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Abstract: This study introduces a novel method for addressing the pentagonal quadratic fractional 

programming problem (PQFPP). We employ pentagonal neutrosophic numbers for the objective function's cost, 

resources, and technological coefficients. The paper transforms the PQFPP into a standard quadratic fractional 

programming (QFP) problem via the score function. By leveraging the Taylor series approach, the modified 

QFP is simplified to a single-objective linear programming (LP) task, amenable to resolution through 

conventional LP algorithms or software tools. A numerical example serves to demonstrate the efficacy of the 

suggested approach. Moreover, comparative analyses and benefits reveal that the newly developed techniques 

outperform existing solutions in current scholarly works. 

Keywords: Quadratic fractional programming; Score function; Taylor series; Linear programming; 

Decision making; Optimal solution. 

 

 

 

1. Introduction 

The issue of fractional programming (FP) comes into play when the goal is to optimize the 

relationship between variables and constraints in decision-making scenarios. In problems of 
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numerical optimization, FP can be considered an extension of linear fractional programming (LFP). 

In FP, the objective function is composed of a ratio between two generally nonlinear functions.  

Fractional programming finds applications in diverse areas of decision-making, including but not limited 

to traffic management (cited from Dantzig et al., 1966), network flow optimization (referenced from Arisawa 

and Elmaghraby, 1972), and strategic games (based on Isbell and Marlow, 1956). Schaible (1976 and 1982) gives 

a review of various applications. Enormous approaches are introduced to solve LFP problems (Gupta and 

Chakraborty, 1998; Tantawy, 2007; 2008; Pandey and Punnen, 2007; Pop and Stancu, 2008; Kim and Mehrotra, 

2021; Bennani et al., 2021; Park and Lim, 2021; Das and Mandal, 2017; Das, 2019; 2021; Farnam and Darehmiraki, 

2021; Mekawy, 2022; Edalatpanah, 2023; Jiao and Shang, 2023). 

In the domain of operations research, quadratic fractional programming (QFP) issues are widely 

applicable. These problems can be categorized by the uniformity of the constraints and the divisibility of the 

objective function, as outlined by Sharma and Singh in 2013. Ibaraki et al. (1976) introduced some models for 

solving QFP. Gupta and Puri's 1994 work focused on a specialized QFP scenario, aiming to minimize a certain 

quadratic fractional function under generalized constraints, further narrowed down to an extreme point of a 

convex polytope. Benson, in 2006, explored fractional programming problems that maximize a particular ratio 

of two convex functions, with at least one being a quadratic form, and detailed their mathematical attributes. In 

2006, Mishra and Ghosh introduced an interactive fuzzy programming technique to find satisfactory solutions 

for a two-tier QFP problem involving dual decision-makers. Zhang and Hayashi, in 2011, dealt with a fractional 

programming problem that minimizes the ratio of two indefinite quadratic functions under dual quadratic 

constraints, converting the original problem into a univariate nonlinear equation. 

Khurana and Arora, in 2011, put forth a methodology for tackling QFP problems incorporating uniform 

constraints. Sharma and Singh, in 2013, devised an iterative approach based on simplex techniques for solving 

QFP problems with factorization. Suleiman and Nawkhass, in 2013, advocated that a revised simplex method 

outperforms in addressing QFP issues and applied Wolfe's method to solve them. Lur and colleagues, in 2014, 

proposed a new continuous-time QFP (CQFP) model using the parametric and discretization methods, leading 

to an approximation algorithm with any desired accuracy. 
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Continuing, Singh and Haldar, in 2015, innovated a method for bi-level quadratic linear fractional 

programming issues by transforming the original problem. Youness et al., in 2016, introduced a parametric 

approach to solve nonlinear fractional optimization problems, relying on a two-dimensional algorithm. Sharma 

et al., in 2017, employed the ϵϵ-scalarization technique coupled with an integer feasible solution ranking to 

identify all non-dominated points for bi-objective quadratic fractional integer programming issues. Jain and 

colleagues, in 2018, offered an algorithmic solution for quadratic fractional integer programming problems 

involving bounded variables, using complete ranking and scanning. 

