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Abstract. The Neutrosophic set (NS), is a generalization of the fuzzy set and its extension sets, is a revolu-

tionary type of fuzzy set that enables decision-makers (DMs) to express their level of uncertainty independently

by assigned the truth, indeterminacy and falsity degrees of each element of NS. This article purposes a novel

type of ranking function based on value and ambiguity index of a single value triangular neutrosophic number

(SVTNN), which associated with DM’s preference level and risk factor that show the attitude of the DM to-

wards taking risk. Also, this article purposes a novel technique for solving the Neutrosophic DEA (Neu-DEA)

model having multiple input-outputs are the SVTNNs. The proposed ranking function is used to converts

the Neu-DEA model into a corresponding crisp DEA model which is solved to measure the efficiency of the

decision making units (DMUs) in Neutrosophic environment. The efficiency scores of the DMUs are calculated

based on the DM’s preference level by taking a specific risk (λ ∈ [0, 1]). A numerical example is provided to

demonstrate the proposed model’s validity and existence, and to compare efficiency scores with Yang et al.’s

ranking approach. Finally, How the DM’s preference level and risk factor affect the efficiency score of DMUs

are discussed in details.
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—————————————————————————————————————————-

1. Introduction

Evaluating the performance of any public or commercial organization is one of the most

challenging jobs for DMs to ensure progress, expansion, and sustainability. DEA is the most

practical, trustworthy, and reliable way to analyze the performance/efficiency of DMUs. DEA

is a data-driven, non-parametric, linear programming-based approach that evaluates piecewise

linear production functions to determine the efficiency score of homogeneous DMUs with
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multiple inputs and outputs. Based on DEA results, DMUs are divided into efficient and

inefficient group and also ranked them. This MCDM technique is extensively used in a wide

range of fields to evaluate the relative efficiency of DMUs. Charnes et al. [10] introduced the

concept of DEA, which is based on Farrell’s earlier work [18] on measuring the efficiency of

DMUs with multiple inputs and outputs. This method is generally known as CCR model

which assumes that the production technology of all DMUs demonstrates constant returns to

scale (CRS). Banker et al. [8] added the convexity condition in CCR Model [10] and developed

a mathematical model is called the BCC model which assumes that the production technology

of all DMUs demonstrates variable returns to scale (VRS). According to the best practice

frontier, DMUs are either in the efficient group or inefficient group. Those DMUs are in

efficient group have an efficiency score of one and are found on the frontier. Those DMUs

are in inefficient group have an efficiency score ranges from 0 to 1 and are not found on the

frontier. The inefficient DMUs can improve their efficiency to approach the frontier by reducing

current inputs while maintaining outputs or increasing current outputs while keeping inputs

unchanged. After the CCR and BCC models, several DEA models, including Additive, SBM,

Super Efficiency, Undesirable, and others, have been created to evaluate the relative efficiency

of DMUs. DEA has become a popular performance evaluation technique adopted by numerous

industries to measure their relative efficiencies, including agriculture, insurance, operations

management, banking, healthcare, education, and environmental management [11, 22, 28, 42,

44]. In real-world applications, it is not always possible to provide the clear input and output

data that demands conventional/traditional DEA models. However, in practical applications,

the observed values might occasionally be confusing, insufficient, inconsistent, and imprecise.

This kind of uncertain data may be handled using probability or fuzzy theory. Also, the

interval DEA and stochastic DEA models are frequently used to address this problem [34,35].

The idea of a fuzzy set (FS) was established by Zadeh [46] in 1965, in which each element of

the FS is associated with a membership degree (µ) that lies in [0,1], and the non-membership

degree is defined as 1 − µ. FS theory has been widely used in practical applications of un-

certainty modeling. In 1992, Sengupta [38] was the first to introduce the concept of using

fuzzy numbers to represent the inputs and outputs of DMUs in the DEA model. Following

this work, many authors became interested in developing various approaches for solving the

fuzzy DEA model. These approaches are categorized into six types such as “the tolerance

technique, the α-level-based approach, the fuzzy ranking approach, the possibility approach,

the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy set” [17, 19]. In 2020, Zhou and

Xu [49] provided a comprehensive overview of the present state, growth prospects, practical

implementations, and future research directions of fuzzy DEA studies. However, only the

fuzzy set has a single-membership degree of unclear and vague information, which is often
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insufficient to describe evidence of support and opposition together. Atanassov [7] expanded

Zadeh’s fuzzy set notion to the intuitionistic fuzzy set (IFS) in 1986, and its membership and

non-membership degrees are defined separately, with their sum lying between [0, 1]. Several

research papers using intuitionistic fuzzy sets have been published in DEA using various tech-

niques, such as the weighted approach, (α, β)-cut approach, optimistic-pessimistic efficiency

approach, hybrid TOPSIS-DEA, parametric approach, and composition approach, and alpha-

betical approach [6,37]. IFS is capable of addressing missing data for a wide range of real-world

problems, but it can’t deal with other types of uncertainty, such as indeterminate information.

Smarandache [40] proposed the Neutrosophic Logic and Neutrosophic Set (NS) as a general-

ization of FSs and IFSs in 1999. Each element of the Neutrosophic set has three independent

degrees, namely “truth, indeterminacy, and falsity”, and their sum ranges from 0 to 3. In

order to represent uncertainty in different areas, various extensions of the fuzzy set, such as

Pythagorean and spherical fuzzy sets, have been developed (as shown in Figure 1). The DM

always tries to increase the truth membership degree while decreasing the indeterminacy and

falsity membership degrees of each NS element, which are independently assigned. Currently,

the study of neutrosophic set theory is highly popular, and its applications are widespread

across a range of disciplines, including mathematics, computer science, engineering, medicine,

economics, social science, and environmental science [1,4,12,20,25,26,39,48]. In 2018, Edalat-

panah [14] presented the initial theoretical advancement of the Neutrosophic DEA (Neu-DEA)

model. As a result, many other authors became interested in developing the Neu-DEA model

in various neutrosophic environments and proposing novel techniques for solving it. Kahra-

man et al. [23] developed a novel Neutrosophic Analytic Hierarchy Process (NAHP), which

was subsequently combined with the Neu-DEA model to evaluate the efficiency of 15 private

universities. Abdelfattah [2] created a Neu-DEA model with triangular neutrosophic inputs

and outputs and developed a unique technique that converts the Neu-DEA model into an

interval DEA model that evaluates the efficiency of the DMUs in interval form. The input-

oriented Neu-DEA model is proposed by considering the inputs and outputs as simplified

neutrosophic numbers, which is a nonlinear model turned into an LP model by utilizing a nat-

ural logarithm to measure the efficiency of the DMUs [16]. Subsequently, several approaches

for solving Neu-DEA models were utilized to measure the efficiency of the DMUs [15, 43]. In

2020, Mao et al. [24] proposed a novel approach to solving the Neu-DEA model with undesir-

able outputs, where all data is considered as SVNNs, in order to assess the efficiency of the

DMUs. Yang et al. [45] developed the Neutrosophic DEA (Neu-DEA) model to evaluate the

efficiency of 13 hospitals affiliated with Tehran University of Medical Sciences in Iran. The

proposed model considered single-value triangular neutrosophic numbers (SVTNNs) for both

inputs and outputs. In 2021, Abdelfattah [3] proposed ranking and parametric approaches to
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solving the Neu-DEA model in order to evaluate the efficiency of 32 regional hospitals located

in Tunisia. The possibility mean [29] and ranking [33] approaches are developed to solve the

Neu-DEA model to measure the performance of AIIMS in India [32] and major sea ports in

India [30]. Recently, there has been a growing interest among authors in developing the DEA

model by incorporating various extensions of fuzzy sets. One such technique is the Fermatean

fuzzy DEA (FFDEA), developed to solve the Fermatean fuzzy multi-objective transportation

problem (FFMOTP) [5]. Other novel solution techniques have been developed for solving

the spherical fuzzy DEA model in the presence of spherical fuzzy inputs and outputs [27, 31].

Additionally, the plithogenic set has been utilized in the DEA model to evaluate the efficiency

of 20 bank branches and the performance of hotel industries [21,36].

Figure 1. Representation of extended fuzzy sets

The primary contribution of this paper is the development of a novel ranking function

based on the value and ambiguity index of the single-value triangular neutrosophic number

(SVTNN). This ranking function is associated with risk sensitivity and DM’s preferences.

