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Abstract: This paper addresses a novel approach for analyzing augmented Latin square design with 

uncertain observations, the so-called neutrosophic augmented Latin square design (NALSD). The 

contribution of our work lies in estimating the effects of rows, columns, control and new treatments, as 

well as formulating their sums of squares. Moreover, by determining the neutrosophic hypotheses and 

decision rule, the 𝐹𝑁-statistic in NANOVA table is given. The performance of the proposed design is 

evaluated using a numerical example and simulation study. In light of the results observed, it can find that 

the NALSD performs better than the classic augmented Latin square design (ALSD) in the presence of 

uncertainty. 

Keywords: Augmented Latin square design, neutrosophic statistics, imprecise data, neutrosophic 

ANOVA.  

 

1. Introduction 

In the field of experimental design, the Latin square is one of the most common designs to control 

systematic error by two-way blocking. In this design, each treatment occurs once, and only once, in each 

row and column. Thus, the number of treatments, rows, and columns are all equal. In this context, Fisher 

[1] was the first to apply Latin Square designs. Many studies have been published on this design; however, 

several problems arose when using large samples, such as many genotypes in the early stages of plant 

breeding. Researchers have devised an appropriate solution to this problem using augmented designs. The 

augmented design is appropriate since it incorporates many additional entries for various treatments. This 

design aims to compare new genotypes against standard treatments, known as checks. The first research 

on augmented design as a blocking design was conducted by Federer [2]. There have been several classes 

of augmented designs, including the augmented randomized complete block and augmented Latin squares 

[3, 4], augmented Lattice squares [5], and augmented row-column designs with a small number of checks 

[6]. A review of augmented designs has been given by Federer and Crossa [7]. In a newer study, an 

augmented design without replicating all treatments was discussed by Burgueño, et al. [8]. More about the 

augmented designs can be viewed in [9-15]. None of the above-mentioned researches is applicable if there 

is uncertainty in data set regarding to collected unreliable observation. 

Recently, neutrosophic logic has been extensively studied by Smarandache [16]. Smarandache [17] 

developed the idea of basic neutrosophic statistics (NS) as an extension of classical basic statistics and 

suggested that these statistics can be used effectively in uncertain situations. The difference between fuzzy 

statistics, neutrosophic statistics, and classical statistics were explained by Aslam [18]. The concept of 

neutrosophic ANOVA was introduced by Aslam [19].  Neutrosophic analysis of covariance has been 

applied to completely randomized designs as well as randomized complete block designs and split-plot 

designs by AlAita and Aslam [20]. AlAita, et al. [21] provided a discussion on the application of 

neutrosophic statistical analysis in split-plot designs. AlAita and Talebi [22] furnished exact neutrosophic 
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analysis of missing value in augmented randomized complete block design. Aslam and Albassam [23] 

proposed post hoc multiple comparison tests under NS. Salama, et al. [24] suggested neutrosophic 

correlation and simple linear regression. Nagarajan, et al. [25] discussed the analysis of neutrosophic 

multiple regression. Numerous neutrosophic statistical studies have been discussed in [26-33]. 

Based on our knowledge no research on augmented Latin square designs is in indeterminate environments. 

This study aims to solve problems associated with studies and experiments that use imprecise and 

uncertain data in augmented Latin square designs. Also, we developed our proposed design under NS to 

provide additional information on the indeterminacy measure that classic statistics cannot provide.  

2. Neutrosophic Basic Definitions 

This section provides some basic concepts about neutrosophic statistics that will be useful throughout of 

this paper. Throughout this paper, suppose that 𝑋𝑁 ∈ [𝑋𝐿 , 𝑋𝑈] is a neutrosophic random variable (NRV) 

that follows the neutrosophic normal distribution (NND). 

Definition 1: Consider the neutrosophic random variable (NRV) 𝑋𝑁 =  𝑋𝐿 +  𝑋𝑈𝐼𝑁, the neutrosophic 

population mean and variance can be found as follows: 

𝜇𝑁 ∈ [
∑ 𝑋𝐿𝑖

𝑁
𝑖=1

𝑁
,

∑ 𝑋𝑈𝑖
𝑁
𝑖=1

𝑁
] ;  𝜇𝑁 ∈ [𝜇𝐿 , 𝜇𝑈  ] and 𝜎𝑁

2 ∈ [
∑ (𝑋𝐿𝑖−𝜇𝐿)2𝑁

𝑖=1

𝑁
,

∑ (𝑋𝑈𝑖−𝜇𝑈)2𝑁
𝑖=1

𝑁
] ;  𝜎𝑁

2 ∈ [𝜎𝐿
2, 𝜎𝑈

2], 

where 𝑋𝐿 and 𝑋𝑈𝐼𝑁 are determinate and indeterminate parts, respectively, and 𝐼𝑁 ∈ [𝐼𝐿 , 𝐼𝑈] is the measure 

of uncertainty. 

Definition 2: Suppose 𝑛 be a neutrosophic random sample selected from a population of size 𝑁 having 

indeterminate observations. The estimated neutrosophic sample mean �̅�𝑁 and the variance 𝑠𝑁
2 , are 

expressed by 

�̅�𝑁 ∈ [
∑ 𝑥𝐿𝑖

𝑛
𝑖=1

𝑛
,

∑ 𝑥𝑈𝑖
𝑛
𝑖=1

𝑛
] ;  �̅�𝑁 ∈ [�̅�𝐿 , �̅�𝑈  ] and 𝑠𝑁

2 ∈ [
∑ (𝑥𝐿𝑖−�̅�𝐿)2𝑛

𝑖=1

𝑛−1
,

∑ (𝑥𝑈𝑖−�̅�𝑈)2𝑛
𝑖=1

𝑛−1
] ; 𝑠𝑁

2 ∈ [𝑠𝐿
2, 𝑠𝑈

2 ]. 

