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Abstract. An AG-groupoid is the midway between commutative semigroup and groupoid. The core structure

of Flock theory is an AG-groupoid, which focuses on motion replication and distance optimization and has

numerous applications in physics and biology. Unfortunately, in many cases, modelling real-world problems

in domains like computer science, operations research, artificial intelligence, control engineering, and robotics

can be risky. Different theories, such as fuzzy sets, intuitionistic fuzzy sets, probability, soft sets, neutrosophic

sets, and others, have been created to deal with similar situations. In this paper, We define the notions of

neutrosophic κ-ideal structures in an AG-groupoid and investigate their properties. We also obtain equivalent

assertion of neutrosophic κ-ideals and product of neutrosophic κ-structures in AG-groupoid.

Keywords: AG-groupoid;neutrosophic κ-structures; ideals; neutrosophic κ-ideals; neutrosophic κ-interior

ideals.

—————————————————————————————————————————-

1. Introduction

In [1], Zadeh pioneered the fuzzy set theory to model imprecise ideas in the globe. Atanassov

expanded fuzzy set theory principles and termed it Intuitionistic fuzzy set in [2]. In his opinion,

there are two types of degrees of freedom in an universe: non-membership in a specific subset

and membership in a vague subset. In [3], Rosenfeld proposed the notion of fuzziness in groups

and produced a number of results. Recently, several authors studied their research in this field,

and similar notions are used in variety of algebraic structures, including semigroups, semiring,

ordered semigroups, rings (refer, [4] - [14], [18]- [21]).

To deal with the uncertainty that exists everywhere, Smarandache suggested the notions of

neutrosophic sets in [15]. It’s a combination of fuzzy sets and intuitionistic fuzzy sets that’s
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been generalized. Neutrosophic sets are defined using these three properties, which include

membership functions for truth (T ), indeterminacy (I), and falsity (F ). These sets can be used

in a variety of fields to deal with the difficulties that result from ambiguous data. The relative

and absolute membership functions can be distinguished by a neutrosophic set. Smarandache

employed neutrosophic sets in non-standard analysis, such as control theory, decision making

theory, sports decision (winning/losing/tie), and so on.

In BCK-algebra, Muhiuddin et al. discovered an association between (ε, ε)-neutrosophic

subalgebra and (ε, ε)-neutrosophic ideal in [16], and Muhiuddin et al. created and investi-

gated neutrosophic implicative κ-ideal in [17]. Additionally, the connection between several

neutrosophic implicative κ-ideals were examined.

In semigroup, neutrosophic κ-subsemigroup and the ε-neutrosophic κ-subsemigroup were

defined and their different features were covered in [18] by Khan et al. We examined the

properties of various neutrosophic κ-structure notions, namely neutrosophic κ-ideal structures

in a semigroup, as inspiration from [18]. A neutrosophic κ-ideals in a semigroup were suggested

by B. Elavarasan et al. in [19] and different features were achieved. The comparable claims

for the typical neutrosophic κ-structure were also given.

Porselvi et al. studied a number of characteristics of the neutrosophic κ-bi-ideal in a semi-

group in [20], and neutrosophic κ-interior ideal in [21]. We have established equivalent claims

for regular semigroup. In [22], Elavarasan et al. presented and studied neutrosophic κ-filters in

semigroups. In [23], Muhiuddin and others proposed the concepts of neutrosophic κ-structures

in ordered semigroup, and examined their properties. Smarandache proposed neutrosophic

topologies in [26], Runu Dhar studied compactness and neutrosophic topological space in [27],

Sudeep Dey et al. presented neutrosophic composite relation in [28].

We present the ideas of neutrosophic κ-ideal structures in an AG-groupoid in this paper.

We prove that the product of two neutrosophic κ-right-ideal is a neutrosophic κ-bi-ideal,

and neutrosophic κ-right-ideal is equivalent to neutrosophic κ-interior-ideal, under certain

condition.

2. Preliminaries

Unless otherwise specified, M denotes an AG-groupoid throughout this paper. Here is a

glossary of the definitions we have already used for your perusal.

For M1,M2 ⊆ M , we denote (M1] = {k ∈ M : k ≤ m for some m ∈ M1} and M1M2 =

{k1k2 : for all k1 ∈ M1 and k2 ∈ M2}. Following [24] and [25], an AG-groupoid, M , is a

groupoid whose elements hold the left invertive law: (m1m2)k3 = (k3m2)m1 for allm1,m2, k3 ∈
M . An AG-groupoid structure lies between a commutative semigroup and a groupoid. In M ,

the medial law (m1m2)(k3k4) = (m1k3)(m2k4) for all m1,m2, k3, k4 ∈ M holds. If there is
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an element e ∈ M 3 em = m ∀ m ∈ M , then e is the left identity. If M has a right

identity, then M is said to be commutative monoid. If M is having a left identity, then

(m1m2)(k3k4) = (k4k3)(m2m1) holds for all m1,m2, k3, k4 ∈ M . An element m ∈ M is said

to be idempotent if m2 = m.

Let M be an AG-groupoid and φ 6= M ⊆ M . Then M is called a AG-subgroupoid of

M (see [24]) if M2 ⊆ M. A subset M 6= φ in M is called a left(respectively, right) ideal if

MM ⊆ M (respectively, MM ⊆ M), and M is said to be an ideal if it is both a right and

a left ideal of M . A subset M 6= φ in M is said to be an interior ideal if (MM)M ⊆ M. A

subset M 6= φ in M is known as bi-ideal if (MM )M ⊆ M. A subset M 6= φ in M is said to

be a idempotent if MM = M.

Let M be an AG-groupoid. Then a function ν : M → [−1, 0] is the κ-function on M ,

and the set of all the κ-functions is given by F (M , [−1, 0]). A κ-structure is an ordered pair

(M , h) of M and an κ-function ν on M .

Definition 2.1. Let M be an AG-groupoid. A neutrosophic κ-structure in M is given in the

form:

Mζ :=
M

(Tζ , Iζ , Fζ)
=

{
k

(Tζ(k), Iζ(k), Fζ(k))
| k ∈M

}
,

where Tζ , Fζ and Iζ are the negative truth, negative falsity and negative indeterminacy mem-

bership functions respectively in M (κ-functions). Clearly, −3 ≤ Tζ(m) + Iζ(m) +Fζ(m) ≤ 0

∀ m ∈M .

Throughout this section, we assume that Mζ and Mξ are neutrosophic κ-structures in M ,

unless otherwise stated.

Notation 1. We denote the set of

(i) neutrosophic κ-left ideal by Ml,

(ii) neutrosophic κ-right ideal by Mr,

(iii) neutrosophic κ-ideal by Mi,

(iv) neutrosophic κ-bi-ideal by Mb,

(v) neutrosophic κ-interior ideal by Mn,

(vi) neutrosophic κ-AG-subgroupoid by Ms.

(vii) neutrosophic κ-idempotent by Md.

