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Abstract. For any lacunary sequence 6 = (ks), the aim of the present paper is to define Sp-convergence, Sp-
Cauchy and Sp-completeness via neutrosophic soft norm. We study certain properties of these notions and give
an important characterization of Sp-convergence in neutrosophic soft normed linear spaces (briefly NSNLS).

We provide examples that shows Sg-convergence is a more general method of summability in these spaces.
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1. Introduction

Statistical convergence was first introduced by Fast [8] and linked with the summability
theory by Schoenberg [10]. Later, The idea is developed by Maddox [9], Fridy [12], Connor[13],
Mursaleen and Edely [18], Salét [32], Kumar and mursaleen [35] and many others.

Friday and Orhan [11] used lacunary sequences to define a new kind of statistical convergence
as follows. “By a lacunary sequence we mean an increasing integer sequence 6 = (k) with
ko =0 and hy = ks — ks_1 — 00 as s — o0o. The intervals determined by 6 will be denoted
by Is = (ks—1,ks] and the ratio kks will be abbreviated as gs. For K C N, the number

0p(K) = sg%o]i]{k € I, : k € K}| is called #-density of K, provided the limit exists. A
sequence x = (z) of numbers is said to be lacunary statistically convergent (briefly Sy-
convergent) to xzg if for every € > 0, limh%]{k € I : |xp — xo| > €}| = 0 or equivalently, the
set K (e) has O-density zero, where K(Se) = {k € N : |z — 20| > €}. In this case, we write
Sy — kl;n;o xr = xo.”Some further interesting works on lacunary statistical convergence can be
found in [4], [19], [25], [34], [36], etc.
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Zadeh [16] proposed the theory of fuzzy sets in 1965 as a more convenient tool for handling
issues that cannot be modelled via crisp set theory. Atanassov [15] observed that fuzzy sets
need more modification to handle problems in a time domain and therefore he introduced the
intuitionistic fuzzy sets. After the introduction of intuitionistic fuzzy sets, a progressive devel-
opment is made in this field. For instance, intuitionistic fuzzy metric spaces were introduced
by Park [14], intuitionistic fuzzy topological spaces by Saadati and Park [26], etc.

The neutrosophic sets were initially introduced by Smarandache[7] as a generalization of
fuzzy sets and intuitionistic fuzzy sets to avoid the complexity arising from uncertainty in
settling many practical challenges in real-world activities. Kirig¢i and Simsek[17] defined neu-
trosophic norm and studied statistical convergence in neutrosophic normed spaces(NN.S). For
a broad view in this direction, we recommend to the reader [1], [2], [3], [20], [21], [22], [33].

Many approaches discussed above to minimize the uncertainty have their own drawbacks
due to the inadequacy of the parametrization. In view of this, Molodtsov[6] proposed a new
theory, called soft set theory to reduce the uncertainty during mathematical modelling. These
sets turn out very useful tools in many areas of engineering and medical sciences. For instance:
Maji et al [23] applied the theory of soft sets to decision-making problems. Kong et al.[39]
presented a heuristic algorithm of normal parameter reduction of soft sets. Zou and Xiao[38]
presented a data analysis approach of soft sets under incomplete information. Yuksel et al.[30]
applied soft set theory to diagnose the prostate cancer risk in human beings whereas Celik and
Yamak[37] applied fuzzy soft set theory for medical diagnosis using fuzzy arithmetic operations.

Maji [24] presented a combined concept of Neutrosophic soft sets in 2013. Recently, Bera
and Mahapatra [31] defined a generalized norm and called it a neutrosophic soft norm. They
also studied some properties of NSN LS and developed fundamental concepts of sequences in
these spaces. In this article, we develop and study the concept of Sp-convergence in NSNLS.
We also introduce the concepts of Sy-Cauchy sequence, Sp-completeness and develop some of

their properties.

2. Preliminaries

This section starts with a brief information on soft sets, soft vector spaces and neutrosophic
soft normed spaces. We begin with the following notations and definitions.

Throughout this work, N will denote the set of positive integers, R the set of reals and R™
the set of positive real numbers.
Definition 2.1 [5] A binary operation o : [0,1] x [0,1] — [0,1] is continuous ¢-norm if o
satisfies the following conditions:
(i)doe=eodand do(eo f)=(doe)o f.