3. Neutrosophic Augmented Latin Square Design (NALSD) 

3.1. Neutrosophic Model and Notations 

Consider a 𝑏 × 𝑏 Latin square, the neutrosophic statistical model for a NALSD can be formulated as follows: 

𝑦𝑁ℎ𝑖𝑗𝑘𝑔 = 𝜇𝑁 + 𝛼𝑁𝑖 + 𝛽𝑁𝑗 + 𝜏𝑁𝑞𝑘 + 𝜏𝑁𝑙𝑖𝑗𝑔  + 𝜀𝑁ℎ𝑖𝑗𝑘𝑔 , {

𝑖 = 1,2, … , 𝑏
𝑗 = 1,2, … , 𝑏
𝑘 = 1,2, … , 𝑏

𝑔 = 1,2, … , 𝑛(𝑙𝑖𝑗)

                                    (1) 

The neutrosophic form of 𝑦𝑁ℎ𝑖𝑗𝑘𝑔 can be expressed as 

𝑦𝑁ℎ𝑖𝑗𝑘𝑔 = 𝑦𝐿ℎ𝑖𝑗𝑘𝑔 + 𝑦𝑈ℎ𝑖𝑗𝑘𝑔𝐼𝑁; 𝐼𝑁 ∈ [𝐼𝐿 , 𝐼𝑈], 

where ℎ = 𝑙 𝑜𝑟 𝑞 stands for the neutrosophic effects associated with new treatments or checks, respectively, 

𝜇𝑁 is a neutrosophic overall mean, 𝛼𝑁𝑖 is the neutrosophic effect of the 𝑖th row, 𝛽𝑁𝑗  is the neutrosophic effect 

of the 𝑗th column, 𝜏𝑁𝑞𝑘  is the neutrosophic effect of the 𝑘th check, 𝜏𝑁𝑙𝑖𝑗𝑔 is the neutrosophic effect of the 𝑔th 

new treatment in 𝑖th row and 𝑗th column, and 𝜀𝑁ℎ𝑖𝑗𝑘𝑔 is the neutrosophic random error assumed to have 

mean zero and variance 𝜎𝑁
2. We denote v = ∑ ∑ 𝑛(𝑙𝑖𝑗)

𝑏
𝑗=1

𝑏
𝑖=1  for the number of new treatments, 𝑐 for the 

number of check treatments, 𝑎 for the number of rows, and 𝑏 for the number of columns; therefore, 𝑒 = v +

𝑏 is the total number of new and check treatments and the total number of all plots in the blocks (rows and 

columns) is 𝑛; i.e., 𝑛 = v + 𝑏2. Throughout the paper in the context of neutrosophic ANOVA, the 𝑆𝑆𝑁𝑇 , 𝑆𝑆𝑁𝑅, 

𝑆𝑆𝑁𝐶 , 𝑆𝑆𝑁𝑇𝑟, and 𝑆𝑆𝑁𝐸  stand for the neutrosophic sum of squares (NSS) total, row, column, treatment, and 

error, respectively and the subscript N denotes the neutrosophic context. 
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3.2. Estimation of Neutrosophic Parameters 

To estimate the neutrosophic model parameters in a NALSD, first, the least squares normal equations (NE) 

are obtained and given below. 

𝜇𝑁: (v + 𝑏2)�̂�𝑁 + (𝑏 − 1) ∑ �̂�𝑁𝑞𝑘 + ∑ ∑ 𝑛(𝑙𝑖𝑗)
𝑏
𝑗=1 �̂�𝑁𝑖 + ∑ ∑ 𝑛(𝑙𝑖𝑗)

𝑏
𝑖=1 �̂�𝑁𝑗

𝑏
𝑗=1 = 𝑦𝑁....

𝑏
𝑖=1

𝑏
𝑘=1 , 

𝛼𝑁𝑖: (𝑏 + ∑ 𝑛(𝑙𝑖𝑗)
𝑏
𝑗=1 )(�̂�𝑁 + �̂�𝑁𝑖) + ∑ �̂�𝑁𝑞𝑘

𝑏
𝑘=1 + ∑ ∑ �̂�𝑁𝑙𝑖𝑗𝑔 + ∑ 𝑛(𝑙𝑖𝑗)�̂�𝑁𝑗

𝑏
𝑗=1 = 𝑦𝑁.𝑖..

𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1 , 

𝛽𝑁𝑗 : (𝑏 + ∑ 𝑛(𝑙𝑖𝑗)
𝑏
𝑖=1 )(�̂�𝑁 + �̂�𝑁𝑗) + ∑ �̂�𝑁𝑞𝑘

𝑏
𝑘=1 + ∑ ∑ �̂�𝑁𝑙𝑖𝑗𝑔 + ∑ 𝑛(𝑙𝑖𝑗)�̂�𝑁𝑖

𝑏
𝑖=1 = 𝑦𝑁..𝑗.

𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑖=1 , 

𝜏𝑁𝑞𝑘 : 𝑏(�̂�𝑁 + �̂�𝑁𝑞𝑘) = 𝑦𝑁𝑞..𝑘, 

𝜏𝑁𝑙𝑖𝑗𝑔: �̂�𝑁 + �̂�𝑁𝑖 + �̂�𝑁𝑗 + �̂�𝑁𝑙𝑖𝑗𝑔 = 𝑦𝑁𝑙𝑖𝑗𝑔. 

