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Abstract: The Multi-attribute decision-making (MADM) approaches are utilized to aggregate 

ambiguous and imprecise information based on different aggregation operators (AOs). The aim of 

this article is to explore the notion of single-valued neutrosophic (SVN) set (SVNS), wich is the 

modified structure of an intuitionistic fuzzy sets and picture fuzzy sets. Some appropriate 

operations of Aczel Alsina tools under the system of SVN information are also presented. By using 

the theory of prioritization aggregation model, we developed a class of new approaches including 

SVN Aczel Alsina prioritized average (SVNAAPA) and SVN Aczel Alsina prioritized geometric 

(SVNAAPG) operators. We also presented a series of new methodologies in the light of SVN 

information such as SVN Aczel Alsina prioritized weighted average (SVNAAPWA), and SVN Aczel 

Alsina prioritized weighted geometric (SVNAAPWG) operators. To verify discussed aggregation 

approaches, we also presented some notabe characteristics. We established a MADM technique to 

solve complexities and difficulties during decision-making in our real-life problems. By utilizing a 

practical numerical example to select an appropriate research scientist for the vacant post of a public 

university. To find the validity and flexibility of our invented approaches, sensitive analysis, and 

comparative study by comparing the results of existing approaches with currently proposed 

aggregation techniques. 

Keywords: Neutrosophic values, Single valued neutrosophic values, Aczel Alsina Aggregation 

operators, and Multi-attribute decision-making approach. 

 

 

1. Introduction 

In order to choose the optimal option based on a set of criteria, decision-making is a common and 

daily activity in human existence. The last several years have seen extensive research and useful 

decision-making applications to management, economics, and other fields because of its outstanding 

ability to express information uncertainty. Fuzzy set theory has become more common in recent years 

as a way to resolve decision-making issues due to the uncertainty of decision data. Zadeh [1] 

anticipated the fuzzy set (FS) concepts, which have gained popularity among intellectuals. In order 

to deal with uncertain conditions, numerous theoretical advancements in FS have been made to date. 

However, in many circumstances, the notion of FS is effective. For instance, the FS theory is unable 

to deal with the knowledge supplied to a person in the form of positive membership value (PMV) 

and negative membership value (NMV). To address these issues, Atanassov [2] created the 
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intuitionistic FS (IFS) theory by incorporating the concept of PMV into the drawbacks of FS. The 

limitation that the addition of the PMV and NMV is between [0, 1] makes IFS significantly more 

useful than the current FS. When dealing with complex and unreliable data in decision-making 

scenarios, IFS is a thorough and powerful strategy. Many researchers have used IFS theory in a 

variety of fields [3], [4]. However, the IFS cannot handle such values if the sum of them exceeds the 

unit interval [0, 1]. To address such difficulties, Yager [5] investigated Pythagorean FS (PyFS). The 

PyFS is more effective for tackling complex, unreliable information in real-life situations. Yager [6] 

also modified and explored the theory of the PyFS in the framework of q-rung orthopair FS (q-ROFS), 

with the additional limitation that the sum of the qth power of PMV and NMV cannot be more than 

the unit interval [0,1]. The concepts of q-ROFS have received much use and have received more 

interest from researchers because of their structure. Many authors have applied the q-ROFS theory 

in ways that have been detrimental to a number of areas. Cuong [7], [8] extended the concepts of IFS, 

PyFS and q-ROFS using the characteristics PMV, abstinence membership value (AMV), and NMV 

such that the sum of PMV, AMV, and NMV restricted on interval  [0, 1] . In order to convey 

ambiguous and conflicting data, Smarandache [9] anticipated the neutrosophic set (NS). A NS having 

PMV, AMV, and NMV are separately represented and lies in real standard or nonstandard subsets 

of ]−0, 1+[. We may have faced many difficulties when we explored the results in nonstandard close 

intervals. In order to overcome this complexity, Wang et al. [10] gave the concepts of SVNS and 

provided the idea of interval NS [11]. Ye [12] explored the work of IFS, PFS, and NS using the system 

of simplified NSs to deal effectively with uncertain and inaccurate data during the decision-making 

process. Many research scientists explored the concepts of NS, and SVNS in the different fuzzy 

environments [13]–[15]. 

The AOs are reliable and convenient mathematical tools to easily handle inaccurate and uncertain 

information during aggregation. Due to the significance of AOs, several research scientists worked 

on different fuzzy environments. Xu [16] explored the idea of arithmetic and geometric tools using 

the framework of weighted averaging and geometric operators depending on IFS. Rahman et al. [17] 

gave some AOs of PyFSs by using the concepts of algebraic sum and algebraic product to handle 

imprecision information. Jan et al. [18] explored the notions of PyFS by applying the interval-valued 

PyFS (IVPyFS) structure to cope with ambiguous and uncertain information. Liu and Wang [19] 

presented AOs of q-ROFSs to solve real-life problems under a MADM approach. Garg [20] expanded 

the theory of IFS using the way of PFSs and anticipated some innovative AOs to handle the 

complexities of the fuzziness. Riaz and Farid [21] explored the theory of PFSs to handle unpredictable 

and imprecision information during the decision-making process by developing certain approaches. 

Jdid et al. [22] proposed a strong mechanism for checking the qualities of final products and 

developed some new mathematical approaches for the inspection of goods under their cost and 

benefits. A novel approach for the improvement of the sustainability and resilience of supply chain 

enterprises based on the theory of industry 5.0 was presented by Gamal et al. [23]. This theory has a 

great capability to provide strong decision under considering the decision-making process. Riaz and 

Hashmi [24] extended the ideology of FSs regarding Linear Diophantine FS to introduce some 

valuable AOs on the basis of the fundamental operations of PFSs. Liu and Jiang [25] explored the 
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conception of distance measures in the form of interval-valued IFS (IVIFS) and used a number of AOs 

to deal with real-life problems under the MADM process. Mahnaz et al. [26] present detailed certain 

approaches to T-SFSs by utilizing the concepts of frank operators to cope with inaccurate and 

impression information. Ahmad et al. [27] provided some specific approaches of SFSs to deal with 

real-life issues under MADM techniques. Ali et al. [28] explored the theory of T-SFSs and explored 

the basic operation of T-SFSs. Ye [29] presented some AOs by using the correlation coefficients tools 

of SVNSs and interval-valued SVNSs. Wei and Zhang [30] present a few certain methodologies of 

Bonferroni power operators applying SVN information. Chen and Ye [31] anticipated certain 

approaches based on Dombi operations under the system of SVNSs. Mahmood and Ali [32] explored 

the theory of SVNS by utilizing complex SVNS (CSVNS) to develop certain approaches by using 

mathematical tools like prioritized Muirhead Mean operators. Fan et al. [33] invent a series of certain 

approaches to SVNS by utilizing innovative linguistic variables for the solution of complicatedness 

in different fuzziness. Hussain et al. [34] anticipated a series of complex IFS by using the theory of 

Hamy mean tools and established an application in the tourism industry. Garg [35] explored the 

theory of SVNS to overcome the loss of information during the aggregation process with the help of 

certain  mathematical tools like Frank operators. Liu et al. [36] elaborated the theories of NS to 

develop a series of certain approaches to cope with vague and impression information in the fuzzy 

environment. Akram et al. [37] elaborated the structure of energy cell under the system of interval 

valued T-SFSs to develop certain models of Bonferroni mean operators. Ali Khan et al. [38] gave a 

series of certain approaches of PyFSs based on prioritized mathematical tools to express the 

ambiguous and vague information. 

Aczel and Alsina [39] explored the theories of t-norm (TNM) and t-conorm (TCNM) to develop 

an innovative idea for Aczel Alsina tools in 1982. Farahbod and Eftekhari [40] compared other TNMs 

and TCNMs to evaluate and categorize more reliable TNMs and TCNMs after investigation. Recently 

several research scientists worked on different fuzzy environments to cope with uncertain and 

imprecise information. Senapati et al. [41] explored the idea of IFSs to establish a list of certain 

approaches by using the basic operations of Aczel Alsina tools to deal with real-life problems under 

a MADM approach. Senapati et al. [42] also utilized the basic operations of Aczel Alsina tools to 

develop a few certain approaches based on IVIFSs. Hussain et al. [43] generalized the concept of Aczel 

Alsina tools in framework of PyFSs and gave a series of certain approaches to aggregate ambiguous 

and uncertain information. Khan et al. [44] generalized the structure of q-ROFS and anticipated a 

series of certain approaches by using the basic operations of Aczel Alsina tools. Naeem et al. [45] 

expanded the concept of PFSs and anticipated detailed certain approaches by using basic operations 

of Aczel Alsina tools. Mahmood et al. [46] explored the meanings of IFS in terms of complex IFS to 

introduce a list of certain approaches using the basic operations of Aczel Alsina tools. Several research 

scientists also conceptualized the ideas of Aczel Alsina tools in different fuzzy environments seen in 

the references [47]–[49]. 