The suggested ranking function has been used to convert the Neu-DEA model with SVTNN

inputs and outputs into the corresponding crisp DEA model. The efficiency scores of DMUs are

measured using different risk factors according to the DM’s specific preference level. This paper

investigates how the DM’s preference level affects the efficiency of the DMUs. A numerical

example is presented to compare the efficiency scores to the model suggested by Yang et al. [45].
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The rest of the manuscript is organized as follows: Section 2 provides some useful notation

for this study and details comparison of the suggested model with other existing Nue-DEA

model. Section 3 covers various aspects related to SVTNN, including Neutrosophic set, prop-

erties of SVTNN, Value and Ambiguity Index for SVTNN, as well as the proposed ranking

function for SVTNN along with its properties. Section 4 discusses the Neu-DEA model based

on SVTNN and how to obtain an equivalent crisp DEA model by applying the provided ranking

function. Section 5 discusses step-by-step technique for solving Neu-DEA model. In Section

6, a case study is given to demonstrate the validity and applicability of the proposed model.

Section 7 discusses the advantage and limitation of this study. Finally, the conclusion and

recommendations for further study are presented in Section 8.

2. Notation and Comparison Study

To make it easier for readers to understand, the manuscript has been updated with ad-

ditional notation that is presented in Table 1. The purpose of including this notation is to

simplify the content and make it more accessible to a wider researcher.

Table 1. Notation used in this Study

Symbol Description

X̂ Single Value Triangular Neutrosophic Number (SVTNN)

V Value Index function

A Ambiguity Index function

δ, ρ, η Preference parameter for the DM

λ Risk parameter

ℜ Ranking function

A Input Matrix

B Output Matrix

aij ith crisp input for DMUj

bki kth crisp output for DMUj

âij ith SVTNN input forDMUj

(
i.e., âij =

〈
(
︷︸︸︷
aLij ,

︷︸︸︷
aMij ,

︷︸︸︷
aUij ); (a

L
ij , a

M
ij , a

U
ij); ( a

L
ij︸︷︷︸, aMij︸︷︷︸, aUij︸︷︷︸)

〉)
b̂ki kth SVTNN output forDMUj

(
i.e., b̂ki =

〈
(
︷︸︸︷
bLki ,

︷︸︸︷
bMki ,

︷︸︸︷
bUki ); (b

L
ki, b

M
ki , b

U
ki); ( b

L
ki︸︷︷︸, bMki︸︷︷︸, bUki︸︷︷︸)〉)

In this part of the section, we compare our novel contribution to existing publications, as

shown in Table 2. Several researchers have developed various approaches for solving Neu-

DEA models without utilizing DM’s preference level and risk parameter. The preference

level of a DM plays a significant role in uncertainty modeling, indicating the desired decision

approach: pessimistic, optimistic, or neutral. Additionally, the risk parameter reflects the

DM’s attitude towards risk, whether they are a risk taker, risk averse, or neutral. In this
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Table 2. Comparing our proposed work to already published Nue-DEA work

Researcher Inputs and Outputs Concept DEA model
Risk

Factor

Edalatpanah [14] Single Valued Triangular Neu-

trosophic Number (SVTNN)

Score and Accuracy func-

tion

CCR No

Kahraman et al. [23] Linguistic interval-valued neu-

trosophic number

Deneutrosophication Hybrid AHP-

CCR

No

Abdelfattah [2] Triangular neutrosophic num-

bers

Ranking [1] & parametric

approach

CCR No

Edalatpanah and

Smarandache [16]

Simplified neutrosophic num-

bers (SNN)

Logarithm approach BCC No

Edalatpanah [15] Triangular neutrosophic num-

ber (TNN)

Ranking approach [1] Dual CCR No

Mao et al. [24] Simplified neutrosophic num-

bers (SNN)

Logarithm approach Undesirable No

Yang et al. [45] Single Valued Triangular Neu-

trosophic Number (SVTNN)

Simple Ranking approach CCR No

Tapia [43] Interval-valued neutrosophic

numbers

Robust tolerance approach CCR No

Mohanta and Sha-

ranappa [30]

Trapezoidal Neutrosophic

Number (TrNN)

Ranking Approach CCR No

Mohanta and Tora-

gay [33]

Pentagonal Neutrosophic

Number (PNN)

Ranking Approach CCR No

Proposed Work Single Valued Triangular Neu-

trosophic Number (SVTNN)

Ranking approach based

on Value and Ambiguity

index

CCR Yes

article, we incorporate the DM’s preference level and risk factor into the value and ambiguity

index to create a ranking function for SVTNN. This ranking function effectively compares

SVTNNs by taking into account the DM’s preference level and risk attitude. This ranking

function is then used to convert the Neu-DEA model into a corresponding crisp DEA model,

from which the efficiency score of the DMUs can be obtained. The preference level (δ, ρ, η)

and risk parameter (λ ∈ [0, 1]) are important factors in the performance assessment process

because they increase the DM’s freedom to express their own risk while making decisions.

3. Single Value Triangular Neutrophic Number (SVTNN) and Its Properties

This section introduces the Neutrosophic set, including the mathematical features of

SVTNNs, as well as the value and ambiguity index of SVTNNs, which are defined to cre-

ate a new ranking function. Additionally, a new ranking algorithm is introduced that utilizes

the value and ambiguity index of SVTNNs.

Definition 3.1. [40] A neutrosophic set Â in a universe of discourse Ω is given by

Â = {⟨x; τ(x), ι(x), ν(x)| x ∈ Ω⟩} (1)
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where τ(x), ι(x), and ν(x) are called truth, indeterminacy and falsity membership functions,

respectively. These membership functions are defined as τ : Ω → [0, 1], ι : Ω → [0, 1] and

ν : Ω → [0, 1] such that 0 ≤ τ(x), ι(x), ν(x) ≤ 3.

Definition 3.2. [13] The single value triangular neutrophic number (SVTNN) is defined as

X̂ =
〈
(
︷︸︸︷
xL ,

︷︸︸︷
xM ,

︷︸︸︷
xU ); (xL, xM , xU ); ( xL︸︷︷︸, xM︸︷︷︸, xU︸︷︷︸)〉 where the truth, indeterminacy, and

falsehood membership degrees of x are defined as :

τ(x) =



x−
︷︸︸︷
xL︷︸︸︷

xM −
︷︸︸︷
xL

, x ∈ [
︷︸︸︷
xL ,

︷︸︸︷
xM ]︷︸︸︷

xU −x︷︸︸︷
xU −

︷︸︸︷
xM

, x ∈ [
︷︸︸︷
xM ,

︷︸︸︷
xU ]

0, otherwise

ι(x) =



x− xL

xM − xL
, x ∈ [xL, xM ]

xU − x

xU − xM
x ∈ [xM , xU ]

1, otherwise

ν(x) =



x− xL︸︷︷︸
xM︸︷︷︸− xL︸︷︷︸ , x ∈ [ xL︸︷︷︸, xM︸︷︷︸]
xU︸︷︷︸−x

xU︸︷︷︸− xM︸︷︷︸ x ∈ [ xM︸︷︷︸, xU︸︷︷︸]
1, otherwise

where 0 ≤ τ(x) + ι(x) + ν(x) ≤ 3, ∀ x ∈ R.

Definition 3.3. [13] Suppose X̂1 =
〈
(
︷︸︸︷
xL1 ,

︷︸︸︷
xM1 ,

︷︸︸︷
xU1 ); (xL1 , x

M
1 , xU1 ); ( x

L
1︸︷︷︸, xM1︸︷︷︸, xU1︸︷︷︸)〉 and

X̂2 =
〈
(
︷︸︸︷
xL2 ,

︷︸︸︷
xM2 ,

︷︸︸︷
xU2 ); (xL2 , x

M
2 , xU2 ); ( x

L
2︸︷︷︸, xM2︸︷︷︸, xU2︸︷︷︸)〉 two SVTNNs. The arithmetic rela-

tions in SVTNNs are defined as

(1) X̂1 ⊕ X̂2 =
〈
(
︷︸︸︷
xL1 +

︷︸︸︷
xL2 ,

︷︸︸︷
xM1 +

︷︸︸︷
xM2 ,

︷︸︸︷
xU1 +

︷︸︸︷
xU2 ); (xL1 + xL2 , x

M
1 + xM2 , xU1 + xU2 );

( xL1︸︷︷︸+ xL2︸︷︷︸, xM1︸︷︷︸+ xM2︸︷︷︸, xU1︸︷︷︸+ xU2︸︷︷︸)〉.
(2) X̂1 − X̂2 =

〈
(
︷︸︸︷
xL1 −

︷︸︸︷
xL2 ,

︷︸︸︷
xM1 −

︷︸︸︷
xM2 ,

︷︸︸︷
xU1 −

︷︸︸︷
xU2 ); (xL1 + xL2 , x

M
1 − xM2 , xU1 + xU2 );