(ii) o is continuous.
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(i) dol =1od=d for all d € [0,1].

(iv)doe< fogifd< f,e<gwith d,e, f,g €[0,1].

Definition 2.2 [5] A binary operation ¢ : [0, 1] x [0, 1] — [0, 1] is continuous ¢-conorm(s-norm)
if © satisfies the following conditions:

(i)doe=eodand do(eo f)=(doe)o f.

(ii) ¢ is continuous.

(iii) do0=00d = for all d € [0, 1].

(iv)doe< fogifd< f,e<gwith d,e, f,g €[0,1].

For any universe set U and the set E of the parameters, the soft set is defined as follows:
Definition 2.3 [6] A pair (H, E) is called a soft set over U if and only if H is a mapping of
F into the set of all subsets of the set U. i.e., the soft set is a parametrized family of subsets
of the set U.

Moreover, every set H(e),e € E, from this family may be considered as the set of e-elements
of the soft set (H, E), or as the set of e-approximate elements of the set.

Definition 2.4 [6] A soft set (H, E) over U is said to be absolute soft set if for all € € E,
H(e) = U. We will denote it by [/.

Definition 2.5 [27] Let R be the set of real numbers, B(R) be the collection of all non-empty
bounded subsets of R and F taken as a set of parameters. Then a mapping F' : E — B(R) is
called a soft real set. If a soft real set is a singleton soft set, then it is called a soft real number
and denoted by ;, ;, ;, etc. 6,I are the soft real numbers where a (e) = O,T (e) =1 for all
e € FE respectively.

Let R(F) and RT(E) respectively denote the sets of all soft real numbers and all positive
soft real numbers.

Definition 2.6 [28] Let (H, E) be a soft set over U. The set (H, E) is said to be a soft point,
denoted by HY if there is exactly one e € F s.t H(e) = {u} for some u € U and H(e') = ¢ for
alle' € E — {e}.

Two soft points H, H:,’ are said to be equal if e = ¢ and u = w. Let Aﬁ denotes the set of
all soft points on 5 .

In case U is a vector space over R and the parameter set &£ = R, the soft point is called a
soft vector.

Soft vector spaces are used to define soft norm as follows:

Definition 2.7 [29] Let U be a absolute soft vector space. Then a mapping || - || U RT(E)
is said to be a soft norm on U/, if || - || satisfies the following conditions:

(1) [Juel| > 0 for all u. € U/ and lue|| = 0 < ue :50 where 50 denotes the zero element of /.
(i) || @ ue|| = |@|||ue| for all u. € U and for every soft scalar a.

(iii) |Jue +v || < [Juel| + |lv/|| for all ue, v, € U.
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(1) llwe - v | = lell o |1, ¥ we, vy € 0. i
The soft vector space U with a soft norm || - || on U is said to be a soft normed linear space
and is denoted by ((7, - 1D-

We now recall the definition of neutrosophic soft normed linear spaces and the convergence
structure in these spaces.

Definition 2.8 [31] Let U be a soft linear space over the field F' and R(E), Aﬁ denote respec-

tively, the set of all soft real numbers and the set of all soft points on [7' . Then a neutrosophic
subset N over A~ x R(E) is called a neutrosophic soft norm on [7' if for ue, v, € (7' and a € F
(a being soft scalar) the following conditions hold.

(1) 0 < G (ue, m), By (e, m), Y (e, ) < 1,V 01 € R(E).

(i) 0 < G (ue,m) + By (ue,m) + Y (ue,m) <3,V m € R(E).

(iil) G (te, 1) = 0 with 7y < 0.

(iv) Gn(te,m) = 1, with 7, > 0 if and only if u, = 5, the null soft vector.
(
(
(

~

V) G]\f(a u677r7\11) GN <u87 a) v a (7&0> 7/;1 > a

Vl) GN(uea'):]Vl) OGN(Ue'anNQ) < GN(“@ ®Ue’777~1 D 7/73)7V771777NQ S R(E)

vii) G (e, ) is continuous non-decreasing function for 7, > 0 and lim G (ue, m) = 1.
771—00

viii) BN(ue,m) =1 with m < ()
ix) By (ue,m1) = 0, with 7 > 0 if and only if v, = 5, the null soft vector.