By solving the above NE using the constraints ∑ �̂�𝑁𝑖 = 0𝑏
𝑖=1 , ∑ �̂�𝑁𝑗 = 0𝑏

𝑗=1 , and ∑ �̂�𝑁𝑞𝑘 +𝑏
𝑘=1

∑ ∑ ∑ �̂�𝑁𝑙𝑖𝑗𝑔

𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1

𝑏
𝑖=1 = 0, the estimates of the neutrosophic parameters of the model (1) are  

�̂�𝑁 =
1

(v+𝑏)
(𝑦𝑁…. − (𝑏 − 1) ∑ �̅�𝑁𝑞..𝑘

𝑏
𝑘=1 ) =

1

(v+𝑏)
(𝑦𝑁…. − (𝑏 − 1)𝑚𝑁); �̂�𝑁 ∈ [�̂�𝐿 , �̂�𝑈], 

�̂�𝑁𝑖 =
1

𝑏
(𝑦𝑁𝑞𝑖.. − ∑ �̅�𝑁𝑞..𝑘

𝑏
𝑘=1 ) =

1

𝑏
(𝑦𝑁𝑞𝑖.. − 𝑚𝑁); �̂�𝑁𝑖 ∈ [�̂�𝐿𝑖 , �̂�𝑈𝑖], 

�̂�𝑁𝑗 =
1

𝑏
(𝑦𝑁𝑞.𝑗. − ∑ �̅�𝑁𝑞..𝑘

𝑏
𝑘=1 ) =

1

𝑏
(𝑦𝑁𝑞.𝑗. − 𝑚𝑁); �̂�𝑁𝑗 ∈ [�̂�𝐿𝑗 , �̂�𝑈𝑗], 

�̂�𝑁𝑞𝑘 =
𝑦𝑁𝑞..𝑘

𝑏
− �̂�𝑁; �̂�𝑁𝑞𝑘 ∈ [�̂�𝐿𝑞𝑘 , �̂�𝑈𝑞𝑘], 

�̂�𝑁𝑙𝑖𝑗𝑔 = 𝑦𝑁𝑙𝑖𝑗𝑔 − �̂�𝑁𝑖 − �̂�𝑁𝑗 − �̂�𝑁; �̂�𝑁𝑙𝑖𝑗𝑔 ∈ [�̂�𝐿𝑙𝑖𝑗𝑔 , �̂�𝑈𝑙𝑖𝑗𝑔], 

where 𝑖, 𝑗, 𝑘 = 1,2, . . . , 𝑏, 𝑔 = 1,2, . . . , 𝑛(𝑙𝑖𝑗) and 𝑚𝑁 = ∑ �̅�𝑁𝑞𝑖..
𝑏
𝑖=1 = ∑ �̅�𝑁𝑞.𝑗.

𝑏
𝑗=1 = ∑ �̅�𝑁𝑞..𝑘

𝑏
𝑘=1 . 

In the same manner, the estimation of the parameters in corresponding neutrosophic treatment-reduced, 

row-reduced, and column-reduced models can be obtained.  

3.3. Neutrosophic Testing of Parameters 

Under the normality assumption of the data, it can use the ANAVO method to test neutrosophic 

parameters in NALSD. Therefore, we need to formulate the 𝑆𝑆𝑁𝑇  and neutrosophic adjusted (adj) and 

unadjusted (unadj) sums of squares for rows, columns, treatments (new and check), and the NSS for error. 

Following, the calculated sums of squares are given. 

𝑆𝑆𝑁𝑇 = ∑ ∑ ∑ 𝑦𝑁𝑞𝑖𝑗𝑘
2𝑏

𝑘=1 +𝑏
𝑗=1

𝑏
𝑖=1 ∑ ∑ ∑ 𝑦𝑁𝑙𝑖𝑗𝑔

2𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1 −

𝑦𝑁….
2

𝑛

𝑏
𝑖=1 ; 𝑆𝑆𝑁𝑇 ∈ [𝑆𝑆𝐿𝑇 , 𝑆𝑆𝑈𝑇], 

𝑆𝑆𝑁𝑅(unadj) = ∑
𝑦𝑁.𝑖..

2

𝑏+𝑛(𝑙𝑖𝑗)
−

𝑦𝑁….
2

𝑛

𝑏
𝑖=1 ; 𝑆𝑆𝑁𝑅(unadj) ∈ [𝑆𝑆𝐿𝑅(unadj), 𝑆𝑆𝑈𝑅(unadj)], 

𝑆𝑆𝑁𝐶(unadj) = ∑
𝑦𝑁..𝑗.

2

𝑏+𝑛(𝑙𝑖𝑗)
−

𝑦𝑁….
2

𝑛

𝑏
𝑗=1 ; 𝑆𝑆𝑁𝐶(unadj) ∈ [𝑆𝑆𝐿𝐶(unadj), 𝑆𝑆𝑈𝐶(unadj)], 

𝑆𝑆𝑁𝑇𝑟(unadj) =
1

𝑏
∑ 𝑦𝑁𝑞..𝑘

2 + ∑ ∑ ∑ 𝑦𝑁𝑙𝑖𝑗𝑔
2𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1 −

𝑦𝑁….
2

𝑛

𝑏
𝑖=1

𝑏
𝑘=1 ; 𝑆𝑆𝑁𝑇𝑟(unadj) ∈ [𝑆𝑆𝐿𝑇𝑟(unadj), 𝑆𝑆𝑈𝑇𝑟(unadj)], 

𝑆𝑆𝑁𝑅(adj.) =
1

𝑏
[∑ (𝑦𝑁𝑞𝑖.. − 𝑚𝑁)𝑏

𝑖=1 𝑦𝑁.𝑖.. − ∑ ∑ ∑ (𝑦𝑁𝑞𝑖.. − 𝑚𝑁)𝑦𝑁𝑙𝑖𝑗𝑔

𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1

𝑏
𝑖=1 ]; 𝑆𝑆𝑁𝑅(adj)[𝑆𝑆𝐿𝑅(adj), 𝑆𝑆𝑈𝑅(adj)], 

𝑆𝑆𝑁𝐶(adj.) =
1

𝑏
[∑ (𝑦𝑁𝑞.𝑗. − 𝑚𝑁)𝑏

𝑗=1 𝑦𝑁..𝑗. − ∑ ∑ ∑ (𝑦𝑁𝑞.𝑗. − 𝑚𝑁)𝑦𝑁𝑙𝑖𝑗𝑔

𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑖=1

𝑏
𝑗=1 ]; 𝑆𝑆𝑁𝐶(adj)[𝑆𝑆𝐿𝐶(adj) , 𝑆𝑆𝑈𝐶(adj)], 

𝑆𝑆𝑁𝑇𝑟(adj)=
1

𝑏
(∑ 𝑦𝑁𝑞𝑖..