In order to handle vague information, we studied several aggregation models under considering 

different fuzzy circumstances. Sometimes decision-makers cannot approach an appropriate optimal 

option due to insufficient information on human opinions.  To serve this purpose, the SVNS is a 
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well-known aggregation model that provides the decision maker freedom in their decisions. Aczel 

Alsina aggregation tools have an attractive aggregation tool and play an essential role in the decision-

making process. By inspiring the theory of prioritization and Aczel Alsian aggregation tools, we 

explored the theory of SVNSs. The main contribution of our research work is established as follows: 

a) To expose the theory of SVNS with some specific properties. 

b) To explore operations of Aczel Alsina aggregation tools under considering the system of 

SVN information. 

c) By utilizing the degree of preferences of the attributes, we developed a class of new 

approaches based on Aczel Alsina aggregation models such as SVNAAPA and 

SVNAAPG operators. 

d) We also proposed a series of new methodologies under the system of SVNS, including 

SVNAAPWA and SVNAAPWG operators. 

e) To illustrate the applicability and effectiveness of our invented approaches, some notable 

characteristics are also demonstrated. 

f) We established an algorithm of the MADM technique to resolve several real-life 

applications. 

g) We gave a practical numerical example to find a suitable candidate for the vacant post of 

general manager for a multinational company. To find validity and flexibility of our 

invented approaches, we discussed sensitive analysis and comparative study by 

contrasting the results of existing approaches. 

h) Additionally, some remarkable points related to our research work are expressed in the 

conclusion. 

The structure of this manuscript is given as follows: In section 2, we studied the notion of SVNSs 

and its primary operations. In section 3, we revised the concepts of prioritized AOs based on SVNVs 

and some existing AOs based on SVNVs. In section 4, we improved the fundamental OLs of SVNVs 

based on Aczel Alsina operations. Section 5 listed certain approaches of SVNAAPA and SVNAAPG 

operators based on Aczel Alsina operations. In section 6, we anticipated the AOs of SVNAAPWA 

and SVNAAPWG operators with the help of weight vectors based on Aczel Alsina operations. In 

section 7, we evaluate a MADM technique to select a suitable research scientist by utilizing the 

SVNAAPWA and SVNAAPWG operators for a public university and observe the effects on the 

results of alternatives for different parametric values. In section 8, find the validity and reliability of 

our discussed approaches by contrasting the outcomes of current AOs with the result of our invented 

approaches. In section 9, the entire article was condensed into one paragraph and discussed the 

advantages of our research work. 

2. Preliminaries 

This section will study the basic definition of the neutrosophic set (NS) and single-valued 

neutrosophic set (SVNS). We also study some fundamental OLs of SVN value (SVNV) for further 

development of this article. We also provide a list of all abbreviations in Table 1. 
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Definition 1: [9] Let 𝑋  be a be a non-empty set and a NS 𝐴  in 𝑋  is characterized by positive 

membership value (PMV), abstinence membership value (AMV) and negative membership value 

(NMV).Then, all the terms of membership are restricted in such intervals, φ𝐴(𝓇) ∈ ]0
−, 1+[, δ𝐴(𝓇) ∈

]0−, 1+[ and σ𝐴(𝓇) ∈ ]0
−, 1+[. 

Where a PMV is denoted by φ𝐴(𝓇), AMV is denoted by δ𝐴(𝓇) and a NMV is denoted by σ𝐴(𝓇). 

Table 1 shows abbreviations and their meanings. 

Abbreviations Meanings Abbreviations Meanings 

MADM Multi-attribute 

decision making  

NMV negative membership 

value 

OLs Operational laws AMV abstinence 

membership value  

NS neutrosophic set FS Fuzzy set 

SVNS Single-valued 

neutrosophic set 

IFS Intuitionistic fuzzy set 

SVNV Single-valued 

neutrosophic value 

PyFS Pythagorean fuzzy set 

AOs Aggregation operators q-ROFS q-rung orthopair 

fuzzy set 

NMV positive membership 

value 

PFS Picture fuzzy set 

TNM t-norm TCNM t-conorm 

SVNAAPA Single valued neutrosophic Aczel Alsina prioritized average. 

SVNAAPG Single-valued neutrosophic Aczel Alsina prioritized geometric. 

SVNAAPWA Single valued neutrosophic Aczel Alsina prioritized weighted average. 

SVNAAPWG Single-valued neutrosophic Aczel Alsina prioritized weighted geometric. 

Definition 2: [10] A SVNS 𝐴 is defined as: 

𝐴 = {(𝓇,𝜑𝐴(𝓇), 𝛿𝐴(𝓇), 𝜎𝐴(𝓇))|𝓇 ∈ 𝑋} 

Where φ𝐴(𝓇): 𝑋 → [0, 1],  δ𝐴(𝓇):𝑋 → [0, 1]  and σ𝐴(𝓇): 𝑋 → [0, 1]  represent the PMV, AMV, and 

NMV, respectively. A SVNS satisfies such condition: 

 0 ≤ 𝜑𝐴(𝓇) + 𝛿𝐴(𝓇)+ 𝜎𝐴(𝓇) ≤ 3 

A SVNV is denoted by the 𝛼 = (φ𝛼 , δ𝛼 , σ𝛼). 

Definition 3: [10] Let 𝛼 = (φ𝛼 , δ𝛼 , σ𝛼) be a SVNV. Then, a score function 𝒢(𝛼) can be particularized 

as: 

𝒢(𝛼) =
2 + (φ𝛼 −  δ𝛼 − σ𝛼)

3
  

(1) 

Here, 𝒢(𝛼) ∈ [0, 1]. 

Definition 4: [10] Let 𝛼 = (φ𝛼 , δ𝛼 , σ𝛼)  be a SVNV. Then, an accuracy function 𝔔(𝛼)  can be 

particularized as: 
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𝔔(𝛼) = φ𝛼 + σ𝛼 (2) 

Here, 𝔔(𝛼) ∈ [0,1]. 

Definition 5: [10] Let 𝛼 = (φ𝛼 , δ𝛼 , σ𝛼)  and 𝛽 = (φ𝛽 , δ𝛽 , σ𝛽)  be two SVNVs and 𝒢(𝛼) =

2+(φ𝛼− δ𝛼−σ𝛼)

3
 and 𝒢(𝛽) =

2+ (φ𝛽− δ𝛽−σ𝛽)

3
 be the score values of 𝛼 and 𝛽 respectively. Let 𝔔(𝛼) =

φ𝛼 + σ𝛼 and 𝔔(𝛽) = φ𝛽 + σ𝛽 be the accuracy values of 𝛼 and 𝛽 respectively. Then, 

i. If 𝒢(𝛼) < 𝒢(𝛽), then 𝛼 < 𝛽 

ii. If 𝒢(𝛼) = 𝒢(𝛽) then, 

a. If 𝔔(𝛼) < 𝔔(𝛽), then 𝛼 < 𝛽 

b. If 𝔔(𝛼) = 𝔔(𝛽), then 𝛼 = 𝛽 

Definition 6: [32] Let 𝛼 = (φ𝛼 , δ𝛼 , σ𝛼)  and 𝛽 = (φ𝛽 , δ𝛽 , σ𝛽)  be two SVNVs. Then, some basic 

operations of SVNVs are given as: 

i. 𝛼 ⊕𝛽 = (φ𝛼 +φ𝛽 −φ𝛼φ𝛽 , δ𝛼δ𝛽 , σ𝛼σ𝛽) 

ii. 𝛼 ⊗𝛽 = (φ𝛼φ𝛽 , δ𝛼+ δ𝛽 − δ𝛼δ𝛽 , σ𝛼 + σ𝛽 − σ𝛼σ𝛽) 

iii. 𝜇𝛼 = (1 − (1 − φ𝛼)
𝜇 , (δ𝛼)

𝜇 , (σ𝛼)
𝜇) , 𝜇 > 0 

iv. (𝛼)𝜇 = ((φ𝛼)
𝜇 , 1 − ( 1 − δ𝛼)

𝜇 , 1 − ( 1 − σ𝛼)
𝜇), 𝜇 > 0 

Definition 7: [50] Let ß = (ß1, ß2, … , ß𝑛)  be the collection of characteristics and there is a 

prioritization between the attributes which is represented by linear ordering ß1 > ß2 > ⋯ > ß𝑛  

shows that attribute ßϼ has a maximum priority than ß𝑘 , if ϼ < 𝑘. The values ßϼ(𝓇) shows the 

performance of any alternative 𝓇  under the attribute ßϼ,  and satisfies ßϼ(𝓇) ∈ [0, 1].  The 

prioritized average operator (PA) is defined as if it satisfies such axiom: 

𝑃𝐴 (𝜏ϼ(𝓇)) =∑𝜔ϼ𝜏ϼ(𝓇)

𝑛

ϼ=1

 

 

(3) 

Where 𝝎ϼ =
𝜺ϼ

∑ 𝜺ϼ
𝒏
ϼ=𝟏

, 𝜺ϼ = ∏ 𝓖(𝝉𝒌), ϼ = 𝟐, 𝟑,… ,𝒏
ϼ−𝟏
𝒌=𝟏 . The initial value 𝜺𝟏 = 𝟏 and 𝓖(𝝉𝒌)  represents 

score values of 𝒌𝒕𝒉 SVNVs. Then, PA is called the prioritized averaging (PA) operator. 

Definition 8: [50] Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs, with PA 𝜔ϼ =

𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator for each 𝜏ϼ. Then, SVN prioritized averaging (SVNPA) operator is particularized as: 

𝑆𝑉𝑁𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜀1𝜏1⊕ 𝜀2𝜏2⊕…⊕ 𝜀𝑛𝜏𝑛 

Where 𝜀ϼ = ∏  𝒢(𝜏ϼ), ϼ = 2, 3, … , 𝑛
ϼ−1
𝑘=1 . The initial value of 𝜀1 = 1 and 𝒢(𝜏𝑘) represents the score 

value of 𝑘𝑡ℎ SVNVs. 
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Definition 9: [50] Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with PA 𝜔ϼ =

𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator for each 𝜏ϼ. Then, the SVN prioritized geometric (SVNPG) operator is particularized 

as: 

𝑆𝑉𝑁𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜏1
𝜀1⊗ 𝜏2

𝜀2⊗…⊗ 𝜏𝑛
𝜀𝑛 

Where 𝜺ϼ = ∏  𝓖(𝝉ϼ), ϼ = 𝟐, 𝟑,… , 𝒏
ϼ−𝟏
𝒌=𝟏 . The initial value of 𝜺𝟏 = 𝟏 and 𝓖(𝝉𝒌) represents the score 

values of 𝒌𝒕𝒉 SVNVs. 

