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Abstract. In present paper, we aim to define A-statistical convergence, A-statistical Cauchy and A-statistical
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1. Introduction

For any non-decreasing sequence A = (\,) of positive reals with A, — oo, A\41 <
An + 1, A1 = 1, the notion of the A-statistical convergence was explored by Mursaleen [17]
as a generalization of statistical convergence that was initially introduced by Fast [9] and
Schoenberg [10] independently.

If we denote I, = [n — A, + 1,n], then the A-density of any subset K of N is defined as
follows.

“For K C N, the A-density of K is denoted by 0)(K) and is defined by
1
WK) = lim)\—|{k €l,:keK}

provided the limit exists, where the vertical bars denote the cardinality of the enclosed set.

A sequence x = (z}) is said to be A-statistical convergent to xg if for each € > 0,
o1
lim—{k € I, : |z — zo| > €}| =0,
W

ie., 0y\(K.) =0, where K. = {k € I, : |z, — xo| > €}. We write, in this case S) — limzy, = x¢.”
n

Subsequently, statistical convergence and its generalizations have been developed by numerous
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authors including Hazarika et al.[5], Maddox[11], Fridy[12], Connor[13], Sal&t[28], Kumar et
al.[32] and many others.

On the other side, many problems of the real world are so complicated due to the uncertainty
of data. Therefore, it is very difficult to model these problems mathematically via crisp
set theory. So far we have many approaches including, the theory of probability, theory of
rough sets[35], theory of fuzzy sets[16], theory of intuitionistic fuzzy sets[15], and theory of
neutrosophic sets[7,8] to deal with such situations. In the present study, we are interested in
the latter one i.e., the neutrosophic sets, which were initially introduced by Smarandache[7,8]
as a generalization of fuzzy sets and intuitionistic fuzzy sets. He used the idea of indeterminacy
function along with membership and non-membership functions to define a neutrosophic set.
These sets have been further developed by numerous authors in [1], [14], [21], [22], [23], etc.

Kiriggi and Simsek[18] used neutrosophic logic to define a new kind of norm, called neutro-
sophic norm and studied statistical convergence in neutrosophic normed linear spaces. Their
pioneer work attracted many researchers to work in this direction and nowadays many in-
teresting methods of summability theory have been extended in neutrosophic normed linear
spaces. For a wide view in this direction, we refer to the reader [2], [3], [31].

Many approaches discussed above to minimize the uncertainty have their own drawbacks
due to the inadequacy of the parametrization. In view of this, Molodtsov[6] proposed a new
approach, called soft set theory to reduce the uncertainty during mathematical modelling.
These sets turn out very useful tools in many areas of engineering and medical sciences. For
instance: Maji et al.[20] applied the theory of soft sets in decision-making problems. Kong
et al.[36] presented a heuristic algorithm of normal parameter reduction of soft sets. Zou
and Xiao[33] presented a data analysis approach of soft sets under incomplete information.
Recently, Yuksel et al.[24] applied soft set theory to diagnose the prostate cancer risk in
human beings whereas Celik and Yamak|[34] applied fuzzy soft set theory for medical diagnosis
using fuzzy arithmetic operations. Shabir and Naz[19] used soft sets to define soft topological
spaces and studied some of their properties. However, Das et al.[25] defined soft normed
linear spaces and investigated some of their properties. Recently, Bera and Mahapatra [29]
united the concepts of softness and neutrosophic logic to define a generalized norm and called
it as neutrosophic soft norm. They also studied some properties of NSNLS and developed
fundamental concepts of sequences in these spaces. In present study, we continue to define a
more generalized convergence which we called Sy-convergence in NSNLS. We also introduce

the concepts of Sy-Cauchy sequence, Sy-completeness and develop some of their properties.
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2. Preliminaries

This section starts with a brief information on soft sets, soft vector spaces and neutrosophic
soft normed spaces. We begin with the following notations and definitions.