(
(i
(x) BN(a ue,an) BN<ue, Ial) vV a (7&0) 1 > 0
(
(

xi) By (ue,m) ¢ By (v, 1m2) > B (ue ® vy, m @ n2) ¥V 01,72 € R(E).

xii) By (e, -) is continuous non-increasing function for 7; > 0 and lim By (ue,n1) = 0.
71—00

xiil) Yy (te, 1) = 0 with 77 < 0.
xiv) Y (te, 1) = 0, with 5y > 0 if and only if ue = 9, the null soft vector.

(
(

(xv) Yo (@ e, 71) = YN(ue, |~) v (£0), 5 > 5.
(xv
(

xvi) Yy (te,m) 0 Y (v, m2) = Yiv(ue ® vy m & n2) V1, m2 € R(E).

xvii) Yn(ue,-) is continuous non-increasing function for 7y > 0 and lim By (ue,m) = 0.
7mn1—00

In this case, NN = (Gn,Bn,Yn) is called the neutrosophic soft norm and ([7'
(F),Gn,Bn,Yn,o,0) is the neutrosophic soft normed linear space (NSN LS briefly).
Let (ﬁ, Il - I) be a soft normed space. Take the operations o and ¢ as xoy = zy; xroy =

x + vy — xy. For n> 5, define

. > e
Gn(ue,n) = N+ uell
0 otherwise
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NIIUeII
By (te,n) = { MHlluel
0 otherwise

it 1> ue

[[uell

~ el if 5 > ||Ue||
YN(“G? n) = K
0 otherwise,

~

then (U (F),Gn,Bn,Yn,0,0) is an NSNLS. From now onwards, unless otherwise stated by
X7 we shall denote the NSNLS (5’ (F),Gn,Bn,Yn,0,0).

Definition 2.9 [31] A sequence v = (vf,) of soft points in V is said to be convergent to a soft
point v, € Viffor0<e<land?7 >0 3 ngeNs.t GN(vi?k @ve,ﬁ) >1—¢, Bn(vh, & Ve,

) <€ Yn(vE ©wve,m) < e In this case, we write lim v¥ = ..
k k—oo K

Definition 2.10 [31] A sequence v = (vfk) of soft points in V is said to be cauchy sequence if
for0<e<land? >0 3 ng € Ns.t for all k,p > ng GN(vfk @vé’pﬁ) >1—c¢, BN(vlgk @vgp,%
) <€ Yn(vk @ng,ﬁ) < €.

3. Lacunary statistical convergence in NSNLS

In this section, we define Sy-convergence in neutrosophic soft normed linear spaces and

develop some of its properties.

k

e,.) of soft points in V is said to be lacunary statistical

Definition 3.1 A sequence v = (v
convergent or Sg-convergent to a soft point v, in 17 w.r.t neutrosophic soft norm-(Gy, By, Yn)

if for each € > 0 and % > 6,

{k:EIS:GN(vfk@ve,ﬁ)gl—eor

By(vf & Vey 1) > e, Yy(vf o Vey 1) > GH =0,
ie., 0p(A) = 0 where
A:{kEN:GN(vfk@ve,ﬁ) <l-e€or
BN(vfk S Ve, ﬁ) > e,YN(vfk o ve,ﬁ) > e}
In this case, we write Sp(Gn, By, YN) — kli_)rgovfk = Ve.

Let, Sp(Gn, BN, Yn) denotes the set of all sequences of soft points in ﬁ which are Sg-convergent

with respect to the neutrosophic soft norm (G, By, Yn).

Definition 3.1 together with the property of #-density, we have the following lemma.
k

Lemma 3.1 For any sequence v = (v, ) of soft points in 17, the following statements are

equivalent:
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(i) So(Gn,Bn,YN) — kli_}r{)lovfk = V;

(ii) 6o{k € N : Gn(vE © v, 1M) <1 —¢} = g{k € N: By(vh 0, 1) > ¢} = dg{k € N :
Yn(vf S ve,) > e} =0;

(iii) 59{k€N Gy (vF @ve,w) 1—eand By(vh O v, )<€YN( O Ve, )<e}—1
(iv)do{k € N : Gn(vE ©ve, M) > 1 — ¢} = dg{k € N : By(v}, @ve,N) < e} =6{k € N:
Yiv (v © ve, )<e}:1

(v) SQ(GN,BN,YN)— hm GN(U @ve,ﬁ) =1land Sy(Gn,Bn,YN)— hm BN(U O Ve, ) =0
; So(Gn, BN, YN) — klggoYN( & ve, 1) = 0.