( xL1︸︷︷︸− xL2︸︷︷︸, xM1︸︷︷︸− xM2︸︷︷︸, xU1︸︷︷︸− xU2︸︷︷︸)〉.
(3) X̂1 ⊗ X̂2 =

〈
(
︷︸︸︷
xL1

︷︸︸︷
xL2 ,

︷︸︸︷
xM1

︷︸︸︷
xM2 ,

︷︸︸︷
xU1

︷︸︸︷
xU2 ); (xL1 x

L
2 , x

M
1 xM2 , xU1 x

U
2 ); ( x

L
1︸︷︷︸ xL2︸︷︷︸,

xM1︸︷︷︸ xM2︸︷︷︸, xU1︸︷︷︸ xU2︸︷︷︸)〉.
(4) αX̂1 =


〈
(α
︷︸︸︷
xL1 , α

︷︸︸︷
xM1 , α

︷︸︸︷
xU1 ); (αxL1 , αx

M
1 , αxU1 ); (α xL1︸︷︷︸, α xM1︸︷︷︸, α xU1︸︷︷︸)〉, α > 0〈

(α
︷︸︸︷
xU1 , α

︷︸︸︷
xM1 , α

︷︸︸︷
xL1 ); (αxU1 , αx

M
1 , αxL1 ); (α xU1︸︷︷︸, α xM1︸︷︷︸, α xL1︸︷︷︸)〉, α < 0
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Definition 3.4. Let X̂ =
〈
(
︷︸︸︷
xL ,

︷︸︸︷
xM ,

︷︸︸︷
xU ), (xL, xM , xU ), ( xL︸︷︷︸, xM︸︷︷︸, xU︸︷︷︸)〉 be a SVTNN.

The (α, β, γ)-cut of X̂ is defined as

X̂(α,β,γ) = {x : τ(x) ≥ α, ι(x) ≤ β, ν(x) ≤ γ} (2)

such that 0 ≤ α ≤ τ(x), ι(x) ≤ β ≤ 1 and ν(x) ≤ γ ≤ 1.

From Definition 3.2 and equation (2), the lower and upper limit of (α, β, γ)-cut of the

SVTNN X̂ are defined as

X̂α =
[
L(α), U(α)

]
=
[ ︷︸︸︷
xL +α(

︷︸︸︷
xM −

︷︸︸︷
xL ),

︷︸︸︷
xU −α(

︷︸︸︷
xU −

︷︸︸︷
xM )

]
X̂β = [L(β), U(β)] =

[
xL + β(xM − xL), xU − β(xU − xM )

]
X̂γ = [L(γ), U(γ)] =

[
xL︸︷︷︸+γ( xM︸︷︷︸− xL︸︷︷︸), xU︸︷︷︸−γ( xU︸︷︷︸− xM︸︷︷︸)]

3.1. The Proposed Ranking Function for Single Value Triangular Neutrosophic Number

(SVTNN)

The Value index and Ambiguity index play an important role to ranked the fuzzy numbers

in decision making problem [9, 47]. This subsection focuses on the development of value and

ambiguity index for SVTNN. Furthermore, a new ranking function is established by incorpo-

rating value and ambiguity index.

Definition 3.5 (Value Index). The value index Vτ (X̂),Vι(X̂), and Vν(X̂) with respect to the

truth τ(x), indeterminacy ι(x), and falsehood ν(x) membership degrees are defined as

Vτ (X̂) =

∫ 1

0

(
L(α) + U(α)

)
f(α)dα, Vι(X̂) =

∫ 1

0

(
L(β) + U(β)

)
g(β)dβ,

Vν(X̂) =

∫ 1

0

(
L(γ) + U(γ)

)
h(γ)dγ. (3)

where f(α) = α, g(β) = 1 − β and h(γ) = 1 − γ can be configured to reflect the nature of

decision making in real-world scenarios.

Definition 3.6 (Ambiguity Index). The ambiguity index Aτ (X̂),Aι(X̂), and Aν(X̂), with

respect to the truth τ(x), indeterminacy ι(x), and falsehood ν(x) membership degrees are

defined as

Aτ (X̂) =

∫ 1

0

(
U(α)− L(α)

)
f(α)dα, Aι(X̂) =

∫ 1

0

(
U(β)− L(β)

)
g(β)dβ,

Aν(X̂) =

∫ 0

1

(
U(γ)− L(γ)

)
h(γ)dγ, (4)

where L(α), L(β) and L(γ) are lower and U(α), U(β) and U(γ) are upper limits of SVTNN X̂.
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Thus from equations (3) and (4), the value and ambiguity for the truth, indeterminacy, and

falsehood membership degrees are calculated as follows:

Vτ (X̂) =

︷︸︸︷
xL +

︷︸︸︷
xU +4

︷︸︸︷
xM

6
,Vι(X̂) =

xL + xU + 4xM

6
, Vν(X̂) =

xL︸︷︷︸+ xU︸︷︷︸+4 xM︸︷︷︸
6

Aτ (X̂) =

︷︸︸︷
xU −

︷︸︸︷
xL

6
,Aι(X̂) =

xU − xL

6
,Aν(X̂) =

xU︸︷︷︸− xL︸︷︷︸
6

Definition 3.7. Suppose X̂ =
〈
(
︷︸︸︷
xL ,

︷︸︸︷
xM ,

︷︸︸︷
xU ); (xL, xM , xU ); ( xL︸︷︷︸, xM︸︷︷︸, xU︸︷︷︸)〉 be a

SVTNN. Then, for X̂, the value and ambiguity index are as follows:

Vδ,ρ,η(X̂) = δVτ (X̂) + ρVι(X̂) + ηVν(X̂) (5)

Aδ,ρ,η(X̂) = δAτ (X̂) + ρAι(X̂) + ηAν(X̂) (6)

where the DMs’ preference value is represented by the co-efficients δ, ρ, η of Vδ,ρ,η and Aδ,ρ,η

with the condition δ + ρ + η = 1. In an uncertain situation, the DM may want to make

pessimistic decisions for δ ∈ [0, 1/3] and ρ+ η ∈ [1/3, 1]. For δ ∈ [1/3, 1] and ρ+ η ∈ [0, 1/3],

on the other hand, the DM may seek to make an optimistic decision in an uncertain situation.

The impact of three membership degrees are same to the DM for δ = ρ = η = 1/3. As a result,

the value index and ambiguity index may indicate how DMs think about SVTNNs.

Lemma 3.8. Let X̂1 =
〈

(
︷︸︸︷
xL1 ,

︷︸︸︷
xM1 ,

︷︸︸︷
xU1 ); (xL1 , x

M
1 , xU1 ); ( xL1︸︷︷︸, xM1︸︷︷︸, xU1︸︷︷︸) 〉 and X̂2 =〈

(
︷︸︸︷
xL2 ,

︷︸︸︷
xM2 ,

︷︸︸︷
xU2 ); (xL2 , x

M
2 , xU2 ); ( x

L
2︸︷︷︸, xM2︸︷︷︸, xU2︸︷︷︸) 〉 be two SVTNNs in R. Then for δ, ρ, η ∈

[0, 1] and ϕ ∈ R, the following are satisfy

(1) Vδ,ρ,η(X̂1 + X̂2) = Vδ,ρ,η(X̂1) + Vδ,ρ,η(X̂2).

(2) Vδ,ρ,η(ϕX̂1) = ϕVδ,ρ,η(X̂1).

Proof. (1) From Definition 3.3, the sum of X̂1 and X̂2 is defined as

X̂1 ⊕ X̂2 =
〈
(
︷︸︸︷
xL1 +

︷︸︸︷
xL2 ,

︷︸︸︷
xM1 +

︷︸︸︷
xM2 ,

︷︸︸︷
xU1 +

︷︸︸︷
xU2 ); (xL1 + xL2 , x

M
1 + xM2 , xU1 + xU2 );

( xL1︸︷︷︸+ xL2︸︷︷︸, xM1︸︷︷︸+ xM2︸︷︷︸, xU1︸︷︷︸+ xU2︸︷︷︸)〉 (7)

From equation (5), we have

Vδ,ρ,η(X̂1 ⊕ X̂2) = δVτ (X̂1 ⊕ X̂2) + ρVι(X̂1 ⊕ X̂2) + ηVν(X̂1 ⊕ X̂2)

= δ
(︷︸︸︷xL1 +

︷︸︸︷
xL2 +

︷︸︸︷
xU1 +

︷︸︸︷
xU2 +4(

︷︸︸︷
xM1 +

︷︸︸︷
xM2 )

6

)
+ ρ
(xL1 + xL2 + xU1 + xU2 + 4(xM1 + xM2 )

6

)
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+ η
( xL1︸︷︷︸+ xL2︸︷︷︸+ xU1︸︷︷︸+ xU2︸︷︷︸+4( xM1︸︷︷︸+ xM2︸︷︷︸)