Throughout this work, N will denote the set of positive integers, R the set of reals and R™
the set of positive real numbers.
Definition 2.1 [4] A binary operation o : [0,1] x [0,1] — [0,1] is continuous ¢-norm if o
satisfies the following conditions:
(i)roy=yoxandxzo(yoz)=(zoy)o-z.
(ii) o is continuous.
(iii) zol=1oxz =z for all x € [0,1].
(iv) wozx <yozifw<y,z <z with w,z,y,z € [0,1].
Definition 2.2 [4] A binary operation ¢ : [0, 1] x [0, 1] — [0, 1] is continuous t-conorm(s-norm)
if ¢ satisfies the following conditions:
(i)zoy=yozandxzo(yoz)=(xoy)oz.

(ii) ¢ is continuous.
(i) x0o0 =00z =z for all z € [0,1].
(iv)wox <yozifw<y,x <z withw,z,y,2z €0, 1].

For any universe set U and the set E of the parameters, the soft set is defined as follows:
Definition 2.3 [6] A pair (H, E) is called a soft set over U if and only if H is a mapping from
FE into the set of all subsets of the set U. i.e., the soft set is a parametrized family of subsets
of the set U.

Moreover, every set H(e),e € E, from this family may be considered as the set of e-elements
of the soft set (H, E), or as the set of e-approximate elements of the set.

Definition 2.4 [6] A soft set (H, E) over U is said to be absolute soft set if for all € € E,
H(e) = U. We will denote it by U.

Definition 2.5 [26] Let R be the set of real numbers, B(R) be the collection of all non-empty
bounded subsets of R and F taken as a set of parameters. Then a mapping F : E — B(R) is
called a soft real set. If a soft real set is a singleton soft set, then it is called a soft real number
and denoted by 7,s, ;, ete. B,I are the soft real numbers where ( (e) = O,T (e) =1 for all
e € E respectively.

Let R(E) and RT(E) respectively denote the sets of all soft real numbers and all positive
soft real numbers.

Definition 2.6 [27] Let (H, E) be a soft set over U. The set (H, E) is said to be a soft point,
denoted by HY if there is exactly one e € F s.t H(e) = {u} for some u € U and H(e') = ¢ for
alle' € E — {e}.
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Two soft points H, H;‘,’ are said to be equal if e = ¢ and u = w. Let A(; denotes the set of

all soft points on ﬁ

In case U is a vector space over R and the parameter set £ = R, the soft point is called a
soft vector.

Soft vector spaces are used to define soft norm as follows:
Definition 2.7 [30] Let U be a absolute soft vector space. Then a mapping || - || U RT(E)
is said to be a soft norm on U/, if || - || satisfies the following conditions:
(i) [Juell = 0 for all u, € U and llue|| = 0 < u :50 where 50 denotes the zero element of {/.
(i) || @ el = |@|||ue| for all u € U and for every soft scalar a.
(i) [Jue + vy || < [Juell + oy | for all ue, vy € U.
() e - 01 = el o Y ey € O )
The soft vector space U with a soft norm || - || on U is said to be a soft normed linear space
and is denoted by (ﬁ, 1.

We now recall the definition of neutrosophic soft normed linear spaces and the convergence
structure in these spaces.

Definition 2.8 [29] Let U be a soft linear space over the field F' and R(E), Aﬁ denote respec-

tively, the set of all soft real numbers and the set of all soft points on [} . Then a neutrosophic
subset N over A~ x R(FE) is called a neutrosophic soft norm on U if for Ue, Uy € Uanda e F
a being soft scalar) the following conditions hold.

1) 0 < Gn(te,m), BN(te,m), Yn (ue,m1) < 1,V 11 € R(E).

ii) 0 < G (ue, M) + By (ue,m) + Yn(ue,m) < 3,V € R(E).

iil) Gy (ue,m) = 0 with 7 < 0.

iv) Gn(te,m) = 1, with 7, > 0 if and only if u, = 5, the null soft vector.