Definition 2.2. Let Mζ ∈M . Then Mζ ∈Ms provided the below condition is valid:

(∀m1,m2 ∈M )

 Tζ(m1m2) ≤ Tζ(m1) ∨ Tζ(m2)

Iζ(m1m2) ≥ Iζ(m1) ∧ Iζ(m2)

Fζ(m1m2) ≤ Fζ(m1) ∨ Fζ(m2)

 .

G. Muhiuddin et. al., Neutrosophic κ-structures in an AG-groupoid

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              280



Let ν, γ, ω ∈ [−1, 0]. Consider the sets:

T νζ =
{
m1 ∈M | Tζ(m1) ≤ ν

}
,

Iγζ =
{
m1 ∈M | Iζ(m1) ≥ γ

}
,

Fωζ =
{
m1 ∈M | Fζ(m1) ≤ ω

}
.

The set Mζ(ν, γ, ω) :=
{
m1 ∈ M | Tζ(m1) ≤ ν, Iζ(m1) ≥ γ, Fζ(m1) ≤ ω

}
is known as

(ν, γ, ω)-level set on Mζ . Obviously, Mζ(ν, γ, ω) = T νζ ∩ I
γ
ζ ∩ F

ω
ζ .

Definition 2.3. Let Mζ ∈M . Then Mζ ∈Mi provided the below conditions are valid:

(i) (∀m1,m2 ∈M )

 Tζ(m1m2) ≤ Tζ(m2)

Iζ(m1m2) ≥ Iζ(m2)

Fζ(m1m2) ≤ Fζ(m2)

 .

(ii) (∀m1,m2 ∈M )

 Tζ(m1m2) ≤ Tζ(m1)

Iζ(m1m2) ≥ Iζ(m1)

Fζ(m1m2) ≤ Fζ(m1)

 .

If condition (i) hold, then Mζ ∈Ml. If condition (ii) hold, then Mζ ∈Mr.

Definition 2.4. Let Mζ ∈Ms.Then Mζ ∈Mb if the below assertion is valid:

(∀a, k1, k2 ∈M )

 Tζ(k1ak2) ≤ Tζ(k1) ∨ Tζ(k2)
Iζ(k1ak2) ≥ Iζ(k1) ∧ Iζ(k2)
Fζ(k1ak2) ≤ Fζ(k1) ∨ Fζ(k2)

 .

It is obvious that for any Mζ ∈Mi, we have Mζ ∈Mb. The converse need not be true, as

shown by an example.

Example 2.5. Suppose M := {x1, x2, x3, x4, x5}. Then (M , .) is an AG-groupoid as given

below:

. x1 x2 x3 x4 x5

x1 x1 x4 x1 x4 x4

x2 x1 x2 x1 x4 x4

x3 x1 x4 x3 x4 x5

x4 x1 x4 x1 x4 x4

x5 x1 x4 x3 x4 x5

Let

Mζ =

{
x1

(−0.8,−0.2,−0.6) ,
x2

(−0.5,−0.9,−0.1) ,
x3

(−0.3,−0.4,−0.5) ,
x4

(−0.8,−0.2,−0.6) ,
x5

(−0.2,−0.5,−0.1)

}
.

Then Mζ ∈Mb, and Mζ /∈Mi as TM (x3x5) = −0.2 > TM (x3), IM (x3x5) = −0.5 < IM (x3)

and FM (x3x5) = −0.1 > FM (x3).
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Definition 2.6. Let Mζ ∈Ms.Then Mζ ∈Mn provided the below assertion is valid:

(∀a,m1,m2 ∈M )

 Tζ(m1am2) ≤ Tζ(a)

Iζ(m1am2) ≥ Iζ(a)

Fζ(m1am2) ≤ Fζ(a)

 .

It is obvious that for any Mζ ∈Mi, we have Mζ ∈Mn. The converse is not true, as shown

by an example.

Example 2.7. Let M be the collection of all positive integers with 0 except 1. Then under

usual multiplication, M is an AG-groupoid.

Let

Mζ =

{
0

(−0.8,−0.2,−0.8) ,
2

(−0.3,−0.4,−0.5) ,
5

(−0.5,−0.6,−0.6) ,
10

(−0.2,−0.5,−0.3) ,
otherwise

(−0.8,−0.2,−0.4)

}
.

Then Mζ ∈Mn, and Mζ /∈Mi, as TM (2.5) = −0.2 > TM (2) and TM (2.5) = −0.2 > TM (5).

Definition 2.8. For any Z ⊆M , the characteristic neutrosophic χ-structure in M is refered

as

χZ (Mζ) =
M

(χZ (T )ζ , χZ (I)ζ , χZ (F )ζ)

where

χZ (T )ζ : M → [−1, 0], m1 7→

−1 if m1 ∈ Z

0 otherwise,

χZ (I)ζ : M → [−1, 0], m1 7→

0 if m1 ∈ Z

−1 otherwise,

χZ (F )ζ : M → [−1, 0], m1 7→

−1 if m1 ∈ Z

0 otherwise.

Definition 2.9. Let Mξ := M
(Tξ,Iξ,Fξ)

∈M and Mζ := M
(Tζ ,Iζ ,Fζ)

∈M . Then

(i) Mξ is said to be a neutrosophic κ-substructure in Mζ , denote by Mζ ⊆Mξ, if Tζ(m1) ≥
Tξ(m1), Iζ(m1) ≤ Iξ(m1), Fζ(m1) ≥ Fξ(m1) for all m1 ∈M .

If Mξ ⊆Mζ and Mζ ⊆Mξ, then we write Mξ = Mζ .

(ii) The union of Mξ and Mζ over M is described as

Mξ ∪Mζ = Mξ∪ζ = (M ;Tξ∪ζ , Iξ∪ζ , Fξ∪ζ),

where ∀ m1 ∈M ,

(Tξ ∪ Tζ)(m1) = Tξ∪ζ(m1) = Tξ(m1) ∧ Tζ(m1),

(Iξ ∪ Iζ)(m1) = Iξ∩ζ(m1) = Iξ(m1) ∨ Iζ(m1),

(Fξ ∪ Fζ)(m1) = Fξ∪ζ(m1) = Fξ(m1) ∧ Fζ(m1).
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(iii) The intersection of Mξ and Mζ over M is described as

Mξ ∩Mζ = Mξ∩ζ = (M ;Tξ∩ζ , Iξ∩ζ , Fξ∩ζ),

where ∀ m1 ∈M ,

(Tξ ∩ Tζ)(m1) = Tξ∩ζ(m1) = Tξ(m1) ∨ Tζ(m1),

(Iξ ∩ Iζ)(m1) = Iξ∩ζ(m1) = Iξ(m1) ∧ Iζ(m1),

(Fξ ∩ Fζ)(m1) = Fξ∩ζ(m1) = Fξ(m1) ∨ Fζ(m1).

.

