

University of New Mexico

On S_{θ} -summability in neutrosophic soft normed linear spaces

Inayat Rasool Ganaie^{1,*}, Archana Sharma¹ and Vijay Kumar¹

¹Department Of Mathematics, Chandigarh University, Mohali-140413, Punjab, India; inayatrasool.maths@gmail.com, dr.archanasharma1022@gmail.com and kaushikvjy@gmail.com
*Correspondence: inayatrasool.maths@gmail.com; Tel.: (+919622643253)

Abstract. For any lacunary sequence $\theta = (k_s)$, the aim of the present paper is to define \mathcal{S}_{θ} -convergence, \mathcal{S}_{θ} -Cauchy and \mathcal{S}_{θ} -completeness via neutrosophic soft norm. We study certain properties of these notions and give an important characterization of \mathcal{S}_{θ} -convergence in neutrosophic soft normed linear spaces (briefly NSNLS). We provide examples that shows \mathcal{S}_{θ} -convergence is a more general method of summability in these spaces.

Keywords: S_{θ} -convergence, S_{θ} -Cauchy, soft sets, soft normed linear spaces.

1. Introduction

Statistical convergence was first introduced by Fast [8] and linked with the summability theory by Schoenberg [10]. Later, The idea is developed by Maddox [9], Fridy [12], Connor [13], Mursaleen and Edely [18], Šalát [32], Kumar and mursaleen [35] and many others.

Friday and Orhan [11] used lacunary sequences to define a new kind of statistical convergence as follows. "By a lacunary sequence we mean an increasing integer sequence $\theta = (k_s)$ with $k_0 = 0$ and $h_s = k_s - k_{s-1} \to \infty$ as $s \to \infty$. The intervals determined by θ will be denoted by $I_s = (k_{s-1}, k_s]$ and the ratio $\frac{k_s}{k_{s-1}}$ will be abbreviated as q_s . For $K \subseteq \mathbb{N}$, the number $\delta_{\theta}(K) = \lim_{s \to \infty} \frac{1}{h_s} |\{k \in I_s : k \in K\}| \text{ is called } \theta\text{-density of } K, \text{ provided the limit exists. A sequence } x = (x_k) \text{ of numbers is said to be lacunary statistically convergent (briefly <math>S_{\theta}$ -convergent) to x_0 if for every $\epsilon > 0$, $\lim_{s \to \infty} \frac{1}{h_s} |\{k \in I_s : |x_k - x_0| \ge \epsilon\}| = 0$ or equivalently, the set $K(\epsilon)$ has θ -density zero, where $K(\epsilon) = \{k \in \mathbb{N} : |x_k - x_0| \ge \epsilon\}$. In this case, we write $S_{\theta} - \lim_{k \to \infty} x_k = x_0$." Some further interesting works on lacunary statistical convergence can be found in [4], [19], [25], [34], [36], etc.

Zadeh [16] proposed the theory of fuzzy sets in 1965 as a more convenient tool for handling issues that cannot be modelled via crisp set theory. Atanassov [15] observed that fuzzy sets need more modification to handle problems in a time domain and therefore he introduced the intuitionistic fuzzy sets. After the introduction of intuitionistic fuzzy sets, a progressive development is made in this field. For instance, intuitionistic fuzzy metric spaces were introduced by Park [14], intuitionistic fuzzy topological spaces by Saadati and Park [26], etc.

The neutrosophic sets were initially introduced by Smarandache[7] as a generalization of fuzzy sets and intuitionistic fuzzy sets to avoid the complexity arising from uncertainty in settling many practical challenges in real-world activities. Kirişçi and Şimşek[17] defined neutrosophic norm and studied statistical convergence in neutrosophic normed spaces(NNS). For a broad view in this direction, we recommend to the reader [1], [2], [3], [20], [21], [22], [33].

Many approaches discussed above to minimize the uncertainty have their own drawbacks due to the inadequacy of the parametrization. In view of this, Molodtsov[6] proposed a new theory, called soft set theory to reduce the uncertainty during mathematical modelling. These sets turn out very useful tools in many areas of engineering and medical sciences. For instance: Maji et al [23] applied the theory of soft sets to decision-making problems. Kong et al.[39] presented a heuristic algorithm of normal parameter reduction of soft sets. Zou and Xiao[38] presented a data analysis approach of soft sets under incomplete information. Yuksel et al.[30] applied soft set theory to diagnose the prostate cancer risk in human beings whereas Çelik and Yamak[37] applied fuzzy soft set theory for medical diagnosis using fuzzy arithmetic operations.

Maji [24] presented a combined concept of Neutrosophic soft sets in 2013. Recently, Bera and Mahapatra [31] defined a generalized norm and called it a neutrosophic soft norm. They also studied some properties of NSNLS and developed fundamental concepts of sequences in these spaces. In this article, we develop and study the concept of S_{θ} -convergence in NSNLS. We also introduce the concepts of S_{θ} -Cauchy sequence, S_{θ} -completeness and develop some of their properties.

2. Preliminaries

This section starts with a brief information on soft sets, soft vector spaces and neutrosophic soft normed spaces. We begin with the following notations and definitions.

Throughout this work, \mathbb{N} will denote the set of positive integers, \mathbb{R} the set of reals and \mathbb{R}^+ the set of positive real numbers.

Definition 2.1 [5] A binary operation \circ : $[0,1] \times [0,1] \rightarrow [0,1]$ is continuous *t*-norm if \circ satisfies the following conditions:

- (i) $d \circ e = e \circ d$ and $d \circ (e \circ f) = (d \circ e) \circ f$.
- (ii) \circ is continuous.

- (iii) $d \circ 1 = 1 \circ d = d$ for all $d \in [0, 1]$.
- (iv) $d \circ e \leq f \circ g$ if $d \leq f, e \leq g$ with $d, e, f, g \in [0, 1]$.

Definition 2.2 [5] A binary operation $\diamond : [0,1] \times [0,1] \to [0,1]$ is continuous *t*-conorm(*s*-norm) if \diamond satisfies the following conditions:

- (i) $d \diamond e = e \diamond d$ and $d \diamond (e \diamond f) = (d \diamond e) \diamond f$.
- (ii) ♦ is continuous.
- (iii) $d \diamond 0 = 0 \diamond d = \text{ for all } d \in [0, 1].$
- (iv) $d \diamond e \leq f \diamond g$ if $d \leq f, e \leq g$ with $d, e, f, g \in [0, 1]$.

For any universe set U and the set E of the parameters, the soft set is defined as follows:

Definition 2.3 [6] A pair (H, E) is called a soft set over U if and only if H is a mapping of E into the set of all subsets of the set U. i.e., the soft set is a parametrized family of subsets of the set U.

Moreover, every set $H(\epsilon)$, $\epsilon \in E$, from this family may be considered as the set of ϵ -elements of the soft set (H, E), or as the set of ϵ -approximate elements of the set.

Definition 2.4 [6] A soft set (H, E) over U is said to be absolute soft set if for all $\epsilon \in E$, $H(\epsilon) = U$. We will denote it by U.

Definition 2.5 [27] Let \mathbb{R} be the set of real numbers, $B(\mathbb{R})$ be the collection of all non-empty bounded subsets of \mathbb{R} and E taken as a set of parameters. Then a mapping $F: E \to B(\mathbb{R})$ is called a soft real set. If a soft real set is a singleton soft set, then it is called a soft real number and denoted by $\widetilde{r}, \widetilde{s}, \widetilde{t}$, etc. $\widetilde{0}, \widetilde{1}$ are the soft real numbers where $\widetilde{0}$ $(e) = 0, \widetilde{1}$ (e) = 1 for all $e \in E$ respectively.

Let $\mathbb{R}(E)$ and $\mathbb{R}^+(E)$ respectively denote the sets of all soft real numbers and all positive soft real numbers.

Definition 2.6 [28] Let (H, E) be a soft set over U. The set (H, E) is said to be a soft point, denoted by H_e^u if there is exactly one $e \in E$ s.t $H(e) = \{u\}$ for some $u \in U$ and $H(e') = \phi$ for all $e' \in E - \{e\}$.

Two soft points $H_e^u, H_{e^{'}}^w$ are said to be equal if $e = e^{'}$ and u = w. Let $\Delta_{\widetilde{U}}$ denotes the set of all soft points on \tilde{U} .

In case U is a vector space over \mathbb{R} and the parameter set $E = \mathbb{R}$, the soft point is called a soft vector.