6

)
= δ
(︷︸︸︷xL1 +

︷︸︸︷
xU1 +4

︷︸︸︷
xM1

6

)
+ ρ
(xL1 + xU1 + 4xM1

6

)
+ η
( xL1︸︷︷︸+ xU1︸︷︷︸+4 xM1︸︷︷︸

6

)
+ δ
(︷︸︸︷xL2 +

︷︸︸︷
xU2 +4

︷︸︸︷
xM2

6

)
+ ρ
(xL2 + xU2 + 4xM2

6

)
+ η
( xL2︸︷︷︸+ xU2︸︷︷︸+4 xM2︸︷︷︸

6

)
= Vδ,ρ,η(X̂1) + Vδ,ρ,η(X̂2)

(2) From Definition 3.3, the scalar (ϕ ∈ R) multiplication of X̂1 =
〈
(
︷︸︸︷
xL1 ,

︷︸︸︷
xM1 ,

︷︸︸︷
xU1 );

(xL1 , x
M
1 , xU1 ); ( x

L
1︸︷︷︸, xM1︸︷︷︸, xU1︸︷︷︸)〉 is defined as

ϕX̂1 =
〈
(ϕ
︷︸︸︷
xL1 , ϕ

︷︸︸︷
xM1 , ϕ

︷︸︸︷
xU1 ); (ϕxL1 , ϕx

M
1 , ϕxU1 ); (ϕ xL1︸︷︷︸, ϕ xM1︸︷︷︸, ϕ xU1︸︷︷︸)〉

From equation (5), we have

Vδ,ρ,η(ϕX̂1) = δVτ (ϕX̂1) + ρVι(ϕX̂1) + ηVν(ϕX̂1)

= δ
(ϕ ︷︸︸︷xL1 +ϕ

︷︸︸︷
xU1 +4ϕ

︷︸︸︷
xM1

6

)
+ ρ
(ϕxL1 + ϕxU1 + 4ϕxM1

6

)
+ η
(ϕ xL1︸︷︷︸+ϕ xU1︸︷︷︸+4ϕ xM1︸︷︷︸

6

)
= ϕ

[
δ
(︷︸︸︷xL1 +

︷︸︸︷
xU1 +4

︷︸︸︷
xM1

6

)
+ ρ
(xL1 + xU1 + 4xM1

6

)
+ η
( xL1︸︷︷︸+ xU1︸︷︷︸+4 xM1︸︷︷︸

6

)]
= ϕ Vδ,ρ,η(X̂1)

This complete the proof.

Lemma 3.9. Let X̂1 =
〈
(
︷︸︸︷
xL1 ,

︷︸︸︷
xM1 ,

︷︸︸︷
xU1 ); (xL1 , x

M
1 , xU1 ); ( x

L
1︸︷︷︸, xM1︸︷︷︸, xU1︸︷︷︸)〉 and X̂2 =〈

(
︷︸︸︷
xL2 ,

︷︸︸︷
xM2 ,

︷︸︸︷
xU2 ); (xL2 , x

M
2 , xU2 ); ( x

L
2︸︷︷︸, xM2︸︷︷︸, xU2︸︷︷︸)〉 be two SVTNNs in R. Then for δ, ρ, η ∈

[0, 1] and ϕ ∈ R be a real number,

(1) Aδ,ρ,η(X̂1 + X̂2) = Aδ,ρ,η(X̂1) +Aδ,ρ,η(X̂2).

(2) Aδ,ρ,η(ϕX̂1) = ϕAδ,ρ,η(X̂1).

Proof.

(1) From Definition 3.3, the sum of two SVTNNs X̂1 and X̂2 is written as follows:

X̂1 ⊕ X̂2 =
〈
(
︷︸︸︷
xL1 +

︷︸︸︷
xL2 ,

︷︸︸︷
xM1 +

︷︸︸︷
xM2 ,

︷︸︸︷
xU1 +

︷︸︸︷
xU2 ); (xL1 + xL2 , x

M
1 + xM2 , xU1 + xU2 );

( xL1︸︷︷︸+ xL2︸︷︷︸, xM1︸︷︷︸+ xM2︸︷︷︸, xU1︸︷︷︸+ xU2︸︷︷︸)〉 (8)

From equation (6), we have

Aδ,ρ,η(X̂1 ⊕ X̂2) = δAτ (X̂1 ⊕ X̂2) + ρAι(X̂1 ⊕ X̂2) + ηAν(X̂1 ⊕ X̂2)
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= δ
(︷︸︸︷xU1 +

︷︸︸︷
xU2 −(

︷︸︸︷
xL1 +

︷︸︸︷
xL2 )

6

)
+ ρ
(xU1 + xU2 − (xL1 + xL2 )

6

)
+ η
( xU1︸︷︷︸+ xU2︸︷︷︸−( xL1︸︷︷︸+ xL2︸︷︷︸)

6

)
= δ
(︷︸︸︷xU1 −

︷︸︸︷
xL1

6

)
+ ρ
(xU1 − xL1

6

)
+ η
( xU1︸︷︷︸− xL1︸︷︷︸

6

)
+ δ
(︷︸︸︷xU2 −

︷︸︸︷
xL2

6

)
+ ρ
(xU2 − xL2

6

)
+ η
( xU2︸︷︷︸− xL2︸︷︷︸

6

)
= Aδ,ρ,η(X̂1) +Aδ,ρ,η(X̂2)

(2) From Definition 3.3, we have

ϕX̂1 =
〈
(ϕ
︷︸︸︷
xL1 , ϕ

︷︸︸︷
xM1 , ϕ

︷︸︸︷
xU1 ), (ϕxL1 , ϕx

M
1 , ϕxU1 ), (ϕ xL1︸︷︷︸, ϕ xM1︸︷︷︸, ϕ xU1︸︷︷︸)〉

From equation (6), we have

Aδ,ρ,η(ϕX̂1) = δAτ (ϕX̂1) + ρAι(ϕX̂1) + ηAν(ϕX̂1)

= δ
(ϕ ︷︸︸︷xU1 −ϕ

︷︸︸︷
xL1

6

)
+ ρ
(ϕxU1 − ϕxL1

6

)
+ η
(ϕ xU1︸︷︷︸−ϕ xL1︸︷︷︸

6

)
= ϕ

[
δ
(︷︸︸︷xU1 −

︷︸︸︷
xL1

6

)
+ ρ
(xU1 − xL1

6

)
+ η
( xU1︸︷︷︸− xL1︸︷︷︸

6

)]
= ϕ Aδ,ρ,η(X̂1)

This complete the proof.

Definition 3.10. Let X̂ =
〈
(
︷︸︸︷
xL ,

︷︸︸︷
xM ,

︷︸︸︷
xU ); (xL, xM , xU ); ( xL︸︷︷︸, xM︸︷︷︸, xU︸︷︷︸)〉 be a SVTNN.

Then, the ranking function is defined as

ℜ(X̂) = λVδ,ρ,η(X̂) + (1− λ)Aδ,ρ,η(X̂). (9)

The variable λ represents the perspective of the DM regarding risk.

(1) If λ belongs to the range [0, 0.5), then the DM is willing to take risks and prefers

uncertainty.

(2) If λ equals 0.5, then the DM has a neutral stance towards risk when making parameter

selections.

(3) If λ belongs to the range (0.5, 1], then the DM is sensitive to taking risks when making

decisions.

Theorem 3.11. Let X̂1 and X̂2 be two SVTNNs in R. Then for δ, ρ, η ∈ [0, 1] and ϕ ∈ R

(1) ℜ(X̂1 + X̂2) = ℜ(X̂1) + ℜ(X̂2).
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(2) ℜ(ϕX̂1) = ϕℜ(X̂1).

Proof.

(1) From Definition 3.10, we have

ℜ(X̂1 + X̂2) = λVδ,ρ,η(X̂1 + X̂2) + (1− λ)Aδ,ρ,η(X̂1 + X̂2)

From Lemma 3.8 and Lemma 3.9, we have

ℜ(X̂1 + X̂2) = λ
(
Vδ,ρ,η(X̂1) + Vδ,ρ,η(X̂2)

)
+ (1− λ)

(
Aδ,ρ,η(X̂1) +Aδ,ρ,η(X̂2)

)
=
[
λVδ,ρ,η(X̂1) + (1− λ)Aδ,ρ,η(X̂1)

]
+
[
λVδ,ρ,η(X̂2) + (1− λ)Aδ,ρ,η(X̂2)

]
= ℜ(X̂1) + ℜ(X̂2)

(2) From Definition 3.10, we have

ℜ(ϕX̂1) = λVδ,ρ,η(ϕX̂1) + (1− λ)Aδ,ρ,η(ϕX̂1)

From Lemma 3.8 and Lemma 3.9, we have

ℜ(ϕX̂1) = λ
(
ϕVδ,ρ,η(X̂1)

)
+ (1− λ)

(
ϕAδ,ρ,η(X̂1)

)
= ϕ

[
λVδ,ρ,η(X̂1) + (1− λ)Aδ,ρ,η(X̂1)

]
= ϕℜ(X̂1)

This complete the proof.