) Gn @ i) = G (e ) Y8 (0,7 > 5,

Vl) GN(U&T%) OGN(Ue’aﬁé) < GN(Ue @Ue’aan D %)7\77717772 € R(E)

vii) Gy (ue, ) is continuous non-decreasing function for 7; > 0and lim G ~N(te,m) = 1.
771 —00

(a
(
(
(
(
(
(
(

viii) BN(ue,m) =1 with m < 0
ix) By (ue, 171) =0, with m; > 0 if and only if u, = 5, the null soft vector.

(
(i
(x) Bx(& te. 1) = By (e m) Ve (£0), 5 > 0.
(
(

xi) By (te,m) © By (v, 1m2) > By (ue ® vy, m & 12) V1,72 € R(E).

xii) By (e, -) is continuous non-increasing function for 7; > 0 and lim By (ue,n1) = 0.
7N1—00

(xifi) Yiv(ue,m1) = 0 with 7, < 0 .
(xiv) Y (te, 1) = 0, with 5y > 0 if and only if v, = 5 the null soft vector.
(xv) Yn (@ ue,m) = Y (ue, |E> Vo (750) m > 0.
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(XVi) YN(uevﬁi)OYN(veUﬁé) > YN(ue @Ue’ﬂ?Nl D ﬁé) vﬁ/laﬁé € R(E)

(xvii) Yy (ue,-) is continuous non-increasing function for 7; > 0 and lim By (ue,n1) = 0.
771—00

~

In this case N = (Gn,Bn,Yy) is called the neutrosophic soft norm and (U
(F),Gn,Bn,Yn,o0,0) is an neutrosophic soft normed linear space (NSNLS briefly).
Let ([7, | - ||) be a soft normed space. Take the operations o and ¢ as x oy = zy; zoy =

x4+ 1y — xy. For n> 5, define
w0 > e
Gy (ue, M) = { MHluell
0 otherwise

el it >
By (e, ) = { Tluel

0 otherwise

[[uell

~ el if 5 > ”UeH
YN(U@, n) = 1
0 otherwise,

then ([7 (F),Gn,Bn,Yn,0,0¢) is an NSNLS. From now onwards, unless otherwise stated by
V we shall denote the NSNLS (5’ (F), GN,BN,YN,O,O)
A sequence v = (vek) of soft points in V is said to be convergent to a soft point v, € V if for

O<e<1and77>03n06NstGN(v @ve,ﬁ) >1—c¢, BN(’U @ve,ﬂ)<e YN(U @ve,n

k

) < €. In this case, we write lim v,

= v.. A sequence v = (vF) of soft points in Vs
k—ro00 k

said to be Cauchy sequence if for 0 < ¢ < 1 and n > 5 dng € N s.it for all k,p > nyg
GN(U @vep,ﬁ)>1—e, By (vF 61}613, )<e Y (vF @vep, )<6
Throughout this paper, ® and © denote the sum and difference of soft points respectively.

3. A-Statistical convergence in NSNLS

In this section, we define A-statistical convergence in neutrosophic soft normed linear spaces
and develop some of its properties.
Definition 3.1 A sequence v = (vlgk) of soft points in V is said to be \-statistical convergent
or S)-convergent to a soft point v, in 17 if for cach ¢ > 0 and 7 > 6,

1
lim —
n—oo n

{ke[n:GN(vfk@ve,%) <l-—€or

BN( ek@vt% )>€YN( @Ueaﬁ)ze}‘zoa
ie., 0x(K) =0 where
K:{kEIn:GN( O Ve, )<1—eor

By (vE ©ve,0) > 6, Yiv(vF & ve, 1) > ¢},
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In this case, we write Sy — hm vk = Ve.
k—o00

Let, S\(Gn,Bn,Yn) denotes the set of all sequences of soft points in 17 which are S)-
convergent with respect to the neutrosophic soft norm (Gy, By, Yn).