Soft vector spaces are used to define soft norm as follows:

Definition 2.7 [29] Let \tilde{U} be a absolute soft vector space. Then a mapping $\|\cdot\|:\tilde{U}\to\mathbb{R}^+(E)$ is said to be a soft norm on \tilde{U} , if $\|\cdot\|$ satisfies the following conditions:

- (i) $||u_e|| \ge \widetilde{0}$ for all $u_e \in \widetilde{U}$ and $||u_e|| = \widetilde{0} \Leftrightarrow u_e = \widetilde{\theta}_0$ where $\widetilde{\theta}_0$ denotes the zero element of \widetilde{U} .
- (ii) $\|\widetilde{\alpha} u_e\| = |\widetilde{\alpha}| \|u_e\|$ for all $u_e \in U$ and for every soft scalar $\widetilde{\alpha}$.
- (iii) $||u_e + v_{e'}|| \le ||u_e|| + ||v_{e'}||$ for all $u_e, v_{e'} \in \tilde{U}$.

(iv)
$$||u_e \cdot v_{e'}|| = ||u_e|| ||v_{e'}||, \forall u_e, v_{e'} \in \tilde{U}.$$

The soft vector space \tilde{U} with a soft norm $\|\cdot\|$ on \tilde{U} is said to be a soft normed linear space and is denoted by $(\tilde{U},\|\cdot\|)$.

We now recall the definition of neutrosophic soft normed linear spaces and the convergence structure in these spaces.

Definition 2.8 [31] Let \tilde{U} be a soft linear space over the field F and $\mathbb{R}(E)$, $\Delta_{\tilde{U}}$ denote respectively, the set of all soft real numbers and the set of all soft points on \tilde{U} . Then a neutrosophic subset N over $\Delta_{\tilde{U}} \times \mathbb{R}(E)$ is called a neutrosophic soft norm on \tilde{U} if for $u_e, v_{e'} \in \tilde{U}$ and $\overset{\sim}{\alpha} \in F$ ($\overset{\sim}{\alpha}$ being soft scalar), the following conditions hold.

(i)
$$0 \leq G_N(u_e, \widetilde{\eta_1}), B_N(u_e, \widetilde{\eta_1}), Y_N(u_e, \widetilde{\eta_1}) \leq 1, \forall \widetilde{\eta_1} \in \mathbb{R}(E).$$

(ii)
$$0 \le G_N(u_e, \widetilde{\eta_1}) + B_N(u_e, \widetilde{\eta_1}) + Y_N(u_e, \widetilde{\eta_1}) \le 3, \forall \ \widetilde{\eta_1} \in \mathbb{R}(E)$$

(iii)
$$G_N(u_e, \widetilde{\eta_1}) = 0$$
 with $\widetilde{\eta_1} \leq \widetilde{0}$

(iv)
$$G_N(u_e, \overset{\sim}{\eta_1}) = 1$$
, with $\overset{\sim}{\eta_1} > \overset{\sim}{0}$ if and only if $u_e = \overset{\sim}{\theta}$, the null soft vector.

$$(v) G_N(\overset{\sim}{\alpha} u_e, \overset{\sim}{\eta_1}) = G_N\left(u_e, \frac{\overset{\sim}{\eta_1}}{|\overset{\sim}{\alpha}|}\right), \forall \overset{\sim}{\alpha} (\neq \overset{\sim}{0}), \overset{\sim}{\eta_1} > \overset{\sim}{0}.$$

(vi)
$$G_N(u_e, \widetilde{\eta_1}) \circ G_N(v_{e'}, \widetilde{\eta_2}) \leq G_N(u_e \oplus v_{e'}, \widetilde{\eta_1} \oplus \widetilde{\eta_2}), \forall \widetilde{\eta_1}, \widetilde{\eta_2} \in \mathbb{R}(E)$$

(vii)
$$G_N(u_e, \cdot)$$
 is continuous non-decreasing function for $\overset{\sim}{\eta_1} > \overset{\sim}{0}$ and $\lim_{\overset{\sim}{\eta_1} \to \infty} G_N(u_e, \overset{\sim}{\eta_1}) = 1$.

(viii)
$$B_N(u_e, \widetilde{\eta_1}) = 1$$
 with $\widetilde{\eta_1} \leq \widetilde{0}$.

(ix)
$$B_N(u_e, \overset{\sim}{\eta_1}) = 0$$
, with $\overset{\sim}{\eta_1} > \overset{\sim}{0}$ if and only if $u_e = \overset{\sim}{\theta}$, the null soft vector.

$$(x) B_N(\widetilde{\alpha} u_e, \widetilde{\eta_1}) = B_N\left(u_e, \frac{\widetilde{\eta_1}}{|\widetilde{\alpha}|}\right), \forall \widetilde{\alpha} (\neq 0), \widetilde{\eta_1} > 0.$$

(xi)
$$B_N(u_e, \widetilde{\eta_1}) \diamond B_N(v_{e'}, \widetilde{\eta_2}) \geq B_N(u_e \oplus v_{e'}, \widetilde{\eta_1} \oplus \widetilde{\eta_2}) \ \forall \ \widetilde{\eta_1}, \widetilde{\eta_2} \in \mathbb{R}(E).$$

(xii)
$$B_N(u_e, \cdot)$$
 is continuous non-increasing function for $\widetilde{\eta_1} > \widetilde{0}$ and $\lim_{\widetilde{\eta_1} \to \infty} B_N(u_e, \widetilde{\eta_1}) = 0$.

(xiii)
$$Y_N(u_e, \widetilde{\eta_1}) = 0$$
 with $\widetilde{\eta_1} \leq \widetilde{0}$.

$$(\text{xiv})Y_N(u_e, \overset{\sim}{\eta_1}) = 0$$
, with $\overset{\sim}{\eta_1} > \overset{\sim}{0}$ if and only if $u_e = \overset{\sim}{\theta}$, the null soft vector.

$$(\text{xv}) \ Y_N(\widetilde{\alpha} \ u_e, \widetilde{\eta_1}) = Y_N\left(u_e, \frac{\widetilde{\eta_1}}{|\widetilde{\alpha}|}\right), \forall \ \widetilde{\alpha} \ (\neq \widetilde{0}), \widetilde{\eta_1} > \widetilde{0} \ .$$

(xvi)
$$Y_N(u_e, \widetilde{\eta_1}) \diamond Y_N(v_{e'}, \widetilde{\eta_2}) \geq Y_N(u_e \oplus v_{e'}, \widetilde{\eta_1} \oplus \widetilde{\eta_2}) \ \forall \ \widetilde{\eta_1}, \widetilde{\eta_2} \in \mathbb{R}(E).$$

(xvii)
$$Y_N(u_e,\cdot)$$
 is continuous non-increasing function for $\overset{\sim}{\eta_1} > \overset{\sim}{0}$ and $\lim_{\overset{\sim}{\eta_1} \to \infty} B_N(u_e,\overset{\sim}{\eta_1}) = 0$.

In this case, $\mathcal{N}=(G_N,B_N,Y_N)$ is called the neutrosophic soft norm and $(\widetilde{U}(F),G_N,B_N,Y_N,\circ,\diamond)$ is the neutrosophic soft normed linear space (NSNLS) briefly).

Let $(\widetilde{U}, \|\cdot\|)$ be a soft normed space. Take the operations \circ and \diamond as $x \circ y = xy$; $x \diamond y = x + y - xy$. For $\widetilde{\eta} > \widetilde{0}$, define

$$G_N(u_e, \overset{\sim}{\eta}) = \begin{cases} \frac{\overset{\sim}{\eta}}{\overset{\sim}{\eta} + ||u_e||} & \text{if } \overset{\sim}{\eta} > ||u_e|| \\ 0 & \text{otherwise} \end{cases}$$

$$B_N(u_e, \overset{\sim}{\eta}) = \begin{cases} \frac{\|u_e\|}{\overset{\sim}{\eta} + \|u_e\|} & \text{if } \overset{\sim}{\eta} > \|u_e\| \\ 0 & \text{otherwise} \end{cases}$$

$$Y_N(u_e, \widetilde{\eta}) = \begin{cases} \frac{\|u_e\|}{\widetilde{\eta}} & \text{if } \widetilde{\eta} > \|u_e\| \\ 0 & \text{otherwise,} \end{cases}$$

then $(\tilde{U}(F),G_N,B_N,Y_N,\circ,\diamond)$ is an NSNLS. From now onwards, unless otherwise stated by \tilde{V} we shall denote the NSNLS $(\tilde{U}(F),G_N,B_N,Y_N,\circ,\diamond)$.

Definition 2.9 [31] A sequence $v = (v_{e_k}^k)$ of soft points in \tilde{V} is said to be convergent to a soft point $v_e \in \tilde{V}$ if for $0 < \epsilon < 1$ and $\overset{\sim}{\eta} > \overset{\sim}{0} \exists n_0 \in \mathbb{N} \text{ s.t } G_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) > 1 - \epsilon, \ B_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) < \epsilon.$ In this case, we write $\lim_{k \to \infty} v_{e_k}^k = v_e$.

