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Abstract: This paper addresses a novel approach for analyzing augmented Latin square design with
uncertain observations, the so-called neutrosophic augmented Latin square design (NALSD). The
contribution of our work lies in estimating the effects of rows, columns, control and new treatments, as
well as formulating their sums of squares. Moreover, by determining the neutrosophic hypotheses and
decision rule, the Fy-statistic in NANOVA table is given. The performance of the proposed design is
evaluated using a numerical example and simulation study. In light of the results observed, it can find that
the NALSD performs better than the classic augmented Latin square design (ALSD) in the presence of
uncertainty.

Keywords: Augmented Latin square design, neutrosophic statistics, imprecise data, neutrosophic
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1. Introduction

In the field of experimental design, the Latin square is one of the most common designs to control
systematic error by two-way blocking. In this design, each treatment occurs once, and only once, in each
row and column. Thus, the number of treatments, rows, and columns are all equal. In this context, Fisher
[1] was the first to apply Latin Square designs. Many studies have been published on this design; however,
several problems arose when using large samples, such as many genotypes in the early stages of plant
breeding. Researchers have devised an appropriate solution to this problem using augmented designs. The
augmented design is appropriate since it incorporates many additional entries for various treatments. This
design aims to compare new genotypes against standard treatments, known as checks. The first research
on augmented design as a blocking design was conducted by Federer [2]. There have been several classes
of augmented designs, including the augmented randomized complete block and augmented Latin squares
[3, 4], augmented Lattice squares [5], and augmented row-column designs with a small number of checks
[6]. A review of augmented designs has been given by Federer and Crossa [7]. In a newer study, an
augmented design without replicating all treatments was discussed by Burguerio, et al. [8]. More about the
augmented designs can be viewed in [9-15]. None of the above-mentioned researches is applicable if there
is uncertainty in data set regarding to collected unreliable observation.
Recently, neutrosophic logic has been extensively studied by Smarandache [16]. Smarandache [17]
developed the idea of basic neutrosophic statistics (NS) as an extension of classical basic statistics and
suggested that these statistics can be used effectively in uncertain situations. The difference between fuzzy
statistics, neutrosophic statistics, and classical statistics were explained by Aslam [18]. The concept of
neutrosophic ANOVA was introduced by Aslam [19]. Neutrosophic analysis of covariance has been
applied to completely randomized designs as well as randomized complete block designs and split-plot
designs by AlAita and Aslam [20]. AlAita, et al. [21] provided a discussion on the application of
neutrosophic statistical analysis in split-plot designs. AlAita and Talebi [22] furnished exact neutrosophic
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analysis of missing value in augmented randomized complete block design. Aslam and Albassam [23]
proposed post hoc multiple comparison tests under NS. Salama, et al. [24] suggested neutrosophic
correlation and simple linear regression. Nagarajan, et al. [25] discussed the analysis of neutrosophic
multiple regression. Numerous neutrosophic statistical studies have been discussed in [26-33].

Based on our knowledge no research on augmented Latin square designs is in indeterminate environments.
This study aims to solve problems associated with studies and experiments that use imprecise and
uncertain data in augmented Latin square designs. Also, we developed our proposed design under NS to
provide additional information on the indeterminacy measure that classic statistics cannot provide.

2. Neutrosophic Basic Definitions

This section provides some basic concepts about neutrosophic statistics that will be useful throughout of
this paper. Throughout this paper, suppose that Xy € [X;,Xy] is a neutrosophic random variable (NRV)
that follows the neutrosophic normal distribution (NND).

Definition 1: Consider the neutrosophic random variable (NRV) Xy = X, + XyIy, the neutrosophic
population mean and variance can be found as follows:

ZIiV=1XLi Z{\lz Zliv=1(XLi_ﬂL)2 Z?]:1(XU1'_MU)2

Xui
Uy € B 11V L]FHNE[#L:#U]andUI%E[ N , N JUI\ZIE[ULZ»USL

where X; and X; Iy are determinate and indeterminate parts, respectively, and Iy € [I;,I;] is the measure
of uncertainty.