Remark 3.1 Since the A- density of a finite set is zero, therefore, a convergent sequence
v = (vek) of soft points in V is S)-statistical convergent to the same limit. However, the
converse may not be true in general.

Remark 3.2 For particular choice A\, = n, Sy-convergence coincides with statistical conver-
gence in neutrosophic soft normed linear space.

Exapmle 3.1 Let (R, || - ||) be a soft normed linear space. For v in R and 7 > 0, if we define

~

GN(v€7n) - < BN('U€777) = A.‘HieH’ YN(,Ue7 77) — H 6”

N || ve | N || ve| n

)

xoy=uzy and oy = min{x + y, 1}, then it is easy to see that ﬁ = (]INR, Gn,Bn,YN,0,0) is
a neutrosophic soft normed linear space.

Now define a sequence v = (vfk) in 7 by

i koifn— [V +1<k<n,
a otherwise.

Now, for each € > 0 and N> 6, let

~

A(e,n) = {ke[ GN(ek,N)Sl—eorBN(vf )>6YN(6k,ﬁ)ZE}

:{kEIn L<1—eor HU | > e HU H }

n @k, | n ek | 0

:{ke[ W}H>f“ mHvH>ﬂe}
— €

{ke[ —k:}
:{ke]n:n—[\/mﬂgkgn}

and so we get

1 ~ 1
)\—|A(e,77)| = /\—|{k elp:n—[VA\]+1<k<n} <

Taking n — oo,

Tim SE[A(e, )] < lim 2 =0, ie., 53(A(e, 7)) = 0.

This shows that, v = (vek) is A-statistically convergent to (0. But by the structure of the
sequence, v = (vfk) is not (G, By, Yy )-convergent to 0.

Lemma 3.1 For any sequence v = (vfk) of soft points in 17, the following statements are
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equivalent:

(i) Sy — kllrgovfk = Ve;

(ii) 6x{k € I, : Gn(vE Cve, M) <1 — €} = 63{k € I, : By(vh Sve, ) > ¢} = 6y{k € I,
YN( O Ve, )>e}—0

(iii) 6,\{k €1I: Gn(k S, ) >1— ¢ and By(vF, @ve,ﬁ) <& Yn(E o, ) <ep=1;
(iv)ox{k € I : Gn(vE 9@6,77) >1—¢€} = 0\f{k € I, : By(vE o, ) <et=0{kel,
Y (vE O, M) <€} =1;

(v) SA— hm GN(U S, ) =1and S,\— hm BN(U S, ) =0, SA—kli_{IoloY]\z(vfk@v67 ﬁ) =0.
Proof. Omltted O

Theorem 3.2 For any sequence v = (vfk) in 17, if Sy — klirgo vk exists, then it is unique.
Proof. Suppose that Sy — T}Ln;ovgk = Ve, and Sy — Jgnolové?k = v, where v,, # v . Lete>0

e’

and 5 > a Choose €1 > 0 s.t.
(1—€)o(l—€1)>1—e€and Qe <e (1)

Define the following sets:

AGN,1(61,%)={ el, GN<U @U61>><1_61}-
AGNQ(Q7 ) {kEI GN<’U @’062,* Sl—el}.

" n
ABNl(ely ) kel, ek@vel,§ > €1 .

A ?7 >

By,2 61, kel,: By k@’l)62,§ = €1 p-

" n
1416\]7 617 k € In YN /Uek © /U617 5 Z €1 ¢-

n
Ay, o 61, { <v @v62,2> 261}.