Kassa and Tsegay, in 2018, presented an algorithm for a tri-level programming issue involving quadratic 

fractional objectives at each tier, using a fuzzy goal programming strategy. Sivri and colleagues, in 2018, 

proposed a computational technique that simplifies QFP into a linear programming task. Lara, in 2019, 

established optimality conditions for general QFP issues using a generalized asymptotic function for dealing 

with quasi-convexity. Gharanjik et al., in 2019, introduced a novel optimization schema for signal design 

problems involving max-min FQP issues, simplifying the original problem using a penalized version. 

Lastly, Consolini et al., in 2020, rephrased an FQP issue into a Celis–Dennis–Tapia (CDT) problem, which 

served to outline a local search algorithm. Lachhwani, in 2020, recommended a holistic method for solving 

multi-level QFP problems based on fuzzy goal programming. For other recent research on the topic, refer to 

works by Taghi-Nezhad and Taleshian (2018), Badrloo and Husseinzadeh Kashan (2019), Yang and Xia (2020), 

Kausar et al. (2021), Jafari and Sheykhan (2021), Rani et al. (2021), Xiao et al. (2022), Ju et al. (2022), Zhou et al. 

(2022), and Berahas et al. (2023). 

Real-world data is inaccurate and very difficult to be determined exactly. Therefore, a mathematical model 

of a problem does not generally have accurate output to fulfill sufficient efficiency. As a result, in optimization 

problems, an appropriate tool is required by which the uncertainty of data is overcome. Fuzzy set theory serves 

as a pivotal research methodology for addressing issues associated with vagueness and uncertainty, and it has 

found applications across diverse academic disciplines. Initially introduced by Zadeh in 1965 (Zadeh, 1965), 

fuzzy numbers are constrained to a single membership function. In practical scenarios, the attributes of data 

such as certainty, accuracy, and reliability are typically elusive. Given that fuzzy numbers' optimal solutions are 

bound by a restricted set of constraints, a new theoretical framework known as 'Neutrosophic sets' was 

introduced. This approach was first conceptualized by Smarandache in 1995 (Smarandache, 1998). After that 
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this logic was developed and studied by several scholars (Rivieccio, 2008; Guo and Cheng, 2009; Ye, 2014; 

Smarandache, 2020; Edalatpanah, 2018; Garg, 2020; Abdel-Basset et al., 2020; Debnath, 2021; Mohanta and 

Toragay, 2023; Edalatpanah et al., 2023; Bhat, 2023, etc.). For researchers, it's crucial to extend traditional linear 

programming issues into their neutrosophic counterparts, incorporating three distinct membership functions: 

truth, indeterminacy, and falsity. This capacity to manage ambiguous and nebulous data can significantly 

enhance the adoption and utility of linear programming. Unlike fuzzy linear programming, which relies solely 

on a single membership function, neutrosophic linear programming offers a more nuanced approach by 

employing three types of membership functions. For an in-depth understanding, refer to works by Ye (2018), 

Abdel-Basset et al. (2019), Khatter (2020), Basumatary and Broumi (2020), Das and Dash (2020), Das et al. 

(2020a,b,c), Das and Edalatpanah (2022), Kumar et al. (2021), and Abdelfattah (2021). 

For the best of our mind, it has been observed from the literature study that there was no study in a 

neutrosophic quadratic fractional programming problems.  Taking this opportunity, we introduced a new 

method for solving PQFPP.  

Contribution: One of the key strengths of the neutrosophic set lies in its ability to aid decision-makers 

through its incorporation of degrees of truth, falsity, and indeterminacy. In this context, the degree of 

indeterminacy is often viewed as an autonomous variable with a crucial role in decision processes. Given the 

inherent uncertainties in real-world scenarios, utilizing pentagonal neutrosophic linear fractional programming 

problems (PNQLFPP) offers a more realistic approach than traditional PQFPP. In this study, we introduce a 

PNQLFPP model, wherein all coefficients are treated as pentagonal neutrosophic numbers. We present a novel 

algorithm that leverages a recently-developed ranking function along with the Taylor series method to solve 

PNQLFPPs. As far as we are aware, this is the inaugural methodology for addressing PNQLFPPs using a 

ranking function. Consequently, a direct comparison with existing techniques is not applicable for validating 

our approach. We illustrate the utility and efficacy of our method through a diet planning example, thereby 

showcasing its real-world applicability. 