Definition 2: Suppose n be a neutrosophic random sample selected from a population of size N having
indeterminate observations. The estimated neutrosophic sample mean Xy and the variance s}, are
expressed by

n = n =
T (epi—x1)? X, (ryi—xy)?

)

_ Z?:lei Z?:lei
xN € -,
n n

; Xy € [X,%y; ]and s? € [Z ]; sZ € [s?,s2].

n-1 n-1

3. Neutrosophic Augmented Latin Square Design (NALSD)

3.1. Neutrosophic Model and Notations
Consider a b x b Latin square, the neutrosophic statistical model for a NALSD can be formulated as follows:

i=12,..,b
j=12..,b
Ynnijkg = Uy + Qi + Byj + Tnge + Taiijg T Ennijkgs k=12 ..b 1)
g = 1,2, ""n(lij)

The neutrosophic form of yyp; ;x4 can be expressed as

Ynhijkg = Yihijkg T YunijgIn: Iy € UL, Iyl,

where h = [ or q stands for the neutrosophic effects associated with new treatments or checks, respectively,
Uy is aneutrosophic overall mean, ay; is the neutrosophic effect of the ith row, Sy ; is the neutrosophic effect
of the jth column, Ty is the neutrosophic effect of the kth check, 7,4 is the neutrosophic effect of the gth
new treatment in ith row and jth column, and &yp;jx,4 is the neutrosophic random error assumed to have
mean zero and variance gZ. We denote v = Y2, Z?ﬂ ng;jy for the number of new treatments, ¢ for the
number of check treatments, a for the number of rows, and b for the number of columns; therefore, e = v +
b is the total number of new and check treatments and the total number of all plots in the blocks (rows and
columns) isn; i.e, n = v + b%. Throughout the paper in the context of neutrosophic ANOVA, the SSyr, SSyr,
SSner SSyrr, and SSyg stand for the neutrosophic sum of squares (NSS) total, row, column, treatment, and
error, respectively and the subscript N denotes the neutrosophic context.
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3.2. Estimation of Neutrosophic Parameters

To estimate the neutrosophic model parameters in a NALSD, first, the least squares normal equations (NE)

are obtained and given below.

iy: (V+Db)iy + (b — D) X0 Ty + 2hy Z?=1 Nijy Ayi + Z?=1 Y BNj = YN..s

ay;: (b + Z?=1 naijy) Ay + Q) + Tho Tygr T+ Zl?— Zg(“lj) Thiijg + Z?=1 n(lij)BNj =Ynio

Buj: (b + X0, naijy) Ay + BN}') + X0 tvge T 20 Zz(ul]) Tiijg + Lb=1 Naij)@ni = Yn.js

Tngi: by + Tngr) = Yng.ks

Tniijgt by + Ayi + B\Nj + Thiijg = Ynuijg-

By solving the above NE using the constraints YP_,ay; =0, X%, ,[?Nj =0, and XP_;Tyge +
b, Z?=1 ZZ(“{) Thiijg = 0, the estimates of the neutrosophic parameters of the model (1) are

Ay = (vib)( -b-1 Z£=1qu..k) (v+b) — (yy..— (b= Dmy); Ay € [A,, Ay],

Ay =+ (qui.. - Zk=1 qu..k) = %(qui.. —my); @y; € [&Li' ayil,

BNj = % (qu.j. - Zz=1 qu..k) = % (qu.j. - mzv)) BNj S [BLj'BUj]/
~ YNgq.k Ao a a
Tngk = Y Un; Tugr € [Tqu:Tqu]l

Tniijg = Yniijg — Oni — BN}' — An; Thiijg € [fuijg:fuzijg],

where i, jk =1,2,...,b, g = 1,2,...,nyy and my = X, ngi. = Xj=1 Ingj. = Zk=1Inq.k-

In the same manner, the estimation of the parameters in corresponding neutrosophic treatment-reduced,
row-reduced, and column-reduced models can be obtained.