Definition 2.10 [31] A sequence $v = (v_{e_k}^k)$ of soft points in \tilde{V} is said to be cauchy sequence if for $0 < \epsilon < 1$ and $\overset{\sim}{\eta} > \overset{\sim}{0} \exists n_0 \in \mathbb{N}$ s.t for all $k, p \ge n_0 \ G_N(v_{e_k}^k \ominus v_{e_p}^p, \overset{\sim}{\eta}) > 1 - \epsilon, \ B_N(v_{e_k}^k \ominus v_{e_p}^p, \overset{\sim}{\eta}) < \epsilon.$

3. Lacunary statistical convergence in NSNLS

In this section, we define S_{θ} -convergence in neutrosophic soft normed linear spaces and develop some of its properties.

Definition 3.1 A sequence $v = (v_{e_k}^k)$ of soft points in \widetilde{V} is said to be lacunary statistical convergent or \mathcal{S}_{θ} -convergent to a soft point v_e in \widetilde{V} w.r.t neutrosophic soft norm- (G_N, B_N, Y_N) if for each $\epsilon > 0$ and $\widetilde{\eta} > \widetilde{0}$,

$$\lim_{s \to \infty} \frac{1}{h_s} \left| \left\{ k \in I_s : G_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) \le 1 - \epsilon \text{ or} \right. \\ \left. B_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) \ge \epsilon, Y_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) \ge \epsilon \right\} \right| = 0,$$

i.e., $\delta_{\theta}(A) = 0$ where

$$A = \{k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) \le 1 - \epsilon \text{ or }$$

$$B_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) \ge \epsilon, Y_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) \ge \epsilon \}.$$

In this case, we write $S_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} v_{e_k}^k = v_e$.

Let, $S_{\theta}(G_N, B_N, Y_N)$ denotes the set of all sequences of soft points in \widetilde{V} which are S_{θ} -convergent with respect to the neutrosophic soft norm (G_N, B_N, Y_N) .

Definition 3.1 together with the property of θ -density, we have the following lemma.

Lemma 3.1 For any sequence $v=(v_{e_k}^k)$ of soft points in \tilde{V} , the following statements are equivalent:

(i)
$$S_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} v_{e_k}^k = v_e;$$

(ii)
$$\delta_{\theta}\{k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \le 1 - \epsilon\} = \delta_{\theta}\{k \in \mathbb{N} : B_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \ge \epsilon\} = \delta_{\theta}\{k \in \mathbb{N} : Y_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \ge \epsilon\} = 0;$$

(iii)
$$\delta_{\theta}\{k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) > 1 - \epsilon \text{ and } B_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) < \epsilon, Y_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) < \epsilon\} = 1;$$

$$(iv)\delta_{\theta}\{k \in \mathbb{N} : G_{N}(v_{e_{k}}^{k} \ominus v_{e}, \widetilde{\eta}) > 1 - \epsilon\} = \delta_{\theta}\{k \in \mathbb{N} : B_{N}(v_{e_{k}}^{k} \ominus v_{e}, \widetilde{\eta}) < \epsilon\} = \delta_{\theta}\{k \in \mathbb{N} : Y_{N}(v_{e_{k}}^{k} \ominus v_{e}, \widetilde{\eta}) < \epsilon\} = 1;$$

(v)
$$\mathcal{S}_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} G_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) = 1$$
 and $\mathcal{S}_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} B_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) = 0$, $\mathcal{S}_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} Y_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) = 0$.

Theorem 3.1 Let $\theta = (k_s)$ be a lacunary sequence and $v = (v_{e_k}^k)$ be any sequence in \tilde{V} . If $S_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} v_{e_k}^k$ exists, then it is unique.

Proof. Suppose that $S_{\theta}(G_N, B_N, Y_N) - \lim_{n \to \infty} v_{e_k}^k = v_{e_1}$ and $S_{\theta}(G_N, B_N, Y_N) - \lim_{n \to \infty} v_{e_k}^k = v'_{e_2}$, where $v_{e_1} \neq v'_{e_2}$. Let $\epsilon > 0$ and $\widetilde{\eta} > \widetilde{0}$. Choose $\varrho > 0$ s.t.

$$(1-\varrho)\circ(1-\varrho) > 1-\epsilon \text{ and } \varrho \lozenge \varrho < \epsilon$$
 (1)

Define the following sets:

$$H_{G_{N},1}(\varrho,\widetilde{\eta}) = \left\{ k \in \mathbb{N} : G_{N}\left(v_{e_{k}}^{k} \ominus v_{e_{1}}, \frac{\widetilde{\eta}}{2}\right) \leq 1 - \varrho \right\}.$$

$$H_{G_{N},2}(\varrho,\widetilde{\eta}) = \left\{ k \in \mathbb{N} : G_{N}\left(v_{e_{k}}^{k} \ominus v_{e_{2}}', \frac{\widetilde{\eta}}{2}\right) \leq 1 - \varrho \right\}.$$

$$H_{B_{N},1}(\varrho,\widetilde{\eta}) = \left\{ k \in \mathbb{N} : B_{N}\left(v_{e_{k}}^{k} \ominus v_{e_{1}}, \frac{\widetilde{\eta}}{2}\right) \geq \varrho \right\}.$$

$$H_{B_{N},2}(\varrho,\widetilde{\eta}) = \left\{ k \in \mathbb{N} : B_{N}\left(v_{e_{k}}^{k} \ominus v_{e_{2}}', \frac{\widetilde{\eta}}{2}\right) \geq \varrho \right\}.$$

$$H_{Y_{N},1}(\varrho,\widetilde{\eta}) = \left\{ k \in \mathbb{N} : Y_{N}\left(v_{e_{k}}^{k} \ominus v_{e_{1}}', \frac{\widetilde{\eta}}{2}\right) \geq \varrho \right\}.$$

$$H_{Y_{N},2}(\varrho,\widetilde{\eta}) = \left\{ k \in \mathbb{N} : Y_{N}\left(v_{e_{k}}^{k} \ominus v_{e_{1}}', \frac{\widetilde{\eta}}{2}\right) \geq \varrho \right\}.$$

Since $S_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} v_{e_k}^k = v_{e_1}$, then using lemma 3.1, we have

$$\delta_{\theta}\{H_{G_{N},1}(\varrho,\widetilde{\eta})\} = \delta_{\theta}\{H_{B_{N},1}(\varrho,\widetilde{\eta})\} = \delta_{\theta}\{H_{Y_{N},1}(\varrho,\widetilde{\eta})\} = 0 \text{ and therefore } \delta_{\theta}\{H_{G_{N},1}^{C}(\varrho,\widetilde{\eta})\} = \delta_{\theta}\{H_{B_{N},1}^{C}(\varrho,\widetilde{\eta})\} = \delta_{\theta}\{H_{Y_{N},1}^{C}(\varrho,\widetilde{\eta})\} = 1.$$

Further,
$$S_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} v_{e_k}^k = v'_{e_2}$$
, so

$$\delta_{\theta}\{H_{G_{N},2}(\varrho,\widetilde{\eta})\} = \delta_{\theta}\{H_{B_{N},2}(\varrho,\widetilde{\eta})\} = \delta_{\theta}\{H_{Y_{N},2}(\varrho,\widetilde{\eta})\} = 0 \text{ and therefore } \delta_{\theta}\{H_{G_{N},2}^{C}(\varrho,\widetilde{\eta})\} = \delta_{\theta}\{H_{G_{N},2}^{C}(\varrho,\widetilde{\eta})\} = \delta_{\theta}\{H_{Y_{N},2}^{C}(\varrho,\widetilde{\eta})\} = 1 \text{ for all } \widetilde{\eta} > 0. \text{ Now define}$$

$$\begin{split} K_{G_N,B_N,Y_N}(\epsilon,\overset{\sim}{\eta}) &= \{H_{G_N,1}(\varrho,\overset{\sim}{\eta}) \cup H_{G_N,2}(\varrho,\overset{\sim}{\eta})\} \\ & \cap \{H_{B_N,1}(\varrho,\overset{\sim}{\eta}) \cup H_{B_N,2}(\varrho,\overset{\sim}{\eta})\} \cap \{H_{Y_N,1}(\varrho,\overset{\sim}{\eta}) \cup H_{Y_N,2}(\varrho,\overset{\sim}{\eta})\}, \end{split}$$

then $\delta_{\theta}\{K_{G_N,B_N,Y_N}(\epsilon, \overset{\sim}{\eta})\} = 0$ and therefore, $\delta_{\theta}\{K_{G_N,B_N,Y_N}^C(\epsilon, \overset{\sim}{\eta})\} = 1$. Let $m \in K_{G_N,B_N,Y_N}^C(\epsilon, \overset{\sim}{\eta})$, then we have following possibilities.