3. Basic Operations of Aczel Alsina tools Based on Single-Valued Neutrosophic 

Information 

In this section, we will demonstrate Aczel Alsina operations in the form of sum, product, scalar 

multiplication, and power rule using SVNV data. 

Definition 10: Let 𝜏 = (φ, δ, σ), 𝜏1 = (φ1, δ1, σ1)  and 𝜏2 = (φ2, δ2, σ2)  be the three SVNVs,  ₡ ≥ 1 

and 𝜇 > 0. Then, we illustrate some basic operations of Aczel Alsina tools in the following form: 

i. 𝜏1⊕ 𝜏2 =

(

 
 
 1 − 𝑒

−((−𝑙𝑛(1−φ1))
₡
+( −𝑙𝑛(1−φ2))

₡
)

1
₡

,

𝑒
−((−𝑙𝑛(δ1))

₡
+(−𝑙𝑛(δ2))

₡
)

1
₡

,

𝑒
−((−𝑙𝑛(σ1))

₡
+(−𝑙𝑛(σ2))

₡
)

1
₡

)

 
 
 

 

ii. 𝜏1⊗ 𝜏2 =

(

 
 
 𝑒

−((−𝑙𝑛(φ1))
₡
+(−𝑙𝑛(φ2))

₡
)

1
₡

,

1 − 𝑒
−((−𝑙𝑛(1−δ1))

₡
+(−𝑙𝑛(1−δ2))

₡
)

1
₡

,

1 − 𝑒
−((−𝑙𝑛(1−σ1))

₡
+(−𝑙𝑛(1−σ2))

₡
)

1
₡

)

 
 
 

 

iii. 𝜇𝜏 =

(

 
 
 1− 𝑒

−(𝜇(−𝑙𝑛(1−φ𝓇))
₡
)

1
₡

,

𝑒
−(𝜇(−𝑙𝑛(δ𝓇))

₡
)

1
₡

,

𝑒
−(𝜇(−𝑙𝑛(σ𝓇))

₡
)

1
₡

)

 
 
 

 

iv. 𝜏𝜇 =

(

 
 
 𝑒

−(𝜇(−𝑙𝑛(φ𝓇))
₡
)

1
₡

,

1 − 𝑒
−(𝜇(−𝑙𝑛(1−δ𝓇))

₡
)

1
₡

,

1 − 𝑒
−(𝜇(−𝑙𝑛(1−σ𝓇))

₡
)

1
₡

)

 
 
 

 

Theorem 1: Let 𝜏 = (φ, δ, σ), 𝜏1 = (φ1,  δ1, σ1) and 𝜏2 = (φ2,  δ2, σ2) be the three SVNVs with ₡ ≥

1 and 𝜇 > 0. Then, a few fundamental OLs are defined as follows: 

i. 𝜏1⊕ 𝜏2 = 𝜏2⊕𝜏1 

ii. 𝜏1⊗ 𝜏2 = 𝜏2⊗𝜏1 
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iii. 𝜇(𝜏1⊕ 𝜏2) = 𝜇𝜏1⊕𝜇𝜏2, 𝜇 > 0 

iv. (𝜇1 + 𝜇2)𝜏 = 𝜇1𝜏 + 𝜇2𝜏, 𝜇1, 𝜇2 > 0 

v. (𝜏1⊗ 𝜏2)
𝜇 = 𝜏1

𝜇
⊗𝜏2

𝜇
, 𝜇 > 0 

vi. 𝜏𝜇1⊗ 𝜏𝜇2 = 𝜏(𝜇1+𝜇2) , 𝜇1, 𝜇2 > 0 

4. Single Valued Neutrosophic Aczel Alsina Prioritized Aggregation Operators 

In this section, we will narrate some certain approaches of SVNVs based on Aczel Alsina 

operations and elaborate on some characteristics of our aimed work. We also extend our work to the 

weighted averaging and weighted geometric operators. 

Definition 11: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Then SVNAAPA operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) =⊕
ϼ=1

𝑛

(
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏ϼ) 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) = (
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

) 𝜏1⊕(
𝜀2

∑ 𝜀ϼ
𝑛
ϼ=1

) 𝜏2⊕…⊕(
𝜀𝑛

∑ 𝜀ϼ
𝑛
ϼ=1

) 𝜏𝑛 

 

 

(4) 

Where 𝜀ϼ = ∏  𝒢(𝜏𝑘), ϼ = 2, 3, … , 𝑛
ϼ−1
𝑘=1 . 

Theorem 2: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Then, the SVNAAPA operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴 =∑(
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

 

 

(5) 

Proof: We will proof this theorem with the help of a mathematical induction technique in the 

following way: 

i. Take the value of ϼ = 2 depends on Aczel Alsina operations of SVNVs, we get, 

(
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏1) =

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
)

1
₡

,

𝑒
−((

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
)

1
₡

,

𝑒
−((

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
)

1
₡

)
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(
𝜀2

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏2) =

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝜀2

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
)

1
₡

,

𝑒
−((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
)

1
₡

,

𝑒
−((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
)

1
₡

)

 
 
 
 
 
 
 

 

By using the above Definition 11, we have: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
)

1
₡

,

𝑒
−((

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
)

1
₡

,

𝑒
−((

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
)

1
₡

)

 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝜀2

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
)

1
₡

,

𝑒
−((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
)

1
₡

,

𝑒
−((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
)

1
₡

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
1− 𝑒

−(((
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
)⊕((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
))

1
₡

,

𝑒

−(((
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
)⊕((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
))

1
₡

,

𝑒

−(((
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
)⊕((

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
))

1
₡

)

 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

2
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

2
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

2
ϼ=1 )

1
₡

)

 
 
 
 
 

 

Hence, this is true for ϼ = 2. 

ii. Now, suppose that this is true for ϼ = 𝑘. Then, we have: 
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𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) =∑(
𝜀𝑘

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏𝑘)

𝑘

ϼ=1

=

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝜀𝑘

∑ 𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘))
₡𝑘

ϼ=1 )

1
₡

)

 
 
 
 
 

 

Now, for ϼ = 𝑘 + 1. We get, 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑘 , 𝜏𝑘+1) =⊕
ϼ=1

𝑘

((
𝜀𝑘

∑ 𝜀ϼ
𝑛
ϼ=1

)𝜏𝑘⊕(
𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)𝜏𝑘+1) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝜀𝑘

∑ 𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φk))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘))
₡𝑘

ϼ=1 )

1
₡

)

 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−𝜑𝑘+1))
₡
)

1
₡

,

𝑒
−((

𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘+1))
₡
)

1
₡

,

𝑒
−((

𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘+1))
₡
)

1
₡

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀𝑘+1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

)

 
 
 
 
 

 

Hence proved. 

Example 1: Let  (0.54, 0.98, 0.27), (0.87, 0.55, 0.61) , (0.49, 0.33, 0.72)  and (0.11, 0.39, 0.27) be the 

four SVNVs with ₡ = 3. Then, SVNAAPA can be calculated as: 
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𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, 𝜏3, 𝜏4) =

(

 
 
 
 
 
 
 
 
 
 

1 − 𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ3))
₡
 +(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ4))
₡

)

 
 

1
₡

,

𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ3))
₡
+(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ4))
₡

)

 
 

1
₡

,

𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ3))
₡
+(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ4))
₡

)

 
 

1
₡

)

 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
1 − 𝑒

−(
(

1
1.7927

)(−𝑙𝑛(1−0.54))
3
+(
0.4300
1.7927

)(−𝑙𝑛(1−0.87))
3
+

(
0.2451
1.7927

)(−𝑙𝑛(1−0.49))
3
 +(

0.1176
1.7927

)(−𝑙𝑛(1−0.11))
3
)

1
3

,

𝑒

−(
(

1
1.7927

)((−𝑙𝑛(0.98))
3
)+(

0.4300
1.7927

)((−𝑙𝑛(0.55))
3
)+

(
0.2451
1.7927

)((−𝑙𝑛(0.33))
3
)+(

0.1176
1.7927

)((−𝑙𝑛(0.39))
3
)
)

1
3

,

𝑒

−(
(

1
1.7927

)((−𝑙𝑛(0.27))
3
)+(

0.4300
1.7927

)((−𝑙𝑛(0.61))
3
)+

(
0.2451
1.7927

)((−𝑙𝑛(0.72))
3
)+(

0.1176
1.7927

)((−𝑙𝑛(0.27))
3
)
)

1
3

)

 
 
 
 
 
 
 

 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, 𝜏3, 𝜏4) = (0.7349, 0.5149, 0.3239) 

Theorem 3: If all 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛 are equal, that is, 𝜏ϼ = 𝜏 for all 𝜏. Then, we have: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, 𝜏3, … , 𝜏𝑛) = 𝜏 

Proof: Since 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛. Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) =∑(
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

 

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

= (1− 𝑒
−(− 𝑙𝑛(1−(φϼ))

₡
)

1
₡

, 𝑒
−((−𝑙𝑛(δϼ))

₡
)

1
₡

, 𝑒
−((−𝑙𝑛(σϼ))

₡
)

1
₡

) = 𝜏 

Thus, it is obvious that 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) = 𝜏 holds. 

