

h, (xj )is set of possible degree of acceptance of the element x, €U in [0,1] .Also, we callh, (Xj ), a

hesitant fuzzy element.

Definition 4. [34] (SVNHEFS) Let's say there's a fixed setU ; an SVNHEFS on U is represented
as: S ={(X,TfY (X),IfY~ (X),Fff(x)):XeU} where set of possible values of Tf,(x), If,(x) and
Ff, (x)are lies in [0,1] ,indicating the possible truth, indeterminacy hesitant degree of acceptance
and the falsehood hesitant degree of rejection of the element xeU to the set $ accordingly with
the conditions 0< 4,7 <1 and 0<4",k",7" <3, where ueTf,(x),xelf,(X),reFf, (x)

with " eTfC+(X):U#€Tf max{s}, k" e If," (x)=U o max{x}, 7" e Ff,’ (x )=Uyé,:f max{y} for all
xeU.

For ease, the three-tuple S; ={Tf,(x),If;(x),Ff, (X} is known as a single-valued neutrosophic

Ke If

hesitant fuzzy element (SVNHEFE) or triple hesitant fuzzy element.

According to Definition 6, the SVNHFS has three types of membership functions: truth TfA(X) ,

indeterminacy IfA(X) and a falsity FfA(X)membership function, resulting in a more dependable

structure and providing flexible options to allocate values for every element in the field, and may
handle three types of uncertainty at the same time. As a result, FSs, IFSs, SVNFSs, and HFSs can be
considered as specific instances of SVNHFSs.([33]

( Single valued neutrosophic hesitant fuzzy set )

'_—l‘ lﬁ

( Hesitant fuzzy set > C Single valued neutrosophic set )

Intuitionistic fuzzy set

< Fuzzy set )

I_v

( Classical set

Figure 1: Dialogistic coverage of classical set to SVNHFS.

Definition 5. [34] Let there be two SVNHFSs, Sv} and S in a universal setU . Then the union of

S\G and SY~2 is described as:
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Th, e (Th, OTH, ):Th, = max (min {Tf, UTF, }),
S, LS, =1 Ify e (If, UIf, ):1f, < min(max {1f, LIf, }), @)

Vi Yz

Ff, < (Ff, UFf, ):Ff, <min(max{Ff, OFf,})

Definition 6. [34] Let there be two SVNHFSs, SY~1 and S; in a universal set U . Then the

intersection of SY~1 and SV~2 is described as:

Tt (Tf, AT, ):Th, = min(max(Tf, AT, }),
5, NS, =1 If, & (1, NI, ) 1f, <max(min{1f, AIF, }), @)
Ff, < (Ff, N, ): Ff, <max(min {Ff, ~Ff, })

Definition 7. Assume that there is a set of feasible solution A of MOSOP (1). Then a point X
taken into consideration to be a Pareto optimal solution of (1) iff there is no such point X € A such

that O, (X')>0,(X) ¥k aswellas O (X") >0, (X)for as a minimumKk .

Definition 8. A point X" € A is called a weak Pareto OS of (1) iff there is not a point X € A such
that O, (X')>0,(x) vk.

4. Proposed Algorithm
4.1 To Solve MONLPPs using NHFPA

One may take a MONLPP with k objectives.

Min. O(x)=[0;(x), 0, (X),reO (X) ] (4)
Subject to

xeU :{XEU”|gij(x)$or:or2bj,j:1tomeN}ar1d|_i <x <u, (i=1toneN,natural no.)

Zimmermann [4] demonstrated that the MOOP can be resolved using fuzzy programming techniques.
The MONLPP is solved using the procedures listed below.

Step 1: The MONLPP (4) may be solved as a single objective nonlinear programming problem
(SONLPP) by focusing on one objective at a time and overlooking the other objective goals which are
called ideal solutions.

Step 2: The result achieved in step 1, the pay-off matrix may be created by identifying the
corresponding listed values for every goal in the following manner:
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1 k
x |O(%) Oi(x) - O(x)
X, l*(xz) O;(x2 :<x2)
X, Of(xk) O;(xk) O:(xk)
In this case, the ideal solutions are X, X, ........... , X, of the objective functions Ol(X) ,0, (X),....., Oy (X)

accordingly.

Step-3: In each column the highest possible value U, denotes upper tolerance, or upper bound, for
the k" objective function Oy (X) , where U, =max {ok (Xl),Ok (x2 ) ,,,,,, ,Oy (Xk )} and the
minimum value of each column L, gives lower tolerance or lower limit for the k" goal

function Oy (X), where Lk=min{ok(x1),ok(x2), ...... O (X )} for k=12,...K.

Uy =U,,L =L, for truth membership
L =U; -s,U, =U] for indeterminacy membership
Uy =Uy, L =L +t, for falsity membership
Where 0<s <(U,-L,) and 0<t, <(U,—L,) are specific real numbers in (0,1).
Step-4: Under a NHF environment, we can now define the various hesitant membership functions as

linear, exponential, and hyperbolic. Each of them is specified for the membership functions truth,
uncertainty, and falsehood, which appears to be more accurate.

4.1.1. Linear-type hesitant membership functions approach (LTHMFA)

The linear type truth membership Tkai (0,(x)) , indeterminacy membership |fk|“ (O, (x)) and a

falsehood membership kaL‘ (O, (X)) functions under NHF context can be described as below

For truth hesitant fuzzy membership functions:

1 if O, (x)< L
(V) -(0.0) |
ThE (0, (X)) =4 | 22| ifL] <O, (x)<U]
(UE) (%)
0 if O (x)>U;
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—_
[
~

=~ o [~
|
—
0
~
>
o
~—~—

|

0 if O, (x)>U]
1 if O (x)< L}
T, (Ok( )) {(L(J:JE)TE?‘LEX;) } ifL, <O, ( )<UkT

1 if O, (X) <L

It (0, (x))=1x {%%ﬂ} if L, <O, (x)<Uy
0 if O (x)=U,

1 if O, (X) < Ly

It (0, (x))=1x, {M] if Ly <O, (x)<U,

0 if O, (x)=U,

1 if O, (X) < L,

0 if O (x)=U,

if L, <O, (x)<U,

For Falsehood hesitant fuzzy membership functions

0 if O, (x) <L}
uf) -(o, .
Ff e (Ok (X)) =N {((UZ)—(LE))!] if L: <O ()= U“F
1 if O, (x)>U/
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0 if O, (x) < Lf

1 (0,00)- {%} 15 <0, <]
1 if O, (x)>U/
0 if O, (x) <L}

U ) -(0,(x)
oo S0
1 if 0,(x)>U

} if L <O, (x)<U;

The following is a mathematical explanation of objective functions.