1.
$$m \in \left\{ H_{G_N,1}(\varrho, \widetilde{\eta}) \cup H_{G_N,2}(\varrho, \widetilde{\eta}) \right\}^C$$
; or
2. $m \in \left\{ H_{B_N,1}(\varrho, \widetilde{\eta}) \cup H_{B_N,2}(\varrho, \widetilde{\eta}) \right\}^C$; or
3. $m \in \left\{ H_{Y_N,1}(\varrho, \widetilde{\eta}) \cup H_{Y_N,2}(\varrho, \widetilde{\eta}) \right\}^C$.

Case 1: Let $m \in \left\{ H_{G_N,1}(\varrho, \widetilde{\eta}) \cup H_{G_N,2}(\varrho, \widetilde{\eta}) \right\}^C$, then $m \in H_{G_N,1}^C(\varrho, \widetilde{\eta})$ and $m \in H_{G_N,2}^C(\varrho, \widetilde{\eta})$ and therefore,

$$G_N\left(v_{e_m}^m \ominus v_{e_1}, \frac{\widetilde{\eta}}{2}\right) > 1 - \varrho \text{ and } G_N\left(v_{e_m}^m \ominus v_{e_2}', \frac{\widetilde{\eta}}{2}\right) > 1 - \varrho.$$
 (2)

Now

$$G_{N}(v_{e_{1}} \ominus v_{e_{2}}^{'}, \widetilde{\eta}) = G_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{m}}^{m} \oplus v_{e_{1}} \ominus v_{e_{2}}^{'}, \frac{\widetilde{\eta}}{2} \oplus \frac{\widetilde{\eta}}{2}\right)$$

$$\geq G_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{1}}, \frac{\widetilde{\eta}}{2}\right) \circ G_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{2}}^{'}, \frac{\widetilde{\eta}}{2}\right)$$

$$> (1 - \varrho) \circ (1 - \varrho) \quad \text{by (2)}$$

$$> 1 - \epsilon. \quad \text{by (1)}$$

Since $\epsilon > 0$ is arbitrary, so we have $G_N(v_{e_1} \ominus v'_{e_2}, \widetilde{\eta}) = 1$ for all $\widetilde{\eta} > \widetilde{0}$, which gives $v_{e_1} = v'_{e_2}$. Case 2: Let $m \in \left\{ H_{B_N,1}(\varrho, \widetilde{\eta}) \cup H_{B_N,2}(\varrho, \widetilde{\eta}) \right\}^C$, then $m \in H_{B_N,1}^C(\varrho, \widetilde{\eta})$ and $m \in H_{B_N,2}^C(\varrho, \widetilde{\eta})$ and therefore,

$$B_N\left(v_{e_m}^m\ominus v_{e_1},\frac{\widetilde{\eta}}{2}\right)<\varrho \ \text{ and } B_N\left(v_{e_m}^m\ominus v_{e_2}^{'},\frac{\widetilde{\eta}}{2}\right)<\varrho. \tag{3}$$

Now

$$B_{N}(v_{e_{1}} \ominus v_{e_{2}}^{'}, \widetilde{\eta}) = B_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{m}}^{m} \oplus v_{e_{1}} \ominus v_{e_{2}}^{'}, \frac{\widetilde{\eta}}{2} \oplus \frac{\widetilde{\eta}}{2}\right)$$

$$\leq B_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{1}}, \frac{\widetilde{\eta}}{2}\right) \diamond B_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{2}}^{'}, \frac{\widetilde{\eta}}{2}\right)$$

$$< \varrho \diamond \varrho \qquad \text{by (3)}$$

$$< \epsilon. \qquad \text{by (1)}$$

Since $\epsilon > 0$ is arbitrary, so we have $B_N(v_{e_1} \ominus v'_{e_2}, \widetilde{\eta}) = 0$ for all $\widetilde{\eta} > \widetilde{0}$, which gives $v_{e_1} = v'_{e_2}$. Case 3: Let $m \in \left\{ H_{Y_N,1}(\varrho, \widetilde{\eta}) \cup H_{Y_N,2}(\varrho, \widetilde{\eta}) \right\}^C$, then $m \in H_{Y_N,1}^C(\varrho, \widetilde{\eta})$ and $m \in H_{Y_N,2}^C(\varrho, \widetilde{\eta})$ and therefore,

$$Y_N\left(v_{e_m}^m \ominus v_{e_1}, \frac{\widetilde{\eta}}{2}\right) < \varrho \text{ and } Y_N\left(v_{e_m}^m \ominus v_{e_2}', \frac{\widetilde{\eta}}{2}\right) < \varrho.$$
 (4)

Now

$$Y_{N}(v_{e_{1}} \ominus v_{e_{2}}^{'}, \widetilde{\eta}) = Y_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{m}}^{m} \oplus v_{e_{1}} \ominus v_{e_{2}}^{'}, \frac{\widetilde{\eta}}{2} \oplus \frac{\widetilde{\eta}}{2}\right)$$

$$\leq Y_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{1}}, \frac{\widetilde{\eta}}{2}\right) \diamond Y_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{2}}^{'}, \frac{\widetilde{\eta}}{2}\right)$$

$$< \varrho \diamond \varrho \qquad \text{by (4)}$$

$$< \epsilon. \qquad \text{by (1)}$$

Since $\epsilon > 0$ is arbitrary, so we have $Y_N(v_{e_1} \ominus v'_{e_2}, \widetilde{\eta}) = 0$ for all $\widetilde{\eta} > \widetilde{0}$, which gives $v_{e_1} = v'_{e_2}$. Hence, in all cases we have $v_{e_1} = v'_{e_2}$, i.e., $S_{\theta}(G_N, B_N, Y_N)$ -limit of $(v^k_{e_k})$ is unique. \square Theorem 3.2 Let $\theta = (k_s)$ be a lacunary sequence and $v = (v^k_{e_k})$ be any sequence in \widetilde{V} . If $(G_N, B_N, Y_N) - \lim_{k \to \infty} v^k_{e_k} = v_e$, then $S_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} v^k_{e_k} = v_e$.

Proof. Let $(G_N, B_N, Y_N) - \lim_{k \to \infty} v^k_{e_k} = v_e$. Then for each $\epsilon > 0$ and $\eta > 0$, \exists positive integers $k_0 \in \mathbb{N}$ s.t $G_N(v^k_{e_k} \ominus v_e, \widetilde{\eta}) > 1 - \epsilon$ and $B_N(v^k_{e_k} \ominus v_e, \widetilde{\eta}) < \epsilon, Y_N(v^k_{e_k} \ominus v_e, \widetilde{\eta}) < \epsilon \ \forall \ k > k_0$. Hence, the set

$$A = \left\{ k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \le 1 - \epsilon \text{ or} \right.$$
$$B_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \ge \epsilon, Y_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \ge \epsilon \right\}$$

has finite number of terms. Since every finite subset of $\mathbb N$ has θ -density zero and hence

$$\delta_{\theta} (\{k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \le 1 - \epsilon \text{ or}$$

$$B_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \ge \epsilon, Y_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \ge \epsilon \}) = 0.$$

Therefore, $S_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} v_{e_k}^k = v_e$. \square

The following example shows that the converse of the above theorem need not be true.

Example 3.1 Let $(\mathbb{R}, \|\cdot\|)$ be a soft normed linear space. For v_e in \mathbb{R} and $\tilde{\eta} > 0$, if we define

$$G_N(v_e, \overset{\sim}{\eta}) = \frac{\overset{\sim}{\eta}}{\overset{\sim}{\eta} \oplus ||v_e||}, \ B_N(v_e, \overset{\sim}{\eta}) = \frac{||v_e||}{\overset{\sim}{\eta} \oplus ||v_e||}, \ Y_N(v_e, \overset{\sim}{\eta}) = \frac{||v_e||}{\overset{\sim}{\eta}},$$

 $x \circ y = xy$ and $x \diamond y = \min\{x+y,1\}$, then it is easy to see that $\widetilde{V} = (\widetilde{\mathbb{R}}, G_N, B_N, Y_N, \circ, \diamond) \ \forall \ x,y \in [0,1]$ is a neutrosophic soft normed linear space.