Theorem 3.1 Let 6 = (ks) be a lacunary sequence and v = (vgk) be any sequence in V. If
So(Gn, BN, YN) — hm v6 exists, then it is unique.

Proof. Suppose that S@(GN, Bn,YN) — nlgngov = v, and Sy(Gy, By, Yy) — lim vF = Veys

n—o0

where v, #U;Q. Let € > 0 and 7 > 0. Choose ¢ > 0 s.t.
(1—p)o(l—p)>1—candpQ p<e (1)

Define the following sets:

5
=
o
f'g
Il
—N
x>
m
Z
Q
4
7 N
@
@
S@

\
N———
VAN
—_
|

[}

v
S

~ ~—
Y v
s} s}
N N N N N

N[ N[ N[ N

Hyy 2(0,M) = {k: eN:Yy( v, ko,

)=}

Since Sy(Gn, By, Yn) — klim vfk = Ve,, then using lemma 3.1, we have
— 00

So{Hey1(0,M)} = {Hpy1(0,M)} = Sp{Hyy1(0,7)} = 0 and therefore 6p{HS, (0,7)} =

So{HG (o.M} = 6p{HE, 1 (0.m)} = 1.

Further, So(Gn, By, YN) — khm vi?k =, , S0
—00

e

So{Hey 2(0,M)} = So{Hpy 2(0.M)} = 6o{Hyy 2(0,M)} = 0 and therefore dp{HS, ,(0,M)} =
59{H§N72(Q, ;J])} = 59{H$N72(Q, TN])} =1 for all 7 > 0. Now define
Kay By vy (6:1) = {Hay (0, 1) U Hay 2(0, M)}
N{Hg, 1(o, ﬁ) U Hpg, 2(0, 5)} N{Hy, 1(o, m)u Hy, 2(0, 77)}7
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then (59{KGN’BN’YN(6,7P\7J)} = 0 and therefore, 59{K8N,BN,YN(677N7)} = 1. Let m €

K g}\“ Bn Y (e, ﬁ), then we have following possibilities.

C

1. me {HGNJ(Q,U)UHGN,Q(@ 77)} ; Or
N - C

2.m € {HBNJ(Q, 77) U HBN,Q(Q’ 77)} ; Or

c
3.me {HYN,l(g, n) U Hyy (0, 77)} .

~ ~

C
Case 1: Let m € {HGNJ(Q, n)U Hg, 2(0, 77)} , then m € HgN’l(g, n) and m € HgN,2(97 n)

and therefore,

~ ~

n ro N
GN<vgfn@Uel,2) >1—pand GN(UZLn@UGQ,2> >1-—op. (2)
Now
o~ o m ,non
GN(vm@Uezvn):GN vem@vem@0619062,§®§

> Gy (v;nm O Ve, Z) oGpn (U?L @vlez, 727>
>(1—-0eo(l-0o) by (2)
>1—e by (1)
Since € > 0 is arbitrary, so we have Gy (ve, © ’U;Q, ﬁ) =1 for all 7 > 0, which gives v, = U;Q.
Case 2: Let m € {HBNJ(.Q, ;7J) U Hp, 2(0, ﬁ)}c, then m € HgN,l('Q’ ﬁ)) and m € HgNQ(Q, ﬁ)

and therefore,

U ;o
BN(”Q:@ 6061,2> < p and BN<vgjn @v62,727> < p. (3)

)
)

Now

~

’ ~ / n
BN(/U61 @Ueg’n) = BN(/UQ;L,I @vg:n 69’Uel @U€27§ @

N[ 32

< BN<UZ; @Uel,;?) <>BN<UZ; @vlez,
<pop by (3)

<e. by (1)