3. Main Results

We present some characteristics of neutrosophic κ-ideal structures in an AG-groupoid M .

In M , neutrosophic κ-ideals are clearly neutrosophic κ-interior ideals, but the converse is true

under certain conditions.

Theorem 3.1. For any M , (Mξ,�) is an AG-groupoid.

Proof. It is clear that (Mξ,�) is closed. Let Mξ,Mζ ,MR ∈M . Then for any t ∈M ,

((Tξ ◦ Tζ) ◦ TR)(t) = {(Tξ ◦ Tζ)(y) ∨ TR(z)}

=
∧
t=yz

{
∧
y=rs

{Tξ(r) ∨ Tζ(s)} ∨ TR(z)}

=
∧

t=(rs)z

{Tξ(r) ∨ Tζ(s) ∨ TR(z)}

=
∧

t=(zs)r

{TR(z) ∨ Tζ(s) ∨ Tξ(r)}

=
∧
t=ur

{(TR ◦ Tζ)(u) ∨ Tξ(r)}

= ((TR ◦ Tζ) ◦ Tξ)(t),

((Iξ ◦ Iζ) ◦ IR)(t) =
∨
t=yz

{(Iξ ◦ Iζ)(y) ∧ IR(z)}

=
∨
t=yz

{
∨
y=rs

{Iξ(r) ∧ Iζ(s)} ∧ IR(z)}

=
∨

t=(rs)z

{Iξ(r) ∧ Iζ(s) ∧ IR(z)}

=
∨

t=(zs)r

{IR(z) ∧ Iζ(s) ∧ Iξ(r)}

=
∧
t=ur

{(IR ◦ Iζ)(u) ∧ Iξ(r)}

= ((IR ◦ Iζ) ◦ Iξ)(t),
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((Fξ ◦ Fζ) ◦ FR)(t) =
∧
t=yz

{(Fξ ◦ Fζ)(y) ∨ FR(z)}

=
∧
t=yz

{
∧
y=rs

{Fξ(r) ∨ Fζ(s)} ∨ FR(z)}

=
∧

t=(rs)z

{Fξ(r) ∨ Fζ(s) ∨ FR(z)}

=
∧

t=(zs)r

{FR(z) ∨ Fζ(s) ∨ Fξ(r)}

=
∧
t=ur

{(FR ◦ Fζ)(u) ∨ Fξ(r)}

= ((FR ◦ Fζ) ◦ Fξ)(t).

Therefore (Mξ,�) is an AG-groupoid.

Corollary 3.2. For any Mξ,Mζ ,MR ,MQ ∈M , (Mξ�Mζ)� (MR �MQ) = (Mξ�MR)�
(Mζ �MQ).

Proof. Let Mξ,Mζ ,MR ,MQ ∈M . Then

(Tξ ◦Tζ) ◦ (TR ◦TQ) = ((TR ◦TQ) ◦Tζ) ◦Tξ) = ((Tζ ◦TQ) ◦TR) ◦Tξ) = (Tξ ◦TR) ◦ (Tζ ◦TQ),

(Fξ ◦Fζ)◦ (FR ◦FQ) = ((FR ◦FQ)◦Fζ)◦Fξ) = ((Fζ ◦FQ)◦FR)◦Fξ) = (Fξ ◦FR)◦ (Fζ ◦FQ)

and

(Iξ ◦ Iζ) ◦ (IR ◦ IQ) = ((IR ◦ IQ) ◦ Iζ) ◦ Iξ) = ((Iζ ◦ IQ) ◦ IR) ◦ Iξ) = (Iξ ◦ IR) ◦ (Iζ ◦ IQ).

Hence (Mξ �Mζ)� (MR �MQ) = (Mξ �MR)� (Mζ �MQ).

Theorem 3.3. If M has left identity, then for any Mξ,Mζ ,MR ,MQ ∈ M , we have the

following:

(i) Mξ � (Mζ �MR) = Mζ � (Mξ �MR),

(ii) (Mξ �Mζ)� (MR �MQ) = (MQ �MR)� (Mζ �Mξ).

Proof. (i) Let m ∈M . If m 6= xy for any x, y ∈M , then

(Tξ ◦ (Tζ ◦ TR))(m) = 0 = (Tζ ◦ (Tξ ◦ TR))(m),

(Iξ ◦ (Iζ ◦ IR))(m) = −1 = (Iζ ◦ (Iξ ◦ IR))(m),

(Fξ ◦ (Fζ ◦ FR))(m) = 0 = (Fζ ◦ (Fξ ◦ FR))(m).

Suppose m = yz for y, z ∈M . Then
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(Tξ ◦ (Tζ ◦ TR))(m) =
∧
m=yz

{Tξ(y) ∨ (Tζ ◦ TR)(z)}

=
∧
m=yz

{Tξ(y) ∨
∧
z=rs

{Tζ(r) ∨ TR(s)}}

=
∧

m=y(rs)

{Tξ(y) ∨ Tζ(r) ∨ TR(s)}

=
∧

m=r(ys)

{Tζ(r) ∨ Tξ(y) ∨ TR(s)}

=
∧
m=rp

{Tζ(r) ∨
∧
p=ys

{Tξ(y) ∨ TR(s)}}

=
∧
m=rp

{Tζ(r) ∨ (Tξ ◦ TR)(p)}

= (Tζ ◦ (Tξ ◦ TR))(m),

(Iξ ◦ (Iζ ◦ IR))(m) =
∨
m=yz

{Iξ(y) ∧ (Iζ ◦ IR)(z)}

=
∨
m=yz

{Iξ(y) ∧
∨
z=rs

{Iζ(r) ∧ IR(s)}}

=
∨

m=y(rs)

{Iξ(y) ∧ Iζ(r) ∧ IR(s)}

=
∨

m=r(ys)

{Iζ(r) ∧ Iξ(y) ∧ IR(s)}

=
∨
m=rp

{Iζ(r) ∧
∨
p=ys

{Iξ(y) ∧ IR(s)}}

=
∨
m=rp

{Iζ(r) ∧ (Iξ ◦ IR)(p)}

= (Iζ ◦ (Iξ ◦ IR))(m),

(Fξ ◦ (Fζ ◦ FR))(m) =
∧
m=yz

{Fξ(y) ∨ (Fζ ◦ FR)(z)}

=
∧
m=yz

{Fξ(y) ∨
∧
z=rs

{Fζ(r) ∨ FR(s)}}

=
∧

m=y(rs)

{Fξ(y) ∨ Fζ(r) ∨ FR(s)}

=
∧

m=r(ys)

{Fζ(r) ∨ Fξ(y) ∨ FR(s)}

=
∧
m=rp

{Fζ(r) ∨
∧
p=ys

{Fξ(y) ∨ FR(s)}}

=
∧
m=rp

{Fζ(r) ∨ (Fξ ◦ FR)(p)}

= (Fζ ◦ (Fξ ◦ FR))(m).