Now define a sequence $v = (v_{e_k}^k)$ in $\stackrel{\sim}{V}$ by

$$v_{e_k}^k = \begin{cases} \tilde{k} & \text{if } k_s - [\sqrt{h_s}] + 1 \le k \le k_s, s \in \mathbb{N} \\ \overset{\sim}{0} & \text{otherwise.} \end{cases}$$

Now, for each $\epsilon > 0$ and $\widetilde{\eta} > \widetilde{0}$, let

$$A(\epsilon, \widetilde{\eta}) = \left\{ k \in I_s : G_N(v_{e_k}^k, \widetilde{\eta}) \le 1 - \epsilon \text{ or } B_N(v_{e_k}^k, \widetilde{\eta}) \ge \epsilon, Y_N(v_{e_k}^k, \widetilde{\eta}) \ge \epsilon \right\}$$

$$= \left\{ k \in I_s : \frac{\widetilde{\eta}}{\widetilde{\eta} \oplus \|v_{e_k}^k\|} \le 1 - \epsilon \text{ or } \frac{\|v_{e_k}^k\|}{\widetilde{\eta} \oplus \|v_{e_k}^k\|} \ge \epsilon, \frac{\|v_{e_k}^k\|}{\widetilde{\eta}} \ge \epsilon \right\}$$

$$= \left\{ k \in I_s : \|v_{e_k}^k\| \ge \frac{\widetilde{\eta}}{1 - \epsilon} \text{ or } \|v_{e_k}^k\| \ge \widetilde{\eta} \epsilon \right\}$$

$$\subseteq \left\{ k \in I_s : v_{e_k}^k = \widetilde{k} \right\}$$

$$= \left\{ k \in I_s : k_s - [\sqrt{h_s}] + 1 \le k \le k_s, s \in \mathbb{N} \right\}$$

and so we get

$$\frac{1}{h_s} |A(\epsilon, \tilde{\eta})| \le \frac{1}{h_s} |\{k \in I_s : k_s - [\sqrt{h_s}] + 1 \le k \le k_s\}| \le \frac{\sqrt{h_s}}{h_s}.$$

Taking $s \to \infty$,

$$\lim_{s \to \infty} \frac{1}{h_s} |A(\epsilon, \overset{\sim}{\eta})| \le \lim_{s \to \infty} \frac{\sqrt{h_s}}{h_s} = 0, \text{ i.e., } \delta_{\theta}(A(\epsilon, \overset{\sim}{\eta})) = 0.$$

This shows that, $v = (v_{e_k}^k)$ is $\mathcal{S}_{\theta}(G_N, B_N, Y_N)$ - convergent to $\stackrel{\sim}{0}$. But by the structure of the sequence, $v = (v_{e_k}^k)$ is not convergent to $\stackrel{\sim}{0}$ w.r.t (G_N, B_N, Y_N) .

Theorem 3.3 Let $\theta = (k_s)$ be a lacunary sequence and let $u = (u_{e_k}^k)$ and $v = (v_{e_k}^k)$ be any two sequences in $\stackrel{\sim}{V}$ s.t $\mathcal{S}_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} (u_{e_k}^k) = u_{e_1}$ and $\mathcal{S}_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} (v_{e_k}^k) = v_{e_2}$. Then

$$(i)\mathcal{S}_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} (u_{e_k}^k \oplus v_{e_k}^k) = u_{e_1} \oplus v_{e_2}$$

(ii)
$$S_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} (\widetilde{\alpha} \ u_{e_k}^k) = \widetilde{\alpha} \ u_{e_1}$$
, where $\widetilde{0} \neq \widetilde{\alpha} \in F$.

Proof. The proof of the theorem can be obtained as the proof of theorem 3.1, so omitted. \square **Theorem 3.4** Let $\theta = (k_s)$ be a lacunary sequence. A sequence $v = (v_{e_k}^k)$ in V is $S_{\theta}(G_N, B_N, Y_N)$ -convergent to v_e , if and only if \exists a subset $K = \{k_1, k_2, ...\}$ of $\mathbb N$ s.t $\delta_{\theta}(K) = 1$ and $(G_N, B_N, Y_N) - \lim_{k \in K} v_{e_k}^k = v_e$.

Proof. First suppose that $S_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} v_{e_k}^k = v_e$. For $\widetilde{\eta} > 0$ and $\beta \in \mathbb{N}$, define the set

$$K_{G_N,B_N,Y_N}(\beta,\widetilde{\eta}) = \left\{ k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) > 1 - \frac{1}{\beta} \text{ and} \right.$$

$$B_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) < \frac{1}{\beta}, Y_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) < \frac{1}{\beta} \right\} \text{ and}$$

$$K_{G_N,B_N,Y_N}^C(\beta,\widetilde{\eta}) = \left\{ k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) \le 1 - \frac{1}{\beta} \text{ or} \right.$$

$$B_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) \ge \frac{1}{\beta}, Y_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) \ge \frac{1}{\beta} \right\}.$$

Since $S_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} v_{e_k}^k = v_e$, it follows that $\delta_{\theta}(K_{G_N, B_N, Y_N}^C(\beta, \widetilde{\eta})) = 0$. Furthermore, for $\widetilde{\eta} > \widetilde{0}$ and $\beta \in \mathbb{N}$, we observe $K_{G_N, B_N, Y_N}(\beta, \widetilde{\eta}) \supset K_{G_N, B_N, Y_N}(\beta + 1, \widetilde{\eta})$ and

$$\delta_{\theta}(K_{G_N,B_N,Y_N}(\beta,\widetilde{\eta})) = 1. \tag{5}$$

Now, we have to show that, for $k \in K_{G_N,B_N,Y_N}(\beta, \widetilde{\eta}), (G_N,B_N,Y_N) - \lim_{\substack{k \in K \\ k \to \infty}} v_{e_k}^k = v_e$. Suppose for

 $k \in K_{G_N,B_N,Y_N}(\beta,\widetilde{\eta}), (v_{e_k}^k)$ is not convergent to v_e w.r.t (G_N,B_N,Y_N) . Then \exists some $\xi > 0$ and a +ve integer k_0 s.t $G_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) \le 1 - \xi$ or $B_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) \ge \xi, Y_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) \ge \xi \ \forall \ k > k_0$. Let $G_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) > 1 - \xi$ and $B_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) < \xi, Y_N(v_{e_k}^k \ominus v_e,\widetilde{\eta}) < \xi \ \forall \ k < k_0$. Then

$$\delta_{\theta}(\{k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) > 1 - \xi \text{ and}$$

$$B_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) < \xi, Y_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) < \xi\}) = 0.$$

Since $\xi > \frac{1}{\beta}$ where $\beta \in \mathbb{N}$, we have $\delta_{\theta}(K_{G_N,B_N,Y_N}(\beta, \widetilde{\eta})) = 0$. In this way we obtained a contradiction to (5) as $\delta_{\theta}(K_{G_N,B_N,Y_N}(\beta, \widetilde{\eta})) = 1$. Hence, $(G_N, B_N, Y_N) - \lim_{\substack{k \in K \\ e_k}} v_{e_k}^k = v_e$.

Conversely, Suppose that \exists a subset $K = \{k_1, k_2, ..., k_j, ...\}$ of \mathbb{N} with $\delta_{\theta}(K) = 1$ and $(G_N, B_N, Y_N) - \lim_{k \to \infty} v_{e_k}^k = v_e$ over K i.e., $(G_N, B_N, Y_N) - \lim_{\substack{k \in K \\ k \to \infty}} v_{e_k}^k = v_e$. Let $\epsilon > 0$ and $\widetilde{\eta} > \widetilde{0}$, \exists

 $k_{j_0} \in \mathbb{N}$ s.t for all $k_j \ge k_{j_0}$, $G_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) > 1 - \epsilon$ and $B_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) < \epsilon$, $Y_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) < \epsilon$. So if we consider the set

$$T_{G_N,B_N,Y_N}(\epsilon, \widetilde{\eta}) = \left\{ k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \le 1 - \epsilon \text{ or} \right.$$

$$B_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \ge \epsilon, Y_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \ge \epsilon \right\},$$

then it is easy to see that $T_{G_N,B_N,Y_N}(\epsilon, \widetilde{\eta}) \subset \mathbb{N} - \{k_{j_0+1}, k_{j_0+2}, \ldots\}$. This immediately implies that $\delta_{\theta}(T_{G_N,B_N,Y_N}(\epsilon, \widetilde{\eta})) \leq \delta_{\theta}(\mathbb{N}) - \delta_{\theta}(\{k_{j_0+1}, k_{j_0+2}, \ldots\}) = 1 - 1 = 0$ and therefore $\delta_{\theta}(T_{G_N,B_N,Y_N}(\epsilon, \widetilde{\eta})) = 0$ as $\delta_{\theta}(T_{G_N,B_N,Y_N}(\epsilon, \widetilde{\eta}))$ can not be negative. This shows that $S_{\theta}(G_N,B_N,Y_N) - \lim_{n \to \infty} v_{e_k}^k = v_e$. \square