Corollary 3.12. Let X̂i =
〈
(
︷︸︸︷
xLi ,

︷︸︸︷
xMi ,

︷︸︸︷
xUi ); (xLi , x

M
i , xUi ); ( x

L
i︸︷︷︸, xMi︸︷︷︸, xUi︸︷︷︸)〉 be n SVTNNs

in R and ϕi ∈ R be the scalars where i = 1, 2, 3, · · · , n. Then

ℜ
( n∑

i=1

ϕiX̂i

)
=

n∑
i=1

[
λ
(
δ(

︷︸︸︷
xLi +

︷︸︸︷
xUi +4

︷︸︸︷
xMi

6
) + ρ(

xLi + xUi + 4xMi
6

) + η(

xLi︸︷︷︸+ xUi︸︷︷︸+4 xMi︸︷︷︸,
6

)
)

+ (1− λ)
(
δ(

︷︸︸︷
xUi −

︷︸︸︷
xLi

6
) + ρ(

xUi − xLi
6

) + η(

xUi︸︷︷︸− xLi︸︷︷︸
6

)
)]

ϕi (10)

Proof. This is proved by using Theorem 3.11, Lemma 3.8 and Lemma 3.9.

Definition 3.13. Suppose X̂1 and X̂2 be two SVTNNs, then two SVTNNs are compared by

(1) X̂1 ≤ X̂2 if and only if ℜ(X̂1) ≤ ℜ(X̂2),

(2) X̂1 < X̂2 if and only if ℜ(X̂1) < ℜ(X̂2),

where ℜ(.) is the ranking function.

Note: If X̂ = a ∈ R be a real crisp number so that it is independent of the risk factor λ, then

ℜ(X̂) = a.
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4. Neutrosophic Data Envelopment Analysis

Consider ai = (a1i, a2i, · · · , ami) ∈ Rm and bi = (b1i, b2i, · · · , bri) ∈ Rr are the input and

output vector of DMUi for i = 1, 2, · · · , n, respectively. The input matrix A and and the

output matrix B are defined as A = [a1, · · · , an] ∈ Rm×n, and B = [b1, · · · , bn] ∈ Rr×n such

that A > 0 and B > 0. Charnes et al. [10] developed the following LP model for measuring

the efficiency of DMUo

max
ω,µ

θ =

r∑
k=1

ωkbko,

subject to
m∑
j=1

µjajo = 1, (11)

r∑
k=1

ωkbki ≤
m∑
j=1

µjaji, i = 1, 2, · · ·n,

and ωk ≥ 0, k = 1, 2, · · · , r,

µj ≥ 0, j = 1, 2, · · · ,m.

This is popularly known CCR model.

In the classical DEA model, the efficiency score of the DMUo will be erroneous if the input

and output data of the DMUs are inaccurate, imprecise, or ambiguous. The application of

Neutrosophic set theory is a powerful strategy for dealing with this type of data.

Assuming inputs and outputs of the DMUs are SVTNNs while the weights µj ∈ R and

ωk ∈ R. Then, the Neutrosophic CCR (Nue-CCR) model can be defined as

max
ω,µ

θ =

r∑
k=1

ωk b̂ko,

subject to
m∑
j=1

µj âjo = 1, (12)

r∑
k=1

ωk b̂ki ≤
m∑
j=1

µj âji, i = 1, 2, · · ·n,

and ωk ≥ 0, k = 1, 2, · · · , r,

µj ≥ 0, j = 1, 2, · · · ,m,

where âji =
〈
(
︷︸︸︷
aLji ,

︷︸︸︷
aMji ,

︷︸︸︷
aUji ); (a

L
ji, a

M
ji , a

U
ji); ( a

L
ji︸︷︷︸, aMji︸︷︷︸, aUji︸︷︷︸)

〉
and b̂ki =

〈
(
︷︸︸︷
bLki ,

︷︸︸︷
bMki ,

︷︸︸︷
bUki );

(bLki, b
M
ki , b

U
ki); ( b

L
ki︸︷︷︸, bMki︸︷︷︸, bUki︸︷︷︸)〉 are the SVTNNs. The efficiency score of the Nue-CCR model

is θ∗ ∈ [0, 1].

Definition 4.1. A DMU is said to be efficient, if its efficiency score is 1; Otherwise it is

consider as inefficient DMU.
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Applying the ranking function (ℜ) in the Neu-CCR model given in equation (12).

max
ω,µ

θ = ℜ
( r∑

k=1

ωk b̂ko

)
,

subject to ℜ
( m∑

j=1

µj âjo

)
= ℜ

(
1
)
, (13)

ℜ
( r∑

k=1

ωk b̂ki

)
≤ ℜ

( m∑
j=1

µj âji

)
, i = 1, 2, · · ·n,

and ωk ≥ 0, k = 1, 2, · · · , r,

µj ≥ 0, j = 1, 2, · · · ,m.

Using Definition 3.3, The equation (13) can be written as

max
ω,µ

θ = ℜ

(〈
(

r∑
k=1

ωk

︷︸︸︷
bLko ,

r∑
k=1

ωk

︷︸︸︷
bMko ,

r∑
k=1

ωk

︷︸︸︷
bUko ); (

r∑
k=1

ωkb
L
ko,

r∑
k=1

ωkb
M
ko,

r∑
k=1

ωkb
U
ko);

(
r∑

k=1

ωk bLko︸︷︷︸,
r∑

k=1

ωk bMko︸︷︷︸,
r∑

k=1

ωk bUko︸︷︷︸)
〉)

,

s. t ℜ

(〈
(

m∑
j=1

µj

︷︸︸︷
aLjo ,

m∑
j=1

µj

︷︸︸︷
aMjo ,

m∑
j=1

µj

︷︸︸︷
aUjo ); (

m∑
j=1

µja
L
jo,

m∑
j=1

µja
M
jo ,

m∑
j=1

µja
U
jo);

(
m∑
j=1

µj aLjo︸︷︷︸,
m∑
j=1

µj aMjo︸︷︷︸,
m∑
j=1

µj aUjo︸︷︷︸)
〉)

= 1,

ℜ

(〈
(

r∑
k=1

ωk

︷︸︸︷
bLki ,

r∑
k=1

ωk

︷︸︸︷
bMki ,

r∑
k=1

ωk

︷︸︸︷
bUki ); (

r∑
k=1

ωkb
L
ki,

r∑
k=1

ωkb
M
ki ,

r∑
k=1

ωkb
U
ki);

(

r∑
k=1

ωk bLki︸︷︷︸,
r∑

k=1

ωk bMki︸︷︷︸,
r∑

k=1

ωk bUki︸︷︷︸)
〉)

≤ ℜ

(〈
(

m∑
j=1

µj

︷︸︸︷
aLji ,

m∑
j=1

µj

︷︸︸︷
aMji ,

m∑
j=1

µj

︷︸︸︷
aUji );

(
m∑
j=1

µja
L
ji,

m∑
j=1

µja
M
ji ,

m∑
j=1

µja
U
ji); (

m∑
j=1

µj aLji︸︷︷︸,
m∑
j=1

µj aMji︸︷︷︸,
m∑
j=1

µj aUji︸︷︷︸)
〉)

, i = 1, 2, · · · , n,

and ωk ≥ 0, k = 1, 2, · · · , r, µj ≥ 0, j = 1, 2, · · · ,m.