Max m|n Tf5 (O, (x))

Max mln If (O, (x)) (5)

2,.K

(i=12,.....,n), subject to all constraints of (4).

Assume that Tf" (O, (X)) 2 s, If* (O, (x)) =& and Ff* (O (X)) <7, (i=12.....,n), for all k

Where the parametert >0. Utilizing additional variables s, x; and y,, the following problem (5)

can be transformed to the problem (6)

LTNHMFA M ax (ZM +> K, —Z}/ij
Subject to

W00 1, ., [ (0] }[
[ U5 }“l [ TTRTTAD R
(Uk')‘—(oux))'},( p [(Ué)‘—(oux))‘},( 5 [(Uk')‘—(oux))‘},(
( 11 /72 ( =2 Mn ( ="ns

U) (L) U) (1) U) (L)
(Uf)t_m] ”2( oy ) ” :

;)t _(Ok(x))t }Z,U )
(ui) -(5)

B
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1 =0, 1 =y, 0< g+ 16 + ¥, <3, MK Y, e(O,l) anda;, 5,4 €(0,1), for all (i =ltone N)
All the constraints of (4).

Theorem 1: There is only one OS (X', 4",x",»") of problem (6) (LTNHMFA) which is likewise an

efficient solution of (4) where " = ( YT u ) K= (K; VK ey K, ) and y = ( 2 7h ) )

Proof: Suppose that (x*, WK, 7*) be the only OS of problem (6) which is an inefficient to solving
the problem (4). Then there exist different feasible alternative X'(X' * X*) of the problem (4), so

that O, (X*)SOk (x') vk, O, (X*)<Ok (X') for at least onek .

o kand (U) ~(0.0)) _(Ud) =(0c(x))

Uiy -(L) -5 Uiy (L) =)

for at

Similarly, Mkax[w} < |\/|kax [M] and

Min[(uw—(ok(x*))‘}Minl(u:)‘—(om»‘} | Mm((ur)t—@k(xv)}Mm[(u:)‘—(ok<x'>>t]
L)L) L) ) L))

for at least one k

Now, assume that 4 = Mkax[

K*zMax[(U:)t—fok(x*g)‘] | K,zMaX[(u:)t—@k(x'))t] | Mm[(u:)‘—(ok(xv)t} .
S (s k
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A =Min U7 @60y )F _[(Ok (FX? )
(Ue) -()

( UK — ]/*) < ( u+r'— ;/') that implies the solution is not optimal which contradicts that

Then u <(<)u' , x <(<)x' and y >=(>)y’ which gives

(x*, 0K, 7*) is a unique OS of (6). As a result, it is a successful problem-solving strategy (6). Thus,

the proof is finished.

4.1.2. Exponential-type hesitant membership functions approach (ETHMFA)

The truth membership function of exponential type TkEi (O, (x)), indeterminacy membership of

exponential type |kE i (Ok (X)) and a falsehood membership of exponential type FkEi (Ok (X)) functions

under NHF context can be can be described as follows

For truth hesitant fuzzy membership functions:

T (O (X)) =4 14| 1—exp —y/{

T2 (0, (X)) =4 1, | 1—expi -

6 (0, (X)) =4 &, | 1—exp v/

It (O (X)) =1 | 1-exps -
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i if O, ()<L,
0 if O, (x)=Uy
1 ifO, (x)< L

I, (Ok (X)) =4k, |1—exp —W[MJ if Ll <O, (X) <u!

0 if O,(x)=U,

0 ifO, (x) < -
Ff (O (X)) =147, |1-exp —1//[ if Lf <O, (x)<U/
1 if O, (x)>UF

0 if O, (x) < LF

U
i (O (X)) =17, | 1-exp —V/{<< if Lf <O, (x) <Uf

1 if O, (x)>UF

0 if O, (x) <L

: [(u ) ~( om] . i
Ff& (O (X)) =17, |1—expy—w - if L, <O (x) <V,

1 if O(x)2U/
Where ¥ is the measure of ambiguity degree or shape parameter which designated by the DM.
Assume that T (O (X)) 2 #, 1 (O (X)) 2% and F& (O, (x))<x((i=1toneN)), for all k

Where the parametert >0. Utilizing additional variables 4, x; and 5, the given problem (5) can

be converted to (7).
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ETNHMFA  Max (Z,ui+zi:i(i—zi:}/i]

Subject to

{5

(W) -0 || |, CHRCIORIR
""“{”Xp{w W}} J””'ﬂl[lexp{'” WM

(Ur) -(.00) || | (U7) ~) || |

1= K024 = 7,0 g4+ +y, <3, 406,70 €(01) and e, 5,4 €(01), forall (i=1toneN)
All the constraints of (4).

Theorem 2: There is only one OS (X*, 0K, 7*) of problem (7) (ETNHMFA) which is likewise an
efficient solution for (4) where " :( YT yn) K —(Kl K yeeeens )and v (71* Vaseeneens 7/;)

Proof: Suppose that (X*, woK, 7*) be the only OS of (7) which is an inefficient to solving the
problem (4). Then there exist different feasible alternative X'’ ( X' # X*) of the problem (4), so that
O, (X*) <O, (x') ¥k and O, (X*) <O, (x') for atleast onek.

Therefore, 16Xp{l//[(u - " t}<1 exp{ y/[(u )t O (X) } V kand
(ue) -(1) (Ui)
1exp{w[%] <lexp{w[ -(O, (X) } for at least oneK .

=~ o
~—
“
|
—_—
O
~~
x
*
~
~——,
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Hence, Max[l exp{—y/[( T)I ( (X*))t ]} < Max[l—exp{—w(w]ﬂ,
J-(1) k (i) -(5)
Mﬁx(lexp{y/{ (X) ]}] 1exp{w{w(fj)£)t(—czkg)?)t}}} for at least one k
Similarly, Mkax(lexp{w{W]}J<ng{lexp{yx{w(i)):)t(—o(ﬁx)?)t}} and
(Ui ~(0.6)) (V1) ~(0.0))
Mﬁx(lexp{w[W]}]< fo[leXp{W[WJH for at least one k
- (U5) (@) [ |, (uF) -(Oux))
Again, I\/Lln{l—exp{—y/{ (Uf)t—(l_:)t J;]Mkm[l—exp{—y/[WJH,

Min[lexp {V/[(U: )t _t(ok (X*t))t ]H > Min[lexp { [MJ}] for at least onek
k (u8) (L) k (ur) =)

Now, assume that

. (Ui) -(00)) . (U1) - (0.00))
u o= Mﬁx(leXp{l// WJH and u' = Mﬂx{lexp{w[mjﬂr
K Max[lexp{y/ M } , K’Max{lexp{l//[(u"l)tt(—ok(x?)t}},
k (Ue) -(L) k (ue) -(L)

y*Min£1exp{l//{(U t *t ) } nd ﬁrMin[leXp{‘/’[MJH'
k CORCY k (U) (1)

~m
\_/—‘
|
—_—~
O
~~
>
N—r
~—

Then i < (<)u', k¥ <(<)x'and y =(>)y’ which gives (,u* +K — ]/*) < (,u' +K' - }/') that implies

the solution is not optimal which contradicts that (X*, 0K, 7*) is a unique OS of (7). As a result, it is

a successful problem-solving strategy (7). Thus, the proof is finished.