4. Lacunary statistical completeness in NSNLS

Definition 4.1 A sequence $v = (v_{e_k}^k)$ of soft points in \tilde{V} is said to be lacunary statistically cauchy (or \mathcal{S}_{θ} -Cauchy) w.r.t neutrosophic soft norm (G_N, B_N, Y_N) if for each $\epsilon > 0$ and $\overset{\sim}{\eta} > \overset{\sim}{0}$, $\exists p \in \mathbb{N}$ s.t

$$\lim_{s \to \infty} \frac{1}{h_s} \left| \left\{ k \in I_s : G_N(v_{e_k}^k \ominus v_{e_p}^p, \overset{\sim}{\eta}) \le 1 - \epsilon \text{ or } \right. \\ \left. B_N(v_{e_k}^k \ominus v_{e_p}^p, \overset{\sim}{\eta}) \ge \epsilon, Y_N(v_{e_k}^k \ominus v_{e_p}^p, \overset{\sim}{\eta}) \ge \epsilon \right\} \right| = 0,$$

or equivalently, the θ -density of the set K is zero, i.e., $\delta_{\theta}(K) = 0$ where

$$K = \{k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_{e_p}^p, \widetilde{\eta}) \le 1 - \epsilon \text{ or}$$

$$B_N(v_{e_k}^k \ominus v_{e_p}^p, \widetilde{\eta}) \ge \epsilon, Y_N(v_{e_k}^k \ominus v_{e_p}^p, \widetilde{\eta}) \ge \epsilon \}.$$

Theorem 4.1 Let $\theta = (k_s)$ be any lacunary sequence. If a sequence $v = (v_{e_k}^k)$ of soft points in $\stackrel{\sim}{V}$ is $\mathcal{S}_{\theta}(G_N, B_N, Y_N)$ -convergent, then it is $\mathcal{S}_{\theta}(G_N, B_N, Y_N)$ cauchy.

Proof. Let $v=(v_{e_k}^k)$ be any lacunary statistically convergent sequence with $\mathcal{S}_{\theta}(G_N, B_N, Y_N) - \lim_{k \to \infty} v_{e_k}^k = v_e$. Let $\epsilon > 0$ and $\widetilde{\eta} > \widetilde{0}$. Choose $\varrho > 0$ s.t (1) is satisfied. Define a set,

$$M(\varrho, \widetilde{\eta}) = \left\{ k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_e, \frac{\widetilde{\eta}}{2}) \le 1 - \varrho \text{ or} \right.$$
$$B_N(v_{e_k}^k \ominus v_e, \frac{\widetilde{\eta}}{2}) \ge \varrho, Y_N(v_{e_k}^k \ominus v_e, \frac{\widetilde{\eta}}{2}) \ge \varrho \right\},$$

then

$$M^{C}(\varrho, \widetilde{\eta}) = \left\{ k \in \mathbb{N} : G_{N}(v_{e_{k}}^{k} \ominus v_{e}, \frac{\widetilde{\eta}}{2}) > 1 - \varrho \text{ and} \right.$$

$$B_{N}(v_{e_{k}}^{k} \ominus v_{e}, \frac{\widetilde{\eta}}{2}) < \varrho, Y_{N}(v_{e_{k}}^{k} \ominus v_{e}, \frac{\widetilde{\eta}}{2}) < \varrho \right\}.$$

Since $S_{\theta}(G_N, B_N, Y_N) - \lim_{n \to \infty} v_{e_k}^k = v_e$, so $\delta_{\theta}(M(\varrho, \widetilde{\eta})) = 0$ and $\delta_{\theta}(M^C(\varrho, \widetilde{\eta})) = 1$. Let $p \in M^C(\varrho, \widetilde{\eta})$, then

$$G_N\left(v_{e_p}^p \ominus v_e, \frac{\widetilde{\eta}}{2}\right) > 1 - \varrho \text{ and } B_N\left(v_{e_p}^p \ominus v_e, \frac{\widetilde{\eta}}{2}\right) < \varrho, Y_N\left(v_{e_p}^p \ominus v_e, \frac{\widetilde{\eta}}{2}\right) < \varrho. \tag{6}$$

Now, let $T(\epsilon, \widetilde{\eta}) = \{k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_{e_p}^p, \widetilde{\eta}) \leq 1 - \epsilon \text{ or } B_N(v_{e_k}^k \ominus v_{e_p}^p, \widetilde{\eta}) \geq \epsilon, Y_N(v_{e_k}^k \ominus v_{e_p}^p, \widetilde{\eta}) \geq \epsilon \}$, then we have to show that $T(\epsilon, \widetilde{\eta}) \subseteq M(\varrho, \widetilde{\eta})$. Let $m \in T(\epsilon, \widetilde{\eta})$, then

$$G_N(v_{e_m}^m \ominus v_{e_p}^p, \overset{\sim}{\eta}) \le 1 - \epsilon \text{ or } B_N(v_{e_m}^m \ominus v_{e_p}^p, \overset{\sim}{\eta}) \ge \epsilon, Y_N(v_{e_m}^m \ominus v_{e_p}^p, \overset{\sim}{\eta}) \ge \epsilon.$$
 (7)

Case 1: If $G_N(v_{e_m}^m \ominus v_{e_p}^p, \widetilde{\eta}) \le 1 - \epsilon$, then $G_N\left(v_{e_m}^m \ominus v_e, \frac{\widetilde{\eta}}{2}\right) \le 1 - \varrho$ and therefore $m \in M(\varrho, \widetilde{\eta})$.

As otherwise i.e., if $G_N\left(v_{e_m}^m \ominus v_e, \frac{\widetilde{\eta}}{2}\right) > 1 - \varrho$, then by (1), (6) and (7) we get

$$1 - \epsilon \ge G_N(v_{e_m}^m \ominus v_{e_p}^p, \overset{\sim}{\eta}) = G_N\left(v_{e_m}^m \ominus v_e \oplus v_e \ominus v_{e_p}^p, \overset{\sim}{\eta} \oplus \overset{\sim}{\eta}\right)$$

$$\ge G_N\left(v_{e_m}^m \ominus v_e, \overset{\sim}{\eta}\right) \circ G_N\left(v_{e_p}^p \ominus v_e, \overset{\sim}{\eta}\right)$$

$$> (1 - \varrho) \circ (1 - \varrho)$$

$$> 1 - \epsilon,$$

which is impossible. Thus, $T(\epsilon, \widetilde{\eta}) \subseteq M(\varrho, \widetilde{\eta})$.

Case 2: If $B_N(v_{e_m}^m \ominus v_{e_p}^p, \widetilde{\eta}) \geq \epsilon$, then $B_N\left(v_{e_m}^m \ominus v_e, \frac{\widetilde{\eta}}{2}\right) \geq \varrho$ and therefore $m \in M(\varrho, \widetilde{\eta})$. As otherwise i.e., if $B_N\left(v_{e_m}^m \ominus v_e, \frac{\widetilde{\eta}}{2}\right) < \varrho$, then by (1), (6) and (7) we get

$$\epsilon \leq B_N(v_{e_m}^m \ominus v_{e_p}^p, \widetilde{\eta}) = B_N\left(v_{e_m}^m \ominus v_e \oplus v_e \ominus v_{e_p}^p, \frac{\widetilde{\eta}}{2} \oplus \frac{\widetilde{\eta}}{2}\right)$$

$$\leq B_N\left(v_{e_m}^m \ominus v_e, \frac{\widetilde{\eta}}{2}\right) \diamond B_N\left(v_{e_p}^p \ominus v_e, \frac{\widetilde{\eta}}{2}\right)$$

$$< \varrho \diamond \varrho$$

$$< \epsilon,$$

which is impossible.

Also, If $Y_N(v_{e_m}^m \ominus v_{e_p}^p, \widetilde{\eta}) \geq \epsilon$, then $Y_N\left(v_{e_m}^m \ominus v_e, \frac{\widetilde{\eta}}{2}\right) \geq \varrho$ and therefore $m \in M(\varrho, \widetilde{\eta})$. As otherwise i.e., if $Y_N\left(v_{e_m}^m \ominus v_e, \frac{\widetilde{\eta}}{2}\right) < \varrho$, then by (1), (6) and (7) we get

$$\epsilon \leq Y_{N}(v_{e_{m}}^{m} \ominus v_{e_{p}}^{p}, \widetilde{\eta}) = Y_{N}\left(v_{e_{m}}^{m} \ominus v_{e} \oplus v_{e} \ominus v_{e_{p}}^{p}, \frac{\widetilde{\eta}}{2} \oplus \frac{\widetilde{\eta}}{2}\right)$$

$$\leq Y_{N}\left(v_{e_{m}}^{m} \ominus v_{e}, \frac{\widetilde{\eta}}{2}\right) \diamond Y_{N}\left(v_{e_{p}}^{p} \ominus v_{e}, \frac{\widetilde{\eta}}{2}\right)$$

$$< \varrho \diamond \varrho$$

$$< \epsilon,$$

which is impossible. Thus, $T(\epsilon, \widetilde{\eta}) \subseteq M(\varrho, \widetilde{\eta})$

Hence in all cases, $T(\epsilon, \widetilde{\eta}) \subseteq M(\varrho, \widetilde{\eta})$. Since $\delta_{\theta}(M(\varrho, \widetilde{\eta})) = 0$, so $\delta_{\theta}(T(\epsilon, \widetilde{\eta})) = 0$, and therefore $v = (v_{e_k}^k)$ is $S_{\theta}(G_N, B_N, Y_N)$ Cauchy.