Now from Theorem 3.11 and Corollary 3.12, we have

max
ω,µ

θ =
r∑

k=1

[
λ
(
δ(

︷︸︸︷
bLko +

︷︸︸︷
bUko +4

︷︸︸︷
bMko

6
) + ρ(

bLko + bUko + 4bMko
6

) + η(

bLko︸︷︷︸+ bUko︸︷︷︸+4 bMko︸︷︷︸,
6

)
)

+ (1− λ)
(
δ(

︷︸︸︷
bUko −

︷︸︸︷
bLko

6
) + ρ(

bUko − bLko
6

) + η(

bUko︸︷︷︸− bLko︸︷︷︸
6

)
)]

ωk (14)

s.t

m∑
j=1

[
λ
(
δ(

︷︸︸︷
aLjo +

︷︸︸︷
aUjo +4

︷︸︸︷
aMjo

6
) + ρ(

aLjo + aUjo + 4aMjo
6

) + η(

aLjo︸︷︷︸+ aUjo︸︷︷︸+4 aMjo︸︷︷︸,
6

)
)
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+ (1− λ)
(
δ(

︷︸︸︷
aUjo −

︷︸︸︷
aLjo

6
) + ρ(

aUjo − aLjo
6

) + η(

aUjo︸︷︷︸− aLjo︸︷︷︸
6

)
)]

µj = 1

r∑
k=1

[
λ
(
δ(

︷︸︸︷
bLki +

︷︸︸︷
bUki +4

︷︸︸︷
bMki

6
) + ρ(

bLki + bUki + 4bMki
6

) + η(

bLki︸︷︷︸+ bUki︸︷︷︸+4 bMki︸︷︷︸,
6

)
)

+ (1− λ)
(
δ(

︷︸︸︷
bUki −

︷︸︸︷
bLki

6
) + ρ(

bUki − bLki
6

) + η(

bUki︸︷︷︸− bLki︸︷︷︸
6

)
)]

ωk

≤
m∑
j=1

[
λ
(
δ(

︷︸︸︷
aLji +

︷︸︸︷
aUji +4

︷︸︸︷
aMji

6
) + ρ(

aLji + aUji + 4aMji
6

) + η(

aLji︸︷︷︸+ aUji︸︷︷︸+4 aMji︸︷︷︸,
6

)
)

+ (1− λ)
(
δ(

︷︸︸︷
aUji −

︷︸︸︷
aLji

6
) + ρ(

aUji − aLji
6

) + η(

aUji︸︷︷︸− aLji︸︷︷︸
6

)
)]

µj , i = 1, 2, · · · , n,

and ωk ≥ 0, k = 1, 2, · · · , r, µj ≥ 0, j = 1, 2, · · · ,m.

This is the equivalent crisp LP model of the Neu-CCR model defined in equation (12).

Theorem 4.2. The Neutrosophic CCR model presented in equation (12) and the corresponding

crisp LP model presented in equation (14) of equal significance.

Proof. By utilizing the ranking formula put forth in Definition 3.10 of the Neu-CCR model,

which is illustrated in equation (13), it becomes straightforward to observe that the optimal

feasible solution derived in equation (12) for every Neu-CCR model is also an optimal feasible

solution of equation (14), and similarly, the converse holds true.

5. Method for Solving Neutrosophic DEA model

Fuzzification is the process of converting precise input-output data into fuzzy input-output

data by utilizing information from a knowledge base. Fuzzification is considered important

and advantageous in the early stages of uncertainty theory because the fuzzifier is defined as a

mapping from a crisp data space to a fuzzy data space within a particular discourse universe.

This article utilizes triangular neutrosophic membership functions during the fuzzification

process since they can be effectively implemented by embedded controllers in highly uncertain

environments. In this particular case, a single value neutrosophic set is employed during the

fuzzification process based on the observed data. The Neu-DEA model may be solved by

performing the procedures listed below.

Step 1: Convert the DEA model into the Neu-DEA model by considering the input-output

data are SVTNNs as shown in equation (12).

Step 2: Applying the ranking function (ℜ) in the Neu-DEA model given in equation (12).
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Step 3: Convert the Nue-DEA model into equivalent crisp LP model as shown in equation

(14).

Step 4: Solve the given crisp LP model effectively and determine the optimal solution θ∗ with

different DM’s preference parameters (δ, ρ, η ) for each risk factor λ ∈ [0, 1] which

represents the risk taking attitude of the DM, given in Definition 3.10.

Step 5: The DMUs are ranked according to the average of each DMU’s efficiency scores for

each DM’s preference level.

The flowchart depicted in Figure 2 illustrates the step-by-step approach utilized to solve the

Neu-DEA model. This technique serves as a visual representation of the process employed to

address the model’s complexities and arrive at a solution.

Figure 2. Flowchart for solving Neu-DEA model
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6. Numerical Example

In order to demonstrate the validity and applicability of the suggested model, this section

consider a real case study of hospital performance assessment provided by Yang et al. [45] in

a neutrosophic environment. The input parameters, which consist of “the number of doctors

and the number of nurses”, are displayed in Table 3. Correspondingly, the output parameters,

including “days of hospitalization, patient satisfaction, and the number of outpatients”, are

shown in Table 4.

Table 3. The SVTNNs input data

DMU Number of Doctors Number of Nurses

D1 ⟨(404, 540, 674); (350, 440, 560); (420, 645, 700)⟩ ⟨(520, 530, 535); (520, 525, 530); (532, 534, 540)⟩
D2 ⟨(119, 136, 182); (122, 125, 137); (125, 178, 200)⟩ ⟨(177, 180, 188); (173, 175, 179); (185, 189, 195)⟩
D3 ⟨(139, 145, 158); (139, 140, 147); (146, 155, 167)⟩ ⟨(208, 214, 218); (195, 209, 215); (210, 217, 230)⟩
D4 ⟨(86, 93, 151); (83, 85, 87); (89, 138, 160)⟩ ⟨(114, 116, 118); (114, 115, 117); (116, 118, 125)⟩
D5 ⟨(84, 93, 143); (84, 89, 120); (90, 140, 155)⟩ ⟨(110, 117, 121); (105, 112, 120); (113, 119, 128)⟩
D6 ⟨(101, 113, 170); (110, 112, 115); (112, 120, 177)⟩ ⟨(101, 107, 111); (95, 100, 104); (108, 112, 115)⟩
D7 ⟨(561, 694, 864); (510, 640, 750), (582, 857, 930)⟩ ⟨(492, 495, 508); (492, 494, 500); (493, 506, 520)⟩
D8 ⟨(123, 179, 199); (122, 125, 130); (195, 200, 205)⟩ ⟨(66, 68, 73); (63, 67, 69); (68, 70, 78)⟩
D9 ⟨(101, 153, 155); (140, 145, 150); (145, 149, 167)⟩ ⟨(192, 195, 198); (185, 193, 197); (194, 196, 205)⟩
D10 ⟨(147, 164, 170); (147, 160, 167); (165, 169, 180)⟩ ⟨(333, 340, 357); (335, 338, 350); (338, 347, 364)⟩
D11 ⟨(130, 158, 192); (110, 144, 173); (146, 177, 205)⟩ ⟨(96, 100, 114); (97, 99, 103); (99, 110, 129)⟩
D12 ⟨(128, 137, 187); (128, 133, 164); (134, 184, 199)⟩ ⟨(213, 220, 224); (208, 215, 223); (216, 222, 231)⟩
D13 ⟨(151, 160, 210); (151, 156, 187); (157, 207, 222)⟩ ⟨(320, 327, 331); (315, 322, 330); (323, 329, 338)⟩

Table 4. The SVTNNs output data

DMU Days of Hospitalization Patient satisfaction Numbers of Outpatient

D1 ⟨(121.13, 139.24, 140.04);
(138.64, 139.14, 139.81);

(139.14, 140.02, 141.17)⟩

⟨(38, 41, 45); (38, 40, 43);
(41, 44, 49)⟩

⟨(104.23, 114.04, 278.51);
(102.37, 109.15, 235.72);

(104.81, 275.25, 279.88)⟩
D2 ⟨(31.54, 34.15, 38.27);

(31.54, 34.93, 38.89);

(34.86, 38.15, 39.83)⟩

⟨(40, 44, 47); (35, 42, 45);
(41, 46, 50)⟩

⟨(34.54, 36.98, 54.82);
(36.45, 36.80, 41.57);

(47.61, 54.25, 55.35)⟩
D3 ⟨(81.62, 82.07, 85.51);

(81.41, 81.94, 83.35);

(81.78, 85.49, 88.16)⟩

⟨(18, 20, 29); (19, 21, 23);
(28, 30, 35)⟩

⟨(157.75, 177.57, 264.52);
(157.75, 176.68, 250.75);

(180.29, 263.98, 272.16)⟩
D4 ⟨(19.54, 20.41, 20.59);

(20.15, 20.25, 20.32);

(20.54, 20.58, 20.70)⟩

⟨(18, 21, 25); (15, 19, 23);
(20, 24, 30)⟩

⟨(32.89, 35.56, 87.74);
(35.25, 35.50, 35.61);

(87.50, 87.94, 88.30)⟩
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D5 ⟨(23.89, 24.60, 26.09);
(23.56, 23.60, 23.68);

(25.97, 26.35, 26.72)⟩

⟨(30, 36, 41); (34, 35, 37);
(35, 40, 57)⟩

⟨(63.23, 69.58, 120.73);
(63, 65.17, 94.93);

(64.47, 118.75, 124.75)⟩
D6 ⟨(21.33, 21.49, 23.31);

(20.94, 24.25, 22.68);