4.1.3. Hyperbolic-type hesitant membership functions approach (HTHMFA)

The truth membership function of hyperbolic type TkHi (O,(X), indeterminacy membership of

hyperbolic |kH "(0,(x)) and a falsity membership of hyperbolic FkHi (O, (X)) functions under NHF

context can be can be described as follows

For truth hesitant fuzzy membership functions:
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if O (x)< L

Th (0, (X)) =144 %%tanh{M(ok(x))‘]rk} if L <O, (x)<U]

if O, (x)=Uy

if O, (x)< L

Tf, " (Ok(X)): My %+%tanh{[%(ok(x))t}k} if L <O (x)<Uy

if O, (x)=Uy

if O, (x) <L

Th (O, (%)) =1 4, %Jr%tanh{w(ok(x))t}fk} if L <O, (x)<Ug

For indeterminacy hesitant fuzzy membership functions:

1

if O (x)=Uy

if O (X) <L

It (O (X)) =% %Jr%tanh{w(ok(x))‘}rk} if L, <O, (x)<U,

if O, (x)=Uy

if O (x) <L,

It (0, (x)) =1 x, %+%tanh{[w—(l_lk)t(0k(x))t}k} if Ll <0, (x)<U]

if O, (x)=>U,

if O, (x) < L

If (Ok (X)) =K, %+%tanh HM(Q (X))t]fk} if L, <O, (x)<U,

For Falsity hesitant fuzzy membership functions

if O,(x)=U,
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0 if O, (x) < Lf

Ff (0,(X)) =17 %Jr%tanh {(ok ) —w}k if L <O, (x)<U¢
1 if O, (x)=U/
0 if O, (x) < L

Ff (0,(X) =17, %+ %tanh {(Ok (x) —M}k if Ly <O (x) <US
1 if O, (x)>U/
0 if O, (x) < L

Ff (0,(0)) =17, %Jr%tanh {(Ok X)) —w] | L <O <Uf
1 if O, (x)=U/

where 7, = _5 is the measure of ambiguity degree or shape parameter which designated by

U -L
the DM. Assume that T, (O, (X)) u, 1" (O, (x)) =& and F/ (O, (x))<x((i=1toneN)), forall k

Where the parametert > 0. Utilizing additional variables 44, s, and y,, the given problem (5) can
be converted to the problem (8)

HTNHMFA  Max (Z,ui+zi:i(i—zi:}/i]

Subject to

o, %+%tanh [(Uk);(L -(0, (%) J } 2 th; A, —+;tanh [M‘(de))t]fk > My
e ; ;tanh [(Uk); -(0,(%)) 2 fhys By +;tanh{[—(Uk) ;(Lk)‘—(ok(X))‘}rk > K,
B %+%tanh [(Uk) ;(Lk —(0,(x)) } } 2Ky, B ;tanh [(Uk) ;F( ) (Ok(x))t}fk 2K,
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A %+%tanh [(Ok(x))t—MJrk <1 %+%tanh {(Ok(x))‘—w}k <7,

2 2
t t
1 1 ur) +(L
""ﬂ’n §+§tanh [(C)k(x))t —MJZ}( S}/n 2 ZKil/'li Zyi'ogﬂi + K+ <3 P
k.7 €(01) and @,f,4 (0), forall (i=1toneN) (8)

. All the constraints of (4).

Theorem 3: There is only one OS (X*, 0K, 7*) of problem (8) (HTNHMFA) which is likewise an

efficient solution for the issue (4) where :( Ly sy yeeeneeny 1 ) LK Z(KI,K; ey K ) and

¥ =(r P ?n) -

Proof: Suppose that (X*,,u*,/c*,y*) be the only OS of (8) which is an inefficient to solving the
problem (4). Then there exist different feasible alternative X'(X' #* X*) of (4), so that

Ok(x*)sOk(X’) vV k and Ok(x*)<0k(x’) for at least onek .

22 2 ) >

T\t T\! T\ T\
k and %+%tanh [w—(ok(x*))‘}k <%+%tanh {M—(ok(x'))‘}k for at

least onek .

Hence,

Max 1 +1tanh

T t T t
k|2 2 2 _(Ok(x*))t T« SMBX %+%tanh M_(Ok(x,))t (2"

T\t T\t T\ T\
Max %Jr%tanh w—(ok(x*))‘ 5 { | < Max %Jr%tanh w—(ok(x'))‘ .t | for

at least one k

Similarly,

Max %+%tanh [M—(Ok(x’k))ljrk < Max %+%tanh [M—(Ok(x'))t}k and
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u') (L) ) u') +(L
Max %+%tanh M—(Ok(x ))I T | < Max %+%tanh M—(OK(X')Y . t| for

at least one k.
Again

F F\! F F
Min %+%tanh (Ok(x*))t—w 7 (|2 Min %+%tanh (Ok(x'))t—w 7,

o (uR) + () UF) +(LF
Min %Jr%tanh (O, (x ))‘—w 5 { |>Min %Jr%tanh (Ok(x’))t—w 7.t | for

at least one k

Now, assume that

and

Thenu” <(<)u', « <(<)x'and y 2(>)y" which gives (,u* +K — }/*) < (,u' +K' - }/') that implies
the solution is not optimal which contradicts that (X*, UK, 7*) is a unique OS of (8). As a result, it is

a successful problem-solving strategy (8). Thus, the proof is finished.

A numerical example is given in Appendix A.
5.1. Solution procedure for MOSOP using NHFPA.

Step 1. The MOSOP (1) may be solved as a single objective by focusing on one objective at a time
subject to the constraints given. Determine the values of the decision variables (DVs) and goal
functions.
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Step 2. Calculate the values of the remaining objectives based on the values of these DVs.
Step 3. For the remaining objective functions, repeat Steps 1 and 2.