Theorem 4: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs, with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛  ) and 𝜏+ = 𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛  ). So, 

 𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝜏
+ 
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Proof: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs, with PA  𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛ϼ(𝜏1, 𝜏2, … , 𝜏𝑛  ) = (φ
−, δ−, σ−), and 𝜏+ = 𝑚𝑎𝑥ϼ(𝜏1, 𝜏2, … , 𝜏𝑛  ) =

(φ+, δ+, σ+). We have,φ− = 𝑚𝑖𝑛ϼ{φϼ}, δ
− = 𝑚𝑎𝑥ϼ{δϼ} and σ− = 𝑚𝑎𝑥ϼ{σϼ} and φ+ = 𝑚𝑎𝑥ϼ{φϼ}, δ

+ =

𝑚𝑖𝑛ϼ{δϼ}, and σ+ = 𝑚𝑖𝑛ϼ{σϼ}. Hence, there is the following result for the inequalities: 

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)𝑛
ϼ=1 (−𝑙𝑛(1−φ−))

₡
)

1
₡

≤ 1− 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ+))
₡

𝑛
ϼ=1 )

1
₡

 

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ+))
₡

𝑛
ϼ=1 )

1
₡

 

Similarly, 

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ+))
₡

𝑛
ϼ=1 )

1
₡

 

So, 

𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+ 

Theorem 5: Let 𝜏ϼ  and 𝜏ϼ
′ , ϼ = 1, 2, 3, … , 𝑛  be two sets of SVNVs, if 𝜏ϼ ≤ 𝜏ϼ

′ For all  𝜏.  So, 

𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ) 

Proof:  Let 𝜏ϼ and 𝜏ϼ
′ , ϼ = 1, 2, 3, … , 𝑛 be two sets of SVNVs, we can write in the following form: 

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

Hence, it is proved that 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐴(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ). 

Definition 12: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs, with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Then, the SVNAAPG operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) =⊗
ϼ=1

𝑛

(𝜏𝑛

(
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)

) 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜏1

(
𝜀1

∑ 𝜀ϼ
𝑛
ϼ=1

)

⊗ 𝜏2

(
𝜀2

∑ 𝜀ϼ
𝑛
ϼ=1

)

⊗…⊗ 𝜏
₡

(
𝜀𝑛

∑ 𝜀ϼ
𝑛
ϼ=1

)

 

 

 

(6) 

Where 𝜀ϼ = ∏  𝒢(𝜏𝑘), ϼ = 2, 3, … , 𝑛
ϼ−1
𝑘=1 . The initial value of 𝜀1 = 1 and 𝒢(𝜏𝑘) represents the score 

values of 𝑘𝑡ℎ SVNVs. 
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Theorem 6: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs, with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Then, the SVNAAPG operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺 =∏(𝜏ϼ

(
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)

)

𝑛

ϼ=1

=

(

 
 
 
 
 𝑒

−(∑ (
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

 

 

(7) 

Proof: Proof is similar to the theorem 2. 

Example 2: Let (0.59, 0.73, 0.34), (0.45, 0.56, 0.67), (0.78, 0.89, 0.9) and (0.51, 0.82, 0.65) be the four 

SVNVs with 𝜀1 = 1, 𝜀2 = 0.5067, 𝜀3 = 0.2060 and 𝜀4 = 0.0680 and ₡ = 3. Then, SVNAAPG can be 

calculated as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, 𝜏3, 𝜏4) ==

(

 
 
 
 
 
 
 
 
 
 

𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ3))
₡
+(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ4))
₡

)

 
 

1
₡

,

1 − 𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ3))
₡
+(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ4))
₡

)

 
 

1
₡

,

1 − 𝑒

−

(

 
 
(

𝜀1
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ1))
₡
+(

𝜀2
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ2))
₡
+

(
𝜀3

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ3))
₡
+(

𝜀4
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ4))
₡

)

 
 

1
₡

)

 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 

𝑒

−(
(

1
1.7807

)(−𝑙𝑛(0.59))
3
+(
0.5067
1.7807

)(−𝑙𝑛(0.45))
3
+

(
0.2060
1.7807

)(−𝑙𝑛(0.78))
3
+(
0.0680
1.7807

)(−𝑙𝑛(0.51))
3
)

1
3

,

1 − 𝑒

−(
(

1
1.7807

)(−𝑙𝑛(1−0.73))
3
+(
0.5067
1.7807

)(−𝑙𝑛(1−0.56))
3
+

(
0.2060
1.7807

)(−𝑙𝑛(1−0.89))
3
+(
0.0680
1.7807

)(−𝑙𝑛(1−0.82))
3
)

1
3

,

1 − 𝑒

−(
(

1
1.7807

)(−𝑙𝑛(1−0.34))
3
+(
0.5067
1.7807

)(−𝑙𝑛(1−0.67))
3
+

(
0.2060
1.7807

)(−𝑙𝑛(1−0.9))
3
+(
0.0680
1.7807

)(−𝑙𝑛(1−0.65))
3
)

1
3

)

 
 
 
 
 
 
 

 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, 𝜏3, 𝜏4)  = (0.5368, 0.7579, 0.7092) 

Theorem 7: If all 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛 are equal, that is, 𝜏𝑛 = 𝜏 for all 𝜏. Then, 

 𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) = 𝜏. 

Proof: Since 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛. Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) =∏(𝜏ϼ

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1 )

𝑛

ϼ=1
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𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) =

(

 
 
 
 
 𝑒

−(∑ (
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

= (𝑒
−((−𝑙𝑛(φ₡))

₡
)

1
₡

, 1 − 𝑒
−((−𝑙𝑛(1−δ₡))

₡
)

1
₡

, 1 − 𝑒
−((−𝑙𝑛(1−σ₡))

₡
)

1
₡

) = 𝜏 

Thus, it is obvious that 𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜏 holds. 

Theorem 8: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs, with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each 𝜏ϼ. Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛  ) and 𝜏+ = 𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛  ). Then, 

 𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+ . 

Proof: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛 be the collection of SVNVs with PA 𝜔ϼ =
𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator 

for each  𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛ϼ(𝜏1, 𝜏2, … , 𝜏𝑛  ) = (φ
−, δ−, σ−),  and  𝜏+ = 𝑚𝑎𝑥ϼ(𝜏1, 𝜏2, … , 𝜏𝑛  ) =

(φ+, δ+, σ+). We have,φ− = 𝑚𝑖𝑛ϼ{φϼ}, δ
− = 𝑚𝑎𝑥ϼ{δϼ} and σ− = 𝑚𝑎𝑥ϼ{σϼ} and φ+ = 𝑚𝑎𝑥ϼ{φϼ}, δ

+ =

𝑚𝑖𝑛ϼ{δϼ}, and σ+ = 𝑚𝑖𝑛ϼ{σϼ}. Hence, there is the following result for the inequalities:  

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ+))
₡

𝑛
ϼ=1 )

1
₡

 

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ−))
₡𝑛

ϼ=1 )

1
₡

≤ 1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ+))
₡

𝑛
ϼ=1 )

1
₡

 

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ−))
₡𝑛

ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ+))
₡

𝑛
ϼ=1 )

1
₡

 

So, 𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝜏
+ holds. 

Theorem 9: Let 𝜏ϼ  and 𝜏ϼ
′ , ϼ = 1,2,3,… , 𝑛  be two sets of SVNVs, if 𝜏ϼ ≤ 𝜏ϼ

′   for all  𝜏.  Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝐺(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ). 

Proof: Let 𝜏ϼ and 𝜏ϼ
′ , ϼ = 1,2,3,… , 𝑛 be two sets of SVNVs. Then, we can write in the following way: 

𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

And, 
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1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

Similarly, we get: 

1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 1 − 𝑒
−(∑ (

𝜀ϼ
∑ 𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ
′))

₡
𝑛
ϼ=1 )

1
₡

 

From this, we can conclude that 𝑺𝑽𝑵𝑨𝑨𝑷𝑮(𝝉𝟏, 𝝉𝟐 , … , 𝝉𝒏) ≤ 𝑺𝑽𝑵𝑨𝑨𝑷𝑮(𝝉𝟏
′ , 𝝉𝟐

′ , … , 𝝉𝒏
′ ) holds. 

5. Single Valued Neutrosophic Aczel Alsina Prioritized Weighted Aggregation Operators 

In this section, we demonstrate many AOs of SVNAAPWA and SVNAAPWG based on Aczel 

Alsina operations with some specific characteristics by using our methodology.  

Definition 13: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with associated 

weight vectors (WVs) 𝛹 = (𝛹1 , 𝛹2 , … ,𝛹𝑛)
𝑇  of 𝜏ϼ, ϼ = 1, 2, 3,… , 𝑛  such that 𝛹ϼ ∈ [0,1] 

and ∑ 𝛹ϼ = 1
𝑛
ϼ=1  with PA 𝜔ϼ =

𝛹ϼ𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator for each 𝜏ϼ . Then, the SVNAAPWA operator is 

particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) =∑(
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛  ) = (
𝛹1𝜀1

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏1)⊕ (
𝛹2𝜀2

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏2)⊕…⊕ (
𝛹𝑛𝜀𝑛

∑ 𝛹𝑛𝜀𝑛
𝑛
ϼ=1

𝜏𝑛) 

 

 

(8) 

Where 𝜀ϼ = ∏  𝒢(𝜏𝑘), ϼ = 2, 3, … , 𝑛
ϼ−1
𝑘=1 . The initial value is 𝜀1 = 1 and 𝒢(𝜏𝑘) be the score value of 

𝑘𝑡ℎ SVNVs. 