Definition 4.2 A $NSNLS \stackrel{\sim}{V}$ is said to be \mathcal{S}_{θ} -complete if every \mathcal{S}_{θ} -Cauchy sequence in $\stackrel{\sim}{V}$ w.r.t neutrosophic soft norm- (G_N, B_N, Y_N) is \mathcal{S}_{θ} - convergent w.r.t neutrosophic soft norm- (G_N, B_N, Y_N) .

Theorem 4.2 Let $\theta = (k_s)$ be any lacunary sequence. Then every $NSNLS \stackrel{\sim}{V}$ is \mathcal{S}_{θ} -complete but not complete in general.

Proof. Let $v = (v_{e_k}^k)$ be \mathcal{S}_{θ} -Cauchy but not \mathcal{S}_{θ} -convergent w.r.t neutrosophic soft norm- (G_N, B_N, Y_N) . For a given $\epsilon > 0$ and $\widetilde{\eta} > 0$. Choose $\varrho > 0$ s.t (1) is satisfied. Now

$$\begin{split} G_N(v_{e_k}^k \ominus v_{e_p}^p, \widetilde{\eta}) &\geq G_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \circ G_N(v_{e_p}^p \ominus v_e, \widetilde{\eta}) > (1-\varrho) \circ (1-\varrho) > 1-\epsilon \\ &B_N(v_{e_k}^k \ominus v_{e_p}^p, \widetilde{\eta}) \leq B_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \diamond B_N(v_{e_p}^p \ominus v_e, \widetilde{\eta}) < \varrho \diamond \varrho < \epsilon \\ &Y_N(v_{e_k}^k \ominus v_{e_p}^p, \widetilde{\eta}) \leq Y_N(v_{e_k}^k \ominus v_e, \widetilde{\eta}) \diamond Y_N(v_{e_p}^p \ominus v_e, \widetilde{\eta}) < \varrho \diamond \varrho < \epsilon. \end{split}$$

Since $v = (v_{e_k}^k)$ is not \mathcal{S}_{θ} -convergent w.r.t neutrosophic soft norm- (G_N, B_N, Y_N) . Therefore $\delta_{\theta}(H^C(\varrho, \tilde{\eta})) = 0$, where

$$H(\varrho, \overset{\sim}{\eta}) = \{ k \in \mathbb{N} : \mathcal{B}_{v_{e_{L}}^{k} \ominus v_{e_{p}}^{p}}(\varrho) \leq 1 - \epsilon \}$$

and so $\delta_{\theta}(H(\varrho, \overset{\sim}{\eta})) = 1$ which is a contradiction, since $v = (v_{e_k}^k)$ was \mathcal{S}_{θ} -cauchy w.r.t neutrosophic soft norm- (G_N, B_N, Y_N) . So $v = (v_{e_k}^k)$ must be \mathcal{S}_{θ} -convergent w.r.t neutrosophic soft norm- (G_N, B_N, Y_N) . Hence every $NSNLS \tilde{V}$ is \mathcal{S}_{θ} -complete.

The following example demonstrates that NSNLS is not complete in general:

Example 4.1[26] Let U = (0, 1] and

$$G_N(v, \overset{\circ}{\eta}) = \frac{\overset{\circ}{\eta}}{\overset{\circ}{\eta \oplus |v|}}, \ B_N(v, \overset{\circ}{\eta}) = \frac{|v|}{\overset{\circ}{\eta \oplus |v|}}, \ Y_N(v, \overset{\circ}{\eta}) = \frac{|v|}{\overset{\circ}{\eta}} \text{ for all } v \in \overset{\circ}{U}. \quad \text{Then } \overset{\circ}{V} = (\overset{\circ}{U})$$

 $(G_N, B_N, Y_N, \min, \max)$ is NSNLS but not complete, since the sequence of soft points $(\frac{1}{k})$ is cauchy w.r.t (G_N, B_N, Y_N) but not convergent w.r.t (G_N, B_N, Y_N) .

Theorem 4.3 If every S_{θ} -cauchy sequence of soft points in $\stackrel{\sim}{V}$ has a S_{θ} -convergent subsequence then $\stackrel{\sim}{V}$ is S_{θ} -complete.

Proof. Let $v = (v_{e_k}^k)$ be any S_{θ} -cauchy sequence of soft points in \tilde{V} which has a S_{θ} -convergent subsequence $(v_{e_k(j)}^{k(j)})$ i.e., $S_{\theta} - \lim_{j \to \infty} v_{e_k(j)}^{k(j)} = v_e$ for some v_e in \tilde{V} . Let $\epsilon > 0$ and $\overset{\sim}{\eta} > \overset{\sim}{0}$. Choose $\varrho > 0$ s.t (1) is satisfied. Since $v = (v_{e_k}^k)$ is S_{θ} -cauchy, so $\exists n_0 \in \mathbb{N}$ s.t $\forall k, p \geq n_0 \ \delta_{\theta}(A) = 0$ where

$$A = \left\{ k \in \mathbb{N} : G_N \left(v_{e_k}^k \ominus v_{e_p}^p, \frac{\widetilde{\eta}}{2} \right) \le 1 - \varrho \text{ or} \right.$$
$$B_N \left(v_{e_k}^k \ominus v_{e_p}^p, \frac{\widetilde{\eta}}{2} \right) \ge \varrho, Y_N \left(v_{e_k}^k \ominus v_{e_p}^p, \frac{\widetilde{\eta}}{2} \right) \ge \varrho \right\}.$$

Again since $S_{\theta} - \lim_{j \to \infty} v_{e_{k(j)}}^{k(j)} = v_e$. So we have $\delta_{\theta}(B) = 0$, where

$$B = \left\{ k(j) \in \mathbb{N} : G_N\left(v_{e_{k(j)}}^{k(j)} \ominus v_e, \frac{\widetilde{\eta}}{2}\right) \le 1 - \varrho \text{ or} \right.$$

$$B_N\left(v_{e_{k(j)}}^{k(j)} \ominus v_e, \frac{\widetilde{\eta}}{2}\right) \ge \varrho, Y_N\left(v_{e_{k(j)}}^{k(j)} \ominus v_e, \frac{\widetilde{\eta}}{2}\right) \ge \varrho \right\}.$$

Now define

$$D = \{k \in \mathbb{N} : G_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) \le 1 - \epsilon \text{ or}$$

$$B_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) \ge \epsilon, Y_N(v_{e_k}^k \ominus v_e, \overset{\sim}{\eta}) \ge \epsilon \}.$$

We now show that $A^C \cap B^C \subseteq D^C$. Let $m \in A^C \cap B^C$. As $m \in A^C$, so

$$G_N\left(v_{e_m}^m \ominus v_{e_p}^p, \frac{\widetilde{\eta}}{2}\right) > 1 - \varrho \text{ and}$$

$$B_N\left(v_{e_m}^m \ominus v_{e_p}^p, \frac{\widetilde{\eta}}{2}\right) < \varrho, Y_N\left(v_{e_m}^m \ominus v_{e_p}^p, \frac{\widetilde{\eta}}{2}\right) < \varrho,$$

$$(8)$$

and since $m \in B^C$, so $m = k(j_0)$ for $j_0 \in \mathbb{N}$ and

$$G_N\left(v_{e_{k(j_0)}}^{k(j_0)} \ominus v_e, \frac{\widetilde{\eta}}{2}\right) > 1 - \varrho \text{ and}$$

$$B_N\left(v_{e_{k(j_0)}}^{k(j_0)} \ominus v_e, \frac{\widetilde{\eta}}{2}\right) < \varrho, Y_N\left(v_{e_{k(j_0)}}^{k(j_0)} \ominus v_e, \frac{\widetilde{\eta}}{2}\right) < \varrho.$$

$$(9)$$

Now

$$G_{N}(v_{e_{m}}^{m} \ominus v_{e}, \overset{\sim}{\eta}) = G_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{k(j_{0})}}^{k(j_{0})} \oplus v_{e_{k(j_{0})}}^{k(j_{0})} \ominus v_{e}, \overset{\sim}{\eta} \oplus \overset{\sim}{\eta}\right)$$

$$\geq G_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{k(j_{0})}}^{k(j_{0})}, \overset{\sim}{\eta}\right) \circ G_{N}\left(v_{e_{k(j_{0})}}^{k(j_{0})} \ominus v_{e}, \overset{\sim}{\eta}\right)$$