Step 4: Then, according to step 3, the pay-off matrix may be shown as follows:

W(A) (A
{ (K) » (Al)}
w(A) p(A)
Step 5: The upper and lower bounds are U, =ma {W (A)w (Az)} ;L= min{W (AY),w (A2 )} for
weight function W (A),where W (A)e[L,U,] and the upper and lower limits of objective are
u, = max{p(Al),p(Az)} L= min{p(Al),p(A2 )} for deflection function p(A),wherep(A)e[L,,U,]
are identified.
Step 6: Now the NHFPA for MOSOP with linear (or exponential or hyperbolic) accuracy,
uncertainty, and falsehood neutrosophic membership functions yield equivalent MONLPP as.
Max min T (W (A));Max min T (p(A));
Max min I% (W (A)), Max min 1% (p(A)); ©)
Min max F% (W (A)); Min max F* (p(A))

Subjectto  o(A)<[o,] Ae[Aun Am] =L H,E;i=12..n andxie[Li,Ui](izltoneN),

Now, by utilizing the arithmetic aggregation operator, the equation (9) can be expressed in the

subsequent manner:

n

to KA Ky S Yyt

Subject to

(
T (p(A) 2w, T (p(A)2 sy TZ (p(A)) 2 1, (10)

Fkgl(p(A))S;/l,FkQZ(p(A))S;/Z, ..... ,FQ"(p(A) <7,
Subjectto o (A)<[o,] Ae[Ayn A ] =L, H,, Eii=12,...,n andx <[1,,u,](i=1toneN).

A0, p,%,,7, €(0.1); , + K, +7, <3, 1, 2 i, 44, 2 7, VN
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Step 8: An appropriate mathematical programming algorithm can easily solve the above non-linear
programming problem (10).

5.2. Numerical solution of a three-bar truss MOSOP

A well-known planar truss framework of three bars is depicted in Figure 2 in order to decrease
the mass of the structure W (A, A,) and decrease the vertical bending at loading point o (A, A,)

of a statically loaded three-bar planar truss under stress o, (A, A,) limitations on each of the truss

elementsi=123.

Figure 2. Design of the three-bar planar truss

In the following way, the MOSOP may be expressed:

MinimizeW(A&,AZ)=§L(2\/§A1+ Az)’

Minimize p(ﬂ,%):ﬁ
P(N2A +A,
SUbjeCt to Gl(A,AZ)EWS[O{], (11)

Gz(ﬂ:%)iﬁg[ag]
M%%)Eﬁﬁ[aﬂ,
A e|:Amin,Aimax:|7i -12.

where, applied load= P ; material density=¢& , L= Length of each bar, [aiTJ =maximum tensile
stress limit for i =1,2. [036 ]=maximum compressive stress limit, Y = Young’s modulus, A1=

cross sections of bar 1 and bar 3 and A, = cross section of bar 2.

The input information for MOSOP (11) are as follows:
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P (applied force) = 20 KN, & ( material density )= 100 KN/m?*,L (bar length) = 1M, [o7](
maximum tensile stress limit for bars 1 and 3 )= 20 KN/m? ,[GC](maximum limit of compressive

stress for bar 2)=15 KN/m?, Y (Young's modulus)= 2 x 108 KN /m?, range of bar cross section
0.1x107*m? < A, A, <5x107*m?.

Solution: The tabulated values obtained in payoff matrix according to step 2 is as follows:

W(AA) P(AA)
A[2.638958 14.64102
A?(19.14214 1.656854

Here, W] =W, =19.12412, W' =W, =2.638958, g, = o, =14.64102, p| = p_=1.656854,

W, =19.12412—s, , W, =W =19.12412, p| =14.64102—s,, 9, = o, =14.64102,
WS =W =19.12412,W," =2.638958+1,, o = o =14.64102, p’ =1.656854 +t,

where, s;,t; €(19.12412-2.638958)and s,,t, € (14.64102 —1.656854) .

Using the Linear type hesitant membership functions approach (LTHMFA) (6) the problem (11)
equivalent to the following (12)

3 3 3
Maximize 5:%[2/4 +D K —Zyij (12)
i=1 i=1 i=1
Subject to

(2v2A +A) + ((19.14214)' —(2.63896) ) 11 /0.98 < (19.14214)
(2v2A + A, ) + ((19.14214) ~(2.63896)' ) 1, 10.99 < (19.14214)

(2v2A + A, )t + ((19.14214)‘ ~(2.63896) ) 4 <(19.14214)'

(2v2A +A) +(s,) ,/0.98 < (19.14214)
(2v2A +A,) +(s,) x,/0.99 < (19.14214)

(2v2A +A) +(s,) &, <(19.14214)

(2v2A + A,) ~(2.63896) ~(t,)' <((19.14214)' - (2.63896) ~ (t,)'),/0.98
(2v2A + A, ) —(2.63896) —(t,)' <((19.14214)' —(2.63896) (t,)'),/0.99

(2J§A + Az)t ~(2.63896) —(t,) < ((19.14214)‘ ~(2.63896) —(t,) )}/3
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(20/(A +\/5A2))l +((14.64102) ~(1.65685)' ) 1, /0.98 < (14.64102)
(20/(A1 +\/§A2))t +((14.64102)t —(1.65685) ) 44, 10.99 < (14.64102)

(20/(A+2A, ))t +((14.64102)' - (1.65685) ) 1, < (14.64102)'

(20/(A1 +\/§A2))t +(s,) x,/0.98 < (14.64102)'
(20/(A+ \/EAZ))t +(s,) x,/0.99 < (14.64102)'
(20/(A +«/§A2))t +(s,) K, <(14.64102)'

(207(A +2A, ))l ~(1.65685) (1, ) <((14.64102)' —(1.65685)'-(t, ) ) 7,/0.98

I/\

(20/(A1+\/§A2))1—(1.65685)‘-(t2) ((14 64102) (1.65685)‘-(t2)t)y2/0.99

(201(A +2A, ))‘ - (1.65685) -(t,)' <((14.64102)' - (1.65685) -(1,)') 4

2K 2=y Ky <3, 00K 6(0,1) for i =1, 2,3 and all the constraints of (11).