Therefore Mξ � (Mζ �MR) = Mζ � (Mξ �MR).
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(ii) Let m ∈M . If m 6= xy for any x, y ∈M , then

((Tξ ◦ Tζ) ◦ (TR ◦ TQ))(m) = 1 = ((TQ ◦ TR) ◦ (Tζ ◦ Tξ))(m).

Suppose m = yz for any y, z ∈M . Then

((Tξ ◦ Tζ) ◦ (TR ◦ TQ))(m) =
∧
m=yz

{(Tξ ◦ Tζ)(y) ∨ (TR ◦ TQ)(z)}

=
∧
m=yz

{
∧
y=pq

{Tξ(p) ∨ Tζ(q)} ∨
∧
z=rs

{TR(r) ∨ TQ(s)}}

=
∧

m=(pq)(rs)

{Tξ(p) ∨ Tζ(q) ∨ TR(r) ∨ TQ(s)}

=
∧

m=(sr)(qp)

{TQ(s) ∨ TR(r) ∨ Tζ(q) ∨ Tξ(p)}

=
∧

m=vw

{
∧
v=sr

{TQ(s) ∨ TR(r)} ∨
∧
w=qp

{Tζ(q) ∨ Tξ(p)}}

=
∧

m=vw

{(TQ ◦ TR)(v) ∨ (Tζ ◦ Tξ)(w)}

= ((TQ ◦ TR) ◦ (Tζ ◦ Tξ))(m),

((Iξ ◦ Iζ) ◦ (IR ◦ IQ))(m) =
∨
m=yz

{(Iξ ◦ Iζ)(y) ∧ (IR ◦ IQ)(z)}

=
∨
m=yz

{
∨
y=pq

{Iξ(p) ∧ Iζ(q)} ∧
∨
z=rs

{IR(r) ∧ IQ(s)}}

=
∨

m=(pq)(rs)

{Iξ(p) ∧ Iζ(q) ∧ IR(r) ∧ IQ(s)}

=
∨

m=(sr)(qp)

{IQ(s) ∧ IR(r) ∧ Iζ(q) ∧ Iξ(p)}

=
∨

m=vw

{
∨
v=sr

{IQ(s) ∧ IR(r)} ∧
∨
w=qp

{Iζ(q) ∧ Iξ(p)}}

=
∨

m=vw

{(IQ ◦ IR)(v) ∧ (Iζ ◦ Iξ)(w)}

= ((IQ ◦ IR) ◦ (Iζ ◦ Iξ))(m),

((Fξ ◦ Fζ) ◦ (FR ◦ FQ))(m) =
∧
m=yz

{(Fξ ◦ Fζ)(y) ∨ (FR ◦ FQ)(z)}

=
∧
m=yz

{
∧
y=pq

{Fξ(p) ∨ Fζ(q)} ∨
∧
z=rs

{FR(r) ∨ FQ(s)}}

=
∧

m=(pq)(rs)

{Fξ(p) ∨ Fζ(q) ∨ FR(r) ∨ FQ(s)}

=
∧

m=(sr)(qp)

{FQ(s) ∨ FR(r) ∨ Fζ(q) ∨ Fξ(p)}

=
∧

m=vw

{
∧
v=sr

{FQ(s) ∨ FR(r)} ∨
∧
w=qp

{Fζ(q) ∨ Fξ(p)}}
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=
∧

m=vw

{(FQ ◦ FR)(v) ∨ (Fζ ◦ Fξ)(w)}

= ((FQ ◦ FR) ◦ (Fζ ◦ Fξ))(m).

Therefore (Mξ �Mζ)� (MR �MQ) = (MQ �MR)� (Mζ �Mξ).

Theorem 3.4. Let Mξ ∈M . Then the listed conditions hold:

(i) Mξ ∈Ms ⇔ Mξ �Mξ ⊆Mξ.

(ii) Mξ ∈Ml ⇔ χM (Mζ)�Mξ ⊆Mξ for any Mζ ∈M .

(iii) Mξ ∈Mr ⇔ Mξ � χM (Mζ) ⊆Mξ for any Mζ ∈M .

(iv) Mξ ∈Mi ⇔ χM (Mζ)�Mξ ⊆Mξ and Mξ � χM (Mζ) ⊆Mξ for any Mζ ∈M .

Proof. (i) Assume Mξ ∈Ms. Now, for any k ∈M ,

(Tξ ◦ Tξ)(k) =
∧

k=k1k2

{Tξ(k1) ∨ Tξ(k2)} ≥
∧

k=k1k2

Tξ(k1k2) = Tξ(k),

(Iξ ◦ Iξ)(k) =
∨

k=k1k2

{Iξ(k1) ∧ Iξ(k2)} ≤
∨

k=k1k2

Iξ(k1k2) = Iξ(k),

(Fξ ◦ Fξ)(k) =
∧

k=k1k2

{Fξ(k1) ∨ Fξ(k2)} ≥
∧

k=k1k2

Fξ(k1k2) = Fξ(k).

So Mξ �Mξ ⊆Mξ.

Conversely, assume Mξ �Mξ ⊆Mξ. Now, for any k1, k2 ∈M ,

Tξ(k1k2) ≤ (Tξ ◦ Tξ)(k1k2) =
∧
k1k2

{Tξ(k1) ∨ Tξ(k2)} ≤ Tξ(k1) ∨ Tξ(k2),

Iξ(k1k2) ≥ (Iξ ◦ Iξ)(k1k2) =
∨
k1k2

{Iξ(k1) ∧ Iξ(k2)} ≥ Iξ(k1) ∧ Iξ(k2),

Fξ(k1k2) ≤ (Fξ ◦ Fξ)(k1k2) =
∧
k1k2

{Fξ(k1) ∨ Fξ(k2)} ≤ Fξ(k1) ∨ Fξ(k2).

So Mξ ∈Ms.

(ii) Assuming Mξ ∈Ml. Now for any Mζ ∈M and k ∈M ,

(χM (T )ζ ◦ Tξ)(k) =
∧

k=k1k2

{χM (T )ζ(k1) ∨ Tξ(k2)}

=
∧

k=k1k2

Tξ(k2)

≥ Tξ(k1k2)

= Tξ(k),
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(χM (I)ζ ◦ Iξ)(k) =
∨

k=k1k2

{χM (I)ζ(k1) ∧ Iξ(k2)}

=
∨

k=k1k2

Iξ(k2)

≤ Iξ(k1k2)

= Iξ(k),

(χM (F )ζ ◦ Fξ)(k) =
∧

k=k1k2

{χM (F )ζ(k1) ∨ Fξ(k2)}

=
∧

k=k1k2

Fξ(k2)

≥ Fξ(k1k2)

= Fξ(k).

Therefore χM (Mζ)�Mξ ⊆Mξ.

