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Abstract. In this paper, we consider the neutrosophic generalized Rayleigh distribution (NGRD). Various

neutrosophic properties of NGRD are developed and discussed. The developed distribution is specifically more

useful to model indeterminate data which are skewed lifetime data. Also, the neutrosophic parameters are

estimated using the well-known method of maximum likelihood (ML) estimation based on a neutrosophic

environment. A simulation study is carried out to establish the achievement of the estimated neutrosophic

parameters. As a final point, the proposed NGRD applications in the real world have been discussed with the

help of real data. A comparative studies also carried out with some recent proposed neutrosophic distributions.

Keywords: Neutrosophic Mean and variance; generating functions; parametric estimation; simulation study;

neutrosophic generalized Rayleigh distribution; survival function.

—————————————————————————————————————————-

1. Introduction

To model the real data, [9] invented twelve forms of new cumulative distribution functions.

More researchers pay attention to two distributions among the twelve new distributions: Burr-

Type X and Burr-Type XII distributions. The two-parameter Burr Type X distribution is

developed by [35] under the name of generalized Rayleigh distribution (GRD). Due to the

increasing and decreasing hazard function nature of GRD, it is more applicable in survival

analysis. The various applications of GRD in statistical inference, reliability, statistical quality

control, sampling plans were studied by [22], [1], [25], [7], [19], [12], [17], [16], [18], [10], [24].
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This paper aims to develop a new neutrosophic generalized Rayleigh distribution (NGRD)

in lifetime data application. Nevertheless, it is more sensible to consider that the GRD is the

best-depicted distribution for the lifetime data based on an interval set of quantities for vague

parameters. In this situation, neutrosophic statistics is the better environment to address

lifetimes based on interval data. The concept of the neutrosophic theory is invented and studied

extensively by [29] for indeterminacies in the data. The new school of thought on neutrosophic

theory is an expansion of fuzzy logics or fuzzy sets; for more details, see [6], [26], [30–32,34], [36].

Furthermore, neutrosophic statistics is pioneered by [33] and is an expansion of classical

statistics, which addresses uncertain or vague data and corresponding statistical probability

distributions. The generalization of interval statistics is neutrosophic and also studies fuzzy

interval sets. Neutrosophic statistics becomes classical statistics when data is known or deter-

ministic. Whereas in real-world applications, most of the data sets are vague, nondeterministic

or unclear, partially unknown or incomplete than determinate data; in these situations, neu-

trosophic statistical procedures are desirable; for more details, refer [4], [15], [23].

In recent years, few researchers have been attracted to work on neutrosophic probability

distributions. [5] developed neutrosophic Weibull distribution. Neutrosophic exponential dis-

tribution applications for complex data analysis studied by [11]. [28] presented neutrosophic

beta distribution with properties and applications. [2] explored neutrosophic Kumaraswamy

distribution with engineering application. [27] discussed the neutrosophic extension of the

Maxwell model. [14] attempted on statistical development of neutrosophic gamma distribu-

tion with applications to complex data analysis.

Developing a new model is to initiate neutrosophic adaptation of the GRD. This type of

conservatory can handle real-world practical issues dealing with undetermined data in either

univarite or multivariate situations, mainly when the data reported interval statistics. The

cumulative distribution function (cdf) and probability density function (pdf) of GRD are

respectively given below:

F (x; υ, σ) =

[
1− exp

{
−
(x
σ

)2}]υ
; x > 0, υ > 0, σ > 0. (1)

and

f(x; υ, σ) =
2υ

σ2
x exp{−

(x
σ

)2
}
[
1− exp

{
−
(x
σ

)2}]υ−1

; x > 0, υ > 0, σ > 0. (2)

Where υ and σ are shape and scale parameters, respectively.

The remaining paper is reported under a description of NGRD in Section 2. The various

statistical properties of NGRD are presented in Section 3. In Section 4, the estimation of

neutrosophic parameters is explained. The extensive simulation study is carried out in Section

5. An industrial application of the developed NGRD using the real-life data is given in Section

6, and Section 7 presents the concluding remarks and future study.

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                               249

Mina Norouzirad, Gadde Srinivasa Rao and Danial Mazarei, Neutrosophic Generalized Rayleigh Distribution with Application



2. Neutrosophic Generalized Rayleigh Distribution

Neutrosophic statistics is the generalization of classical statistics. We administer with spe-

cific or crumple values in classical statistics, but in neutrosophic statistics, the sample values

are chosen from a population with uncertainty environment. In neutrosophic statistics, the

information can be vague, imprecise, ambiguous, uncertain, incomplete, or even unknown.