/

Since € > 0 is arbitrary, so we have By (ve; © vg,, rﬁ) = 0forall 7 > 0 , which gives v, = U;Q.
Case 3: Let m € {HYNJ(Q, 5) U Hyy 2(0, ﬁ)} , then m € HXQN,l(Qv ﬁ) and m € Hgv,?(@’ E)

and therefore,

U ;o
Yn <v’gfn S Ve, 2) < p and Yy (vgfn © Veys ;7> < o. (4)
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Now

~

r M
D Ve, 9062,5@

|32

)

YN (ve, © v;2, 5) =Yy (Um o

€m €m

7 ;0
< YN(”QL 91)@172) OYN(vZn © Ve, 2)
<000 by (4)
< €. by (1)

’
€2’

Since € > 0 is arbitrary, so we have Yy (ve, S v ﬁ) =0 for all 7 > 0 , which gives v, = U;Q.

!/

Hence, in all cases we have ve, = v,,, i.e., So(Gn, By, Yn)-limit of (vgk) is unique.OJ
Theorem 3.2 Let § = (k) be a lacunary sequence and v = (vf,) be any sequence in V. It
(Gn,Bn,Yy) — lim vf = v, then Sy(Gn, By, Yny) — lim Ué“ = Ve.
k—oo K k—oo °F
Proof. Let (Gn,Bn,Yn) — klim vfk = ve. Then for each € > 0 and n > 0,3 positive integers
—00
ko € N s.t GN(vi?k S) ve,;f) > 1—¢€ and BN(U’g’k S ve,g) < e,YN(vfk ) Ue,ﬁ) < eV k > k.

Hence, the set

A:{k:GN:GN(vfk@ve,ﬁ)gl—eor

BN(vfk O Ve, M) > €, YN(vfk O ve, M) > €}
has finite number of terms. Since every finite subset of N has 6-density zero and hence

(59({k eN: GN(UEk 61}6,77) <1l-—cor

Bn(vE ©ve, 1) > €, Yi(vE ©ve,7) > €}) =0.

Therefore, Sp(Gn, By, Yn) — lim vf =v,. O
k—oo °F
The following example shows that the converse of the above theorem need not be true.

Example 3.1 Let (HNQ, | - ||) be a soft normed linear space. For v, in R and 7 > 0, if we define

N p -l ~ v
GN(Ue,n) = <~ BN(Uevn - NHieHa YN(/U&T]) - H/fH)
1 &|vell 1 ®||ve U

xoy = zy and zoy = min{z+y, 1}, then it is easy to see that X7 = (]INQ, Gn,Bn,YN,0,0)Vx,y €
[0, 1] is a neutrosophic soft normed linear space.

Now define a sequence v = (U]gk) in v by

koif ks — Vs +1<k<ky,seN

ok =

6 otherwise.
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Now, for each ¢ > 0 and n> 6, let

Ale,n) = {k € I : Gy(vF 1) <1—eor By(vF,n) > e, Yn(of 1) > e}

~ k k

v v
:{kEIS:Nngl—eorNHek” 26,‘ik|’26}

n ok | n 3|k | 7

e
1—

= {k el vakH >

Q{ke[scvfk:;}

L
or o 27 e

and so we get

1 ~ 1 P
A6 < ok € Ltk = [Vh] + 1< k < k| < ‘hﬁ

Taking s — oo,
Sll{gohs |A(€, 77)| > sli{go hs 07 L.e., 59(A(€7 77)) 0.

This shows that, v = (vfk) is Sg(Gn, Bn, Yn)- convergent to 0. But by the structure of the

k

. ) is not convergent to 0 w.r.t (Gn, By, YN).

sequence, v = (v

Theorem 3.3 Let § = (k;) be a lacunary sequence and let u = (ulgk) and v = (vfk) be any two
sequences in V' s.t Sp(Gn, By, Yn) — lim (uf ) = ue, and Sy(Gn, By, Yn) — lim (vf) = v,
k—o0 k—o0

Then
(1))Se(Gn, Bn,Yn) — lim
k—o00
(11) SQ(GN,BN,YN) — lim
k—o0
Proof. The proof of the theorem can be obtained as the proof of theorem 3.1, so omitted.[]