Motivation:  

Neutrosophic sets serve as a cornerstone in modeling uncertainty, a key element in the creation of applied 

mathematical models in science, engineering structures, and medical diagnostic problems. Given the absence of 

existing studies that tackle PNQLFPP, our work pioneers a new approach that employs a ranking function 
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along with the Taylor series method for resolving issues related to PNQLFP. Queries such as the feasibility of 

incorporating this into operations research grounded in linear programming, or its real-world applicability, 

have yet to be answered. It is with this backdrop that we seek to advance the discourse through this paper. 

Novelties:  

In recent years, scholarly focus has shifted toward the enhancement and refinement of theories within the 

realm of neutrosophic studies, with ongoing efforts to broaden their utility across diverse neutrosophic 

subfields. Against this backdrop, our core objective in relation to PNQLFP problem theory is to validate the 

conceptual framework through several pivotal aspects: 

 Unveiling an efficient ranking function. 

 Incorporating the Taylor series method and elucidating its applications. 

 Real-world applications of the PNQLFP problem. 

 Benchmarking our findings against earlier established outcomes. 

In addressing this research void, our paper debuts the concept of pentagonal neutrosophic 

quadratic fractional programming problems. We then transform this into a more straightforward 

problem via the scoring function associated with pentagonal neutrosophic numbers, ultimately 

reducing it to a linear programming (LP) issue through the application of the Taylor Series. The rest 

of the paper unfolds as follows: Section 2 provides essential background information. The 

formulation of the pentagonal neutrosophic quadratic fractional programming issue is detailed in 

Section 3. A methodology to arrive at an optimal solution is laid out in Section 4. Section 5 brings in 

a numerical example to elucidate the concept. Insights into the results and merits of our approach 

are discussed in Section 6, and Section 7 closes with concluding observations. 

2. Foundational Concepts 

3.  

In this part, we outline fundamental ideas and findings concerning fuzzy numbers, pentagonal fuzzy numbers, 

the neutrosophic set, pentagonal neutrosophic numbers, and the arithmetic operations associated with them. 

Definition 1. (Cited from Zadeh, 1965). A set A is termed as a fuzzy set within the realm of real 

numbers R if the range of its membership function falls between [0, 1]. 
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Definition 2. (As per Abbasbandy and Hajjari, 2009). A number 

 in the set of real numbers  is identified as a 

pentagonal fuzzy number when its membership function is expressed as: 

 

Definition 3. (Based on Smarandache, 1998). A neutrosophic set, denoted as , within a non-empty set  is 

characterized as: 

, 

here, and  stand for the truth, indeterminacy, and falsity membership functions, 

respectively. The sum of them is unrestricted, falling within the range 

. Additionally,  represents a 

nonstandard unit interval. 

Definition 4. Referring to the terms outlined in Definition 3, if these membership functions are confined to the 

interval [0,1] and their aggregate sum lies in the range [0,3], such a set is termed a Single-Valued Neutrosophic 

set. 

Definition 5. Assume that , and  satisfying . A 

Single-Valued Pentagonal Neutrosophic Set (SVPN), denoted as , is a 

specialized neutrosophic set on . In this set, the truth-membership, hesitant-membership, and falsity-

membership functions are represented by: 
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Here, and  indicate the peak truth, nadir-hesitant, and nadir-falsity membership degrees, 

correspondingly. The SVPN  can depict a vaguely defined value 

approximating . 

 

Definition 6. Suppose  and  

are two distinct single-valued PQFNs. The following describes the arithmetic procedures that apply to them: 

1. 

 

2. 

 

3. 

 

4.  

5.  

6.  

Definition 7. Assume  is a single-valued pentagonal 

neutrosophic number. In this context, the Accuracy and Score functions are delineated in the following 

manner: 
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. 

 

Definition 8. (As per Thamariselvi and Santhi, 2016). Referring to the terms outlined in Definition 7, the 

ordinal relationships between A and B, predicated on their Accuracy and Score functions, are specified as 

follows: 

 

1. If , then  

2. If , then  

3. If , then  

4. If , then , 

5. If , then  

Definition 9. (Based on Sivri et al., 2018). The initial pair of terms in the Taylor series, stemming from 

, when evaluated at a given point , are characterized as follows: 

. 