3.3. Neutrosophic Testing of Parameters

Under the normality assumption of the data, it can use the ANAVO method to test neutrosophic
parameters in NALSD. Therefore, we need to formulate the SSy; and neutrosophic adjusted (adj) and
unadjusted (unadj) sums of squares for rows, columns, treatments (new and check), and the NSS for error.
Following, the calculated sums of squares are given.

na
SSnr = ?:12?:12 1qul]k +X7 12 1Zg( L1J)lel]g ""'SSNT € [SSir, SSyrl,
SSNR(unadj) = ?:1 b+:(1”1) n SSNR(unad]) € [SSLR(unad])JSSUR(unad])]
SSncunadyy = Lieg mot — M S naay € [SSLC aiy SSucunadp |-
(unadj) j=1 b+ngj) n (unadj) (una i) (unadj) s
na
SSNTr(unad]) - Zk 1qu k +Zf) 125J 12 (11]) leug SSNTr(unad]) € [SSLTr(unad])’SSUTr(unad])]

n i

SSNR(adj.) =3 [Zizl(qui.. - mzv) Ini. — Z?=1 Zj ¢ ])(qul mN)lel]g] SSNR(adJ)[SSLR(ad]),SSUR(ad])]
1 n i

SSNC(adj.) =7 [Z?=1(qu.j. - mN) IN.j. — ?:1 Zi ¢ J)(YNq] mN)lel]g] SSNC(ad]) [SSLC(ad])ISSUC(ad])]

( YRLAZI- R ) naij)
SSNTr(adj) (Zl 1quz +Z} 1qu] +ZZ=1y1%Iq..k)_ = (Lb_'_v; L +Z 12 Zg 11] leU.g 2m12\1+

SSNTr(ad]) S [SSLTr(ad]):SSUTr(ad])]
yz

SSNCheck = ;Zk=1 Yig.k — b_z...; SSNCheck € [SSichecirSSucheci],

SSNnew = Z?:l Z?:l szlj) YNlug vl...’, SSNnew € [SSLnew'SSUnew]/

SSNnew and new X ch — SSNTr(adj) SSNCheck; SSNnew and new x ch € [SSLnew and new X ch» SSUnew and new X ch]/
SSNnew x check = SSNTr(unadj) - SSNCheck - SSNnew; SSNnew x check € [SSLnew X check’ SSUnew X check]/ and
SSnvg = SSnr — SSNTr(adj) - SSNR(unadj) - SSNC(unadj)'
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Neutrosophic mean squares for all source of variations are obtained in the ranges of the form [M Siey MS U(_)].
Based on the calculated MSEs, the neutrosophic test statistics Fyy are:

MSNTr(adj), F

FNTr(ad]') = Msyg NTr(adj) € [FLTr(adj)'FUTr(adj)]/
MSNR(adj),
Fnradj) = sz]’ Fnr(adj) € [FLR(adj)'FUR(adj)]/
_ MSNcG@dp,
FNC(ad]’) - MSNE ’ FNC(adj) € [FLC(adj)' FUC(adj)]/

_ MSncheck,
FNCheck - MSNE ’ FNCheck € [FLCheck' FUCheck]/

_ MSNnew
FNnew -
MSNE

7 FNnew € [FLnew'FUnew]/

MSNnew and new x ch,
FNnew and new x ch — MSNE s FNnew and new X ch S [FLnew and new X ch» FUnew and new X ch]r and

_ MSNnew x check,

FNnew X check — MSNE ’ FNnew X check € [FLnew X check’ FUnew X check]'

The neutrosophic form of Fy is Fy = F, + Fylp; Iry € [Ig,, Ir,], where F, and Fylp, are determinate and
indeterminate parts of each proposed test. This test reduces to a test under classic statistics if I, = 0.