Since Sy — hm vk = Ve, , SO
*)OO

5/\{AGN 1(61, )} = 5)\{ABN 1(61, )} = 5A{AYN (61, )} =0 and therefore 5)\{AGN 1(61, 77)} =
5/\{ABN (€1, )} = 5/\{AYN,1(€1a )} =1

SO

Further, S, — lim v’“ = U;Q,

In{Acy 2(€1, )} = 0x{ABy 2(€1, )} = 0\ {Ayy 2 (61, )} = 0 and therefore 5>\{AG 2(61, 77)} =
OAG o(e1, M} = 6\ {AF (€1, M)} =1 for all 7 > 0. Define

KGNvBNaYN (67 %) = {AGN:1(617 ﬁ) U AGN,2(€1> %)}
N{Apy 1(€1, 5) U Agy 2(e1, ﬁ)} N{Ay, 1(€1, m)u Ay, 2(e1, 77)}7
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then 5/\{KGN7BN7YN(€7;V])} = 0 and therefore, 5>\{K8N,BN,YN(67E)} = 1. Let m €

K g}\“ Bn Y (e, ﬁ), then we have following possibilities.

C

1.me {AGN’l(El,ﬁ)UAGN,Q(El,;J])} ;
-~ V¢

2.mée {ABN71(€1,77)UABN72(€1,77)} ;
-~ _1¢

3. me {AYN,I(GM n) U AYN’Q(El, 77)} .

C
Case 1: Let m € {AGN,1(€17 NUAGy 2(€1, 77)} , then m € Agml(q, n) and m € Ag,\,,z(eh n)

and therefore,

~ ~

GN<U2; @vel,;7> >1—¢€ and GN<v;’jn@U;2,Z) >1—€. (2)

Now

oo ;oo
GN('Uel@U62,77):GN<U61@’L)82,2EB2)

N
:GN<UQ;®1);';EBU@1@U€2,2®2>
m i o
> GN vem@vel,g oGy Uem@Uez’§
> (1 — 61) @) (1 — 61) by (2)
>1—e by (1)

/

Since € > 0 is arbitrary, so we have G y(ve, ©v ﬁ) = 1forall 1 > 6, which gives v, @’U;Q = 5,

€2’
. ’
1.€., Ve, = Uez‘

~

C
Case 2: Let m € {ABNJ(Q, NMUAB, 2(€1, 77)} , then m € Ag}\“l(q, n)) and m € Ag]\,,z(eh n)

and therefore,

BN<vgfn@vel,Z> <€ and BN<vgjn @v;2,727> < €. (3)

Now

;o ,on o
BN(vel O Ueys 77) =By (vel O Ve, 5 © 2)

,on o

:BN<vg7n@vg:’n€Bveleve2,2€B2)

- n o

< Bn Uem@veug o By vem@v62,§
< €10€] by (3)
< €. by (1)
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/

Since € > 0 is arbitrary, so we have By (ve, ©v,,, 7A7J) = 0forall7 > 0, which gives ve, @vlez = 5,

. /
Le., Uy = Ug,.

C
Case 3: Let m € {AYN,l(el, n) U Ay, 2(€1, 77)} , then m € AgN’l(el, n) and m € A)C,Mz(el7 n)

and therefore,

YN <v2;‘n O Vey, ;7) <€ and Yy (vgjn &) U/e2, 127> < €1. (4)

Now

~ ~

o ,on o
YN('Uel o U@Q’ 77) = YN (Uel o v627 =D )

2 2
;om0
:YN<0$@U$1@061@U€2,2@2)
m E m ! 5
<Yy v6m6v61,§ oYy v6m6U62,§
<€ 0€ by (4)
<e. by (1)

’

Since € > 0 is arbitrary, so we have Yy (ve, Sv ﬁ) =0forall >0 , which gives v, 91);2 = 5,

’

e’
l.e., Uel - veg'
l

Hence, in all cases we have ve, = v,,, i.e., the A-statistical limit of (vfk) is unique.[]

Theorem 3.3 Let u = (ulgk) and v = (vfk) be any two sequences in Vst Sy — klim (ulgk) = Ue,
—00
and Sy — lim (vf) = ve,. Then
k—ro0
(I)S)\ — lim
k—o0