(ulgk D /Ué;k) = Uey D Vey

(a ulgk) = & u,,, where 0 £ackF

Theorem 3.4 Let § = (ks;) be a lacunary sequence. A sequence v = (vgk) in V is

So(Gn, By, Yn)-convergent to v, if and only if 3 a subset K = {ki,ko,..} of N s.t
_ : k _
0p(K) =1and (Gn,Bn,YN) — Iller?(vek = V.

k—o0

Proof. First suppose that Sg(Gn, By, Yy) — lim vifk = v,. For 7> 0 and 8 € N, define the

k—oo
set

n ~ 1
Ky (5.7) = {k € N5 Gutet, ©007) > 1- 4 and

BN(Ung @Ue,n) < B’YN(’U‘I;I@ @’Ue,n) < 5} and

n ~ 1
KgNaBvaN(ﬁ7"7) = {k eN: GN(Ufk Sve, M) <1 — B or

~ 1 ~ 1
Bn (v, ©ve,m) > B,YN(vi?k S ve, M) > B}'
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Since Sp(Gn, By, YN) — kli_g}ovfk = v, it follows that 50(KCCT:N73N7YN (B, 77)) = 0. Furthermore,

for 7 > 0 and B € N, we observe K¢, By vy (B ﬁ) D Kay,Byyn(B+1, ﬁ) and

S0 (K Gy By vy (B.1)) = 1. (5)

Now, we have to show that, for k € Kq, By, vy (5, 77), (Gn, By, YN)—]linévfk = ve. Suppose for
€

k—oo

ke Kagy.By,yn (5, rﬁ), (vF) is not convergent to ve w.r.t (Gn, By, Yn). Then 3 some £ > 0 and

a +ve integer ko 5.t Gy (v, Sve, ﬁ) <1—¢or By(vE S, ?7) > &, Yy (v v, ?7) >V k> k.
Let Gy (vF ©ve, M) > 1 — € and By(vF, ©ve, 1) < €, Yi(vF, ©ve,M) < €V k < ko. Then

So({k € N: Gn(vF S v, M) >1— ¢ and

By (vF ©ve, M) < &, YN(0E S v, 1) < €}) = 0.

Since £ > % where 8 € N, we have 6(Kay 5y.vy(8:71)) = 0. In this way we obtained a

contradiction to (5) as dg(Kay,By Yy (B,%)) = 1. Hence, (Gn,Bn,YN) — %inévi?k = Ve.
€
k—oo

Conversely, Suppose that 3 a subset K = {ki,ks,...,k;,...} of N with Jp(K) = 1 and
(Gn, By, Yn) — lim v’g = v over K ie., (Gy, By, YnN) — limvf = v,.. Let € > 0 and ;7J > a, 3
k—oo °k ke K k

kj, € Ns.t for all kj > kj,, Gn(vE, efue,ﬁ) > 1—cand By (vE S, 77) <€ Yn(vE o, 77) <e

So if we consider the set

TGN’BN’YN(E’E) - {k eN: GN(Ufk @Ueaﬁ) <l-—eor
BN(/Ufk o Ve, ;,/) Z €7YN(’U§k &) Ve, 77) Z 6},

then it is easy to see that Tq, By,vx (€ %) C N — {kjo+1,kjy+2,...}. This immediately im-
plies that 8 (T, By, va (€ ?7)) < 0p(N) — do({kjo+1,kjy+2,--}) = 1 —1 = 0 and there-
fore 89 (T y, B Yx (e,ﬁ)) = 0 as 0g(Tay,By, vy (e,ﬁ)) can not be negative. This shows that
So(G, By, Yy) — lim vf, =ve. O

4. Lacunary statistical completeness in NSNLS

Definition 4.1 A sequence v = (vé“k) of soft points in G is said to be lacunary statistically

cauchy (or Sp-Cauchy) w.r.t neutrosophic soft norm (G, By, Yy) if for each € > 0 and N> 5,
dpeNst

{k‘ €l GN(vfk 61}5}),%) <l—-ce€or

By(vf & vé’pﬁ) > e, Yn(vf & vg ) > 6}‘ =0,
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or equivalently, the 6-density of the set K is zero, i.e., Jp(K) = 0 where
X ~
K={keN:Gn(v;, ©vf M) <1—e€or

By(vk ©f 1) > € Yn(vh ol 1) > ¢}

Theorem 4.1 Let 6 = (ks) be any lacunary sequence. If a sequence v = (Ufk) of soft points
in 17 is Sp(G N, By, Yn)-convergent, then it is Sg(Gn, By, Yn) cauchy.