(21.38, 23.14, 23.94)⟩

⟨(50, 55, 60); (50, 53, 57);
(56, 59, 70)⟩

⟨(72.84, 82.84, 94.18);
(82.15, 82.68, 84.89);

(85.75, 93.50, 97.18)⟩
D7 ⟨(145.77, 148.28, 169.01);

(145.77, 147.16, 168.31);

(150.69, 168.95, 175.18)⟩

⟨(40, 44, 46); (42, 43, 45);
(43, 44, 55)⟩

⟨(147.59, 150.37, 227.12);
(147.30, 147.45, 148.25);

(218.24, 224.61, 229.63)⟩
D8 ⟨(11.56, 11.74, 12.96);

(11.42, 11.61, 11.98);

(11.58, 12.64, 13.16)⟩

⟨(60, 75, 80); (55, 60, 62);
(78, 83, 85)⟩

⟨(189.37, 202.08, 284.99);
(189.37, 200.52, 281.63);

(270.16, 284.55, 289.12)⟩
D9 ⟨(57.55, 62.67, 63.03);

(62.15, 62.50, 62.93);

(62.50, 62.97, 63.61)⟩

⟨(32, 35, 38); (32, 33, 35);
(34, 36, 45)⟩

⟨(14.63, 14.85, 29.40);
(14.70, 14.75, 15.25);

(24.75, 28.36, 32.64)⟩
D10 ⟨(73.21, 76.03, 81.90);

(75.76, 76.05, 76.25);

(81.67, 82.27, 82.64)⟩

⟨(22, 25, 40); (20, 24, 27);
(23, 25, 29)⟩

⟨(96.77, 97.27, 110.39);
(96.77, 96.89, 105.14);

(99.76, 108.62, 115.27)⟩
D11 ⟨(22.90, 27.71, 35.56);

(22.90, 26.45, 31.28);

(27.92, 34.62, 39.41)⟩

⟨(20, 23, 26); (21, 22, 24);
(22, 25, 30)⟩

⟨(171.53, 182.46, 384.99);
(171.12, 178.65, 210.34);

(175.59, 270.65, 400.12)⟩
D12 ⟨(58.41, 59.12, 60.61);

(58.08, 58.12, 58.20);

(60.49, 60.87, 61.24)⟩

⟨(25, 31, 37); (29, 30, 32);
(30, 35, 52)⟩

⟨(59.87, 66.22, 117.37);
(59.64, 61.81, 91.57);

(61.11, 115.39, 121.39)⟩
D13 ⟨(66.97, 67.68, 69.17);

(66.64, 66.68, 66.76);

(69.05, 69.43, 69.80)⟩

⟨(20, 27, 31); (23, 26, 28);
(24, 30, 46)⟩

⟨(96.97, 103.32, 154.47);
(96.74, 98.91, 128.67);

(98.21, 152.49, 158.50)⟩

Table 5. Efficiency Score of the DMUs

DM’s Preference DMUs
Efficiency Score

Ranking
λ = 0 λ =

0.25

λ =

0.5

λ =

0.75

λ = 1 Mean

(δ
,ρ
,η
)
=

(1
,0
,0
)

D1 1 0.703 0.6827 0.6763 0.6731 0.74702 10

D2 0.8808 0.8957 0.916 0.9126 0.9095 0.90292 5

D3 1 1 1 1 1 1 1

D4 1 0.6057 0.6456 0.6532 0.6566 0.71222 11

D5 0.582 0.9747 1 1 1 0.91134 4

D6 0.4806 0.948 1 1 1 0.88572 6

D7 1 0.8354 0.8061 0.7978 0.7937 0.8466 8

D8 1 1 1 1 1 1 1

D9 1 0.936 0.9892 1 1 0.98504 2
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D10 1 1 0.9501 0.9306 0.919 0.95994 3

D11 1 1 1 1 1 1 1

D12 0.6187 0.8863 0.9223 0.9316 0.9336 0.8585 7

D13 0.582 0.7698 0.8055 0.8165 0.8206 0.75888 9
(δ
,ρ
,η
)
=

(
1 2
,
1 4
,
1 4
)

D1 1 0.6929 0.6781 0.6736 0.6713 0.74318 10

D2 1 0.8486 0.8483 0.8474 0.8467 0.8782 5

D3 1 1 1 1 1 1 1

D4 0.8889 0.5962 0.6006 0.6047 0.607 0.65948 11

D5 0.6375 0.9041 0.915 0.9185 0.9202 0.85906 6

D6 0.6327 1 1 1 1 0.92654 3

D7 1 0.8525 0.816 0.8037 0.7979 0.85402 7

D8 1 1 1 1 1 1 1

D9 0.8183 0.9418 0.9585 0.9639 0.9666 0.92982 2

D10 1 0.9175 0.8957 0.8888 0.8854 0.91748 4

D11 1 1 1 1 1 1 1

D12 0.6646 0.8427 0.8657 0.8754 0.8808 0.82584 8

D13 0.6646 0.7452 0.7656 0.7741 0.7788 0.74566 9

(δ
,ρ
,η
)
=

(
1 3
,
1 3
,
1 3
)

D1 1 0.6895 0.6766 0.6726 0.6707 0.74188 10

D2 1 0.8219 0.8221 0.8217 0.8214 0.85742 6

D3 1 1 1 1 1 1 1

D4 1 0.5869 0.5865 0.5876 0.5893 0.67006 12

D5 0.6182 0.8696 0.8834 0.8882 0.8905 0.82998 8

D6 0.7943 1 1 1 1 0.95886 3

D7 1 0.8583 0.8199 0.807 0.8005 0.85714 7

D8 1 1 1 1 1 1 1

D9 0.7916 0.9381 0.9466 0.9493 0.9507 0.91526 4

D10 1 0.8912 0.8794 0.8757 0.874 0.90406 5

D11 1 1 1 1 0.9955 0.9991 2

D12 0.6353 0.8223 0.8455 0.8553 0.8606 0.8038 9

D13 0.6525 0.7335 0.7518 0.7596 0.7639 0.73226 11

(δ
,ρ
,η
)
=

(0
,0
,1
)

D1 1 0.6747 0.6712 0.67 0.6694 0.73706 9

D2 0.9612 0.6921 0.7016 0.7063 0.7088 0.754 7

D3 1 1 1 1 1 1 1

D4 0.6007 0.5211 0.5332 0.5386 0.5412 0.54696 10

D5 1 0.8298 0.8077 0.8036 0.8017 0.84856 4

D6 1 1 1 1 1 1 1

D7 1 0.8883 0.8581 0.8479 0.8428 0.88742 3

D8 1 1 1 1 1 1 1

D9 1 0.9575 0.9315 0.9231 0.9189 0.9462 2

D10 0.5714 0.8732 0.8783 0.88 0.8808 0.81674 6

D11 1 1 1 1 1 1 1

D12 1 0.7787 0.7705 0.7681 0.767 0.81686 5
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D13 1 0.695 0.6862 0.6853 0.6854 0.75038 8

(δ
,ρ
,η
)
=

(
1 4
,
1 2
,
1 4
)

D1 0.8799 0.6959 0.6829 0.6785 0.6763 0.7227 7

D2 1 0.8793 0.8663 0.8616 0.8592 0.89328 3

D3 1 1 1 1 1 1 1

D4 1 0.6968 0.671 0.6617 0.657 0.7373 6

D5 0.1528 0.7717 0.857 0.891 0.9102 0.71654 9

D6 1 1 1 1 1 1 1

D7 1 0.8499 0.8002 0.7838 0.7757 0.84192 4

D8 1 1 1 1 1 1 1

D9 0.2363 0.901 0.9133 0.9185 0.9211 0.77804 5

D10 0.2158 0.8411 0.8559 0.8609 0.8634 0.72742 6

D11 1 0.9837 0.9435 0.9314 0.9257 0.95686 2

D12 0.1528 0.7988 0.8613 0.8846 0.8968 0.71886 8

D13 0.2026 0.7333 0.7748 0.79 0.7978 0.6597 10

(δ
,ρ
,η
)
=

(0
,1
,0
)

D1 1 0.6899 0.678 0.674 0.672 0.74278 10

D2 1 0.836 0.8324 0.8309 0.8301 0.86588 6

D3 1 1 1 1 1 1 1

D4 1 0.6015 0.6017 0.6025 0.6032 0.68178 12

D5 0.4948 0.8477 0.8775 0.8884 0.8941 0.8005 8

D6 0.743 1 1 1 1 0.9486 3

D7 1 0.8562 0.814 0.7998 0.7931 0.85262 7

D8 1 1 1 1 1 1 1

D9 0.699 0.9294 0.9389 0.9421 0.9436 0.8906 5

D10 1 0.8803 0.8743 0.8726 0.8718 0.8998 4

D11 1 1 1 0.9912 0.9791 0.99406 2

D12 0.5075 0.8157 0.849 0.8621 0.8691 0.78068 9

D13 0.5456 0.7328 0.7572 0.7669 0.772 0.7149 11

The relative efficiencies of the 13 DMUs (or hospitals) are evaluated within a neutrosophic environ-

ment by solving the crisp LP model, as described in equation (14), which corresponds to the Neu-DEA

model. Table 5 Table 5 shows the outcomes obtained by solving the suggested Neu-DEA model in

MATLAB R2021a., which determines the relative efficiency of all DMUs across all degrees of risk.