Using the Exponential type hesitant membership functions approach (ETHMFA) (7) the problem

(11) equivalent to the following (13)

Maximize 5:%[23:/4 +23:1<i —iyij

i=1 i=1 i=1

Subject to
(2v2A +A,) -((19.14214) - (2.63896) ) In( —Oij <(19.14214)
(2\/§A1+A2)‘—((19.14214)‘—(2.63896t In| 1-2 o j <(19.14214)'

(22 + A,) —((19.14214)' — (2.63896) )In(1- 1z,)/ y < (19.14214)

(ZJ_A+AZ) + In[
(ZJ_A+AZ) +( In[
(ZJ—A1+AZ) +(s,) IN(1-1, )1y < (19.14214)'

j/ <(19. 14214

j <(19. 14214

(13)
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(2v2A + AZ)t —(2.63896) —(t,) < ((19.14214)t —(2.63896) —(t,)' )(— |n(1 9 8)/1//)

)

9
(2\/§Al + Az)t ~(2.63896) —(t,) < ((19.14214)l ~(2.63896) —(g)‘)(—ln(l—yg)/ v)

(2v2A + AZ)t ~(2.63896)' -(t,)' <((19.14214)' - (2.63896) (1, )(— |n(1

(20/(A +2A, ))t ~((14.64102)' —(1.65685) ) In [1—%}/91/ <(14.64102)'
(20/(A +2A, ))t ~((14.64102)' ~ (1.65685) | n (1-%)/51/ <(14.64102)

(20/(A +V2A, ))t ~((14.64102)' - (1.65685)' ) In(1- 1)/ < (14.64102)

(201(A +2A,)) +(5) n{1-7
(20/(A1+\/§A2)) + In( 5 o5
(20 (AL“/_AQ)) +(s,) In(L- )/ v <(14.64102)

j/l// (14. 64102

j 14 64102

(201(A +V2A,)) ~(Le5685) (1, ) < (14.64102)' (1.65685) (1 >‘)[—'“[1— %M
(20/(A ++2A, ))‘ ~(1.65685)'-(t, )' <((14.64102)' —(1.65685) -(t, ) )(_m (1—&]/1//}
(20/(A +V2A,)) - (1.65685) -(t,)' <((14.64102)' - (1.65685) (t,) ) (~In(1-7)/w)

B2 Z Y 0+, <3, 06,7, €(01) for (i

=1toneN ) and all the constraints of (11).

Using the Hyperbolic type hesitant membership functions approach (HTHMFA) (8) the problem (11)
equivalent to the following (14)

Maximize 5:%[23:;4 +i/<i —iyij (14)

Subject to

(2V2A +A,) 7, + tanh” [2_—“1—1j < ((29.14214) +(2.63896)')

2 2 z-W A t t
(2v2A +A,) 5, +tanh” (r’ég—ljs ?f’((19.14214) +(2:63896) |

(2v2A +A,) 7, +tanh ™ (241, -1) < TWZ(A) ((29.14214)' +(2.63896) |
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(2\/'A1+A2) T +tanhl(%—l )(2x(19.14214)‘—(sl)‘)

(2*/_Aa+Az) Ty +tanh ™ (%—1 % (2x(19.14214) ~(s,)')

(2V2A +A,) 7, +tanh™ (25, -1) < 212 (2x(19.14214)' ~(s,)')

t Tw(n) t t
(2V2A +A,) 7,y ~tanh™ (0 % j 2‘ ((19.14214) +(2.63896) +(t,) )
(2v2A +A,) 7, ~tanh ( j TWZ(A 19.14214)' +(2.63896) +(t,)')

(2V2A +A,) 7, ~tanh ™ (27, ~1) < WZA ((19.14214)' +(2.63896) +(,)')

(201(A +V28,)) 7,1, +tanh ( ) 4 (14.64102)' +(1.65685) )
2

(20/(Al+x/§A2))trp(A)+tanh ( )+ (1.65685) )

(20/(A++2 Az))‘r +tanh ™ (24, -1) < 2“ ((1464102) +(1.65685) )

(20/(A +\/§A2))I 7 +tanh ( js T”“‘) x(14.64102) (s, ) )

|_\

(201(A +2A, ))l 7 +tanh™ ( j < T"(A x(14.64102) (s, ))

(20/(A +VZA,)) 7, + tanh™ (26, -1) < "2‘\ (2x(14.64102) ~(s, ) )

T

(20/(A ++2A, ))t 7 —tanh™ (% —1) <22 ((24.64102)' +(1.65685)' + (t,)')
(20/(A +2A, ))t 7, —tanh™ (% —1] < T";) ((14.64102)' + (1.65685)' + (t,)')
T

p;) ((14.64102)' + (1.65685)' + (t,)')

(ZOI(A1 +2A, ))t 7, ~tanh™ (27, 1) <

6 6

Where ¢, = and ¢ =
19.14214 —2.638958 2 14.64102 —1.656854

M= =Y, K+ <3, 10K 6(0,1) for (i =1ltone N)and all the constraints of (11).

On solving the neutrosophic hesitant optimization model (12), (13) and (14) the solution outcomes are

outlined in Table 2 and Table 3.
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Table 1. Input data for MOSOP (11)
P (KN)  §(KN/m?) L [ J(KN/M) [0 ] (KN/m?) Y (KN/m?) AT (107m’)
i L h .
(Applied (Material (Length) (maximum (maximum (Young’s and
load) . limit of . max (174 2
density) i limit of modulus) A (10 m )
tensile )
stress) compressive (Cross
stress) section of
bars)
A™ =0.1
20 100 1 20 15 2x10° A™ =5
Azmin =01
Azmax — 5

A Comparative result of MOSOP (11) on basis of different membership function is given in table 2.

Table 2: A comparative optimal results on structural weight and deflection for t=2

Membership Methods

A x10™*m? A, x107*m? W(A ANO’KN  p(A,A)0"m
functions
Linear Type ~ FO [10] 0.5995887 3.789761 5.485654 3.356200
IFO [45] 0.5766526 3.694181 5.325201 3.447673
NFO 0.581611 3.462786 5.140011 3.628012
Proposed
0.5932745 3.391146 5.069180 3.711209
NHFT
Exponential ~ FO 0.5985788 3.779858 5.472895 3.364678
Type IFO 0.5765578 3.678758 5.309510 3.460728
NFO 0.5965065 3.437476 5.124651 3.664459
Proposed
0.5934251 3.399846 5.078306 3.702652
NHFT
Hyperbolic ~ FO 0.8535467 5.000000 7.414195 2.523782
Type IFO 0.8354725 5.000000 7.363073 2.529551
NFO 0.7994567 5.000000 7.261205 2.541127
Proposed
0.7934604 5.000000 7.244245 2.543064
NHFT

FO: Fuzzy Optimization; IFO: Intuitionistic Fuzzy Optimization; NFO: Neutrosophic fuzzy optimization

A comparative analysis for MOSOP based on several techniques using different membership

functions as linear, exponential, hyperbolic types are shown in the Table 2. For all membership

functions, it is obvious that the objective values are much superior to other current methods.