3. Problem statement 

Quadratic fractional programming with pentagonal neutrosophic parameters can be formulated as 

(PQFP)  

    Subject to 
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Where, , and 

are neutrosophic cost vector and neutrosophic right- hand side vector.  is a vector of 

decision variables, and is a matrix of quadratic form which is 

symmetric and positive semi-definite, and . It is assumed that all of 

, where  denotes the set of all pentagonal 

neutrosophic parameters. 

Definition 10. In the context of the PQFP problem, a feasible fuzzy solution, denoted as , is termed an 

optimal fuzzy solution if  for every individual  

Utilizing the score function associated with the Pentagonal fuzzy number, the PQFP problem is 

reformulated as follows:  

(QFP)     

Subject to 

 

It assumed that  is a function of class . 

4. Solution method 

The steps of the solution procedure are: 

Step 1: Consider the PQFP problem. 

Step 2: Convert the PQFP into the QFP based on the score function. 

Step 3: Choose an arbitrary initial non-zero feasible point, say  . 

Step 4: Expand the Taylor series at  (Definition 9) to linearize the objective function. 

Step 5: Solve the linear programming 

(LP)    

Subject to  
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 Assume  represents the optimal solution for the Linear Programming (LP) problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           Overlap                                          No overlapping 

                                                                      

 

Start 

Consider the PQFP problem 

Convert the PQFP into the QFP 

(Definition 4) 

Choose an arbitrary initial 

non-zero feasible point  

Linearize the objective function of 

QFP problem  

Solve the LP problem constrained 

by the linearization of objective 

function  

Expand the objective function of QFP problem at  

Solve LP problem with the objective 

function expanded at  

Check the 

optimality Optimal 

solution 

obtained 

End 
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                               Fig.1. Solution method flow chart 

Step 6: Expand the objective function of the QFP problem (Definition 9) at . 

Step 7: Solve LP problem with expanded objective function resulting from step 6 as 

constrained. Let be the solution. 

Step 8: Check the optimality 

If the solutions  and  overlap stop with the final optimal solution. Otherwise, assign  

to  and return to step 6. 

Fig. 1 depicts the flowchart outlining the steps of the solution method. 

5. Illustrative Example 

This section is dedicated to the application of our proposed method. We examine the following PQFP 

issue: 

 

Subject to                                                                         (1) 

 

 

 

Where, 
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Let us apply the steps of the solution method as  

Step 2:  Based on the ranking function of the pentagonal neutrosophic numbers, Problem (1) converts 

into 

 

Subject to                                                                         (2) 

 

 

 

Or equivalently, 

 

   Subject to                                                                         (3) 

 

 

 

Steps 3 and 4: Select  to be a random optimal point that is not zero. Utilize the Taylor series 

centered at this point to approximate the objective function in a linear form as follows: 

 

 

Step 5: Construct the LP problem as 
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Subject to                                                                         (4) 

 

 

 

The optimal solution is . 

Steps 6 and 7: Elaborate on the objective function corresponding to the QFP issue (as per Definition 6) 

around the point . Subsequently, construct and resolve the ensuing LP problem as: 

 

 Subject to                                                                         (5) 

 

 

 

The optimal solution is , with the optimum value , and 

 

6. Result Analysis 

In this section, we analyze the efficacy of our proposed approach in comparison to the existing technique by 

Sivri et al. (2018) for addressing the PNQFP issue. Utilizing ranking functions and order definitions, we 

establish that our method yields more effective outcomes, as evidenced by the comparison:  

Pr . (2018)0.75 0.74oposed method Sivri et al methodZ Z    

 

Additionally, it's crucial to note that the literature currently lacks a method for addressing the PNQFP issue. 

Consequently, we juxtaposed our novel approach with prevalent techniques for solving the C-QFP problem. 
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Our findings indicate that the objective value yielded by our method surpasses those of existing approaches. 

This leads us to conclude that our method is notably more effective. Furthermore, the objective value generated 

by our method resides within the realm of neutrosophic values. 

Benefits of the proposed approach are as follow: 

i) The outcomes generated by our model outperform those of Sivri's. As evidenced in the results 

section, our objective function value stands at 0.75, compared to Sivri's 0.74. Given that the 

problem aims for maximization, our solution effectively achieves this goal. 

ii) Crucially, in real-world scenarios, managers often grapple with options of agreement, uncertainty, 

and disagreement. Sivri's model restricts them to parameters set by decision-makers, a limitation 

we've addressed by incorporating a neutrosophic model in our approach. 

iii) Our model is versatile enough to be applicable to both real-world and large-scale issues. 