2 + ∑ 𝑦𝑁𝑞.𝑗.
2𝑏

𝑗=1 + ∑ 𝑦𝑁𝑞..𝑘
2𝑏

𝑘=1
𝑏
𝑖=1 ) −

(∑ 𝑦𝑁.𝑖..
2 +∑ 𝑦𝑁..𝑗.

2𝑏
𝑗=1

𝑏
𝑖=1 )

(𝑏+v)
+ ∑ ∑ ∑ 𝑦𝑁𝑙𝑖𝑗𝑔

2𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1

𝑏
𝑖=1 − 2𝑚𝑁

2 +

𝑦𝑁....
2

𝑛
;  𝑆𝑆𝑁𝑇𝑟(adj) ∈ [𝑆𝑆𝐿𝑇𝑟(adj), 𝑆𝑆𝑈𝑇𝑟(adj)], 

𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘 =
1

𝑏
∑ 𝑦𝑁𝑞..𝑘

2 −
𝑦𝑁𝑞...

2

𝑏2
𝑏
𝑘=1 ; 𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘 ∈ [𝑆𝑆𝐿𝐶ℎ𝑒𝑐𝑘 , 𝑆𝑆𝑈𝐶ℎ𝑒𝑐𝑘], 

𝑆𝑆𝑁𝑛𝑒𝑤 = ∑ ∑ ∑ 𝑦𝑁𝑙𝑖𝑗𝑔
2𝑛(𝑙𝑖𝑗)

𝑔=1
𝑏
𝑗=1 −

𝑦𝑁𝑙...
2

v

𝑏
𝑖=1 ; 𝑆𝑆𝑁𝑛𝑒𝑤 ∈ [𝑆𝑆𝐿𝑛𝑒𝑤 , 𝑆𝑆𝑈𝑛𝑒𝑤], 

𝑆𝑆𝑁new and new × ch = 𝑆𝑆𝑁𝑇𝑟(adj) − 𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘; 𝑆𝑆𝑁new and new × ch ∈ [𝑆𝑆𝐿new and new × ch, 𝑆𝑆𝑈new and new × ch], 

𝑆𝑆𝑁new × check = 𝑆𝑆𝑁𝑇𝑟(unadj) − 𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘 − 𝑆𝑆𝑁𝑛𝑒𝑤 ; 𝑆𝑆𝑁new × check ∈ [𝑆𝑆𝐿new × check, 𝑆𝑆𝑈new × check], and 

𝑆𝑆𝑁𝐸 = 𝑆𝑆𝑁𝑇 − 𝑆𝑆𝑁𝑇𝑟(adj) − 𝑆𝑆𝑁𝑅(unadj) − 𝑆𝑆𝑁𝐶(unadj). 
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Neutrosophic mean squares for all source of variations are obtained in the ranges of the form [𝑀𝑆𝐿(.), 𝑀𝑆𝑈(.)]. 

Based on the calculated MSEs, the neutrosophic test statistics 𝐹𝑁 are: 

𝐹𝑁𝑇𝑟(adj) =
𝑀𝑆𝑁𝑇𝑟(adj)

𝑀𝑆𝑁𝐸
; 𝐹𝑁𝑇𝑟(adj) ∈ [𝐹𝐿𝑇𝑟(adj), 𝐹𝑈𝑇𝑟(adj)],  

𝐹𝑁𝑅(adj) =
𝑀𝑆𝑁𝑅(adj)

𝑀𝑆𝑁𝐸
; 𝐹𝑁𝑅(adj) ∈ [𝐹𝐿𝑅(adj), 𝐹𝑈𝑅(adj)],  

𝐹𝑁𝐶(adj) =
𝑀𝑆𝑁𝐶(adj)

𝑀𝑆𝑁𝐸
; 𝐹𝑁𝐶(adj) ∈ [𝐹𝐿𝐶(adj), 𝐹𝑈𝐶(adj)],  

𝐹𝑁𝐶ℎ𝑒𝑐𝑘 =
𝑀𝑆𝑁𝐶ℎ𝑒𝑐𝑘

𝑀𝑆𝑁𝐸
; 𝐹𝑁𝐶ℎ𝑒𝑐𝑘 ∈ [𝐹𝐿𝐶ℎ𝑒𝑐𝑘 , 𝐹𝑈𝐶ℎ𝑒𝑐𝑘],  

𝐹𝑁𝑛𝑒𝑤 =
𝑀𝑆𝑁𝑛𝑒𝑤

𝑀𝑆𝑁𝐸
; 𝐹𝑁𝑛𝑒𝑤 ∈ [𝐹𝐿𝑛𝑒𝑤 , 𝐹𝑈𝑛𝑒𝑤],  

𝐹𝑁new and new × ch =
𝑀𝑆𝑁new and new × ch

𝑀𝑆𝑁𝐸
; 𝐹𝑁new and new × ch ∈ [𝐹𝐿new and new × ch, 𝐹𝑈new and new × ch], and 

𝐹𝑁new × check =
𝑀𝑆𝑁new × check

𝑀𝑆𝑁𝐸
; 𝐹𝑁new × check ∈ [𝐹𝐿new × check, 𝐹𝑈new × check]. 