3.4. Neutrosophic Hypotheses and Decision Rules
In order to test the rows, columns, checks, and new treatments, the null and alternative hypotheses are as
follows, respectively:

Hyo:ay; =0 vs Hyq:at least oneay; #0,i=1.2.,,,.b,
Hyo:Byj =0 vs Hyq:at least one By; #0,j = 1.2.,,,.b,
Hyo:Tyge = 0 vs Hyq:at least one Tyg # 0,k =1.2.,,,.b,
Hyo:Tyniijg = 0 vs Hyq:at least one Ty # 0, g = 1.2.,,,. 0.

The null hypothesis does not reject if min{py — value} > a, where «a is a level of significance. Meanwhile,
we reject the null hypothesis if max{py — value} < a.
All the above testing process are summarized in the NANOVA Tables 1 and 2 for the NALSD under NS.

Table 1 NANOVA Table (A) for NALSD

Sources of variation Ndf NSS NMS Fy-value
SS, -
Rows (unadj) bh—1 SSnp unadj) IZR(_quJ)
SS, -
Columns (unadj) b-1 SSnpunad)) Il\I)C(_unlad])
SSNTr(ad') MSNTr(adj)
Treat ts (adj b+v—-1 SS . j
reatments (adj) NTr(ad)) e o
SSNCheck MSNCheck
Checks b—-1 SS
NCheck —b 1 —MIS‘{[SNE
SS,
New and New X Check v SShnew and new x ch Nnew azd new x ch Nnev]\(;;l;;ew x ch
SSnE
Error b-1B-2) SSyk m
Total n—1 SSyr

Table 2 NANOVA Table (B) for NALSD

Sources of variation Ndf NSS NMS Fy-value
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SS, ; MS :
Rows (adj) b-1 SSNB(adj) bNR(aldl) A/;V;?(ad])
- NE
SS, ; MS :
Columns (adj) b—-1 SSnB(ad)) bNC (aldl) A/;V;(adl)
- NE
SS, :
Treatments (unadj) c+v—1 SSNTr(unadj) Ch:‘r(unai])
v —
SS, MS
Checks c—1 SSncheck CNChelck A/;v;heck
- NE
SS, MS
New treatments v—1 SSynew VNnelw Mgnew
- NE
SS, MS
New X Check 1 SSnnew x check Nnev;x check N;\l;vsv x check
NE
SSnE
Error b-1Db-2) SSyEe m
Total n—1 SSur

4. Numerical Examples and Simulation

In this section, the performance of the proposed design is numerically assessed by an example and a
simulation study. For assessing the efficiency of the proposed methods, the proposed tests Fy € [F,, Fy] of
the proposed design under NS are calculated and compared with the existing tests under classic statistics.

4.1. Numerical Example

In this example, we have generated neutrosophic data for NALSD. Five neutrosophic check treatments
named A, B, C, D and E, and 50 neutrosophic new treatments, denoted by 1,2,...,50, are arranged in an
augmented Latin square with 5 rows and 5 columns. The neutrosophic data are given in Table 5.

Using the computational software R, we can obtain neutrosophic data randomly for this example by
running the following code

y_L<-rnorm(75,40,10)
z<-length(y_L)
I<-rnorm(75,3,0.5)
y_U<-c()

for(i in 1:z){
y_UliJ<-y_L[i]+I[i]}

We applied the proposed method to calculate Fy-tests, where Fy € [F,, Fy]. The corresponding NANOVA
results for the NALSD are presented in Tables 3 and 4.

4.2. Simulation Study

This section evaluates the quality of the proposed F test for NALSD using simulated data from the Monte
Carlo (MC) procedure for the proposed model (1). In this study, MC simulations have been performed
10,000 times. The data have been generated using neutrosophic normal standard distribution. Furthermore,
the neutrosophic variances have been assumed to be homogeneous, and the NALSDs are balanced. Also,
to simulate type I error, the significance levels of 0.05 and 0.01 have been chosen as the initial values.
Moreover, it has been assumed that the treatments all have zero mean under the null hypothesis. It has

Table 3 ANOVA Table (A) for the NALSD
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Sources of variation Ndf  NSS NMS Fy Neutrosophic form Fy py-value