   Summing up the discussion, our newly proposed algorithm presents an innovative avenue for tackling both 

uncertainty and indeterminacy in real-world situations. 

7. Conclusions 

In real-world settings, dealing with ambiguous, unclear, or incomplete information often necessitates the use of 

neutrosophic sets. This study focuses on a neutrosophic linear fractional programming issue involving 

pentagonal neutrosophic numbers and converts it into a QFP issue through a ranking function. Utilizing the 

Taylor series method, we further simplify the QFP issue into a linear programming (LP) problem solvable via 

standard LP algorithms or software. Scholars in this domain could find our approach useful for addressing both 

intricate and straightforward challenges. An example is included to validate the efficiency of our methodology. 

This new framework not only augments the realm of uncertain linear fractional programming but also 

introduces a novel, effective strategy for managing indeterminate optimization issues. Comparative evaluations 

with existing methodologies underscore the merits of our ranking approach. Future extensions could involve 

incorporating other specialized neutrosophic sets like pentagonal neutrosophic sets, neutrosophic rough sets, 

interval-valued neutrosophic sets, and plithogenic contexts. 

 

Conflicts of Interest  

Authors do not have any conflicts of interest. 

References 

1. Abbasbandy, S., and Hajjari, T. (2009). A new approach for ranking of trapezoidal fuzzy 

numbers. Computers and Mathematics with Applications, (57): 413- 419. 



Neutrosophic Sets and Systems, Vol. 58, 2023     626  

 

 

S. A. Edalatpanah, E. Abdolmaleki, Hamiden Abd El- Wahed Khalifa, Sapan Kumar Das, A novel computational method for 
neutrosophic uncertainty related quadratic fractional programming problems 

2. Abdel-Basset, M., Gunasekaran, M., Mohamed, M., & Smarandache, F. (2019). A novel method 

for solving the fully neutrosophic linear programming problems. Neural computing and 

applications, 31(5), 1595-1605. 

3. Abdel-Basset, M., Nabeeh, N. A., El-Ghareeb, H. A., & Aboelfetouh, A. (2020). Utilising 

neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise 

Information Systems, 14(9-10), 1304-1324. 

4. Abdelfattah, W. (2021). A parametric approach to solve neutrosophic linear programming 

models. Journal of Information and Optimization Sciences, 42(3), 631-654. 

5. Arisawa, S., and Elmaghraby, S.E. (1972). Optimal time- cost trad- offs in gert- networks. 

Management Science, (18): 589- 599. 

6. Badrloo, S., & Husseinzadeh Kashan, A. (2019). Combinatorial optimization of permutation-

based quadratic assignment problem using optics inspired optimization. Journal of applied 

research on industrial engineering, 6(4), 314-332. 

7. Bhat, S. A. (2023). An enhanced AHP group decision-making model employing neutrosophic 

trapezoidal numbers. J. Oper. Strateg Anal, 1(2), 81-89. 

8. Berahas, A. S., Shi, J., Yi, Z., & Zhou, B. (2023). Accelerating stochastic sequential quadratic 

programming for equality constrained optimization using predictive variance reduction. 

Computational Optimization and Applications, 1-38. 

9. Basumatary, B., & Broumi, S. (2020). Interval-Valued Triangular Neutrosophic Linear 

Programming Problem. International Journal of Neutrosophic Science, 10(2), 105-115. 

10. Bennani, A., Benterki, D., & Grar, H. (2021). Adaptive projection methods for linear fractional 

programming. RAIRO-Operations Research, 55, S2383-S2392. 

11. Benson, H. P. (2006). Fractional programming with convex quadratic forms and functions. 

European Journal of Operational Research, 173(2), 351-369. 

12. Consolini, L., Locatelli, M., Wang, J., & Xia, Y. (2020). Efficient local search procedures for 

quadratic fractional programming problems. Computational Optimization and Applications, 

76(1), 201-232. 

13. Dantzig, G.B., Blattner, W., and Rao, M.R.,''Finding a Cycle in a Graph with Minimum Cost to 

Time Ratio with Applications to a Ship Routing Problem, 1966. 