The neutrosophic form of 𝐹𝑁 is 𝐹𝑁 = 𝐹𝐿 + 𝐹𝑈𝐼𝐹𝑁
; 𝐼𝐹𝑁

∈ [𝐼𝐹𝐿
, 𝐼𝐹𝑈

], where 𝐹𝐿 and 𝐹𝑈𝐼𝐹𝑁
 are determinate and 

indeterminate parts of each proposed test. This test reduces to a test under classic statistics if 𝐼𝐹𝑁
 = 0. 

3.4. Neutrosophic Hypotheses and Decision Rules 

In order to test the rows, columns, checks, and new treatments, the null and alternative hypotheses are as 

follows, respectively: 

𝐻𝑁0: 𝛼𝑁𝑖 = 0  v𝑠  𝐻𝑁1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛼𝑁𝑖 ≠ 0, 𝑖 = 1. 2. , , , . 𝑏, 

𝐻𝑁0: 𝛽𝑁𝑗 = 0  v𝑠  𝐻𝑁1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽𝑁𝑗 ≠ 0, 𝑗 = 1. 2. , , , . 𝑏, 

𝐻𝑁0: 𝜏𝑁𝑞𝑘 = 0  v𝑠  𝐻𝑁1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝜏𝑁𝑞𝑘 ≠ 0, 𝑘 = 1. 2. , , , . 𝑏, 

𝐻𝑁0: 𝜏𝑁𝑙𝑖𝑗𝑔 = 0  v𝑠  𝐻𝑁1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝜏𝑁𝑙𝑖𝑗𝑔 ≠ 0, 𝑔 = 1. 2. , , , . 𝑛(𝑙𝑖𝑗). 

The null hypothesis does not reject if 𝑚𝑖𝑛{𝑝𝑁 − 𝑣𝑎𝑙𝑢𝑒} > 𝛼, where 𝛼 is a level of significance. Meanwhile, 

we reject the null hypothesis if 𝑚𝑎𝑥{𝑝𝑁 − 𝑣𝑎𝑙𝑢𝑒} ≤ 𝛼. 

All the above testing process are summarized in the NANOVA Tables 1 and 2 for the NALSD under NS. 

Table 1 NANOVA Table (A) for NALSD 

Sources of variation Ndf NSS NMS 𝑭𝑵-value 

Rows (unadj) 𝑏 − 1 𝑆𝑆𝑁𝐵(unadj) 
𝑆𝑆𝑁𝑅(unadj)

𝑏 − 1
  

Columns (unadj) 𝑏 − 1 𝑆𝑆𝑁𝐵(unadj) 
𝑆𝑆𝑁𝐶(unadj)

𝑏 − 1
  

Treatments (adj) 𝑏 + v − 1 𝑆𝑆𝑁𝑇𝑟(adj) 
𝑆𝑆𝑁𝑇𝑟(adj)

𝑏 + v − 1
 

𝑀𝑆𝑁𝑇𝑟(adj)

𝑀𝑆𝑁𝐸

 

    Checks 𝑏 − 1 𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘 
𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘

𝑏 − 1
 

𝑀𝑆𝑁𝐶ℎ𝑒𝑐𝑘

𝑀𝑆𝑁𝐸

 

    New and New × Check v 𝑆𝑆𝑁new and new × ch 
𝑆𝑆𝑁new and new × ch

v
 

𝑀𝑆𝑁new and new × ch

𝑀𝑆𝑁𝐸

 

Error (𝑏 − 1)(𝑏 − 2) 𝑆𝑆𝑁𝐸  
𝑆𝑆𝑁𝐸

(𝑏 − 1)(𝑏 − 2)
  

Total 𝑛 − 1 𝑆𝑆𝑁𝑇    

Table 2 NANOVA Table (B) for NALSD 

Sources of variation Ndf NSS NMS 𝑭𝑵-value 
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Rows (adj) 𝑏 − 1 𝑆𝑆𝑁𝐵(adj) 
𝑆𝑆𝑁𝑅(adj)

𝑏 − 1
 

𝑀𝑆𝑁𝑅(adj)

𝑀𝑆𝑁𝐸

 

Columns (adj) 𝑏 − 1 𝑆𝑆𝑁𝐵(adj) 
𝑆𝑆𝑁𝐶(adj)

𝑏 − 1
 

𝑀𝑆𝑁𝐶(adj)

𝑀𝑆𝑁𝐸

 

Treatments (unadj) 𝑐 + v − 1 𝑆𝑆𝑁𝑇𝑟(unadj) 
𝑆𝑆𝑁𝑇𝑟(unadj)

𝑐 + v − 1
  

    Checks 𝑐 − 1 𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘 
𝑆𝑆𝑁𝐶ℎ𝑒𝑐𝑘

𝑐 − 1
 

𝑀𝑆𝑁𝐶ℎ𝑒𝑐𝑘

𝑀𝑆𝑁𝐸

 

    New treatments v − 1 𝑆𝑆𝑁𝑛𝑒𝑤 
𝑆𝑆𝑁𝑛𝑒𝑤

v − 1
 

𝑀𝑆𝑁𝑛𝑒𝑤

𝑀𝑆𝑁𝐸

 

    New × Check 1 𝑆𝑆𝑁new × check 
𝑆𝑆𝑁new × check

1
 

𝑀𝑆𝑁new × check

𝑀𝑆𝑁𝐸

 

Error (𝑏 − 1)(𝑏 − 2) 𝑆𝑆𝑁𝐸  
𝑆𝑆𝑁𝐸

(𝑏 − 1)(𝑏 − 2)
  

Total 𝑛 − 1 𝑆𝑆𝑁𝑇    

4. Numerical Examples and Simulation 

In this section, the performance of the proposed design is numerically assessed by an example and a 

simulation study. For assessing the efficiency of the proposed methods, the proposed tests 𝐹𝑁 ∈ [𝐹𝐿 , 𝐹𝑈] of 

the proposed design under NS are calculated and compared with the existing tests under classic statistics.  