The performance of DMUs is calculated by varying the risk parameter according to each DM’s pref-

erence level. Table 5 demonstrates how the DMUs’ performance is influenced by the DM’s preference

level and risk factor. The DMUs are ranked according to their efficiency by calculating the average effi-

ciency for different risk factors corresponding to each DM’s preference level. When the mean efficiency

of a DMU is 1, it implies that the DMU is performing efficiently across all risk factors and is marked in

blue color. Such DMUs are referred to as “fully efficient”. On the other hand, when a DMU performs

inefficiently across all risk factors, it is labeled in red color and called “fully inefficient”. However, some

DMUs may perform efficiently under some risk factors but not all. These DMUs are considered “par-

tially efficient” or “partially inefficient.” When considering optimistic, neutral, or pessimistic decisions,

it is observed that DMUs D3 and D8 consistently maintain their efficiency across different risk factors.
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As a result, D3 and D8 can be considered the top-performing DMUs among all the others. This finding

holds true even when analyzing the neutral DM’s preference level.

Figure 3. Efficiency Score of different preference level with risk factor λ = 0

Figure 4. Efficiency Score of different preference level with risk factor λ = 0.25

In Figure 3, the efficiency of DMUs is compared across different preference levels, with a fixed risk

factor of λ = 0. Approximately 60% of the DMUs are found to be efficient. Figure 4 examines the

efficiency of DMUs across different preference levels, using a fixed risk factor of λ = 0.25. It is observed

that approximately 29% of the DMUs are efficient. Similarly, Figure 5 analyzes the efficiency of DMUs

with various preference levels, keeping the risk factor fixed at λ = 0.5. Approximately 30% of the DMUs
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Figure 5. Efficiency Score of different preference level with risk factor λ = 0.5

are determined to be fully efficient. Figure 6 compares the efficiency of DMUs at various preference

Figure 6. Efficiency Score of different preference level with risk factor λ = 0.75

levels while keeping a constant risk factor of lambda = 0.75. It has been found that around 30% of

the DMUs are fully efficient. Figure 7 compares the efficiency of DMUs across various preference levels

with a constant risk factor of lambda = 1. It has been shown that around 29% of DMUs are fully

efficient. When considering the mean efficiency of the DMUs, it is found that approximately 22% of the

DMUs are fully efficient. These results demonstrate the impact of both the risk factor and preference
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level on efficiency of DMUs. Notably, as the risk factor increases, the number of efficient DMUs tends

to decrease.

Figure 7. Efficiency Score of different preference level with risk factor λ = 1

Figure 8. Compare the mean efficiency scores of DMUs in different preference

level with Yang et al. [45] ranking approach

The DMUs are evaluated and ranked based on their mean efficiency scores while considering a fixed

DM’s preference level. The DMUs that achieve an efficiency score of 1 are identified as the most efficient

and are assigned a rank of 1, indicating their top performance. Conversely, DMUs with efficiency scores

below 1 are deemed inefficient, and their rankings are determined by their relative efficiency scores.
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DMUs with higher relative efficiency scores receive higher rankings, whereas those with lower relative

efficiency scores are ranked lower (See Table 5).

Figure 8 presents a comparison between the mean efficiency of DMUs obtained through the proposed

solution technique and the efficiency scores derived from the method developed by Yang et al. [45]. The

results show that DMUs D3 and D8 have the same efficiency score in both methods. However, for

other DMUs, their efficiency scores differ based on the DM’s preference level. The proposed solution

technique is deemed more effective than the existing ranking approach since it allows the DM to obtain

the efficiency of the DMUs according to their own preference level and risk factor. This gives the DM

greater freedom to set their own preferences level and risk parameter while making a decision.

7. Advantages and Limitations of this Study

The key advantage of the suggested ranking function is that it enables DMs to evaluate their own

degree of risk while making a decision. The ranking function is established by incorporating the value

and ambiguity index, and it is related with the preference level of the DM, which indicates whether

the DM prefers a pessimistic, optimistic, or neutral a decision. Also, the ranking function is associated

with the risk factor which show the risk taking attitude of the DM. The suggested ranking function is

utilised to solve the Neu-DEA model by converting it into an equivalent crisp DEA model that can be

solved using existing LP approaches. The efficiency score of the DMUs is defined by a specific preference

and risk level. This preference level and risk factor provide DMs with more freedom when analysing

performance and making decisions. As a result, the suggested approach to solving the Neu-DEA model

gives DMs greater freedom to consider their degree of risk and preferences when making decisions,

allowing them to make better informed choices that are consistent with their objectives and values.

The present study is a case analysis that aims to measure the performance of hospitals. The in-

vestigation focuses on a small number of input and output variables, specifically two inputs and three

outputs. However, the overall performance of hospitals is affected by a variety of variables that relate

to either their inputs or their outputs. Therefore, the efficiency score may be changed by increasing or

decreasing the number of inputs or outputs. The DMUs are ranked according to the mean efficiency

scores of the DMUs with various risk factors for each DM’s preference level, but this approach does not

completely rank the DMUs, which is shown in the Table 5. Furthermore, the inputs of the DMUs may

be interconnected with various internal structures rather than having a direct relationship with the final

output. This suggested model only depends on the initial inputs and ultimate outputs, disregarding

the internal structure of the DMUs. Therefore, while evaluating the performance of the DMUs, it is

essential to take into account every relevant factor and internal DMU structures since these factors

may have a big influence on the DMUs’ rankings and efficiency evaluations. The suggested model is

valuable, but it has limits in terms of its abilities to rank DMUs completely and accurately as well as

the model does not consider the complex internal structures of DMUs.

8. Conclusions and Future Directions

The Neutrosophic Set is a generalized version of ordinary fuzzy sets, Intuitionistic fuzzy sets,

Pythagorean fuzzy sets, and Spherical fuzzy sets [41]. It is becoming a famous scholarly topic be-

cause it is used to solve many problems in decision-making, data analysis, and artificial intelligence.

The neutrosophic set has developed as a valuable technique for dealing with imprecise, indeterminate
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and inconsistent data. This set gives a more flexible way to analyse data, where data can be described

using multiple combinations of truth, indeterminacy, and falsity membership functions. The neutro-

sophic set may reflect the complexities of real-world situations and give a more realistic representation

of the underlying data by including these three variables. This research focuses on the construction of

a ranking function for a SVTNN that integrates both the value and ambiguity indexes, as well as the

DM’s preference level and risk variables. Additionally, a novel solution technique is developed for the

Neutrosophic DEA models with SVTNN inputs and outputs. The proposed ranking function converts

the Neu-DEA model into an equivalent crisp LP model which is solved with different preference levels

and risk parameters to measure the relative efficiency of the DMUs. The study examines how the DM’s

preference level and risk factor together affect the efficiency of the DMUs. Finally, to demonstrate the

applicability and validity of the proposed model, a numerical example is presented and the efficiency

scores are compared with Yang et al.’s ranking approach [45], as shown in Figure 8. It has been observed

that DMU D3 and D8 are the most efficient DMUs, whereas D12 and D13 are the least efficient DMUs,

and the number of efficient DMUs decreases as the risk factor increases. For a fixed DM’s preference

level, DMUs are ranked according to the mean efficiency score with different risk factors.

Future research directions can focus on addressing the limitations identified in the previous section.

One potential area of investigation is the increase of the number of inputs and outputs to improve

the accuracy of efficiency measurement. Additionally, there is a need to develop complete ranking

techniques that can be provide a complete ranking of DMUs in the proposed work. Furthermore, the

application of the network DEA model in a neutrosophic setting can be explored to calculate the ef-

ficiency of DMUs while considering the internal structure of the system. This novel technique gives

encouraging outcomes and can be utilized to solve various additional DEA models, including “BCC,

Super Efficiency, and Undesirable DEA, and Dynamic DEA models”, by incorporating SVTNN inputs

and outputs. Also as an application of this proposed approach employed for addressing MCDM, LP,

agricultural economic, assignment problem, banking and finance, manufacturing and production, and

transportation problems in neutrosophic environments.
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