Neutrosophic numbers have a standard form based on classical statistics, which is given be-

low.

XN = E + I

Data is broken down into two parts, E and I, where E is the exact or determined data, and I

is the uncertain, inexact, or indeterminate part of the data. It is equivalent to XN ∈ [XL, XU ].

A subscript N is used to distinguish the neutrosophic random variable, for example, XN . Let

us assume that XNi ∈ [XL, XU ], i = 1, 2, . . . , nN is neutrosophic random variable following the

neutrosophic generalized Rayleigh distribution (NGRD) with neutrosophic shape parameter

υN ∈ [υL, υU ] and neutrosophic scale parameter σN ∈ [σL, σU ]. The neutrosophic cumulative

distribution fucntion (ncdf) and probability density function (npdf) of NGRD are respectively

given as follows:

F (xN ; υN , σN) =

[
1− exp

{
−
(
xN

σN

)2
}]υN

; xN > 0, υN > 0, σN > 0. (3)

and

f(xN ; υN , σN) =
2υN

σ2
N

xN exp

{
−
(
xN

σN

)2
}[

1− exp

{
−
(
xN

σN

)2
}]υN−1

;

xN > 0, υN > 0, σN > 0. (4)

Where υN and σN are neutrosophic shape and scale parameters, respectively.

The survival function and hazard function of NGRD are respectively given below:

s(xN ; υN , σN) = 1−

[
1− exp

{
−
(
xN

σN

)2
}]υN

(5)

and

h(xN) =

2υN
σ2
N
xN exp

{
−
(
xN
σN

)2}[
1− exp

{
−
(
xN
σN

)2}]υN−1

1−
(
1− exp{−

(
xN
σN

)2
}
)υN (6)

In Figure 1 presented various shapes of the NGRD for various scale and shape parameters.

From Figure 1 it is noticed that the nature of NGRD is right-skewed, left-skewed and symmet-

rical shapes for the given shape parameters. In Figure 2 the various forms of CDF curves are

displayed for various scale and shape parameters. The various natures of survival function and

hazard function are plotted in Figures 3 and 4. From Figure 4 it is noticed that when shape
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parameter υN less than or equal to [0.75,0.75] the nature of hazard function is approximately

bathtub type and when shape parameter υN greater than [0.75,0.75] the nature of hazard

function as increasing. Hence the proposed model is more applicable in industrial data where

the failure rate is in increasing tendency.
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3. Properties of NGRD

In this section, we discuss the some statistical properties of the NGRD and the result are

brought out as under:

Theorem 3.1. The kth moment about origin of NGRD is

µ′
k = υNσ

k
NΓ (υN) Γ

(
k

2
+ 1

) ∞∑
j=0

(−1)j

Γ (υN − j) j!(j + 1)
k
2
+1

(7)

Proof. By definition, the kth raw moment is given as

µ′
k = E

[
Xk

N

]
=

∫ ∞

0
xkNf (xN ; υN , σN) dxN

=

∫ ∞

0
xkN

2υN

σ2
N

xN exp

{
−x2N
σ2

N

}[
1− exp

{
−x2N
σ2

N

}]υN−1

dxN

=

∫ ∞

0
xkN

2υN

σ2
N

xN exp

{
−x2N
σ2

N

} ∞∑
j=0

(−1)jΓ (υN) exp
{
−j

x2
N

σ2
N

}
Γ (υN − j) j!

dxN

where

(1− z)b−1 =

∞∑
j=0

(−1)jΓ (b) zj

Γ (b− j) j!

Thus, we get

µ′
k =

∞∑
j=0

(−1)jΓ (υN)

Γ (υN − j) j!

∞∫
0

xkN
2υN

σ2
N

xN exp

{
−
(
xN

σN

)2
}
exp

{
−j

(
xN

σN

)2
}
dxN

=
∞∑
j=0

(−1)jΓ (υN)

Γ (υN − j) j!

∞∫
0

υNσ
k
Ny

k
2
N exp {− (j + 1) yN} dyN

where y = x2N/σ
2
N . Therefore, we get

µ′
k =

∞∑
j=0

(−1)jΓ (υN) υNσ
k
N

Γ (υN − j) j!