(i) Sy — klim (o uk ) = & ue,, where 0 £ackF
—00

(ulék S ng) = uel ¥ UGQ
ek
Proof. Omitted.(]
k

Theorem 3.4 A sequence v = (v,
K = {k‘l, k‘z,k‘g,, } of N s.t 5)\(K) =1 and (GN,BN,YN) — Ilir%’usk = Ve.
€

k—oo

) in ‘7 is A-statistically convergent, if and only if 9 a subset

Proof. First suppose that Sy — klim véfk = V.. For 5 > 6 and p € N, define the set
— 00

n ~ 1
KGN7BN’YN(p’T])_{keIn:GN(U]gk@vevn)>1—pand
k - 1 k ~ 1
By (vg, ©ve, M) < E,YN(U% O v, 1) < . and
K&y py vy (P:1) = {k‘ € I, : Gn(vh, Sve,m) <1 5 Or

BN(UéCk S} Ve, ,ﬁ) 2

Vijay Kumar, Inayat Rasool Ganaie and Archana Sharma, Sy-statistical convergence in
neutrosophic soft normed linear spaces



Neutrosophic Sets and Systems, Vol. 58, 2023 5@

Since Sy — lim v = e, it follows that 5,\(KGN By (D> 1 )) = 0. Furthermore, for 7> 0 and

k—o0

p € N, we observe K¢ By,vy (D ) D KayByyy(@+1 77) and

~

5>\(KGN,BN,YN(p7 77)) =1 (5>
Now, we have to show that, for k € Kq By, vy (0,1 ) (Gn,Bn,Yn) — hr%v = Ve. Suppose
ke
k—o0

for k € Kgy By, va (D 5), (vi?k) is not convergent to ve w.r.t (Gy, By, Yn). Then 3 some g > 0
s.t {k € N: Gy (vE © v, ﬁ) <1-—gqor By(vt & ve,ﬁ) >q, Yn(vk © ve,ﬁ) > ¢} for infinitely

many terms of the sequence v = (Ufk) If we take

KGN’BN,YN((L ) {kEI GN(U O Ve, ) 1—qand
Bn ( O Ve, )<anN( O Ve, 1 )<q}

and choose ¢ > % where p € N, then we have (5>\(KGN,BN,YN(q,,77)) = 0. Further,
Kay By vy (D, ) C Kay,Byvn (4, 77) implies that 0x(Kqy, By, vy (P, 1)) = 0. In this way we ob-

tained a contradiction to (5) as 0\ (Kay By, vy (D 5)) = 1. Hence, (Gy, By, YN)—llinll(vfk = Ve.
€

k— o0
Conversely, Suppose 3 a subset K = {k1, ko, ..., kj, ...} of Nwith §)\(K) =1 and (Gn, BN, Yn)—
lim Uk = v, over K i.e., (Gny,Bn,YN) — limvfk = V.. Let € > 0 and 77 > 5, Jkj, € Nsit
k—o00 keK

k—oo
for all k; > kj,, GN(v © Ve, ) >1—e€and BN(v @ve,??) < e,YN(vé?k @ve,ﬁ) < e. So if we

consider the set
TGy, By, Y (€ ﬁ) = {k el,: GN(véfk O Ve, ?7) <l-—cor

BN(”?;Q 6 'Ue,/ﬁ) Z €,YN(/U§}€ 9 ’U€7:'7) Z 6}7
then it is easy to see that T By, vy (€ %) C N—{kjy, kjo+1, kjo+2, ... }. This immediately implies
that x| Tay.By. v (€ %) < 0A(N) — 6\({kjo» kjo+1, Kjo42,-.}) = 1 —1 = 0 and therefore
O <TGN’BN7YN(6, 5)) = 0 as 0y <TGN7BN’YN(€, ﬁ)) can not be negative. This shows that