Conversely, suppose χM (Mζ)�Mξ ⊆Mξ for any Mζ ∈M . Now for any k1, k2 ∈M ,

Tξ(k1k2) ≤ (χM (T )ζ ◦ Tξ)(k1k2)

=
∧

k=k1k2

{χM (T )ζ(k1) ∨ Tξ(k2)}

≤ χM (T )ζ(k1) ∨ Tξ(k2)

= Tξ(k2),

Iξ(k1k2) ≥ (χM (I)ζ ◦ Iξ)(k1k2)

=
∨

k=k1k2

{χM (T )ζ(k1) ∧ Iξ(k2)}

≥ χM (I)ζ(k1) ∧ Iξ(k2)

= Iξ(k2),

Fξ(k1k2) ≤ (χM (F )ζ ◦ Fξ)(k1k2)

=
∧

k=k1k2

{χM (F )ζ(k1) ∨ Fξ(k2)}

≤ χM (F )ζ(k1) ∨ Fξ(k2)

= Fξ(k2).

Hence Mξ ∈Ml.

The proof of (iii) and (iv) is left to the reader.

Lemma 3.5. (i) If Mξ,Mζ ∈Ms, then Mξ ∩Mζ ∈Ms.

(ii) If Mξ,Mζ ∈Ml, then Mξ ∩Mζ ∈Ml.
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(iii) If Mξ,Mζ ∈Mr, then Mξ ∩Mζ ∈Mr.

(iv) If Mξ,Mζ ∈Mi, then Mξ ∩Mζ ∈Mi.

Proof. (i) Let Mξ and Mζ be two neutrosophic κ-AG-subgroupoids in M . Now for k1, k2 ∈M ,

(Tξ ∩ Tζ)(k1k2) = Tξ(k1k2) ∨ Tζ(k1k2)

≤ (Tξ(k1) ∨ Tξ(k2)) ∨ (Tζ(k1) ∨ Tζ(k2))

= (Tξ(k1) ∨ Tζ(k1)) ∨ (Tξ(k2) ∨ Tζ(k2))

= (Tξ ∩ Tζ)(k1) ∨ (Tξ ∩ Tζ)(k2),

(Iξ ∩ Iζ)(k1k2) = Iξ(k1k2) ∧ Iζ(k1k2)

≥ (Iξ(k1) ∧ Iξ(k2)) ∧ (Iζ(k1) ∧ Iζ(k2))

= (Iξ(k1) ∧ Iζ(k1)) ∧ (Iξ(k2) ∧ Iζ(k2))

= (Iξ ∩ Iζ)(k1) ∧ (Iξ ∩ Iζ)(k2),

(Fξ ∩ Fζ)(k1k2) = Fξ(k1k2) ∨ Fζ(k1k2)

≤ (Fξ(k1) ∨ Fξ(k2)) ∨ (Fζ(k1) ∨ Fζ(k2))

= (Fξ(k1) ∨ Fζ(k1)) ∨ (Fξ(k2) ∨ Fζ(k2))

= (Fξ ∩ Fζ)(k1) ∨ (Fξ ∩ Fζ)(k2).

So Mξ ∩Mζ ∈Ms.

(ii) Let Mξ, Mζ ∈Ml. Now for any k1, k2 ∈M ,

(Tξ ∩ Tζ)(k1k2) = Tξ(k1k2) ∨ Tζ(k1k2) ≤ Tξ(k2) ∨ Tζ(k2) = (Tξ ∩ Tζ)(k2),

(Iξ ∩ Iζ)(k1k2) = Iξ(k1k2) ∧ Iζ(k1k2) ≥ Iξ(k2) ∧ Iζ(k2) = (Iξ ∩ Iζ)(k2),

(Fξ ∩ Fζ)(k1k2) = Fξ(k1k2) ∨ Fζ(k1k2) ≤ Fξ(k2) ∨ Fζ(k2) = (Fξ ∩ Fζ)(k2).

So Mξ ∩Mζ ∈Ml.

The proof of (iii) and (iv) is left to the reader.

Lemma 3.6. If M is having left identity e, then χM (Mζ) = χM (Mζ) � χM (Mζ) for any

Mζ ∈M .

Proof. Let k1 ∈M . Then k1 = ek1. Now,

(χM (T )ζ ◦ χM (T )ζ)(k1) =
∧

k1=x1x2

{χM (T )ζ(x1) ∨ χM (T )ζ(x2)} ≤ χM (T )ζ(e) ∨ χM (T )ζ(k1) = 0

which implies (χM (T )ζ ◦ χM (T )ζ)(k1) = 0 = χM (T )ζ(k1).

(χM (I)ζ ◦ χM (I)ζ)(k1) =
∨

k1=x1x2

{χM (I)ζ(x1) ∧ χM (I)ζ(x2)} ≥ χM (I)ζ(e) ∧ χM (I)ζ(k1) = −1
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which implies (χM (I)ζ ◦ χM (I)ζ)(k1) = −1 = χM (I)ζ(k1).

(χM (F )ζ ◦ χM (F )ζ)(k1) =
∧

k1=x1x2

{χM (F )ζ(x1) ∨ χM (F )ζ(x2)} ≤ χM (F )ζ(e) ∨ χM (F )ζ(k1) = 0

which implies (χM (F )ζ ◦ χM (F )ζ)(k1) = 0 = χM (F )ζ(k1).

Therefore χM (Mζ) = χM (Mζ)� χM (Mζ).

Lemma 3.7. If M has left identity e, then for any Mζ ∈M , we have χM (Mζ)�Mξ = Mξ

for every Mξ ∈Ml.

Proof. Let k1 ∈M . Then k1 = ek1. Now,

(χM (T )ζ ◦ (T )ξ)(k1) =
∧

k1=x1x2

{(χM (T )ζ)(x1) ∨ (T )ξ(x2)} ≤ (χM (T )ζ)(e) ∨ (T )ξ(k1) = (T )ξ(k1),

(χM (I)ζ ◦ (I)ξ)(k1) =
∨

k1=x1x2

{(χM (I)ζ)(x1) ∧ (I)ξ(x2)} ≥ (χM (I)ζ)(e) ∧ (I)ξ(k1) = (I)ξ(k1),

(χM (F )ζ ◦ (F )ξ)(k1) =
∧

k1=x1x2

{(χM (F )ζ)(x1) ∨ (F )ξ(x2)} ≤ (χM (F )ζ)(e) ∨ (F )ξ(k1) = (F )ξ(k1).

So Mξ ⊆ χM (Mζ)�Mξ. By Theorem 3.4, χM (Mζ)�Mξ ⊆Mξ and hence χM (Mζ)�Mξ =

Mξ.

Proposition 3.8. Suppose M is having left identity. If Mξ, Mζ ∈ Ml, then for any

MR ,MQ ∈M , Mξ �MR = Mζ �MQ implies MR �Mξ = MQ �Mζ .