Rows (unadj) 4 [373.906, 409.200] [93.476, 102.300]

Columns (unadj) 4 [355.476, 347.226] [88.869, 86.806]

Treatments (adj) 54 [6312.786,6486.414]  [116.903,120.119] [1.054,1.062]  1.054 + 1.062Is; Ir, € [0,0.007]  [0.493, 0.486]
Checks 4 [163.869, 181.964] [40.967,45.491]  [0.369,0.402]  0.369 + 0.402I5; I, € [0,0.082]  [0.826, 0.804]

New and New X Check 50 [6148.917, 6304.450] [122.978,126.089] [1.109,1.115] 1109 + 1.115I,; Ir, €[0,0.005]

[0.449, 0.444]

Error 12 [1331.077, 1357.583] [110.923,113.132]
Total 74 [8373.244, 8600.422]
Table 4 ANOVA Table (B) for the NALSD

Sources of variation Ndf NSS NMS Fy Neutrosophic form Fy py-value
Rows (adj) 4 [591.937, 613.179] [147.984,153.295]  [1.334,1.355] 1.334 + 1.3551; I, € [0,0.015]  [0.313,0.306]
Columns (adj) 4 [193.643, 198.487] [48.411,49.622]  [0.436,0.439]  0.436 + 04391, ; I, € [0,0.007]  [0.780, 0.778]
Treatments (unadj) 54 [6256.587,6431.174]  [115.863,119.096]

Checks 4 [163.869, 181.964] [40.967,45491]  [0.369,0402] 0.369 + 0.402I5; Ir, €[0,0.082]  [0.826, 0.804]

New treatments 49 [6085.317,6239.574] [124.190,127.338] [1.120,1.126] ~1.120 + 1.126ly,; I, € [0,0.005]  [0.440, 0.436]

New X Check 1 [7.401, 9.637] [7.401,9.637] [0.067,0.085]  0.067 + 0.085I5,; I, € [0,0.212]  [0.801, 0.775]
Error 12 [1331.077, 1357.583]  [110.923,113.132]
Total 74 [8373.244, 8600.422]

been compared the significance levels and power of the test for the proposed test with the existing test

under classic statistics.

To calculate the neutrosophic empirical Type I error rate and the test power for an MC experiment; the

following steps need to be completed:

MC simulation for computing @gmpirical

@ @
distribution under Hy,, i = 1,2, ...,10000.
Step 2: We compute the Fy;-test under Hy,.

Step 3: We record the results by recording Iy; = 1 when the Hy, is rejected, and Iy; = 0 otherwise.

1 10000
10000 <=1

Step 4: We compute the ratio Iy; and take it as @gmpirical-

Step 1: We generate the random sample le,xNZ,...,x,f,i,)1 from the neutrosophic normal standard

MC simulation for computing Power g p;rical

® O
distribution under Hy,, i = 1,2,...,10000. For instance, (ty1, Un2, Uns, Una) = (1,2,3,4).
Step 2: We compute the Fy;-test under Hy;.

Step 3: We record the results by recording Iy; = 1 when the Hy, is rejected, and Iy; = 0 otherwise.

1 10000
10000 <=1

Step 4: We compute the ratio Iy; and take it as Powergppiricar-

Step 1: We generate the random sample le,xNz,...,x,f,ir)l from the neutrosophic normal standard
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Table 5 Data for NALSD
Column
Row
1 2 3 4 5

C 19 37 44 8 A 25 B 35 E 2 26 10 24
1 [41.82, [39.79, [36.57, [25.12, [28.33, [46.65, [37.95, [35.98, [44.6, [35.84, [42.52, [33.44, [32.99, [31.88, [26.79,
44.92] 43.76] 39.68] 28.5] 31.23] 50.38] 41.12] 38.8] 47.91] 38.27] 45.4] 36.42] 36.1] 34.88] 29.21]