4.1. Numerical Example 

In this example, we have generated neutrosophic data for NALSD. Five neutrosophic check treatments 

named A, B, C, D and E, and 50 neutrosophic new treatments, denoted by 1,2, . . . ,50, are arranged in an 

augmented Latin square with 5 rows and 5 columns. The neutrosophic data are given in Table 5.  

Using the computational software R, we can obtain neutrosophic data randomly for this example by 

running the following code 

 

y_L<-rnorm(75,40,10) 

z<-length(y_L) 

I<-rnorm(75,3,0.5) 

y_U<-c() 

for(i in 1:z){ 

 y_U[i]<-y_L[i]+I[i]} 

We applied the proposed method to calculate 𝐹𝑁-tests, where 𝐹𝑁 ∈ [𝐹𝐿, 𝐹𝑈]. The corresponding NANOVA 

results for the NALSD are presented in Tables 3 and 4. 

4.2. Simulation Study 

This section evaluates the quality of the proposed F test for NALSD using simulated data from the Monte 

Carlo (MC) procedure for the proposed model (1). In this study, MC simulations have been performed 

10,000 times. The data have been generated using neutrosophic normal standard distribution. Furthermore, 

the neutrosophic variances have been assumed to be homogeneous, and the NALSDs are balanced. Also, 

to simulate type I error, the significance levels of 0.05 and 0.01 have been chosen as the initial values. 

Moreover, it has been assumed that the treatments all have zero mean under the null hypothesis. It has  

Table 3 ANOVA Table (A) for the NALSD 
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Sources of variation Ndf NSS NMS 𝐹𝑁 Neutrosophic form 𝐹𝑁 𝑝𝑁-value 

Rows (unadj) 4 [373.906, 409.200] [93.476, 102.300]    

Columns (unadj) 4 [355.476, 347.226] [88.869, 86.806]    

Treatments (adj) 54 [6312.786, 6486.414] [116.903, 120.119] [1.054,1.062] 1.054 +  1.062𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.007] [0.493, 0.486] 

    Checks 4 [163.869, 181.964] [40.967, 45.491] [0.369,0.402] 0.369 +  0.402𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.082] [0.826, 0.804] 

    New and New × Check 50 [6148.917, 6304.450] [122.978, 126.089] [1.109,1.115] 1.109 +  1.115𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.005] [0.449, 0.444] 

Error 12 [1331.077, 1357.583] [110.923, 113.132]    

Total 74 [8373.244, 8600.422]     

Table 4 ANOVA Table (B) for the NALSD 

Sources of variation Ndf NSS NMS 𝐹𝑁 Neutrosophic form 𝐹𝑁 𝑝𝑁-value 

Rows (adj) 4 [591.937, 613.179] [147.984, 153.295] [1.334,1.355] 1.334 + 1.355𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.015] [0.313, 0.306] 

Columns (adj) 4 [193.643, 198.487] [48.411, 49.622] [0.436,0.439] 0.436 + 0.439𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.007] [0.780, 0.778] 

Treatments (unadj) 54 [6256.587, 6431.174] [115.863, 119.096]    

    Checks 4 [163.869, 181.964] [40.967, 45.491] [0.369,0.402] 0.369 +  0.402𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.082] [0.826, 0.804] 

    New treatments 49 [6085.317, 6239.574] [124.190, 127.338] [1.120,1.126] 1.120 +  1.126𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0, 0.005] [0.440, 0.436] 

    New × Check 1 [7.401, 9.637] [7.401, 9.637] [0.067,0.085] 0.067 +  0.085𝐼𝐹𝑁
;  𝐼𝐹𝑁

∈ [0,0.212] [0.801, 0.775] 

Error 12 [1331.077, 1357.583] [110.923, 113.132]    

Total 74 [8373.244, 8600.422]     

been compared the significance levels and power of the test for the proposed test with the existing test 

under classic statistics.  

To calculate the neutrosophic empirical Type I error rate and the test power for an MC experiment; the 

following steps need to be completed: 

MC simulation for computing 𝜶𝐄𝐦𝐩𝐢𝐫𝐢𝐜𝐚𝐥 

Step 1: We generate the random sample 𝑥𝑁1
(𝑖)

, 𝑥𝑁2
(𝑖)

, . . . , 𝑥𝑁𝑛
(𝑖)

 from the neutrosophic normal standard 

distribution under 𝐻𝑁0, 𝑖 = 1,2, … ,10000. 

Step 2: We compute the 𝐹𝑁𝑖-test under 𝐻𝑁0. 

Step 3: We record the results by recording 𝐼𝑁𝑖 = 1 when the 𝐻𝑁0 is rejected, and 𝐼𝑁𝑖 = 0 otherwise. 

Step 4: We compute the ratio 
1

10000
∑ 𝐼𝑁𝑖

10000
𝑖=1  and take it as 𝛼Empirical. 

 

MC simulation for computing 𝑷𝒐𝒘𝒆𝒓𝑬𝒎𝒑𝒊𝒓𝒊𝒄𝒂𝒍 

Step 1: We generate the random sample 𝑥𝑁1
(𝑖)

, 𝑥𝑁2
(𝑖)

, . . . , 𝑥𝑁𝑛
(𝑖)

 from the neutrosophic normal standard 

distribution under 𝐻𝑁1, 𝑖 = 1,2, … ,10000. For instance, (𝜇𝑁1, 𝜇𝑁2, 𝜇𝑁3, 𝜇𝑁4) = (1,2,3,4). 