Proof. Since Mξ,Mζ ∈Ml, we have by Lemma 3.7, χM (MS ) �Mξ = Mξ and χM (MU ) �
Mζ = Mζ for MS ,MU ∈M . Now, for any MM ∈M , MR�Mξ = (χM (MM )�MR)�Mξ =

(Mξ �MR)�χM (MM ) = (Mζ �MQ)�χM (MM ) = (χM (MM )�MQ)�Mζ = MQ �Mζ .

Corollary 3.9. For any Mξ,Mζ ,MR ∈M , the listed claims are equivalent:

(i) (Mξ �Mζ)�MR = Mζ � (Mξ �MR),

(ii) (Mξ �Mζ)�MR = Mζ � (MR �Mξ).

Proposition 3.10. Let Mξ ∈Ml. If Mξ ∈Md, then Mξ ∈Mi.

Proof. Let Mξ ∈Ml and Mξ ∈Md. Then for any Mζ ∈M , Mξ � χM (Mζ) = (Mξ �Mξ)�
χM (Mζ) = (χM (Mζ)�Mξ)�Mξ ⊆Mξ �Mξ = Mξ, so Mξ ∈Mi.

Remark 3.11. If M has left identity, then Ml = Mr.
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Theorem 3.12. Suppose M has left identity and Mξ ∈Md. Then the listed claims holds:

(i) χM (Mζ)�Mξ ∈Md for Mζ ∈M ,

(ii) Every Mζ ∈Ml commutes with Mξ.

Proof. (i) It is clear from Corollary 3.2 and Lemma 3.6.

(ii) Let Mξ,Mζ ∈ M . Now, Mξ � Mζ = (Mξ � Mξ) � Mζ = (Mζ � Mξ) � Mξ ⊆
(Mζ �χM (Mξ))�Mξ ⊆Mζ �Mξ. Also, Mζ �Mξ = Mζ � (Mξ�Mξ) = Mξ� (Mζ �Mξ) ⊆
Mξ � (Mζ � χM (Mξ)) ⊆Mξ �Mζ .

Lemma 3.13. If M has left identity and Mξ ∈Mr, then Mξ ∈Mi.

Proof. Let Mξ ∈Mr. Then for Mζ ∈M , Mξ � χM (Mζ) ⊆Mξ. By Lemma 3.6, χM (Mζ) �
Mξ = (χM (Mζ) � χM (Mζ)) �Mξ = (Mξ � χM (Mζ)) � χM (Mζ) ⊆ Mξ � χM (Mζ) ⊆ Mξ.

So Mξ ∈Ml and hence Mξ ∈Mi.

Remark 3.14. Suppose M has left identity. If Mξ ∈ Mr, then Mξ ∪ (χM (Mζ) �Mξ) and

Mξ ∪ (Mξ �Mξ) are neutrosophic κ- ideals for Mζ ∈M .

Theorem 3.15. Suppose Mξ ∈ Ml with left identity. Then Mξ ∪ (Mξ � χM (Mζ)) and

Mξ ∪ (Mξ �Mξ) are neutrosophic κ-ideals for Mζ ∈M .

Proof. Now,

(Mξ ∪ (Mξ � χM (Mζ)))� χM (Mζ) = (Mξ � χM (Mζ)) ∪ ((Mξ � χM (Mζ))� χM (Mζ))

= (Mξ � χM (Mζ)) ∪ ((χM (Mζ)� χM (Mζ))�Mξ)

= (Mξ � χM (Mζ)) ∪ (χM (Mζ)�Mξ)

= (Mξ � χM (Mζ)) ∪Mξ

= Mξ ∪ (Mξ � χM (Mζ)).

Thus Mξ ∪ (Mξ � χM (Mζ)) ∈Mr and hence Mξ ∪ (Mξ � χM (Mζ)) ∈Mi by Lemma 3.13.

Now, for any Mζ ∈M ,

(Mξ ∪ (Mξ �Mξ))� χM (Mζ) = (Mξ � χM (Mζ)) ∪ ((Mξ �Mξ)� χM (Mζ))

= (Mξ � χM (Mζ)) ∪ ((χM (Mζ)�Mξ)�Mξ)

⊆ (Mξ � χM (Mζ)) ∪ (Mξ �Mξ)

= (Mξ �Mξ) ∪ (χM (Mζ)�Mξ)

⊆ (Mξ �Mξ) ∪Mξ

= Mξ ∪ (Mξ �Mξ).

G. Muhiuddin et. al., Neutrosophic κ-structures in an AG-groupoid

Neutrosophic Sets and Systems, Vol. 58, 2023                                                                              291



Thus Mξ ∪ (Mξ �Mξ) ∈Mr and so Mξ ∪ (Mξ �Mξ) ∈Mi by Lemma 3.13.

Theorem 3.16. Suppose φ 6= U ⊆M . Then the below claims are equivalent:

(i) U is bi-ideal,

(ii) For any Mξ ∈M , χU (Mξ) ∈Mb.

Proof. This is similar to Theorem 3.1 in [20].

Lemma 3.17. Let Mξ ∈Ms. Then the listed claims are equivalent:

(i) Mξ ∈Mb,

(ii) (Mξ � χM (Mζ))�Mξ ⊆Mξ for any Mζ ∈M .

Proof. Assume Mξ ∈Mb and let k1 ∈M . Suppose ∃ x1, x2 ∈M 3 k1 = x1x2. Then

(((T )ξ ◦ χM (T )ζ) ◦ (T )ξ)(k1) =
∧

k1=x1x2

{((T )ξ ◦ χM (T )ζ)(x1) ∨ (T )ξ(x2)}

=
∧

k1=x1x2

{
∧

x1=x3x4

{(T )ξ(x3) ∨ χM (T )ζ(x4)} ∨ (T )ξ(x2)}

=
∧

k1=x3x4x2

{((T )ξ(x3) ∨ (−1)) ∨ (T )ξ(x2)}

=
∧

k1=x3x4x2

{(T )ξ(x3) ∨ (T )ξ(x2)}

≥
∧

k1=x3x4x2

(T )ξ(x3x4x2)

= (T )ξ(k1),
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(((I)ξ ◦ χM (I)ζ) ◦ (I)ξ)(k1) =
∨

k1=x1x2

{((I)ξ ◦ χM (I)ζ)(x1) ∧ (I)ξ(x2)}

=
∨

k1=x1x2

{
∨

x1=x3x4

{(I)ξ(x3) ∧ χM (I)ζ(x4)} ∧ (I)ξ(x2)}

=
∨

k1=x3x4x2

{((I)ξ(x3) ∧ 0) ∧ (I)ξ(x2)}

=
∨

k1=x3x4x2

{(I)ξ(x3) ∧ (I)ξ(x2)}

≤
∨

k1=x3x4x2

(I)ξ(x3x4x2)

= (I)ξ(k1),

(((F )ξ ◦ χM (F )ζ) ◦ (F )ξ)(k1) =
∧

k1=x1x2

{((F )ξ ◦ χM (F )ζ)(x1) ∨ (F )ξ(x2)}

=
∧

k1=x1x2

{
∧

x1=x3x4

{(F )ξ(x3) ∨ χM (F )ζ(x4)} ∨ (F )ξ(x2)}

=
∧

k1=x3x4x2

{((F )ξ(x3) ∨ (−1)) ∨ (F )ξ(x2)}

=
∧

k1=x3x4x2

{(F )ξ(x3) ∨ (F )ξ(x2)}

≥
∧

k1=x3x4x2

(F )ξ(x3x4x2)

= (F )ξ(k1).