46 12 E 39 © 4 A 16 11 27 D 28 5 45 B
2 [36.41, [47.62, [32.62, [28.09, [55.38, [44.2, [38.73, [60.19, [41.38, [38.9, [36.38, [45.34, [33.31, [31.93,
39.49] 50.68] 36.32] 31.2] 58.39] 47.73] 42.47] 63.64] 44.3] 41.03] [38, 41.06] 39.33] 48.56] 36.51] 34.42]

34 D 21 15 1 E © 42 36 7 B 32 20 38 A
3 [39.22, [32.41, [39.74, [20.84, [36.74, [29.98, [39.55, [39.95, [20.34, [38.65, [36.98, [49.72, [46.27,
41.81] [36, 38.08] 36.03] 42.45] 23.21] [30, 32.73] 39.25] 33.29] 42.18] 42.29] 22.76) 40.58] 40.51] 52.26] 50.09]

17 B 6 D 13 31 E 30 9 22 A 41 C 49 33
4 [47.01, [49.68, [11.91, [34.69, [53.81, [52.44, [22.18, [40.75, [36.94, [38.69, [29.62, [51.11, [17.42, [33.59, [27.33,
49.78] 52.08] 14.94] 37.77] 57.21] 56.24] 24.44] 43,62] 39.56] 41.36) 33.42] 54.6] 20.22] 36.65] 30.05]

A 23 43 18 48 B 47 D 29 3 50 c 40 E 14
5 [33.52, [19.12, [11.39, [63.66, [44.54, [43.05, [48.56, [43.98, [49.46, [56.28, [52.67, [17.73, [45.29, [43.91,
36.34] 22.91] [36.9,39.8] 14.4] 66.76] 47.56] 45.73] 51.31] 47.66] 52.71] 60.34] 55.82] 19.86] 48.38] 47.75]

Table 6 Simulation results for NALSD with parameters (b = 4,v = 32,n = 48) for Check treatment means (Uy, Un2, ns, Una) and different values of new
treatments (uy; = 0,uy; = 0,4y = Ly, = 2),i=1,...,10,j = 11,...,20,k = 21,...,30,1 = 31, ..., 40.

Mean Mean Powergmpirical
XEmpirical 6, =(0112) 8, =(1,2,23) 83 =(1,133) 6, =(01273) 85 =(0,13,4) 8¢ = (0,3,4,4) 6, =(0,3,4,5) 6 =(0,2,4,6)

Test a

0.01 [0.0088, 0.0093] [0.0412,0.0420] [0.0688, 0.0734] [0.0840, 0.0905] [0.1072, 0.1188] [0.1314, 0.1502] [0.2130, 0.2366] [0.2821, 0.3144] [0.3514, 0.3940]

NALSD 0.05 [0.0476, 0.0477] [0.1647, 0.1800] [0.2463, 0.2732] [0.2977,0.3203] [0.3495, 0.3857] [0.4202, 0.4550] [0.5702, 0.6135] [0.6696, 0.7036] [0.7493, 0.7884]

Table 7 Simulation results for NALSD with parameters (b = 5,v = 50,n = 75) for Check treatment means (Uy1, Unz, 3, Knar Bys) and different values of
new treatments (,uNi =0,uy; =0,uy =Ly =1ty = 2),i =1,...,10,j =11,...,20,k = 21,...,30,l = 31, ...,40,u = 41, ...,50.

Mean Mean PowerEmpirical
XEmpirical 6; =(0,0,111) 6, =1(01,122) 63 =1(0,1,2,2,2) 6, = (1,1,2,2,3) 65 = (2,2,3,3,3) 8¢ = (2,3,3,34) 8, =(0,1,344) & =(02,4,5,6)

Test a

001  [0.0094,0.0099]  [0.0581,0.0683]  [0.0820,0.0980]  [0.0980,0.1207]  [0.1159,0.1442]  [0.2317,0.2865]  [0.3651,0.4467]  [0.4485,0.5319]  [0.8435, 0.9010]