Proof. Let v = (vﬁk) be any lacunary statistically convergent sequence with Sg(Gn, By, Yn)—
klggovk = ve. Let € > 0 and n> 5 Choose ¢ > 0 s.t (1) is satisfied. Define a set,

]\4—(‘9’7'\71):{k‘61\1G]\/(UleflyC @Ueag)ﬁl—gor

0 1
B, S ) > 0, Y(eh, G ) > o,

then

~

MC(g,m) = {k: eN: GN(vfk @Ue,g) >1—pand

BN(vfk O Ve, =) < 0, YN(vfk O Ve,

N 32
N 32

)<Q}-

Since Sy(Gn,Bn,Yn) — lim vk = v, so 59(M(Q,?7)) = 0 and 59(Mc(g,ﬁ)) = 1. Let

n—oo

pe MC(o,n ) then

~ ~ ~

n n n
Gn (v’e’p O Ve, 2) >1—pand By <v§p O Ve, 2> <0, Yy (vﬁ’p O Ve, 2) <. (6)

Now, let T'(e, ﬁ):{kEN'GN( @vep, )<1—eor By (v* @vep, )>6YN( @ng,g
) > €}, then we have to show that T'(e, 77) C M (o, ) Let m € T'(e, 77) then

~ ~

Gn(ve, ©vE ;M) <1—¢€or By(vg 61}5,77)>e Y (ve,, ©VE 1) > € (7)

~

Case 1: If Gy (v 608, ) < 1—e¢, then GN< " O Ve, 2> < 1— o and therefore m € M(p, )

As otherwise i.e., if Gy (vgfn S Ve, 2) > 1 — p, then by (1), (6) and (7) we get

~

~

1—e>GnO) @vg, ):GN(vg@ve® ve@v§p§€9 >

>GN< €7n@ve7727> OGN<Up @U67;’>
>(1-ge(l-o)

>1—k¢,
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which is impossible. Thus, T'(e, 77) C M(o,m N).
Case 2: If By(v', © v, ) > ¢, then By (U O Ve, §> > o and therefore m € M(p, 5) As

~

otherwise i.e., if BN< O Ve, 2) < g, then by (1), (6) and (7) we get

n n
< By (van O Ve, 2> © By <v§p O Ve, 2>

<00

S

N 32
|32

e<BN( 61}1" N)—BN(vZn@veEB veevﬁfp,

< €,

which is impossible.

~

Also, If Yn (v’ © vé’p,ﬁ) > ¢, then Yy (v?fn O Ve, g) > o and therefore m € M(p,n). As

~

otherwise i.e., if YN< © Ve, 2) < p, then by (1), (6) and (7) we get

n
@2)
SYN Uem@vmi <>Y']\/' ’Uep@veai

<000

~

€ < Yn(vg, 6057 ):YN<UZ?,,,@U€@ ve@vé’p,

|32

< €,

which is impossible. Thus, T'(e, ﬁ) C M(o,m N).

Hence in all cases, T'(e, 77) C M(o, ) Since dp(M (o, )) =0, so dg(T (e, )) = 0, and therefore
v=(vE)is Sy(Gn,Bn,Yn) CauchyD

Definition 4.2 A NSNLS V is said to be Sp-complete if every Sp-Cauchy sequence in 17
w.r.t neutrosophic soft norm-(Gy, By, Yy) is Sp- convergent w.r.t neutrosophic soft norm-
(Gn, BN, YN).

Theorem 4.2 Let § = (k) be any lacunary sequence. Then every NSNLS 17 is Sp-complete
but not complete in general.