Γ
(
k
2 + 1

)
(j + 1)

k
2
+1

,

where υN ∈ [υL, υU] and σN ∈ [σL, σU]. □

For k = 1, in Eq. (7) we get the first raw moment (mean) of the NGRD is given by

Mean = µ′
1 = υNσNΓ (υN)

1

2
Γ

(
1

2

) ∞∑
j=0

(−1)j

Γ (υN − j) j!(j + 1)
3
2

. (8)

For k = 2, in Eq. 7 we get the second raw moment of the NGRD is given by

µ′
2 = υNσ

2
NΓ (υN)

∞∑
j=0

(−1)j

Γ (υN − j) j!(j + 1)2
.

Therefore, Neutrosophic variance (Nvar) is given by

Nvar (XN) = µ′
2 − (µ′

1)
2
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Similarly, we can obtain other raw and central moments, using first four central moments

one can obtain skewness and kurtosis to study the nature of the NGRD.

3.1. Quantile function

A useful and the important statistical property of NGRD is a quantile function and it also

useful to generate random sample from NGRD for simulation work. The quantile function of

NGRD is given by

QN (q) = F−1
N (q) = σN

[
− ln

(
1− q

1
υN

)] 1
2
,

where υN ∈ [υL, υU] and σN ∈ [σL, σU]. Thus,

Median = QN (0.5) = σN

[
− ln

(
1− 0.5

1
υN

)] 1
2
.

3.1.1. Measures of Skewness and Kurtosis based on Quantile Function

The quantitative measure of skewness and Kurtosis based on quantile function is defined

by [13] and [20], respectively. The following formula is used to determine the neutrosophic

skewness and kurtosis of NGRD under neutrosophic environment.

Skewness =
QN

(
6
8

)
− 2QN

(
4
8

)
+QN

(
2
8

)
QN

(
6
8

)
−QN

(
2
8

)
and

Kurtosis =
QN

(
7
8

)
−QN

(
5
8

)
+QN

(
3
8

)
−QN

(
1
8

)
QN

(
6
8

)
−QN

(
2
8

)
The neutrosophic mean, neutrosophic variance, neutrosophic median, neutrosophic skew-

ness, and neutrosophic kurtosis for various neutrosophic scale and shape parameters are dis-

played in Table 1. The results from Table 1 shows that for various statistic values are increases

as neutrosophic share parametric values increases for fixed neutrosophic scale parameter.

4. Neutrosophic Parametric Estimation

To study the effectiveness of parametric estimation, a brief discussion is given in this section

about neutrosophic maximum likelihood estimator(NMLE) of the parameters of NGRD. The

asymptotic properties of NMLEs of υN and σN also discussed. A simulation study is carried

out to study the performance of classical MLEs of the parameters as well as other methods of

parametric estimations have been considered widely in [16].

Let XN1
, . . ., XNn be a random sample from NGRD, then the log-likelihood function can

be expressed as follows:

l (υN , σN ) ∼= n ln(2) + n ln(υN) + 2n ln(σN) +

n∑
i=1

ln(xNi
)
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−
n∑

i=1

(
xNi

σN

)2

+ (υN − 1)
n∑

i=1

ln

(
1− exp{−

(
xN

σN

)2

}

)
(9)

The NMLEs of υN and σN can be obtained on maximize the Eq. (9) with respect to υN and

σN . Thus NMLEs υN and σN would be the solution of the following two non-linear equations:

∂l

∂υN

=
n

υN

+

n∑
i=1

ln

(
1− exp{−

(
xNi

σN

)2
}

= 0 (10)

and

∂l

∂σN

=
−2n

σN

+
2

σN

n∑
i=1

(
xNi

σN

)2

− 2 (υN − 1)

σN

n∑
i=1

(
xNi
σN

)2
exp

{
−
(
xNi
σN

)2}
[
1− exp{−

(
xNi
σN

)2
}
] = 0 (11)

The NLME of υN and σN , denoted by υ̂N and σ̂N respectively, can be obtained by solving

two non-linear Eqs. (10) and (11) simultaneously.

5. Simulation Study

To study the performance of the proposed NGRD distribution model, a simulation study

is carried out. The accomplishment of NGRD estimated parameters and their performance

are expressed as neutrosophic average estimates (AEs), neutrosophic average biased (Avg.