NALSD ) o5 [0.0485,0.0494]  [0.2006,0.2314]  [0.2668,0.3080]  [0.2975,0.3495]  [0.3616,0.4112]  [0.5460,0.6190]  [0.7164,0.7826]  [0.7885,0.8474]  [0.9845, 0.9945]
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Figure 1 Power curves of the new and existing tests for NALSD with parameters (b = 4,v = 32,n = 48)
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Figure 2 Power curves of the new and existing tests for NALSD with parameters (b = 5,v = 50,n = 75)

The power of the test for the treatment effects through the NAN was calculated for neutrosophic data. The
results are given in Tables 6 and 7 for NALSD with (b = 4,v = 32,n = 48) and (b = 5,v = 50,n = 75), for
different sets of neutrosophic check means, (iy1, 2, y3, Una) and (Uy1, Uy, Bz, Byas Bys)- The power of
the test for the proposed and existing approaches” performance in Tables 6 and 7 is displayed in Figures 1

and 2.

Without loss of generality, the powers were plotted in ascending order. Evidently, the power of the test for
the indeterminate part is higher than the power for the determinate part; so, the proposed approach
performs better than the existing one in testing the treatment effects.
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5. Comparative Study
As mentioned earlier, the proposed design is a generalization of the augmented Latin square design under
classical statistics. The proposed Fy-test for NALSD reduces to the existing F-test for ALSD when all
observations in the data are exact, determined and certain. Throughout this section, the proposed Fy-test
is compared to the existing F-test in terms of the measure of indeterminacy, accuracy, flexibility, and
information. For the purpose of comparison, the neutrosophic form of the Fy-test for the proposed design
of the effects of treatments can be expressed as follows:

1.054 + 1.062I5,; Ir, € [0,0.007]
Note that the neutrosophic form can be reduced to a statistic under classical statistics when I, = 0; So, the
first part of the neutrosophic form 1.054 describes the value of the test statistic under classical statistics.
The second part 1.0621,, illustrates the indeterminate portion of the neutrosophic form. Additionally, this
test has a measure of indeterminacy of 0.007. According to the proposed test, the values of the Fy-test, Fy €
[F,, Fy] are flexible and lie in the indeterminate interval that is Fy € [1.054,1.062]. Based on the proposed
test, it is expected that Fy € [F,, F;] may range from 1.054 to 1.062 under an uncertain environment. This
range distinguishes the proposed test from the existing test under classical statistics, which is based on the
determined value, which does not appropriate under uncertain conditions. Additionally, this test provides
additional information about the testing approach when indeterminacy is present; namely, it provides
additional information about the testing procedure which is the measure of indeterminacy. To illustrate
the numerical example, for testing Hy, (means of treatment are equal), the probability that it will be
accepted is 0.95, the probability that it will be rejected when true is 0.05, and the probability of uncertainty
about it is 0.007.
Moreover, Tables 6 and 7 provide a comparative evaluation of the relative effectiveness of the proposed
test in terms of the agmpirical and POWeTgmpirica;- The results indicate that the agmpirical Of the proposed test
is close to 0.05 under NS. In addition, Figures 1 and 2 indicate that the curves of the power of the test for
the indeterminate part are higher than those for the determinate part. This emphasizes that the
indeterminate part plays an important role in uncertain environments. According to the results of the
study, the proposed test for NALSD under NS is more informative, accuracy, and flexible than the test for
ALSD under classical statistics.

6. Conclusion

This article introduces neutrosophic augmented Latin square design as a generalization to the existing
augmented Latin square design. In this context, the statistical model and a NANOVA approach have been
presented for the proposed design to deal with neutrosophic hypotheses and the decision rule about the
treatment effects in the design. Besides, the performance of the proposed design has been evaluated using
a numerical example and a simulation study. According to the results, the proposed design led to more
accuracy in analyzing practical problems in uncertainty. It is conjectured that, based on the proposed
design, many new investigations will be carried out in the future. Moreover, in practical experiments using
the proposed design with uncertain data will be analyzed more precisely.
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