Proof. Let v = (véfk) be Sp-Cauchy but not Sp-convergent w.r.t neutrosophic soft norm-

(Gn,Bn,Yn). For a given € > 0 and 1 > 0. Choose o > 0 s.t (1) is satisfied. Now

GN(UI;C @vé’p,ﬁ) > GN(vfk @ve,;]J) o Gn(vE, eve,ﬁ) >(1—p)o(l—p)>1—c¢
By (v, © 0L, 1) < By(vf, ©ve,1) 0 By(vh, ©ve, 1) < 000 < €

YN(vfk @vé’p,ﬁ) < YN(Uek O Ve, )OYN(vp O Ve, ) <poo<e.
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k
ek

8o(HC (0,7)) = 0, where

Since v = (vg ) is not Sp-convergent w.r.t neutrosophic soft norm-(Gy, By, Yy). Therefore

H(o,m) = {keN: By et (0) < 1€}
and so dg(H (o, 7N])) = 1 which is a contradiction, since v = (v

k
ek

norm-(Gy, By, Yn). Hence every NSNLS {7 is Sy-complete.

k

e, ) was Sp-cauchy w.r.t neutro-

sophic soft norm-(Gy, By, Yn). So v = (vZ ) must be Sp-convergent w.r.t neutrosophic soft
The following example demonstrates that NSNLS is not complete in general:
Example 4.1[26] Let U= (0,1] and

GN(U,E) = =~ BN(v,ﬁ) = b YN(U,E) — 1 for all v € . Then V=

=, U
NG|v| N@|v| n

(

,GN, BN, Yy, min, max) is NSNLS but not complete, since the sequence of soft points ( % )
is cauchy w.r.t (Gn, By, Yn) but not convergent w.r.t (Gy, By, Yn).
Theorem 4.3 If every Sy-cauchy sequence of soft points in {7 has a Sy-convergent subsequence
then & is Sp-complete.
Proof. Let v = (vgk) be any Sp-cauchy sequence of soft points in V which has a Sp-convergent

k() N k()
subsequence (ve,, ) i.e., Sy — jlggovek(j)

0> 0s.t (1) is satisfied. Since v = (v}) is Sy-cauchy, so Ing € Ns.t ¥V k,p > ng dp(A) = 0

= v, for some v, in 17 Let € > 0 and ;7J > a Choose

where

A:{kEN:GN<vfk@v§p,Z> <l-por

0 n
By (vi?k @vé?,,,2> >0, Yy <v§k @vﬁp,Z) > g}.

M9) — pe. So we have dp(B) = 0, where

Again since Sg — lim ve, (/) =
J]—00

€k (j)

B = {k‘(]) EN:GN<vk(j) @ve,z> <l-por

~ ~

k(i n k(i n
By <U€}£Zj)) © Ve, 2) > 0, Yn (ve,gj)) © Ve, 2) > Q}'
Now define
D= {k GN:GN(vfk S, <1—€or
BN(vfk O Ve, 77) > e,YN(vfk O Ve, ﬁ) > €}

We now show that A N B¢ C DC. et me AN BY. Asm € AC, SO

GN(UZZR o vgp,;?) >1—pand

0 0
BN(”:Z;L S ng, 2> < Q7YN (’UZL,L S ng7 2) <o,
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and since m € B¢, so m = k(jo) for jo € N and

7
GN( eé(y)) o ve,2> >1—pand

Ul 7
BN< e,f( )>@ 2><QYN< ’“(goo))e ve,2><g.

Now
k(jo)  4,k(io) T
G ( e Ve, ) GN( © Uek(J & Uek(;)o) © Ve, 2 @ 2>
ko) T i
oy 2)ren( o)
s g)e(l—g) forp k(i
>1—c¢
and

~

n
°3)

o . 7
< By <U7g:n S vf,g?fo))v 2> © By <vf]§{fo)) O Ve, 2>

< oo for p=k(jo)

N 32

By (v ©we, ) By <sz1 S vf}f{f{?) P v E,S?D) O Ve,

<€,

€k(jo) ek(J )

Ya (ol & o) = YN< & oH00) g kD) @U“Z@Z>

ko) 1 G n
= YN< = ”e;EZJO))’ 2> oYy <,UEI£€J(')0)) © Ve 2>
<gopo for p=k(jo)
<e by (1), (8) and (9)
which implies that m € DY, so A“NBY € D or D C AUB. Therefore, dg(D) < §y(AUB) = 0.

This shows that v = (v¥ ) is Sy-convergent and therefore, Vs Sp-complete.[]

€k
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