Step 2: We compute the 𝐹𝑁𝑖-test under 𝐻𝑁1. 

Step 3: We record the results by recording 𝐼𝑁𝑖 = 1 when the 𝐻𝑁1 is rejected, and 𝐼𝑁𝑖 = 0 otherwise. 

Step 4: We compute the ratio 
1

10000
∑ 𝐼𝑁𝑖

10000
𝑖=1  and take it as 𝑃𝑜𝑤𝑒𝑟𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 . 



Neutrosophic Sets and Systems, Vol. 57, 2023     134  

 
 

 

AlAita and Talebi, Augmented Latin Square Designs for Imprecise Data 

 

Table 5 Data for NALSD 

Row 
Column 

1 2 3 4 5 

1 

C 19 37 44 8 A 25 B 35 E 2 26 10 D 24 

[41.82, 
44.92] 

[39.79, 
43.76] 

[36.57, 
39.68] 

[25.12, 
28.5] 

[28.33, 
31.23] 

[46.65, 
50.38] 

[37.95, 
41.12] 

[35.98, 
38.8] 

[44.6, 
47.91] 

[35.84, 
38.27]  

[42.52, 
45.4] 

[33.44, 
36.42] 

[32.99, 
36.1] 

[31.88, 
34.88] 

[26.79, 
29.21] 

2 
46 12 E 39 C 4 A 16 11 27 D 28 5 45 B 

[36.41, 
39.49] 

[47.62, 
50.68] 

[32.62, 
36.32] 

[28.09, 
31.2] 

[55.38, 
58.39] 

[44.2, 
47.73] 

[38.73, 
42.47] 

[60.19, 
63.64] 

[41.38, 
44.3] 

[38.9, 
41.03] [38, 41.06] 

[36.38, 
39.33] 

[45.34, 
48.56] 

[33.31, 
36.51] 

[31.93, 
34.42] 

3 
34 D 21 15 1 E C 42 36 7 B 32 20 38 A 

[39.22, 
41.81] [36, 38.08] 

[32.41, 
36.03] 

[39.74, 
42.45] 

[20.84, 
23.21] [30, 32.73] 

[36.74, 
39.25] 

[29.98, 
33.29] 

[39.55, 
42.18] 

[39.95, 
42.29] 

[20.34, 
22.76] 

[38.65, 
40.58] 

[36.98, 
40.51] 

[49.72, 
52.26] 

[46.27, 
50.09] 

4 
17 B 6 D 13 31 E 30 9 22 A 41 C 49 33 

[47.01, 
49.78] 

[49.68, 
52.08] 

[11.91, 
14.94] 

[34.69, 
37.77] 

[53.81, 
57.21] 

[52.44, 
56.24] 

[22.18, 
24.44] 

[40.75, 
43.62] 

[36.94, 
39.56] 

[38.69, 
41.36] 

[29.62, 
33.42] 

[51.11, 
54.6] 

[17.42, 
20.22] 

[33.59, 
36.65] 

[27.33, 
30.05] 

5 

A 23 43 18 48 B 47 D 29 3 50 C 40 E 14 

[33.52, 
36.34] 

[19.12, 
22.91] [36.9, 39.8] 

[11.39, 
14.4] 

[63.66, 
66.76] 

[44.54, 
47.56] 

[43.05, 
45.73] 

[48.56, 
51.31] 

[43.98, 
47.66] 

[49.46, 
52.71] 

[56.28, 
60.34] 

[52.67, 
55.82] 

[17.73, 
19.86] 

[45.29, 
48.38] 

[43.91, 
47.75] 

 
Table 6 Simulation results for NALSD with parameters (𝑏 = 4, v = 32, 𝑛 = 48) for Check treatment means (𝜇𝑁1, 𝜇𝑁2, 𝜇𝑁3, 𝜇𝑁4) and different values of new 

treatments (𝜇𝑁𝑖 = 0, 𝜇𝑁𝑗 = 0, 𝜇𝑁𝑘 = 1, 𝜇𝑁𝑙 = 2), 𝑖 = 1, . . . ,10, 𝑗 = 11, … , 20, 𝑘 = 21, . . . ,30, 𝑙 = 31, … , 40. 

Test 𝛼 
Mean 
𝛼Empirical 

Mean 𝑃𝑜𝑤𝑒𝑟𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙    
𝛿1 = (0,1,1,2) 𝛿2 = (1,2,2,3) 𝛿3 = (1,1,3,3) 𝛿4 = (0,1,2,3) 𝛿5 = (0,1,3,4) 𝛿6 = (0,3,4,4) 𝛿7 = (0,3,4,5) 𝛿8 = (0,2,4,6) 

NALSD 
0.01 [0.0088, 0.0093] [0.0412,0.0420] [0.0688, 0.0734] [0.0840, 0.0905] [0.1072, 0.1188] [0.1314, 0.1502] [0.2130, 0.2366] [0.2821, 0.3144] [0.3514, 0.3940] 

0.05 [0.0476, 0.0477] [0.1647, 0.1800] [0.2463, 0.2732] [0.2977, 0.3203] [0.3495, 0.3857] [0.4202, 0.4550] [0.5702, 0.6135] [0.6696, 0.7036] [0.7493, 0.7884] 

 
Table 7 Simulation results for NALSD with parameters (𝑏 = 5, v = 50, 𝑛 = 75) for Check treatment means (𝜇𝑁1, 𝜇𝑁2, 𝜇𝑁3, 𝜇𝑁4, 𝜇𝑁5) and different values of 

new treatments (𝜇𝑁𝑖 = 0, 𝜇𝑁𝑗 = 0, 𝜇𝑁𝑘 = 1, 𝜇𝑁𝑙 = 1, 𝜇𝑁𝑢 = 2),𝑖 = 1, . . . ,10, 𝑗 = 11, … , 20, 𝑘 = 21, . . . ,30, 𝑙 = 31, … , 40, 𝑢 = 41, … ,50. 