Furthermore, the proposed NHFT performance measurements for different membership functions

Sanjoy Biswas, Samir Dey; ; Neutrosophic Hesitant Fuzzy Technique and Its Application Structural Design



Neutrosophic Sets and Systems, Vol. 57, 2023 101

may be represented as Hyperbolic>Exponential>Linear. (9.787309 > 8.947535 > 8.780389(sum of
weight and deflection)). However, the maximum acceptance degree of our suggested NHFT

approach is better attained, demonstrating its superiority over other existing methods.

Table 3: Result comparison with minimizing the indeterminacy membership and maximizing the

indeterminacy membership under proposed method at t=2

Membership A x10™*m? A x10*m’ W(A,ANOPKN  p(A,A)OTm

functions
Maximize Linear 0.5932745 3.391146 5.069180 3.711209
indeterminacy ~ Exponential ~ 0.5934251 3.399846 5.078306 3.702652
membership Hyperbolic 0.7934604 5.000000 7.244245 2.543064
Minimize Linear 0.5925640 3.350599 5.026623 3.751623
indeterminacy ~ Exponential  0.5927716 3.362361 5.038972 3.739808
membership Hyperbolic 0.7942572 5.000000 7.246499 2.542807

The comparison of proposed method under maximize and minimize indeterminacy
membership function are displayed in the Table 3. From the above table, it is evident that the
objective values under maximizing the indeterminacy membership are quite better than minimizing
the indeterminacy membership under proposed method. However, our suggested approach's
highest attainment of acceptance level is more effectively reached and demonstrates its superiority

over reducing uncertainty membership level.

Table 4: Optimal results of different acceptance tolerance on Structural Weight and Deflection for t=2

Acceptance Membership A x 107 m? A, x 10*m?>  W(A,A)0°KN p(A,A)10"m
tolerance functions

51=0.96, Linear 05932745  3.391145  5.069179 3.711208
:'2:8-;3' Exponential 05928106  3.364578 5.041298 3.737591
086 Hyperbolic 07943072 5.000000  7.246640 2.542790
51=0.95, Linear 05929295  3.371356  5.048413 3.730824
if:g:;gl’ Exponential 05929295  3.371356  5.048414 3.730824
£:=0.86 Hyperbolic 0.7934604  5.000000 7.244245 2.543064

5.3 Sensitivity Analysis

A comparative study for MOSOP based on various acceptance tolerances was conducted using
the suggested NHFP approach using linear, exponential, and hyperbolic membership functions. The
compromise solution based on various membership functions is presented in Table 2. This result is
showing sensitivity in Table 4 with different tolerances. It also shows that the neutrosophic
optimization technique with exponential membership functions gives the lightest structural weight
and the hyperbolic membership functions gives the least deflection at loading point.
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6. Conclusion and Future Research Scope

We developed a MOSOM in a NHF fuzzy environment in this article. A computational
algorithm for solving multi-objective structural models using neutrosophic hesitant fuzzy
optimization has been developed. We have discussed a comparative study to identify the best
optimal result using different membership functions. A three-bar truss numerical example, it shows
that exponential membership function gives lightest structural weight whereas hyperbolic
membership function gives least deflection in loading point. This method is simple and easy to use.

Our proposed approach might be used in the following fields of research:

o Our proposed method may be used in linear optimization problems with hesitantly and
uncertainty.

o It may use in real life decision making of multi objective transportations and assignment
problems with interval values.

o It can be expanded to handle issues involving multi objective fractional programming.

o  For better decision making, it might be applied in game theory as well as goal
programming problem with uncertainty and hesitation.

o It may be implemented in multi objective stochastic linear programming problem.
Our suggested computational technique can be further enhanced for the agricultural, industrial and
health management as well, and it may be successfully applied in the variety of field like aircraft
control system development, chemical engineering where in multiple objectives with multiple

objectives, supply chain management, and industrial neural network architecture.
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Appendix A

Experimental Study

To demonstrate the effectiveness and validity of the suggested approach, we illustrate the numerical
instance of formulating a MONLPP as presented below:
M;:  Minimize f,(x)=x"X,’

Minimize f,(x) = 2x7x,°

st X +X% <1Lx,X, =>0.
By solving each objective function separately as stated in (M, ), we obtain the subsequent optimal
solution, lower and upper limit for each objective. X' =(0.333,0.667), X* =(0.4,0.6) along with
L, =6.75U, =6.94,L, =57.87and U, =60.75.
Linear type membership functions

For f,: The membership functions of first objective as.
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T <X1_1X2_2 ) =

T (xl‘lxz‘2 ) =

TR (%)=

I (X%, ) = 0.98{

It (%% =

It (x7%?) =

1 iff,(x)<6.75
6.94) —(xx;2)
008 ¢ )‘ (%% )
(6.94) —(6.75)
0 if ,(x)>6.94
1 iff,(x)<6.75

0.9{(6-94)t (")
(6.94) —(6.75)

] if 6.75< f,(x) < 6.94

] if 6.75< f,(x) <6.94

if f,(x)>6.94
if f, (x) <6.75

] if 6.75< f,(x) < 6.94

0
1
(6.94) —(x%?)
(6.94) —(6.75)
0

if f,(x)>6.94

Ff (%1% ) =409

Ff2 (x'x,°)=40.99

1 iff,(x)<6.94—5
6.94) —(x%,%)
(654) (i(l +) if 6.94—s, < f,(x)<6.94
(s1)
0 if f,(x)>6.94
1 iff,(x)<6.94—5
6.94) —(x%.%)
099 &%) (i(l ) if 6.94—s, < f,(x)<6.94
(s1)
0 if f,(x)>6.94
1 iff,(x)<6.94-s
6.94) —(x%?)
(654) (:(1 ) if 6.94—s, < f,(x)<6.94
(s:)
if f,(x)>6.94
0 iff,(X) <6.75+t,

(6.94) —(6.75) —(t,)
1 if f,(x)>6.94

| s{(w)‘—(e-w)‘—(n)‘

} if 6.75+1, < f,(x) <6.94

0 iff,(x)<6.75+t,
(%) =(6.75) —(t,)
(6.94) —(6.75) —(t,)

1 if f,(x)>6.94

} if 6.75+1, < f,(x) < 6.94
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0 if f, (X)<6.75+1,
sy (%) ~(675) ~(1)
i (60%) = [ (6.94) —(6.75) —(t,)’
1 if ,(x)>6.94

] if 6.75+1, < f,(x) < 6.94

For f,: The membership functions of second objective as. (Linear type)

1 if f,(x) <57.87

60.75) —(2x2x;°)’
T (27%7) = 0-98{((60 7s)>>‘ ((; 8;)?