Theorem 9: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with WVs 𝛹 =

(𝛹1, 𝛹2 , … ,𝛹𝑛)
𝑇  and 𝛹₡ ∈ [0,1],  ∑ 𝛹₡ = 1

𝑛
ϼ=1  associated with PA  𝜔ϼ =

𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator. Then 

SVNAAPWA operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴 =∑(
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

 

 

(9) 

Proof: We will proof this theorem with the help of a mathematical induction technique in the 

following way: 

i. Take the value of ϼ = 2 depends on Aczel Alsina operations of SVNVs, we get, 
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(
𝛹1𝜀1

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏1) =

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝛹1𝜀1

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
)

1
₡

,

𝑒
−((

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
)

1
₡

,

𝑒
−((

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
)

1
₡

)

 
 
 
 
 
 
 

 

(
𝛹2𝜀2

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏2) =

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝛹2𝜀2

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
)

1
₡

,

𝑒
−((

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
)

1
₡

,

𝑒
−((

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
)

1
₡

)

 
 
 
 
 
 
 

 

By using the above Definition 13, we have: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
1 − 𝑒

−((
𝛹1𝜀1

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
)

1
₡

,

𝑒
−((

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
)

1
₡

,

𝑒
−((

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
)

1
₡

)

 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝛹2𝜀2

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
)

1
₡

,

𝑒
−((

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
)

1
₡

,

𝑒
−((

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
)

1
₡

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

2
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

2
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

2
ϼ=1 )

1
₡

)

 
 
 
 
 

 

Hence, this is true for ϼ = 2. 

ii. Now suppose that this is true for ϼ = 𝑘. Then, we have: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) =∑(
𝛹𝑘𝜀𝑘

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏𝑘)

𝑛

ϼ=1
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=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝛹𝑘𝜀𝑘

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘𝜀𝑘
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘𝜀𝑘
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘))
₡𝑘

ϼ=1 )

1
₡

)

 
 
 
 
 

 

Now, for ϼ = 𝑘 + 1. We get, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, 𝜏𝑘 , … , 𝜏𝑘+1) =∑((
𝛹𝑘𝜀𝑘

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏𝑘)⊕ (
𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏𝑘+1))

𝑘+1

ϼ=1

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝛹𝑘𝜀𝑘

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φk))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘𝜀𝑘
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘))
₡𝑘

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘𝜀𝑘
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘))
₡𝑘

ϼ=1 )

1
₡

)

 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
1− 𝑒

−((
𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−𝜑𝑘+1))
₡
)

1
₡

,

𝑒
−((

𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘+1))
₡
)

1
₡

,

𝑒
−((

𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘+1))
₡
)

1
₡

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(− 𝑙𝑛(1−φ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹𝑘+1𝜀𝑘+1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ𝑘+1))
₡𝑘+1

ϼ=1 )

1
₡

)

 
 
 
 
 

 

Example 3: Let 𝜏1 = (0.98, 0.45, 0.32), (0.56, 0.76, 0.3), (0.11, 0.23, 0.66)  and (0.45, 0.6, 0.29)  be the 

four SVNVs with WVs (0.3783, 0.4180, 0.1045, 0.0992)  and ₡ = 3.  Then, SVNAAPWA can be 

calculated as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴 =∑(
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

=

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)
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𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, 𝜏3, 𝜏4) =

(

 
 
 
 
 
 
 
 
 
 

1 − 𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ2))
₡
+

(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ3))
₡
 +(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ4))
₡

)

 
 

1
₡

,

𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ2))
₡
+

(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ3))
₡
+(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ4))
₡

)

 
 

1
₡

,

𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ2))
₡
+

(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ3))
₡
+(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ4))
₡

)

 
 

1
₡

)

 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
1 − 𝑒

−(
(
0.2000
0.5287

)(−𝑙𝑛(1−0.98))
3
+(
0.2210
0.5287

)(−𝑙𝑛(1−0.56))
3
+

(
0.0553
0.5287

)(−𝑙𝑛(1−0.11))
3
 +(

0.0524
0.5287

)(−𝑙𝑛(1−0.45))
3
)

1
3

,

𝑒

−(
(
0.2000
0.5287

)(−𝑙𝑛(0.45))
3
+(
0.2210
0.5287

)(−𝑙𝑛(0.76))
3
+

(
0.0553
0.5287

)(−𝑙𝑛(0.23))
3
+(
0.0524
0.5287

)(−𝑙𝑛(0.6))
3
)

1
3

,

𝑒

−(
(
0.2000
0.5287

)(−𝑙𝑛(0.32))
3
+(
0.2210
0.5287

)(−𝑙𝑛(0.3))
3
+

(
0.0553
0.5287

)(−𝑙𝑛(0.66))
3
+(
0.0524
0.5287

)(−𝑙𝑛(0.29))
3
)

1
3

)

 
 
 
 
 
 
 

 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, 𝜏3, 𝜏4) = (0.9416, 0.4416, 0.3196) 

Theorem 10: If all 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛 are equal, that is, 𝜏𝑛 = 𝜏 for all 𝜏. Then, we have: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) = 𝜏 

Proof: Since 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛. Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) =∑(
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

) 𝜏ϼ

𝑛

ϼ=1

 

=

(

 
 
 
 
 1− 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

= (1− 𝑒
−(− 𝑙𝑛(1−(φϼ))

₡
)

1
₡

, 𝑒
−((−𝑙𝑛(δϼ))

₡
)

1
₡

, 𝑒
−((−𝑙𝑛(σϼ))

₡
)

1
₡

) = 𝜏 

Thus, it is obvious that 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) = 𝜏 holds. 

Theorem 11: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with associated WVs 

𝛹 = (𝛹1 , 𝛹2, … ,𝛹𝑛)
𝑇  of 𝜏ϼ, ϼ = 1, 2, 3,… , 𝑛  such that 𝛹ϼ ∈ [0,1]  and  ∑ 𝛹ϼ = 1

𝑛
ϼ=1  with PA  𝜔ϼ =

𝛹ϼ𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator for each  𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛),  and  𝜏+ = 𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛) , then  𝜏− ≤

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+ . 
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Proof: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs with associated WVs 𝛹 =

(𝛹1, 𝛹2 , … ,𝛹𝑛)
𝑇 of 𝜏ϼ, ϼ = 1, 2, 3,… , 𝑛 such that 𝛹ϼ ∈ [0,1] and ∑ 𝛹ϼ = 1

𝑛
ϼ=1  with PA 𝜔ϼ =

𝛹ϼ𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 

operator for each  𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛) = (φ
−, δ−, σ−),  and  𝜏+ = 𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛) =

(φ+, δ+, σ+) . We have, φ− = 𝑚𝑖𝑛ϼ{φϼ}, δ
− = 𝑚𝑎𝑥ϼ{δϼ}  and σ−  = 𝑚𝑎𝑥ϼ{σϼ}  and φ+ =

𝑚𝑎𝑥ϼ{φϼ}, δ
+ = 𝑚𝑖𝑛ϼ{δϼ},  and  σ+ = 𝑚𝑖𝑛ϼ{σϼ} . Hence, there is the following result for the 

inequalities:  

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)𝑛
ϼ=1 (−𝑙𝑛(1−φ−))

₡
)

1
₡

≤ 1− 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φ+))
₡

𝑛
ϼ=1 )

1
₡

 

And, 

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δ+))
₡

𝑛
ϼ=1 )

1
₡

 

Similarly,  

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σ+))
₡

𝑛
ϼ=1 )

1
₡

 

So, 𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+ holds. 

Theorem 12: Let 𝜏ϼ  and 𝜏ϼ
′ , ϼ = 1, 2, 3, … , 𝑛  be two sets of SVNVs, if 𝜏ϼ ≤ 𝜏ϼ

′   for all  𝜏.  Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ). 

Proof: Let 𝜏ϼ and 𝜏ϼ
′ , ϼ = 1, 2, 3, … , 𝑛 be two sets of SVNVs, we can say that: 

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ
′))

₡
𝑛
ϼ=1 )

1
₡

 

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

Similarly, 

𝑒
−(∑ (

𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ
′))

₡
𝑛
ϼ=1 )

1
₡

 

Definition 14: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with associated WVs 

𝛹 = (𝛹1 , 𝛹2, … ,𝛹𝑛)
𝑇  of 𝜏ϼ, ϼ = 1, 2, 3,… , 𝑛  such that 𝛹ϼ ∈ [0,1]  and  ∑ 𝛹ϼ = 1

𝑛
ϼ=1  with PA 𝜔ϼ =

𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator. Then, the SVNAAPWG operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) =∏(𝜏ϼ

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1 )

𝑛

ϼ=1

 

 

 

(10) 
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𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜏1
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)

⊗𝜏2
(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)

⊗…⊗ 𝜏𝑛
(

𝛹𝑛𝜀𝑛
∑ 𝛹𝑛𝜀𝑛
𝑛
ϼ=1

)

 

Where 𝜀ϼ = ∏  𝒢(𝜏𝑘), ϼ = 2, 3, … , 𝑛
ϼ−1
𝑘=1 . The initial value is 𝜀1 = 1 and 𝒢(𝜏𝑘) be the score value of 

𝑘𝑡ℎ SVNVs. 

Theorem 10: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3, … , 𝑛  be the collection of SVNVs with WVs 𝛹 =

(𝛹1, 𝛹2 , … ,𝛹𝑛)
𝑇  and 𝛹ϼ ∈ [0,1], ∑ 𝛹ϼ = 1

𝑛
ϼ=1  associated with PA 𝜔ϼ =

𝜀ϼ

∑ 𝜀ϼ
𝑛
ϼ=1

 operator. Then, the 

SVNAAPWG operator is particularized as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺 =∏(𝜏ϼ

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)

𝑛

ϼ=1

=

(

 
 
 
 
 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

 

 

 

(11) 

Proof: Proof is similar to Theorem 9. 