v=(v é?k) is A-statistical convergent to v, i.e., Sy — lim vk = v.0
n—oo

4. X-Statistical Cauchy sequence in NSNLS

Definition 4.1 A sequence v = (vé“k) of soft points in & is said to be A-statistically Cauchy if
for each ¢ > 0 and 5 > 5, dng € Ns.tfor all k,p > ng
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{ke[n:GN(v 6vp,77)§1—eor

n—oo n
Bk, ©08,) 2 e Yok, 00t ) 2 e} | <o
or equivalently, the A-density of the set K is zero, i.e., d)\(K) = 0 where

K:{kEIn:GN(vfk@vgp,ﬁ)Sl—eor

By(vE ©uf ) > e, Yn(vF &b 1) > €.

Theorem 4.1 For any sequence v = (vfk) in 17, the following are equivalent:

(i) v = (v}) is A-statistically Cauchy.

(ii) 3 a subset K = {k1, ks, ..., kj,...} of N with 6,(K) =1 and (vek ) is Cauchy sequence over
K.

Proof. Omitted.]

Theorem 4.2 Every A-statistically convergent sequence of soft points in 17 is A-statistically
Cauchy.

Proof. Let v = (v¥ ) be any A-statistically convergent sequence with Sy — khm vk = Ve. Let
—00

e>0and 7 > 0. Choose ¢ > 0 s.t (1) is satisfied. Define a set,

)<1—¢€ or

N |32

M(El,ﬁ) = {k el,: G]\r(’l)slC O Ve,

|32
3

BN(Ufk O Ve, =) > fl,YN(Ufk O Ve, 5) > 61},

then

~

MC’(el,n) = {k: el,: GN(Ufk @ve,g) >1—¢€; and

n n
BN(UI;C O Ve, 5) < 61,YN(v§k O Ve, 5) < 61}.

Since Sy — lim vk = Ve, 80 Ox(M(€1,M N)) =0 and 0x\(MC (e, 7 )) =1.Let pe M%(e1,m ), then

n—oo

n n n
Gn <v£p O Ve, Z) >1—¢€ and BN(vé’p O Ve, 2) <€1,YN (v’e’p O Ve, 2) < €. (6)

Now, let T'(e, 5)2{]{:6[ : Gy (vF @ng,ﬁ)<1—eor By (v¥ OV, )>6YN( @vgp,a
) > €}, then we show that T'(, 77) C M (e, ) Let m € T'(e, 77) then
Gn(vg, ©0¢, )<1—60rBN( @vg,n)>eYN( @vg,n)ze. (7)
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Case 1: If Gy (v @vep, ) < 1—¢, then GN< " O, N) < 1—¢; and therefore m € M€, ).

~

As otherwise i.e., if GN< S Ve, 2) > 1 — €1, then by (1), (6) and (7) we get

n o
l—e>GnO] 905, ):GN( O Ve B veevep2@2>

1 U
> Gn (Ug; © Ve, 2> oGy <ng © Ve, 2)

>(l—e€)o(l—€)>1—c¢,

which is not possible. Thus, T'(e, ﬁ) C M(eq, E)
Case 2: If By(v]) © ve ,77) > ¢, then By <v;’fn O Ve, g) > €1 and therefore m € M (e, 77) As

~

otherwise i.e., if BN< O Ve, 2> < €1, then by (1), (6) and (7) we get

~

e < By (vl @Ug, ):BN< S v, B Ue@vep 2@ >

~

< By (Ugfn O Ve, ;’) © By (ng © Ve, Z)

<e€10€ <e¢,

which is not possible.