Suppose there is no x1, x2 ∈M 3 k1 = x1x2. Then

(((T )ξ ◦ χM (T )ζ) ◦ (T )ξ)(k1) = 0 ≥ (T )ξ(k1),

(((I)ξ ◦ χM (I)ζ) ◦ (I)ξ)(k1) = −1 ≤ (I)ξ(k1),

(((F )ξ ◦ χM (F )ζ) ◦ (F )ξ)(k1) = 0 ≥ (F )ξ(k1).

Therefore (Mξ � χM (Mζ))�Mξ ⊆Mξ for any Mζ ∈M .

Conversely, assume (Mξ � χM (Mζ))�Mξ ⊆Mξ for any Mζ ∈M . Let x1, x2 ∈M . Then

(T )ξ(x1x2) ≤ ((T )ξ ◦ (T )ξ)(x1x2) ≤ (T )ξ(x1) ∨ (T )ξ(x2),

(I)ξ(x1x2) ≥ ((I)ξ ◦ (I)ξ)(x1x2) ≥ (I)ξ(x1) ∧ (I)ξ(x2),

(F )ξ(x1x2) ≤ ((F )ξ ◦ (F )ξ)(x1x2) ≤ (F )ξ(x1) ∨ (F )ξ(x2).

So Mξ ∈Ms.

Let x1, x2, x3 ∈M . Then

(T )ξ(x1x2x3) ≤ (((T )ξ ◦ χM (T )ζ) ◦ (T )ξ)(x1x2x3) ≤ ((T )ξ ◦ χM (T )ζ)(x1x2) ∨ (T )ξ(x3) ≤
{(T )ξ(x1) ∨ χM (T )ζ(x2)} ∨ (T )ξ(x3) = (T )ξ(x1) ∨ (T )ξ(x3),

(I)ξ(x1x2x3) ≥ (((I)ξ◦χM (I)ζ)◦(I)ξ)(x1x2x3) ≥ ((I)ξ◦χM (I)ζ)(x1x2)∧(I)ξ(x3) ≥ {(I)ξ(x1)∧
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χM (I)ζ(x2)} ∧ (I)ξ(x3) = (I)ξ(x1) ∧ (I)ξ(x3),

(F )ξ(x1x2x3) ≤ (((F )ξ ◦ χM (F )ζ) ◦ (F )ξ)(x1x2x3) ≤ ((F )ξ ◦ χM (F )ζ)(x1x2) ∨ (F )ξ(x3) ≤
{(F )ξ(x1) ∨ χM (F )ζ(x2)} ∨ (F )ξ(x3) = (F )ξ(x1) ∨ (F )ξ(x3). Therefore Mξ ∈Mb.

Lemma 3.18. Suppose Mξ,Mζ ∈Mr having left identity. Then Mξ �Mζ ∈Mb and Mζ �
Mξ ∈Mb.

Proof. By Corollary 3.2, (Mξ �Mζ)� (Mξ �Mζ) = (Mξ �Mξ)� (Mζ �Mζ) ⊆Mξ �Mζ .

Hence Mξ �Mζ ∈Ms. Now, by Corollary 3.2 and Lemma 3.6, for any MR ∈M ,

((Mξ �Mζ)� χM (MR))� (Mξ �Mζ) = ((Mξ �Mζ)� (χM (MR)� χM (MR)))� (Mξ �Mζ)

= ((Mξ � χM (MR))� (Mζ � χM (MR)))� (Mξ �Mζ)

⊆ (Mξ �Mζ)� (Mξ �Mζ)

⊆Mξ �Mζ .

By Lemma 3.17, Mξ �Mζ ∈Mb. Similarly, Mζ �Mξ ∈Mb.

Lemma 3.19. Let Mξ,Mζ ∈Mb. Then Mξ ∩Mζ ∈Mb.

Proof. Let Mξ,Mζ ∈Mb and k1, k2, a ∈M . Then

(Tξ ∩ Tζ)(k1ak2) = Tξ(k1ak2) ∨ Tζ(k1ak2)

≤ (Tξ(k1) ∨ Tξ(k2)) ∨ (Tζ(k1) ∨ Tζ(k2))

= (Tξ ∩ Tζ)(k1) ∨ (Tξ ∩ Tζ)(k2),

(Iξ ∩ Iζ)(k1ak2) = Iξ(k1ak2) ∧ Iζ(k1ak2)

≥ (Iξ(k1) ∧ Iξ(k2)) ∧ (Iζ(k1) ∧ Iζ(k2))

= (Iξ ∩ Iζ)(k1) ∧ (Iξ ∩ Iζ)(k2),

(Fξ ∩ Fζ)(k1ak2) = Fξ(k1ak2) ∨ Fζ(k1ak2)

≤ (Fξ(k1) ∨ Fξ(k2)) ∨ (Fζ(k1) ∨ Fζ(k2))

= (Fξ ∩ Fζ)(k1) ∨ (Fξ ∩ Fζ)(k2).

Hence Mξ ∩Mζ ∈Mb.

Theorem 3.20. Let Mξ ∈Ms. Then Mξ ∈Mn if and only if (χM (Mζ)�Mξ)�χM (Mζ) ⊆
Mξ for any Mζ ∈M .

Proof. This is similar to Theorem 3.18 in [21].
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Proposition 3.21. If every neutrosophic κ-left ideal is neutrosophic κ-idempotent in M ,

then the following statements hold:

(i) Mξ ∈Mb,

(ii) Mξ ∈Mn.

Proof. (i) Assume Mξ ∈ Ml. Then Mξ �Mξ = Mξ. By Corollary 3.2, for any Mζ ∈ M ,

(Mξ � χM (Mζ))�Mξ = (Mξ � χM (Mζ))� (Mξ �Mξ) = (Mξ �Mξ)� (χM (Mζ)�Mξ) ⊆
Mξ �Mξ = Mξ. Hence Mξ ∈Mb.

(ii) For any Mζ ∈ M , (χM (Mζ) �Mξ) � χM (Mζ) ⊆ Mξ � χM (Mζ) = (Mξ �Mξ) �
χM (Mζ) = (χM (Mζ)�Mξ)�Mξ ⊆Mξ �Mξ = Mξ. Hence Mξ ∈Mn.

Lemma 3.22. Suppose M is having left identity e. Then the listed claims are equivalent:

(i) Mξ ∈Mr,

(ii) Mξ ∈Mn.