 

Example 3: Let 𝜏1 = (0.39, 0.69, 0.41), (0.19, 0.43, 0.71), (0.8, 0.37, 0.99) and (0.55, 0.51, 0.25) be the 

four SVNVs with WVs (0.5307, 0.3423, 0.0599, 0.0671)  and ₡ = 3.  Then, SVNAAPWG can be 

calculated as: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺 =∏(𝜏ϼ

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1 )

𝑛

ϼ=1

=

(

 
 
 
 
 
 
 

𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡
)𝑛

ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡
)𝑛

ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡
)𝑛

ϼ=1 )

1
₡

)

 
 
 
 
 
 
 

 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, 𝜏3, 𝜏4) =

(

 
 
 
 
 
 
 
 
 
 

𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ2))
₡

+(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ3))
₡
 +(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ4))
₡

)

 
 

1
₡

,

1 − 𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ2))
₡
+

(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ3))
₡
+(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ4))
₡

)

 
 

1
₡

,

1 − 𝑒

−

(

 
 
(

𝛹1𝜀1
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ1))
₡
+(

𝛹2𝜀2
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ2))
₡
+

(
𝛹3𝜀3

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ3))
₡
+(

𝛹4𝜀4
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ4))
₡

)

 
 

1
₡

)
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=

(

 
 
 
 
 
 
 

𝑒

−(
(
0.2000
0.3769

)(−𝑙𝑛(0.39))
3
+(
0.1290
0.3769

)(−𝑙𝑛(0.19))
3
+

(
0.0226
0.3769

)(−𝑙𝑛(0.8))
3
 +(

0.0253
0.3769

)(−𝑙𝑛(0.55))
3
)

1
3

,

1 − 𝑒

−(
(
0.2000
0.3769

)(−𝑙𝑛(1−0.69))
3
+(
0.1290
0.3769

)(−𝑙𝑛(1−0.43))
3
+

(
0.0226
0.3769

)(−𝑙𝑛(1−0.37))
3
+(
0.0253
0.3769

)(−𝑙𝑛(1−0.51))
3
)

1
3

,

1 − 𝑒

−(
(
0.2000
0.3769

)(−𝑙𝑛(1−0.41))
3
+(
0.1290
0.3769

)(−𝑙𝑛(1−0.71))
3
+

(
0.0226
0.3769

)(−𝑙𝑛(1−0.99))
3
+(
0.0253
0.3769

)(−𝑙𝑛(1−0.25))
3
)

1
3

)

 
 
 
 
 
 
 

 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, 𝜏3, 𝜏4) = (0.2830, 0.6250, 0.8465) 

Theorem 13: If all 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1, 2, 3,… , 𝑛  are equal, that is, 𝜏𝑛 = 𝜏  for all  𝜏. 

Then, 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) = 𝜏. 

Proof: Since 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛. Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) =∏(𝜏ϼ

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1 )

𝑛

ϼ=1

 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) =

(

 
 
 
 
 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

= (𝑒
−((−𝑙𝑛(φ₡))

₡
)

1
₡

, 1 − 𝑒
−((−𝑙𝑛(1−δ₡))

₡
)

1
₡

, 1 − 𝑒
−((−𝑙𝑛(1−σ₡))

₡
)

1
₡

) = 𝜏 

Thus, it is obvious that 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) = 𝜏 holds. 

Theorem 14: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs with associated WVs 

𝛹 = (𝛹1 , 𝛹2, … ,𝛹𝑛)
𝑇  of 𝜏ϼ, ϼ = 1, 2, 3,… , 𝑛  such that 𝛹ϼ ∈ [0,1]  and  ∑ 𝛹ϼ = 1

𝑛
ϼ=1  with PA  𝜔ϼ =

𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

 operator for each 𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛) and 𝜏+ = 𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛). Then, 𝜏− ≤

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+. 

Proof: Let 𝜏ϼ = (φϼ, δϼ, σϼ), ϼ = 1,2,3,… , 𝑛  be the collection of SVNVs with associated WVs 𝛹 =

(𝛹1, 𝛹2 , 𝛹3, … , 𝛹𝑛)
𝑇  of 𝜏ϼ, ϼ = 1, 2, 3, … , 𝑛  such that 𝛹ϼ ∈ [0,1]  and  ∑ 𝛹ϼ = 1

𝑛
ϼ=1  with PA  𝜔ϼ =

𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

 operator for each  𝜏ϼ . Let 𝜏− = 𝑚𝑖𝑛(𝜏1, 𝜏2, … , 𝜏𝑛) = (φ
−, δ−, σ−),  and  𝜏+ =

𝑚𝑎𝑥(𝜏1, 𝜏2, … , 𝜏𝑛) = (φ
+, δ+, σ+) . We have,φ− = 𝑚𝑖𝑛ϼ{φϼ}, δ

− = 𝑚𝑎𝑥ϼ{δϼ}  and σ− = 𝑚𝑎𝑥ϼ{σϼ}  and 

φ+ = 𝑚𝑎𝑥ϼ{φϼ}, δ
+ = 𝑚𝑖𝑛ϼ{δϼ},  and  σ+ = 𝑚𝑖𝑛ϼ{σϼ} . Hence, there is the following result for the 

inequalities:  

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ−))
₡𝑛

ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φ+))
₡

𝑛
ϼ=1 )

1
₡
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1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ−))
₡𝑛

ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δ+))
₡

𝑛
ϼ=1 )

1
₡

 

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ−))
₡𝑛

ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 1− 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σ+))
₡

𝑛
ϼ=1 )

1
₡

 

So, 𝜏− ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛) ≤ 𝜏
+ holds. 

Theorem 15: Let 𝜏ϼ  and 𝜏ϼ
′ , ϼ = 1,2,3,… , 𝑛  be two sets of SVNVs, if 𝜏ϼ ≤ 𝜏ϼ

′   for all  𝜏.  Then, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ). 

Proof: Let 𝜏ϼ and 𝜏ϼ
′ , ϼ = 1,2,3,… , 𝑛 be two sets of SVNVs. Then, we use the following way to prove 

it: 

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡

𝑛
ϼ=1 )

1
₡

≤ 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

And,  

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ
′ ))

₡
𝑛
ϼ=1 )

1
₡

 

In the same way, 

1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡

𝑛
ϼ=1 )

1
₡

≥ 1 − 𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ
′))

₡
𝑛
ϼ=1 )

1
₡

 

From the above, we can conclude that: 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1, 𝜏2, … , 𝜏𝑛  ) ≤ 𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺(𝜏1
′ , 𝜏2

′ , … , 𝜏𝑛
′ ) 

6. MADM Techniques of SVNAAPWA and SVNAAPWG Operations 

In this section, we shall use the SVNAAPWA and SVNAAPWG operators to solve the MADM 

technique by using the information of SVNVs. Suppose that ᵰ = (ᵰ1, ᵰ2, … , ᵰn)  be the set of 

alternatives and ß = (ß1, ß2, ß3, … , ß𝑛)  be the set of attributes with the degree of weights𝛹 =

(𝛹1, 𝛹2 , … ,𝛹𝑛)
𝑇, ϼ = (1, 2, 3,… , 𝑛)  such that 𝛹ϼ ∈ [0,1]  and  ∑ 𝛹ϼ = 1

𝑛
ϼ=1 .  The decision maker also 

explores the theory of prioritization between attributes which is represented as linear ordering 𝛴1 >

𝛴2 > … > 𝛴𝑛 . The following decision matrix ℟ = (𝑌𝜂ϼ)𝜅×ἢ
 contained information in the form of 

SVNVs. 

℟ = (𝑌𝜂ϼ)𝜘×ἢ
=

(

  
 
(φ𝜏11 , δ𝜏11 , σ𝜏11)

(φ𝜏21 , δ𝜏21 , σ𝜏21)

⋮
(φ𝜏𝜘1 , δ𝜏𝜘1 , σ𝜏𝜘1)

(φ𝜏12 , δ𝜏12 , σ𝜏12)

(φ𝜏22 , δ𝜏22 , σ𝜏22)

⋮
(φ𝜏𝜘2 , δ𝜏𝜘2 , σ𝜏𝜘2)

⋯
⋯
⋱
⋮

(φ𝜏1𝑛, δ𝜏1𝑛 , σ𝜏1ἢ)

(φ𝜏2𝑛, δ𝜏2𝑛 , σ𝜏2ἢ)

⋮

(φ𝜏𝜘ἢ , δ𝜏𝜘ἢ , σ𝜏𝜘ἢ))

  
 

 



Neutrosophic Sets and Systems, Vol. 58, 2023     181  

 

 

Sajid Latif, Kifayat Ullah and Abrar Hussain, Novel Single Valued Neutrosophic Prioritized Aczel Alsina Aggregation 
Operators and Their Applications in Multi-Attribute Decision Making 

In this decision matrix (φ𝜏𝜘ἢ , δ𝜏𝜘ἢ , σ𝜏𝜘ἢ) represents the value of SVNV and φ𝜏𝜘ἢ ∈ [0,1], δ𝜏𝜘ἢ ∈ [0,1] 

and σ𝜏𝜘ἢ ∈ [0,1] such that 0 ≤ φ𝜏𝜘ἢ + δ𝜏𝜘ἢ + σ𝜏𝜘ἢ ≤ 3. There are two kinds of attributes: cost factor 

and beneficial factor. If the cost factor is involved in the decision matrix, then the decision matrix 

transforms to normalize matrix:  

℟ = (𝑌𝜂ϼ)𝜘×ἢ
= {

(φ𝜏𝜘ἢ, δ𝜏𝜘ἢ , σ𝜏𝜘ἢ) 𝑖𝑓 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑓𝑎𝑐𝑡𝑜𝑟

(φ𝜏𝜘ἢ, δ𝜏𝜘ἢ , σ𝜏𝜘ἢ) 𝑖𝑓 𝑐𝑜𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟
 

Now, we will describe the following steps of the algorithm for solving given a MADM technique by 

the decision maker. 