$$> (1 - \varrho) \circ (1 - \varrho) \quad \text{for } p = k(j_{0})$$

$$> 1 - \epsilon$$

and

$$B_{N}(v_{e_{m}}^{m} \ominus v_{e}, \overset{\sim}{\eta}) = B_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{k(j_{0})}}^{k(j_{0})} \oplus v_{e_{k(j_{0})}}^{k(j_{0})} \ominus v_{e}, \overset{\sim}{\eta} \oplus \overset{\sim}{\eta}\right)$$

$$\leq B_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{k(j_{0})}}^{k(j_{0})}, \overset{\sim}{\eta}\right) \diamond B_{N}\left(v_{e_{k(j_{0})}}^{k(j_{0})} \ominus v_{e}, \overset{\sim}{\eta}\right)$$

$$< \varrho \diamond \varrho \quad \text{for } p = k(j_{0})$$

$$< \epsilon,$$

$$Y_{N}(v_{e_{m}}^{m} \ominus v_{e}, \widetilde{\eta}) = Y_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{k(j_{0})}}^{k(j_{0})} \oplus v_{e_{k(j_{0})}}^{k(j_{0})} \ominus v_{e}, \frac{\widetilde{\eta}}{2} \oplus \frac{\widetilde{\eta}}{2}\right)$$

$$\leq Y_{N}\left(v_{e_{m}}^{m} \ominus v_{e_{k(j_{0})}}^{k(j_{0})}, \frac{\widetilde{\eta}}{2}\right) \diamond Y_{N}\left(v_{e_{k(j_{0})}}^{k(j_{0})} \ominus v_{e}, \frac{\widetilde{\eta}}{2}\right)$$

$$< \varrho \diamond \varrho \quad \text{for } p = k(j_{0})$$

$$< \epsilon, \qquad \text{by (1), (8) and (9)}$$

which implies that $m \in D^C$, so $A^C \cap B^C \subseteq D^C$ or $D \subseteq A \cup B$. Therefore, $\delta_{\theta}(D) \leq \delta_{\theta}(A \cup B) = 0$. This shows that $v = (v_{e_k}^k)$ is \mathcal{S}_{θ} -convergent and therefore, $\stackrel{\sim}{V}$ is \mathcal{S}_{θ} -complete. \square

5. Acknowledgments

The authors wishes to thank the referees for their valuable suggestions, which have improved the presentation of the paper.

References

[1] A. Sharma; S. Murtaza; V. Kumar. Some remarks on $\Delta^m(I_{\lambda})$ -summability on neutrosophic normed spaces, International Journal of Neutrosophic Science (IJNS), 19 (2022), 68-81.

- [2] A. Sharma; V. Kumar. Some remarks on generalized summability using difference operators on neutrosophic normed spaces, J. of Ramanujan Society of Mathematics and Mathematical Sciences, 9(2) (2022), 153-164.
- [3] A. Sharma; V. Kumar; I. R. Ganaie. Some remarks on $\mathcal{I}(\mathcal{S}_{\theta})$ -summability via neutrosophic norm. *Filomat.* 37(20)~(2023),~6699-6707.
- [4] B. Hazarika; V. Kumar. On asymptotically double lacunary statistical equivalent sequences in ideal context, Journal of Inequalities and Applications, 2013(1), (2013). 1-15.
- B. Schweizer; A. Sklar. Statistical metric spaces, Pacific J. Math. 10(1) (1960), 313-334.
- [6] D. Molodtsov. Soft set theory first results, Comput. Math. Appl., 37 (1999), 19–31.
- [7] F. Smarandache. Neutrosophic set, a generalization of the Intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics, 24 (2005), 287–297.
- [8] H. Fast. Sur la convergence statistique. In Colloquium mathematicae, 2(3-4) (1951), 241-244.
- I. J. Maddox. Statistical convergence in a locally convex space, In Mathematical Proceedings of the Cambridge Philosophical Society, 104(1) (1988), 141-145. Cambridge University Press.
- [10] I. J. Schoenberg. The integrability of certain functions and related summability methods, The American mathematical monthly, **66**(5) (1959) 361-775.
- [11] J. A. Fridy; C. Orhan. Lacunary statistical convergence, Pacific Journal of Mathematics, 160(1) (1993), 43-51.
- [12] J. A. Fridy. On statistical convergence, Analysis, 5(4) (1985), 301-314.
- [13] J. Connor. The statistical and strong p-Cesaro convergence of sequences. Analysis, 8(1-2) (1988), 47-64.
- [14] J. H. Park. Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22 (2004), 1039-1046.
- [15] K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1986), 87-96.
- [16] L. A. Zadeh. Fuzzy sets. Information and control, 8(3) (1965), 338-353.
- [17] M. Kirişçi; N. Şimşek. Neutrosophic normed spaces and statistical convergence, The Journal of Analysis 28 (4) (2020) 1059-1073.
- [18] M. Mursaleen; O. H. H. Edely. Statistical convergence of double sequences, J. Math. Anal. Appl, 288 (2003), 223–231.
- [19] M. Mursaleen; S. A. Mohiuddine. On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, Journal of Computational and Applied Mathematics, 233(2) (2009), 142-149.
- [20] M. Karthika; M. Parimala; S. Jafari; F. Smarandache; M. Alshumrani; C. Ozel; R. Udhayakumar. Neutrosophic complex αψ connectedness in neutrosophic complex topological spaces. Neutrosophic Sets and Systems, 29 (2019), 158-164
- [21] M. Parimala; R. Jeevitha; S. Jafari; F. Smarandache; R. Udhayakumar. Neutrosophic αψ-Homeomorphism in Neutrosophic Topological Spaces. Information, 9(8), (2018), 187.
- [22] P. Mani; K. Muthusamy; S. Jafari; F. Smarandache; U. Ramalingam. *Decision-making via neutrosophic support soft topological spaces*. symmetry, **10**(6) (2018), 217.
- [23] P. K. Maji; A. K. Roy; R. Biswas. An Application of Soft Sets in A Decision Making Problem, Computers and Math. with Appl., 44 (2002), 1077-1083.
- [24] P. K. Maji. Neutrosophic soft set, Annals of Fuzzy Mathematics and Informatics, 5(1) (2013), 157-168.
- [25] P. Kumar; S. S. Bhatia; V. Kumar. On lacunary statistical limit and cluster points of sequences of fuzzy numbers, Iranian Journal of Fuzzy Systems, 10(6) (2013), 53-62.
- [26] R. Saadati; J. H. Park. On the Intuitionistic fuzzy topological spaces, Chaos, Solitons & Fractals, 27 (2006), 331-344.
- [27] S. Das; S.K. Samanta. Soft real sets, soft real numbers and their properties, J. Fuzzy Math, 3 (2012), 551-576.
- [28] S. Das; S. K. Samanta. Soft Metric. Annals of Fuzzy Mathematics and Informatics, 6(1) (2013) 77-94.

- [29] S. Das; P. Majumdar; S.K. Samanta. On soft linear spaces and soft normed linear spaces, arXiv preprint arXiv. (2013), :1308.1016.
- [30] S. Yuksel; T. Dizman; G. Yildizdan; U. Sert. Application of soft sets to diagnose the prostate cancer risk. Journal of Inequalities and Applications 2013, (2013) 229.
- [31] T. Bera; N. K. Mahapatra. Neutrosophic soft normed linear spaces. Neutrosophic Sets and Systems, 23 (2018), 52–71.
- [32] T. Šalát. On statistically convergent sequences of real numbers, Mathematica slovaca, 30(2) (1980), 139-150.
- [33] U. Praveena; M. Jeyaraman. On Generalized Cesaro Summability Method In Neutrosophic Normed Spaces Using Two-Sided Taubarian Conditions, Journal of algebraic statistics, 13 (3) (2022), 1313-1323.
- [34] V. A. Khan; M. D. Khan; M. Ahmad. Some New Type of Lacunary Statistically Convergent Sequences In Neutrosophic Normed Space, Neutrosophic Sets and Systems. 42(1) (2021), 15
- [35] V. Kumar; M. Mursaleen. On (λ, μ) -Statistical convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat, **25**(2) (2011), 109–120.
- [36] V. Kumar; M. Mursaleen. On ideal analogue of asymptotically lacunary statistical equivalence of sequences, Acta Universitatis Apulensis, 36 (2013), 109-119.
- [37] Y. Çelik; S. Yamak. Fuzzy soft set theory applied to medical diagnosis using fuzzy arithmetic operations, Journal of Inequalities and Applications 2013, (2013) 82.
- [38] Y. Zou; Z. Xiao. Data analysis approaches of soft sets under incomplete information, Knowledge-Based Systems, 21 (2008), 941–945.
- [39] Z. Kong; L. Gao; L. Wang; S. Li. The normal parameter reduction of soft sets and its algorithm, Computers and Math. with Appl., 56 (2008), 3029–3037.

Received: April 30, 2023. Accepted: Aug 20, 2023