Biases) and neutrosophic measure square error (MSEs) using simulation investigation. The

simulation results of average Bias and MSE are summarized in Tables 2-4. It is noticed from

tables that the average Bias and MSE are decrease when size of the sample increases, as

Table 1. The mean, variance, median, skewness and kurtosis for different

neutrosophic parametric values

σN υN Mean Variance Median Skewness Kurtosis

[1, 1] [0.1, 0.35] [0.188, 0.502] [0.117, 0.211] [0.031, 0.385] [0.207, 0.747] [1.158, 1.936]

[1, 1] [0.5, 0.75] [0.626, 0.777] [0.221, 0.222] [0.536, 0.711] [0.094, 0.138] [1.167, 1.190]

[1, 1] [1, 1.5] [0.886, 1.039] [0.200, 0.215] [0.833, 0.997] [0.063, 0.076] [1.204, 1.219]

[1, 1] [2, 3] [0.779, 1.146] [0.187, 0.894] [1.108, 1.256] [0.056, 0.058] [1.227, 1.234]

[1, 2] [0.1, 0.35] [0.188, 1.003] [0.118, 0.845] [0.031, 0.771] [0.207, 0.747] [1.158, 1.936]

[1, 2] [0.5, 0.75] [0.626, 1.554] [0.222, 0.884] [0.536, 1.422] [0.094, 0.138] [1.167, 1.190]

[1, 2] [1, 3] [0.886, 2.659] [0.215, 1.069] [0.833, 1.994] [0.063, 0.076] [1.204, 1.219]

[1, 2] [2, 3] [1.146, 1.557] [0.187, 3.574] [1.108, 2.513] [0.056, 0.058] [1.227, 1.234]

[2, 3] [0.1, 0.35] [0.376, 1.505] [0.470, 1.901] [0.063, 1.156] [0.207, 0.747] [1.158, 1.936]

[2, 3] [0.5, 0.75] [1.252, 2.331] [0.886, 1.989] [1.073, 2.133] [0.094, 0.138] [1.167, 1.190]

[2, 3] [1, 2] [1.7723.988] [0.858, 2.404] [1.665, 2.991] [0.063, 0.076] [1.204, 1.219]

[2, 3] [2, 3] [2.292, 2.336] [0.749, 8.043] [2.216, 3.769] [0.056, 0.058] [1.227, 1.234]
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expected. According to Tables 2-4, Bias of shape parameters is negative and scale parameter

is positive at different values of shape parametric and scale parametric values.

Table 2. υN = [1, 1], σN = [0.5, 0.75]

AEs Avg. Biases MSEs

υ̂N σ̂N υ̂N σ̂N υ̂N σ̂N

30 1.1005 [0.4902,0.7377] 0.1005 [-0.0098,-0.0123] 0.3204 [0.0604,0.0894]

50 1.0562 [0.4942,0.7425] 0.0562 [-0.0058,-0.0075] 0.2154 [0.0465,0.0686]

100 1.0274 [0.4974,0.7452] 0.0274 [-0.0026,-0.0048] 0.1415 [0.0326,0.0493]

200 1.0132 [0.4985,0.7474] 0.0132 [-0.0015,-0.0026] 0.0948 [0.0231,0.0347]

500 1.0051 [0.4994,0.7494] 0.0051 [-0.0006,-0.0005] 0.0598 [0.0146,0.0221]

1000 1.0025 [0.4998,0.7497] 0.0025 [-0.0002,-0.0003] 0.0419 [0.0103,0.0155]

Table 3. υN = [0.5, 0.75], σN = [1, 1]

AEs Avg. Biases MSEs

α̂N σ̂N υ̂N σ̂N υ̂N σ̂N

30 [0.5388,0.8168] 0.9802 [0.0388,0.0668] -0.0198 [0.1364,0.2132] 0.1383

50 [0.5225,0.7888] 0.9873 [0.0225,0.0388] -0.0127 [0.0942,0.1524] 0.1070

100 [0.5108,0.7692] 0.9933 [0.0108,0.0192] -0.0067 [0.0625,0.1008] 0.0760

200 [0.5052,0.7591] 0.9963 [0.0052,0.0091] -0.0037 [0.0424,0.0676] 0.0536

500 [0.5018,0.7538] 0.9988 [0.0018,0.0038] -0.0012 [0.0264,0.0434] 0.0341

1000 [0.5015,0.7525] 0.9992 [0.0015,0.0025] -0.0008 [0.0226,0.0363] 0.029

Table 4. υN = [0.5, 0.75], σN = [1, 3]

AEs Avg. Biases MSEs

α̂N σ̂N υ̂N σ̂N υ̂N σ̂N

30 [0.5397,0.8185] [0.9757,2.9472] [0.0397,0.0685] [-0.0243,-0.0528] [0.1363,0.2205] [0.1484,0.3877]