Test 𝜶 
Mean 
𝛼Empirical 

Mean 𝑃𝑜𝑤𝑒𝑟𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙   

𝛿1 = (0,0,1,1,1) 𝛿2 = (0,1,1,2,2) 𝛿3 = (0,1,2,2,2) 𝛿4 = (1,1,2,2,3) 𝛿5 = (2,2,3,3,3) 𝛿6 = (2,3,3,3,4) 𝛿7 = (0,1,3,4,4) 𝛿8 = (0,2,4,5,6) 

NALSD 
0.01 [0.0094,0.0099] [0.0581,0.0683] [0.0820,0.0980] [0.0980, 0.1207] [0.1159, 0.1442] [0.2317, 0.2865] [0.3651, 0.4467] [0.4485, 0.5319] [0.8435, 0.9010] 

0.05 [0.0485,0.0494] [0.2006, 0.2314] [0.2668, 0.3080] [0.2975, 0.3495] [0.3616, 0.4112] [0.5460, 0.6190] [0.7164, 0.7826] [0.7885, 0.8474] [0.9845, 0.9945] 
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Figure 1 Power curves of the new and existing tests for NALSD with parameters (𝑏 = 4, v = 32, 𝑛 = 48) 

 
Figure 2 Power curves of the new and existing tests for NALSD with parameters (𝑏 = 5, v = 50, 𝑛 = 75) 

The power of the test for the treatment effects through the NAN was calculated for neutrosophic data. The 

results are given in Tables 6 and 7 for NALSD with (𝑏 = 4, v = 32, 𝑛 = 48) and (𝑏 = 5, v = 50, 𝑛 = 75), for 

different sets of neutrosophic check means, (𝜇𝑁1, 𝜇𝑁2, 𝜇𝑁3, 𝜇𝑁4) and (𝜇𝑁1, 𝜇𝑁2, 𝜇𝑁3, 𝜇𝑁4, 𝜇𝑁5). The power of 

the test for the proposed and existing approaches’ performance in Tables 6 and 7 is displayed in Figures 1 

and 2.  

Without loss of generality, the powers were plotted in ascending order. Evidently, the power of the test for 

the indeterminate part is higher than the power for the determinate part; so, the proposed approach 

performs better than the existing one in testing the treatment effects.  
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5. Comparative Study 

As mentioned earlier, the proposed design is a generalization of the augmented Latin square design under 

classical statistics. The proposed 𝐹𝑁-test for NALSD reduces to the existing 𝐹-test for ALSD when all 

observations in the data are exact, determined and certain. Throughout this section, the proposed 𝐹𝑁-test 

is compared to the existing F-test in terms of the measure of indeterminacy, accuracy, flexibility, and 

information. For the purpose of comparison, the neutrosophic form of the 𝐹𝑁-test for the proposed design 

of the effects of treatments can be expressed as follows:  
1.054 +  1.062𝐼𝐹𝑁

; 𝐼𝐹𝑁
∈ [0, 0.007] 

Note that the neutrosophic form can be reduced to a statistic under classical statistics when 𝐼𝐹𝑁
= 0; So, the 

first part of the neutrosophic form 1.054 describes the value of the test statistic under classical statistics. 

The second part 1.062𝐼𝐹𝑁
 illustrates the indeterminate portion of the neutrosophic form. Additionally, this 

test has a measure of indeterminacy of 0.007. According to the proposed test, the values of the 𝐹𝑁-test, 𝐹𝑁 ∈

[𝐹𝐿 , 𝐹𝑈] are flexible and lie in the indeterminate interval that is 𝐹𝑁 ∈ [1.054,1.062]. Based on the proposed 

test, it is expected that 𝐹𝑁 ∈ [𝐹𝐿 , 𝐹𝑈] may range from 1.054 to 1.062 under an uncertain environment. This 

range distinguishes the proposed test from the existing test under classical statistics, which is based on the 

determined value, which does not appropriate under uncertain conditions. Additionally, this test provides 

additional information about the testing approach when indeterminacy is present; namely, it provides 

additional information about the testing procedure which is the measure of indeterminacy. To illustrate 

the numerical example, for testing 𝐻𝑁0 (means of treatment are equal), the probability that it will be 

accepted is 0.95, the probability that it will be rejected when true is 0.05, and the probability of uncertainty 

about it is 0.007.  

Moreover, Tables 6 and 7 provide a comparative evaluation of the relative effectiveness of the proposed 

test in terms of the 𝛼Empirical and 𝑃𝑜𝑤𝑒𝑟𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 . The results indicate that the 𝛼Empirical of the proposed test 

is close to 0.05 under NS. In addition, Figures 1 and 2 indicate that the curves of the power of the test for 

the indeterminate part are higher than those for the determinate part. This emphasizes that the 

indeterminate part plays an important role in uncertain environments. According to the results of the 

study, the proposed test for NALSD under NS is more informative, accuracy, and flexible than the test for 

ALSD under classical statistics. 

 

6. Conclusion  

This article introduces neutrosophic augmented Latin square design as a generalization to the existing 

augmented Latin square design. In this context, the statistical model and a NANOVA approach have been 

presented for the proposed design to deal with neutrosophic hypotheses and the decision rule about the 

treatment effects in the design. Besides, the performance of the proposed design has been evaluated using 

a numerical example and a simulation study. According to the results, the proposed design led to more 

accuracy in analyzing practical problems in uncertainty. It is conjectured that, based on the proposed 

design, many new investigations will be carried out in the future. Moreover, in practical experiments using 

the proposed design with uncertain data will be analyzed more precisely. 
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