6.1 Algorithm 

Step 1: In the first step, the decision maker collects information and arranges a decision matrix under 

the system of SVNVs. 

Step 2: We must convert the decision matrix into a normalizer matrix if the cost factor involves in the 

set of attributes; otherwise, there is no need. 

Step 3: We utilized our proposed methodologies to solve a MADM technique by using the 

SVNAAWA and SVNAAWG operators. 

Step 4: Shows the results of SVNAAWA and SVNAAWG operators in a table.  

Step 5: Calculate score values by using the consequences of SVNAAWA and SVNAAWG operators. 

We evaluate suitable alternatives after ranking and ordering of the score values. 
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Figure 1 Flow chart of an algorithm. 

6.2. Application 

Research scientists are present in various alternative domains, such as mathematics, chemistry, 

biology, software engineering, environmental science, medicine, nano technology, human science, 

history, political science and so on. They develop a conceptual model for collecting information, and 

findings respond to inquiries about individuals and the universe. Research scientists are employed 

by various institutions, including universities and colleges, government agencies, organizations, and 

businesses engaged in production and innovation. Research scientists generally hold master's or 

doctoral degrees in their respective professions. Most research scientists hold postgraduate degrees 

in their specialized disciplines. While master's degrees are frequently sufficient for employment in 

the general financial industry, PhDs are typically necessary for research scientist careers at colleges 

and universities. Research scientists are generally interested. Their task involves analytical skills and 

sensitive, caring attention in order to put up a repeatable approach and recommend the right results. 

For their discoveries to be communicated in publications and oral presentations, research scientists 

must be effective communicators and editors. 

6.3. Numerical Example 

Consider a public university wanted to fill its vacant post with a research scientist, and the 

selection committee selects from five different applicants ᵰi = (ᵰ1, ᵰ2, … , ᵰn) based on the following 

four characteristics. ß1 : represents the qualification/ academic history,  ß2:  represents the 
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publication and its citations, ß3: experience in teaching related to the research field, ß4: Personality/ 

digital skills/ communication skills/ moral value. 

The decision maker selects a suitable candidate under above-discussed characteristics. Consider WVs 

𝛹 = (0.20, 0.30, 0.15, 0.35)  associated with the collected information in the form of SVNVs. We 

aggregated information given by the decision maker in Table 2 by following the steps of the 

algorithm. 

Table 2 shows the information in the form of SNNVSs given by the decision maker. 

 ß𝟏 ß𝟐 ß𝟑 ß𝟒 ß𝟓 

ᵰ𝟏 (0.23, 0.45, 0.56) (0.66, 0.65, 0.78) (0.12, 0.97, 0.32) (0.21, 0.78, 0.78) (0.65, 0.54, 0.76) 

ᵰ𝟐 (0.67, 0.78, 0.98) (0.89, 0.12, 0.32) (0.99, 0.88, 0.76) (0.23, 0.32, 0.71) (0.65, 0.55, 0.61) 

ᵰ𝟑 (0.8, 0.39, 0.19) (0.12, 0.34, 0.54) (0.33, 0.9, 0.1) (0.62, 0.56, 0.69) (0.78, 0.61, 0.32) 

ᵰ𝟒 (0.7, 0.39, 0.88) (0.78, 0.1, 0.2) (0.2, 0.4, 0.5) (0.11, 0.77, 0.19) (0.77, 0.22, 0.11) 

Step 1: The information gathered by the decision-maker using the system of SVNVs is represented 

in Table 2. 

Step 2: As no cost factor is included in the attributes set data, we have not transformed the decision 

matrix into the normalized matrix. 

Step 3: Applied the techniques of SVNAAPWA and SVNAAPWG operators to aggregate information 

given by the decision maker, which is depicted in Table 2. 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐴 =∑(
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

𝜏ϼ)

𝑛

ϼ=1

=

(

 
 
 
 
 1 − 𝑒

−(∑ (
𝛹ϼ𝜀ϼ

∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−φϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(δϼ))
₡

𝑛
ϼ=1 )

1
₡

,

𝑒
−(∑ (

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(σϼ))
₡

𝑛
ϼ=1 )

1
₡

)

 
 
 
 
 

 

And, 

𝑆𝑉𝑁𝐴𝐴𝑃𝑊𝐺 =∏(𝜏ϼ

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)

𝑛

ϼ=1

=

(

 
 
 
 
 
 
 

𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(φϼ))
₡
)𝑛

ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−δϼ))
₡
)𝑛

ϼ=1 )

1
₡

,

1 − 𝑒
−(∑ ((

𝛹ϼ𝜀ϼ
∑ 𝛹ϼ𝜀ϼ
𝑛
ϼ=1

)(−𝑙𝑛(1−σϼ))
₡
)𝑛

ϼ=1 )

1
₡

)

 
 
 
 
 
 
 

 

Table 3 shows the results of our proposed work. 

SVNAAPWA SVNAAPWG 

(𝟎. 𝟔𝟎𝟔𝟕, 𝟎. 𝟒𝟖𝟏𝟐, 𝟎. 𝟓𝟎𝟎𝟐) (0.2768, 0.6612, 0.9359)  

(𝟎. 𝟕𝟗𝟗𝟎, 𝟎. 𝟏𝟗𝟓𝟎, 𝟎. 𝟑𝟕𝟒𝟕) (0.3459, 0.5610, 0.6983) 

(𝟎. 𝟗𝟒𝟔𝟖, 𝟎. 𝟔𝟗𝟕𝟐, 𝟎. 𝟑𝟎𝟔𝟐) (0.1510, 0.9553, 0.6059) 

(𝟎. 𝟑𝟏𝟑𝟖, 𝟎. 𝟒𝟗𝟒𝟒, 𝟎. 𝟓𝟑𝟕𝟔) (0.2250, 0.7457, 0.7587) 



Neutrosophic Sets and Systems, Vol. 58, 2023     184  

 

 

Sajid Latif, Kifayat Ullah and Abrar Hussain, Novel Single Valued Neutrosophic Prioritized Aczel Alsina Aggregation 
Operators and Their Applications in Multi-Attribute Decision Making 

(𝟎. 𝟔𝟖𝟕𝟕, 𝟎. 𝟒𝟑𝟏𝟕, 𝟎. 𝟑𝟐𝟓𝟔) (0.5387, 0.5375, 0.6947) 

 

 

Step 4: After the computation of information using our proposed methodologies, we displayed all 

outcomes in Table 3. 

Step 5: Investigate the results of the score values obtained by SVNAAPWA and SVNAAPWG 

operators shown in Table 3. Invested results of all individual by the SVNAAPWA and SVNAAPWG 

operators listed in Table 4. 

Table 4 shows the score values of AOs of SVNAAPWA and SVNAAPWG 

Operators 𝓖(ᵰ𝟏) 𝓖(ᵰ𝟐) 𝓖(ᵰ𝟑) 𝓖(ᵰ𝟒) 𝓖(ᵰ𝟓) Ranking and ordering 

SVNAAPWA 0.5418 0.7431 0.6478 0.4273 0.6435 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

SVNAAPWG 0.2266 0.3622 0.1966 0.2402 0.4355 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

We noticed the ranking and ordering of score values ᵰ2 > ᵰ5 > ᵰ3 > ᵰ1 > ᵰ4 and ᵰ2 > ᵰ5 > ᵰ1 >

ᵰ3 > ᵰ4 for SVNAAPWA and SVNAAPWG, respectively. ᵰ2 is a suitable applicant for the vecant 

post. Similarly, ᵰ5 is the best applicants for a research scientist of a public university. We also show 

the outcomes of the score values acquired from the SVNAAWA and SVNAAWG operators as a 

graphical representation of the following Figure 2. 

 

Figure 2 Covers the geometrical representation of all score values, which are listed in Table 4. 

6.4. Behavior of Different Parameters of ₡ on our Purposed Methodologies 

We modified several values of ₡ in step 4 of the recommended MADM approach to explore 

the impact of different parameter values ₡ on the ranking of all alternatives. The derived outcomes 

are displayed in Tables 5-6. From Table 5, we noticed when the valued of ₡ increases, score values 

gained through the SVNAAPWA and SVNAAPWG operators also increase. Moreover, we noticed 

that the ranking and ordering sequence of the score values remain the same when we change the 

parametric values of ₡ for our invented approaches SVNAAPWA and SVNAAPWG operators. To 

see this increasing sequence of the parameter value ₡ and outcomes obtained from our discussed 

approaches is shown the isotonicity property. 
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Table 5 shows the results of SVNAAPWA operators for the variation of ₡. 