} if 57.87 < f, (x) < 60.75

0 if f,(x)>60.75
1 if f,, () <57.87

{(60.75)t ~(267%?)

(60.75)' —(57.87)

TR, (27%°) = {0.99 ] if 57.87 < f,(x) <60.75

if ,(x)>60.75
iff, (x)<57.87

t Z | if57.87< f,(x)<60.75
(60.75) —(57.87)

0
1
60.75) —(2x2x;°)
Tka3 (2X1—2X2—3): |:( ) ( X%, )
0 if f,(x)>60.75
1

iff, (x)<60.75-s,
60.75) —(2x2x:°)’
Ikal (2X1—2X2—3): 098|:( )( ()tX1 2 ) ] if 60.75—52 < fZ(X)£6075
SZ
0 if f,(x)>60.75
1 iff,(x)<60.75-s,
60.75) —(2x2x°)
If (2x1‘2x2‘3)= 0_99{( )( ()txl 2 ) } if 60.75—s, < f, (x) <60.75
SZ
0 if f,(x)> 60.75
1 if f,(x)<60.75-s,
60.75) —(2x2x;)'
It (27%°) = (60.75) (txi | 60.75—s, < f,(x) <60.75
(s,)
if f,(x)> 60.75
0 iff, (x) <57.87+t,

(2x7%%) ~(57.87) ~(t,)
(60.75) —(57.87) —(t,)

Ffe (2x°%;°) = 0.98{

1 if ,(x)>60.75

] if 57.87 +t, < f,(x) <60.75
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0 if f, (x)<57.87 +t,

2x2%%) - (57.87) —(t,)
Ff.2 (26°%°) =10.99 (2<% ? ( ? (2?
(60.75)' —(57.87) —(t,)
1 if f,(x)60.75

] if 57.87 +t, < f,(x) < 60.75

0 iff, (x) <57.87+t,

[(2&2x;)t_(5737)‘_(g)‘

(60.75) —(57.87) —(t, )

P (22 ) = } if 57.87+t, < f,(x) <60.75

1 if f,(x)>60.75
Which is transformed into an equivalent MONLPP with linear type as:

Maxé/l:/'tl+/’;)2+ﬂ3+’(l+’;2+’(3_7/1+7/32+7/3

TR () 2 i, 0 () 2 a5, R (F) <,

X +X <1LX,X 20,0< u,K,7, <10<t,t,<10<s,s,<1
2K 2y, 4k +y <3 for 1=1,2,3k=12
Exponential type membership functions

For f,: The membership functions of first objective as.

1 iff,(x)<6.75

(6:94) (") |||
T (x'%,?)=10.98| 1—exp{ — if6.75< f,(x)<6.94

0 if f,(x)>6.94
1 iff,(x)<6.75

6.94) —(x'x,?)
Th (%'%,%) =10.99 1exp{w(( ) (% 2)} if 6.75< f,(x) <6.94

(6.94) —(6.75)

0 if f,(x)>6.94

1 iff,(x) <6.75

6.94) —(xx2)
Tka3(x1’1X2’2)= 1eXp{l//[( ) (X1 2 ) J} if 6.75< fl(X)S6.94

(6.94) —(6.75)

if ,(x)>6.94
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Ikal (X{lxziz ) =

IkaZ (X{lxziz ) =

If= (xl’lx 2)

Ffe (%) =

i (%) =

e (x%7) =

1 iffl(x)36.94—51

6.94) —(xx2)
0.98 1exp{y/[( )(Sl(;l ) } if 6.94—s, < f,(x)<6.94
0 if ,(x)>6.94
1 iff,(x)<6.94—s,

6.94) —(xx2)
0.99 1exp{t//[( )(S(;l ) ﬂ if 6.94—s, < f,(x) <6.94

1
0 if f,(x)>6.94
1 iff,(x)<6.94-5
(6.94) —(x %%
{1 exp{ W )( ()i(i ) } if 6.94—s, < f,(x)<6.94
Sl
if f,(x)>6.94

0

0 if f,(x)<6.75+,

0.98|1-exp{ -y () (6'75? _(tﬂ) if 6.75+1, < f,(x) < 6.94
(6.94) - (6.75) ~(t)

1 if f,(x)>6.94

0 iff,(x)<6.75+t,

0.99 1exp{w{(xilxzz) (6'75)t(t1t)l}} if 6.75+1t, < f,(x)<6.94

(6.94) —(6.75) —(t,)
1 if f,(x)>6.94
0 if f,(x) <6.75+,

{1 ex p{ v X1 ) (6'75?t(t1?t]} if 6.75+1, < f,(x)<6.94
1

694) -(6.75) —(t,)

if ,(x)>6.94

For f,: The membership functions of second objective as. (Exponential type)

TR (26°%,7) =

1 if f,(x) <57.87

60.75) —(2x2x;)
0.98 1exp{y/[( f-(26"%) }} if 57.87 < f, (x) <60.75

(60.75) —(57.87)

0 if f,(x)>60.75
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i (24,7 =

TH (2x1’2 xj)

If= (2x1’2x2’3) =

1,2 (2x7%,° ) =

If5 (2x°%,°) =

Ffe (%) =

Ffe (X{lxziz ) =

1 if f,(x) <57.87

60.75) —(2x.2%,%)
0.99 1exp{¢//[( ) (2x7%) }} if 57.87 < f, (x) < 60.75

(60.75) —(57.87)

o

if f,(x)>60.75
if f,(x) <57.87

60 75) —(2%7%°) _
1—exp w / if 57.87 < f, (x) <60.75
(60.75) —(57.87)

—

if f,(x)>60.75

1 if f,(x)<60.75 s,
60.75) —(2x.2%°)
0.98|1—exp{ -y (60.75) -(247%.") if 60.75—s, < f, (x) <60.75
(s) U
2
0 if f,(x)>60.75
1 iff, (x) < 60.75-s,
60.75) —(2x.%x;°)
0.99|1-exp{ -y (60.75) -(247%.") if 60.75—s, < f, (x) < 60.75
(s) a
2
0 if f,(x)>60.75
1 iff,(x)<60.75-s,
60.75‘— 2%2%,°)
{1 exp{ v )( ()txl : ) J} if 60.75—s, < f,(x) <60.75
S2
if f,(x)>60.75
0 if f, (x) <57.87+t,