Proof. Let r ∈M . Then er = r.

(i)⇒ (ii) Assume Mξ ∈Mr and x1, x2, x3 ∈M . Then

(T )ξ((x1x2)x3) ≤ (T )ξ(x1x2) = (T )ξ((ex1)x2) = (T )ξ((x2x1)e) ≤ (T )ξ(x2x1) ≤ (T )ξ(x2),

(I)ξ((x1x2)x3) ≥ (I)ξ(x1x2) = (I)ξ((ex1)x2) = (I)ξ((x2x1)e) ≥ (I)ξ(x2x1) ≥ (I)ξ(x2),

(F )ξ((x1x2)x3) ≤ (F )ξ(x1x2) = (F )ξ((ex1)x2) = (F )ξ((x2x1)e) ≤ (F )ξ(x2x1) ≤ (F )ξ(x2).

So Mξ ∈Mn.

(ii) ⇒ (i) Let Mξ ∈Mn. For any x1, x3 ∈M , we can have (T )ξ(x1x3) = (T )ξ((ex1)x3) ≤
(T )ξ(x1), (I)ξ(x1x3) = (I)ξ((ex1)x3) ≥ (I)ξ(x1), (F )ξ(x1x3) = (F )ξ((ex1)x3) ≤ (F )ξ(x1). So

Mξ ∈Mr.

Lemma 3.23. Let Mξ ∈Ml such that e ∈M as left identity. If Mξ ∈Mn, then Mξ ∈Mb.

Proof. Since Mξ ∈ Ml, (T )ξ(x1x2) ≤ (T )ξ(x2), (I)ξ(x1x2) ≥ (I)ξ(x2) and (F )ξ(x1x2) ≤
(F )ξ(x2) for any x1, x2 ∈ M . As e ∈ M , ex1 = x1 ∀ x1 ∈ M . Now for any x1, x2 ∈ M ,

(T )ξ(x1x2) = (T )ξ((ex1)x2) ≤ (T )ξ(x1), (I)ξ(x1x2) = (I)ξ((ex1)x2) ≥ (I)ξ(x1), (F )ξ(x1x2) =

(F )ξ((ex1)x2) ≤ (F )ξ(x1) which imply (T )ξ(x1x2) ≤ (T )ξ(x1) ∨ (T )ξ(x2), (I)ξ(x1x2) ≥
(I)ξ(x1) ∧ (I)ξ(x2), (F )ξ(x1x2) ≤ (F )ξ(x1) ∨ (F )ξ(x2). So Mξ ∈Ms.

For any x1, x2, x3 ∈M ,

(T )ξ((x1x2)x3) = (T )ξ((x1(ex2))x3) = (T )ξ((e(x1x2))x3) ≤ (T )ξ(x1x2) = (T )ξ((ex1)x2) ≤ (T )ξ(x1),

(I)ξ((x1x2)x3) = (I)ξ((x1(ex2))x3) = (I)ξ((e(x1x2))x3) ≥ (I)ξ(x1x2) = (I)ξ((ex1)x2) ≥ (I)ξ(x1),

(F )ξ((x1x2)x3) = (F )ξ((x1(ex2))x3) = (F )ξ((e(x1x2))x3) ≤ (F )ξ(x1x2) = (F )ξ((ex1)x2) ≤ (F )ξ(x1).
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Also, (T )ξ((x1x2)x3) = (T )ξ((x3x2)x1) = (T )ξ((x3(ex2))x1) = (T )ξ((e(x3x2))x1) ≤
(T )ξ(x3x2) = (T )ξ((ex3)x2) ≤ (T )ξ(x3). Hence (T )ξ((x1x2)x3) ≤ (T )ξ(x1) ∨ (T )ξ(x3). Now,

(I)ξ((x1x2)x3) = (I)ξ((x3x2)x1) = (I)ξ((x3(ex2))x1) = (I)ξ((e(x3x2))x1) ≥ (I)ξ(x3x2) =

(I)ξ((ex3)x2) ≥ (I)ξ(x3). Hence (I)ξ((x1x2)x3) ≥ (I)ξ(x1) ∧ (I)ξ(x3). Now, (F )ξ((x1x2)x3) =

(F )ξ((x3x2)x1) = (F )ξ((x3(ex2))x1) = (F )ξ((e(x3x2))x1) ≤ (F )ξ(x3x2) = (F )ξ((ex3)x2) ≤
(F )ξ(x3). Hence (F )ξ((x1x2)x3) ≤ (F )ξ(x1) ∨ (F )ξ(x3). Therefore Mξ ∈Mb.

Proposition 3.24. Let e ∈ M be left identity. If Mξ ∈ Ml (resp., Mξ ∈ Mr, Mξ ∈ Mi),

then Mξ �Mξ ∈Mi.

Proof. Since Mξ ∈ Ml, then for Mζ ∈ M , by Theorem 3.4, χM (Mζ) � Mξ ⊆ Mξ. By

Lemma 3.6 and Corollary 3.2, χM (Mζ)� (Mξ�Mξ) = (χM (Mζ)�χM (Mζ))� (Mξ�Mξ) =

(χM (Mζ)�Mξ)�(χM (Mζ)�Mξ) ⊆Mξ�Mξ. Also by Theorem 3.1, (Mξ�Mξ)�χM (Mζ) =

(χM (Mζ)�Mξ)�Mξ ⊆Mξ �Mξ. Thus Mξ �Mξ ∈Mi.

Corollary 3.25. Let Mξ ∈ M has left identity. If Mξ ∈ Ml, then Mξ �Mξ ∈ Mb and

Mξ �Mξ ∈Mn.

Proof. By Proposition 3.24, Mξ �Mξ ∈Mi. Now by Lemmas 3.22 and 3.23, Mξ �Mξ ∈Mb

and Mξ �Mξ ∈Mn.

Theorem 3.26. If Mξ ∈Mi, then Mξ ∈Mb and Mξ ∈Mn.

Proof. Let Mξ ∈ Mi. Then Mξ is neutrosophic κ-AG-subgroupoid since Mξ � Mξ ⊆
χM (Mζ) � Mξ ⊆ Mξ. Now, (χM (Mζ) � Mξ) � χM (Mζ) ⊆ Mξ � χM (Mζ) ⊆ Mξ and

(Mξ � χM (Mζ))�Mξ ⊆Mξ �Mξ ⊆Mξ which imply Mξ ∈Mb and Mξ ∈Mn.

4. Conclusion

We presented the ideas of neutrosophic κ-ideal structures in an AG-groupoid and proved

that the product of two neutrosophic κ-right-ideal is a neutrosophic κ-bi-ideal, and neutro-

sophic κ-right-ideal is equivalent to neutrosophic κ-interior-ideal, under certain condition. In

future, we will define neutrosophic κ-structures over an ordered AG-groupoid and investigate

the features of an ordered AG-groupoid using the results in an AG-groupoid.
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