 𝓖(ᵰ𝟏) 𝓖(ᵰ𝟐) 𝓖(ᵰ𝟑) 𝓖(ᵰ𝟒) 𝓖(ᵰ𝟓) Ranking and Ordering 

₡ = 𝟏 0.4352 0.6502 0.4841 0.2984 0.5522 ᵰ2 > ᵰ5 > ᵰ3 > ᵰ1 > ᵰ4 

₡ = 𝟑 0.5418 0.7431 0.6478 0.4273 0.6435 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟐𝟓 0.7041 0.8436 0.8061 0.6675 0.7905 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟕𝟓 0.7281 0.8566 0.8222 0.6915 0.8075 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟏𝟎𝟓 0.7315 0.8585 0.8244 0.6949 0.8101 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟏𝟓𝟓 0.7343 0.8601 0.8262 0.6976 0.8122 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟐𝟎𝟏 0.7356 0.8608 0.8271 0.6989 0.8132 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟐𝟓𝟓 0.7365 0.8614 0.8277 0.6999 0.8139 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟐𝟕𝟓 0.7368 0.8615 0.8279 0.7001 0.8141 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟑𝟐𝟏 0.7372 0.8618 0.8282 0.7006 0.8145 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟑𝟕𝟓 0.7376 0.8620 0.8284 0.7010 0.8148 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟒𝟐𝟏 0.7379 0.8621 0.8286 0.7012 0.8150 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

₡ = 𝟒𝟔𝟑 0.7381 0.8623 0.8287 0.7014 0.8152 ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

 

Table 6 shows the results of SVNAAPWG operators for the variation of ₡. 

 𝓖(ᵰ𝟏) 𝓖(ᵰ𝟐) 𝓖(ᵰ𝟑) 𝓖(ᵰ𝟒) 𝓖(ᵰ𝟓) Ranking and Ordering 

₡ = 𝟏 0.3007 0.5041 0.2636 0.2610 0.4807 ᵰ2 > ᵰ5 > ᵰ1 > ᵰ3 > ᵰ4 

₡ = 𝟑 0.2266 0.3622 0.1966 0.2402 0.4355 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟐𝟓 0.1591 0.2445 0.1366 0.2212 0.3423 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟕𝟓 0.1489 0.2348 0.1285 0.2183 0.3254 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟏𝟎𝟓 0.1473 0.2334 0.1271 0.2179 0.3229 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟏𝟓𝟓 0.1460 0.2323 0.1258 0.2175 0.3209 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟐𝟎𝟏 0.1454 0.2318 0.1253 0.2173 0.3199 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟐𝟓𝟓 0.1450 0.2314 0.1249 0.2172 0.3192 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟐𝟕𝟓 0.1448 0.2313 0.1247 0.2171 0.3190 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟑𝟐𝟏 0.1446 0.2311 0.1245 0.2171 0.3187 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟑𝟕𝟓 0.1444 0.2309 0.1244 0.2170 0.3184 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟒𝟐𝟏 0.1443 0.2308 0.1243 0.2170 0.3182 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

₡ = 𝟒𝟔𝟑 0.1442 0.2308 0.1242 0.2169 0.3181 ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

Further, we explored all the results obtained by the SVNAAPWA and SVNAAPWG 

operators in the graphical representation of Figure 3 and Figure 4. 
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Figure 3 Graphical representation of score values depicted in Table 5. 

 

Figure 4 Graphical representation of score values depicted in Table 6. 

7. Comparative Study 

To show the effectiveness and applacability of our discussed approaches, we make a comparison 

of the outcomes of the current discussed approaches with the consequences of the existing 

approaches. For this purpose, we utilized a few numbers of used AOs on the data of SVNVs presented 

by the decision maker and shown in Table 2. AOs of SVN Dombi weighted average and SVN Dombi 

weighted geometric operators anticipated by Chen and Ye [31], AOs of SVN weighted average and 

SVN weighted geometric operators presented by Peng et al. [51], AOs of SVN Einstein weighted 

average and SVN Einstein weighted geometric operators anticipated by the Ye et al. [52], and AOs of 

complex SVNVs (CSVNVs) based on Prioritized Muirhead Mean tools given by the Mahmood and 
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Ali [32]. All the results obtained by the existing AOs [31], [32], [51], [52] are shown in the following 

Table 7. 

 

Figure 5. Shows the results of the comparative study in a graphical representation. 

Table 7. Shows the results of a comparative study. 

AOs Score values Ranking and ordering 

Current work 𝒢(ᵰ1) = 0.5418, 𝒢(ᵰ2) = 0.7431, 𝒢(ᵰ3) = 0.6478, 

 𝒢(ᵰ4) = 0.4273, 𝒢(ᵰ5) = 0.6435 

ᵰ2 > ᵰ3 > ᵰ5 > ᵰ1 > ᵰ4 

Current work 𝒢(ᵰ1) = 0.2266, 𝒢(ᵰ2) = 0.3622, 𝒢(ᵰ3) = 0.1966, 

 𝒢(ᵰ4) = 0.2402, 𝒢(ᵰ5) = 0.4355 

ᵰ5 > ᵰ2 > ᵰ4 > ᵰ1 > ᵰ3 

SVNWA [51] 𝒢(ᵰ1) = 0.4985, 𝒢(ᵰ2) = 0.7415, 𝒢(ᵰ3) = 0.5654, 

 𝒢(ᵰ4) = 0.4160, 𝒢(ᵰ5) = 0.6655 

ᵰ2 > ᵰ5 > ᵰ3 > ᵰ1 > ᵰ4 

SVNWG [51] 𝒢(ᵰ1) = 0.3751, 𝒢(ᵰ2) = 0.6136, 𝒢(ᵰ3) = 0.3120 

, 𝒢(ᵰ4) = 0.3158, 𝒢(ᵰ5) = 0.5862 

ᵰ2 > ᵰ5 > ᵰ1 > ᵰ3 > ᵰ4 

SVNDWA [31] 𝒢(ᵰ1) = 0.5539, 𝒢(ᵰ2) = 0.7815, 𝒢(ᵰ3) = 0.6759,  

𝒢(ᵰ4) = 0.4714, 𝒢(ᵰ5) = 0.7115 

ᵰ2 > ᵰ5 > ᵰ3 > ᵰ1 > ᵰ4 

SVNDWG [31] 𝒢(ᵰ1) = 0.3597, 𝒢(ᵰ2) = 0.5842, 𝒢(ᵰ3) = 0.3416 

, 𝒢(ᵰ4) = 0.3346, 𝒢(ᵰ5) = 0.5980 

ᵰ2 > ᵰ5 > ᵰ1 > ᵰ3 > ᵰ4 

SVNEWA [52] 𝒢(ᵰ1) = 0.4797, 𝒢(ᵰ2) = 0.7309, 𝒢(ᵰ3) = 0.5333 

, 𝒢(ᵰ4) = 0.3979, 𝒢(ᵰ5) = 0.6549 

ᵰ2 > ᵰ5 > ᵰ3 > ᵰ1 > ᵰ4 

SVNEWG [52] 𝒢(ᵰ1) = 0.3882, 𝒢(ᵰ2) = 0.6397, 𝒢(ᵰ3) = 0.3313 

, 𝒢(ᵰ4) = 0.3271, 𝒢(ᵰ5) = 0.5977 

ᵰ2 > ᵰ5 > ᵰ1 > ᵰ4 > ᵰ3 

Mahmood and Ali [32] CSVNVs Failed 

From Table 7, we examined the results of existing approaches and concluded that invented 

methodologies are superior to other ones. Due to the parametric value of Aczel Alsina aggregation 

tools, Decision makers can acquire results of score values according to their preferences by setting 
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different parametric values of Aczel Alsina aggregation tools. We also observed the consistency and 

effectiveness of our invented approaches in Tables 5-6. 

Following graphical representation shows the results of existing approaches obtained by the decision 

matrix of Table 2 and shown in Figure 5. 

8. Conclusion 

The decision information is more appropriately described in terms of SVNVs during the decision-

making process due to the increasing uncertainties and complexity of practical situations. In this 

article, we exposed the notion of SVNSs to cope with ambiguous and vague information about human 

opinions. The SVNS is the modified version of an IFSs and PFSs, which provides freedom to decision-

makers in the decision-making process and contains more extensive information than other 

frameworks of fuzzy systems. Aczel Alsina aggregation tools are superior to other aggregation tools. 

By using the theory of Aczel Alsina aggregation tools, we proposed a class of new approaches based 

on SVN information, including SVNAAPA and SVNAAPG operators. We also generalized the theory 

of SVNSs with properties of Aczel Alsina aggregation tools and presented a series of new approaches 

like SVNAAPWA and SVNAAPWG operators. To reveal the intensity and effectiveness of our 

invented methodologies, some notable characteristics are also explored. We established an algorithm 

for the MADM problem under the system of SVN information. We discussed a numerical example to 

find the most appropriate candidate for the vacant post of a general manger for the multinational 

company. To find the validity and flexibility of our methods, we evaluated the effects of the results 

on the alternatives for several parametric values. The advantages of our presented methodologies are 

also presented by comparing the findings of existing approaches with currently proposed AOs. 

Sometimes decision-makers cannot find an appropriate optimal option due to insufficient 

information about weight vectors. We can use the concepts of power operators and entropy measures 

to handle this situation. We also apply our invented approaches to resolve different applications such 

as artificial intelligence, game theory, waste management, and social selection. Furthermore, we will 

explore our invented approaches in the framework of the bipolar soft set [53], [54], picture fuzzy sets 

[55], spherical fuzzy sets, and complex spherical fuzzy sets [56]. Next, we will apply our invented 

approaches to improve the healthcare system's reliability and establish a strong model for the waste 

materials under the system of NS [57]. 

Furthermore, we also attached a list of variables used throughout this article. 

Symbols Meanings Symbols Meanings 

𝑋 Non-empty set 𝕼 Accuracy function 

𝜑 PMV 𝜳 Weight vector 

𝛿 AMV ß Attribute 

𝜎 NMV ᵰ Alternative 
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𝓇 Element from non-empty set ₡ Parametric values 

𝛼 SVNV 𝓖 Score function 
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