7)) - (57.87) —(t,)
0.98 1exp{¢/{(xi ) (5787 -(t) J} if 57.87 +t, < f,(x) <60.75

(6.94) —(57.87) —(t,)
1 if f,(x)>60.75
0 if f,(x) <57.87 +1,

2 ) —(57.87) —(t, )
0.99 1exp{w[(x1 ) ~(5787) (&) }} if 57.87 +t, < f,(x) <60.75

(6.94) —(57.87) —(t,)

1 if f,(x)>60.75
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0 if f,(X) <57.87 +t,

(x2%7) ~(57.87) ~(t,)
(6.94) —(57.87) —(t,)

Fie (X% ) =1 |1-exp v if 57.87 +t, < f,(x)<60.75

1 if f,(x)>60.75
Which is transformed into an equivalent MONLPP with exponential type as:

_ Mt +K1+K2+K3 Nttty
3 3 3

Max &,

TR (F) 2 4, 165 (F) 2 i, FRE () <

X +X <1X,X 20,0< u,K,y, <10<t,t,<10<s,s,<1
WK >y i +y, <3, =4 for 1=1,2,3k=12
Hyperbolic type membership functions

For f,: The membership functions of first objective as.

0 iff, (x) <6.75
94) +(6.75)
Th (x52) = 0.98{%+%tanh {w_(xi—lxj)‘}rﬁ(x)} if6.75< f, (x) < 6.94
1 iff,(x) > 6.94
0 iff, (x) <6.75
94) +(8.75)
Th (x7%2) = 0.99[%+%tanh {w_(&—lxj)t}rn(x)} if 6.75< f,(x) <6.94
1 iff, (x) > 6.94
0 iff,(x) <675
t t
Th (x%7%2) = %Jr%tanh {w_(xij )‘}TW)] if6.75< f, (x)<6.94
iff, (x) > 6.94
0 iff, (x) <6.94—s,

t t
If, (Xi—lxgz)z 0.98{%+%tamh {w_(xij )t}rw)} if 6.94—s < f (x)<6.94
1 if f,(x)>6.94
0 if f,(x)<6.94—5

t t
It (x%? ) = 0.99[%+%tanh{w—(xl‘le)t}rw)] if 6.94—s, < f,(x) <6.94

1 if f,(x) > 6.94
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0 iff,(x)<6.94s,
t t
|ka3 <X1_1X2_2 ) — [%+%tanh {w_()ﬁ_lx? )‘ }Tfl(x):l if 6.94— S, < 1:1 (X) <6.94
1 if f,(x)>6.94
0 if f,(X)<6.75+t,
t t t
Fi (%) = 0_98[%+%tanh {(X{ o) - (6.94) +(f;75) +(t) }rw)} if 6.75+1, < f, (x) < 6.94
1 if f, (x) > 6.94
0 if f,(x)<6.75+t,
t t t
P (%) = 0.99{%+%tanh {(xi‘lxz‘z ) - (694) +(z75) +() }rw)] if 6,751, < f, (x) <6.94
1 if ,(x)>6.94
0 if f,(X)<6.75+t,
t t t
Fr (x %) = [% . % tanh{(x;le - (6.94) +(275) +(4) }%)] if6.75+1, < f, (x)<6.94
if f, (x)>6.94

For f,: The membership functions of second objective as. (Hyperbolic type)

0 if f,(x)<57.87

t t
Tf (2x1‘2x2‘3) = 0.98[%+%tanh {(60'75) ;(57-87) _(le-zxj )I }sz(x)] if 57.87 < f,(x)<60.75
1 if f,(x)>60.75

0 iff, (x) <57.87

75) +(57.87)
Th (2%7%,%) = 0.99[%+%tanh{(60 5) 2(5 87) _(2x1—2x;3)‘}rfz(x)] if 57.87 < f, (x) <60.75
1 if f, (x)>60.75
0 if f, (x) <57.87

t t
T (2%%) = % . % tanh{(60'75) -12-(57.87) )

(2x2%° )‘}rw} if 57.87 < f, (x) <60.75

if f, (x)>60.75
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I (2%°%,°) =

I (2%7%,°) =

I (27%,°) =

i (27%°) =

Ff= (2x°%,°) =

Ff (2x°%,°) =

0 iff,(x)<60.75-s,

t t
O.98[%+%tanh {w—(zxﬁf )‘}zfz(x)] if 60.75—s, < f, (x) <60.75

1 if f, (x)>60.75
0 if f,(x)<60.75-s,
2(60.75) —(s, )
0.99[%+%tanh {M—(zgzxﬁ)‘}qz(x)] if 60.75—s, < f,(x) <60.75
1 if f, (x)>60.75
0 iff,(x)<60.75-s,
t t
%+%tanh {W—(zxﬁf )t}rw)} if 60.75—s, < f,(x) <60.75
if f, (x) > 60.75
0 if f,(x) <57.87 +t,

11 L, vt (60.75) +(57.87) +(t,) _
0.98[5+§tanh{(2x12x23)l _(6075) (2 ) +(t) }rw)} if 57.87 +t, < f,(x)<6.94
1 if f,(x)>6.94
0 if f,(x) <57.87+t,

11 L, vt (60.75) +(57.87) +(t,) _
0.99{§+§tanh{(2x12x23)[ _(60.75) (2 ) +(t) }zfz(x)} if 57.87 +t, < f,(x)<6.94
1 iff,(x)>6.94
0 iff,(x)<57.87+t,

¢ (60.75) +(57.87) +(t,)

[%+%tanh {(2)(12)(23) -

t
> }rw)} if 57.87+t, < f, (x) < 6.94

iff, (x)>6.94

Which is reduced to equivalent MONLPP with hyperbolic type as:

Max ¢ =

ot +K1+K2+K3 Nttty

3

3 3

TR () = 4, 10 (F) = i, FEO (F) <9

X +X <LX,X, 20,0< u,K,y, <10<t,t,<10<s,s,<1

M 20 1 2 750 ph + G 7, <3, Thio =

for i=12,3 k=12
Uk_Lk
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At t =2, the OS of the MONLPP using the suggested NHFPA under various membership functions
are as given below:

Method Membership function

X X, f, (%) A

type
Proposed Linear 0.3659222 | 0.6340778 | 6.797139 | 58.59018

NHFT :
Exponential 0.3656531 | 0.6343469 | 6.796371 | 58.60181
Hyperbolic 0.3595183 | 0.6373039 | 6.848346 | 59.77892
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