Also, If Yn (v © vep, ) > ¢, then YN< @ve,§> > ¢; and therefore m € M(e1, 7). As

~

otherwise i.e., if YN< O Ve, 2> < €1, then by (1), (6) and (7) we get

~

e <Yn(ve, ©vE N):YN<vZ}n Ove ® Ve OV, g@ 2)

n n
<Yn (v:;; S Ve, 2) oYN (vé’p S Ve, 2)
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which is not possible. Thus, T'(e, ) C M(e1, 7).
Hence in all cases, T'(, 77) C M(eq, ) Since 6y (M (e, )) =0, so 0\(T (e, )) = 0, and there-
fore v = (vek) is A-statistically Cauchy.[]

Example 4.1 Let By = {1 :n e N} and || - || = || i.e., the usual norm on R, then (Ry,|-|) is
a normed linear space. For N> 0 if we define GN(ve,;f) = = 0 : BN(ve,ﬁ) = M,

N N6|vell n|vel
Yn(ve,N) = ”UfH; roy = xzy and x oy = x + y — zy, then it is easy to see that

7
(R1 (R), Gn, Bn,Yn,o0,0¢) is a neutrosophic soft normed linear space.

k

If we define a sequence of soft points v = (vfk) by vi?k =7 and select A, = n then (ve,

) is
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A-statistical Cauchy and Sy — klim vfk =0 but 0 is not a member of the space.
— 00

Theorem 4.3 If (vifk) , (wF ) are A-statistical Cauchy sequences of soft vectors and (ay) is

ex
k k

o c,) are also

a A-statistical Cauchy sequence of soft scalars in {7, then (vfk @ wk ) and (apw
A-statistical Cauchy in 17

Proof. Omitted.[]

Definition 4.2 A NSNLS 17 is said to be A-statistically complete if every A-statistical Cauchy
sequence in V is A-statistical convergent w.r.t (Gn, By, Yn).

Theorem 4.4 If every A-statistical Cauchy sequence of soft points in 17 has a A-statistical
convergent subsequence then 17 is A-statistically complete.

Proof. Let v = (fué?k) be any A-statistically Cauchy sequence of soft points in V which has a

k(5) k(4)

A-statistical convergent subsequence (Uek(j)) Le., Sy — limve, ;) = v, for some v in V. Let
J]—00 N

¢>0and 7 > 0. Choose ¢ > 0 s.t (1) is satisfied. Since v = (vfk) is A-statistically Cauchy,
so dng € Ns.it V k,p>ng, 0x(A) =0 where

A:{ke[n:GN<v§k@v§p,Z> <1-—¢ or

n n
By (’Ulgk @ng, 2) > €1, YN (Ufk @ng, 2> > 61}.

Again since S) — lim UEIEQ) = ve. So we have 0)(B) = 0, where
J—00

S : k(j "
B = {k(]) €l,:Gn <”e,§fj~)) O Ve, 2> <1—¢ or

~ ~

; n ; n
By <U§,£{j)) O Ve, 2) > €1, YN (vfg% O Ve, 2) > 61}.
Now define

D:{kEIn:GN(vka’Ue,ﬁ)Sl—eor

BN(Ufk o ve,ﬁ) > e,YN(vfk O Ve, ?7) > €}

We now show that A® N B¢ C D¢, Let m € AN BY. As m € A%, so

"
GN(vgfn o vé’p,2> >1—¢ and

U 1
BN<U2; ) vgp, 2> <e€1,YN <vgjn O ng, 2) < €1,
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and since m € B¢, so m = k(jo) for jo € N and

GN <vk(j90) o ve,127> >1—¢€; and
N o 9)

; n ; n
Bn <U§]§?§3) O Ve, 2> <e€,YN <U§’£{J(')o)) O Ve, 2) < €.

Now
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< YN( em @ vek‘(yj(')o)v 2> OYN <vek‘(7](')0) @ Ue’ 2>
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<, by (1), (8) and (9)

which implies that m € D, so A“NBY C DY or D C AUB. Therefore, §y(D) < 6,(AUB) =
0. This shows that v = (vF ) is A-statistically convergent and therefore, 17 is A-statistically

€k

complete.[]
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