50 [0.5225,0.7888] [0.9854,2.9676] [0.0225,0.0388] [-0.0146,-0.0324] [0.0942,0.1524] [0.1149,0.2977]

100 [0.5108,0.7692] [0.9936,2.9791] [0.0108,0.0192] [-0.0064,-0.0209] [0.0625,0.1008] [0.0807,0.2138]

200 [0.5052,0.7591] [0.9963,2.9889] [0.0052,0.0091] [-0.0037,-0.0111] [0.0424,0.0676] [0.057,0.1508]

500 [0.5018,0.7538] [0.9985,2.9974] [0.0018,0.0038] [-0.0015,-0.0026] [0.0264,0.0434] [0.0361,0.0962]

1000 [0.5015,0.7525] [0.9988,2.9989] [0.0015,0.0025] [-0.0012,-0.0011] [0.0226,0.0363] [0.0307,0.0818]

6. Real Data Applications

A realistic attempt of NGE distribution model is studied with help a real data in this sec-

tion. The Parameter estimates along with the values of AIC (Akaike’s Information criteria),
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BIC (Bayesian Information criteria) and KS (Kolmogorov–Smirnov) statistic are provided for

comparison neutrosophic exponential distribution (NED), neutrosophic generalized exponen-

tial distribution (NGED), neutrosophic Weibull distribution (NWD), neutrosophic Rayleigh

distribution (NRD) and neutrosophic generalized Rayleigh distribution (NGRD).

To demonstrate a real example here we considered an rough population compactness of few

villages in rural USA. This data is taken from [3] and they studied for neutrosophic W/S

test based on the data follows to neutrosophic normal distribution. This data consists of the

population of 17 villages in USA and their neutrosophic data, which is reproduced in Table 5

for ready reference. The results in Table 6 also shows that NGED is more suitable to fit the

data than the NED.

Table 5. Neutrosophic population density of some villages in the USA

Villages Population density Villages Population density

Aranza [4.13,4.14] Charapan [5.10,5.12]

Corupo [4.53,4.55] Comachuen [5.25,5.27]

San Lorenzo [4.69,4.70] Pichataro [5.36,5.38]

Cheranatzicurin [4.76,4.78] Quinceo [5.94,5.96]

Nahuatzen [4.77,4.79] Nurio [6.06,6.08]

Pomacuaran [4.96,4.98] Turicuaro [6.19,6.21]

Servina [4.97,4.99] Urapicho [6.30,6.32]

Arantepacua [5.00,5.06] Capacuaro [7.73,7.98]

Cocucho [5.04,5.06]

Table 6. Estimates and Goodness-of-fit statistics for village data set

Model Parameter Estimates LogLikelihood AIC BIC KS

NED υ [0.1861,0.1873] [-45.58152,-45.4788] [94.9576,95.16304] [102.2905,102.4959] [0.5385,0.5372]

NGED
shape [41.6889,44.5078] [-20.86095,-20.2097] [44.4194,45.72189] [51.7523,53.0547] [0.2707,0.3270]

rate [7.7599,8.3348]

NWD
shape [5.5773,5.8981] [-23.94168,-23.04169] [103.9359,107.1836] [111.2687,114.5164] [0.6552,0.6579]

scale [5.7621,5.7143]

NRD
υ [3.8224,3.8495] [-34.4533,-34.3024] [72.6048,72.9067] [79.9377,80.2395] [0.4438,0.4457]

σ - - - - -

NGRD
υ [47.075,0.6187] [-19.8662,-19.30757] [42.6151,43.7323] [49.9480,51.06525] [0.1695,0.1728]

σ [2.5501,2.5915]

7. Conclusions

In this article, a generalization Rayleigh distribution is developed under neutrosophic statis-

tics environment. Very few researchers are studied probability distributions based on neutro-

sophic statistics. The mathematical properties of the developed neutrosophic generalization
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Rayleigh distribution are studied. The nature of the distribution is studies through various

neutrosophic parametric combinations. Using the maximum likelihood method the parameters

are estimated. A simulation study is carried out under neutrosophic environment. The average

Bias and MSE are decreases as sample size increases, as expected. Finally, the application of

the proposed neutrosophic generalized Rayleigh distribution is presented through a real data

set. A comparative study with other distribution is also done based real data set. Based on

real data example, we conclude that the proposed distribution furnishes better performance

over existing distributions.
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