14. Das S.K. (2019). A new method for solving fuzzy linear fractional programming problem with 

new ranking function. International journal of research in industrial engineering, 8(4), 384-393.  

15. Das, S. K., & Mandal, T. (2017). A MOLFP method for solving linear fractional programming 

under fuzzy environment. International journal of research in industrial engineering, 6(3), 202-

213. 

16. Das, S. K. (2021). Optimization of fuzzy linear fractional programming problem with fuzzy 

numbers. Big data and computing visions, 1(1), 30-35. 



Neutrosophic Sets and Systems, Vol. 58, 2023     627  

 

 

S. A. Edalatpanah, E. Abdolmaleki, Hamiden Abd El- Wahed Khalifa, Sapan Kumar Das, A novel computational method for 
neutrosophic uncertainty related quadratic fractional programming problems 

17. Das, S. K. (2020a). Application of transportation problem under pentagonal neutrosophic environment. 

Journal of Fuzzy Extension& Applications, 1(1): 27- 41. 

18. Das, S. K., Edalatpanah, S. A., & Mandal, T. (2020b). Application of Linear Fractional Programming 

problem with fuzzy nature in industry sector. Filomat, 34(15), 5073-5084. 

19. Das, S. K., Edalatpanah, S. A., & Dash, J. K. (2020c). An Intelligent Dual Simplex Method to Solve 

Triangular Neutrosophic Linear Fractional Programming Problem. Neutrosophic sets and systems. 36 

(1):50-69. 

20. Das, S., Dash, J. (2020). Modified solution for neutrosophic linear programming problems with mixed 

constraints. International Journal of Research in Industrial Engineering, 9(1), 13-24. 

21. Das, S. K., & Edalatpanah, S. A. (2022). Optimal solution of neutrosophic linear fractional programming 

problems with mixed constraints. Soft Computing, 26(17), 8699-8707. 

22. Debnath, S. (2021). Neutrosophication of statistical data in a study to assess the knowledge, attitude and 

symptoms on reproductive tract infection among women. Journal of Fuzzy Extension and Applications, 

2(1), 33-40. 

23. Edalatpanah, S. A. (2018). Neutrosophic perspective on DEA. Journal of applied research on 

industrial engineering, 5(4), 339-345. 

24. Edalatpanah, S. A. (2023). A Paradigm Shift in Linear Programming: An Algorithm without 

Artificial Variables. Systemic Analytics, 1(1), 1-10. 

25. Edalatpanah, S. A., Smarandache, F., & Garg, H. (2023). Guest editorial: Preface to the special 

issue on the neutrosophical approach: applications in management decision and organizational 

research methods. Management Decision, 61(2), 357-362. 

26. Farnam, M., & Darehmiraki, M. (2021). Solution procedure for multi-objective fractional 

programming problem under hesitant fuzzy decision environment. Journal of fuzzy extension 

and applications, 2(4), 364-376. 

27. Garg, H. (2020). Novel neutrality aggregation operator-based multiattribute group decision-

making method for single-valued neutrosophic numbers. Soft Computing, 24(14), 10327-10349. 

28. Gharanjik, A., Soltanalian, M., Shankar, M. B., & Ottersten, B. (2019). Grab-n-Pull: A max-min 

fractional quadratic programming framework with applications in signal and information 

processing. Signal Processing, 160, 1-12. 

29. Guo, Y., & Cheng, H. D. (2009). New neutrosophic approach to image segmentation. Pattern 

Recognition, 42(5), 587-595. 

30. Gupta, R., & Puri, M. C. (1994). Extreme point quadratic fractional programming problem. 

Optimization, 30(3), 205-214. 

31. Gupta, S., and Chakraborty, M. (1998). Linear fractional programming problem: A fuzzy 

programming approach. The Journal of Fuzzy Mathematics, 6(4): 873- 880. 



Neutrosophic Sets and Systems, Vol. 58, 2023     628  

 

 

S. A. Edalatpanah, E. Abdolmaleki, Hamiden Abd El- Wahed Khalifa, Sapan Kumar Das, A novel computational method for 
neutrosophic uncertainty related quadratic fractional programming problems 

32. Ibaraki, T., Ishii, H., Iwase, J., Hasegawa, T., & Mine, H. (1976). Algorithms for quadratic 

fractional programming problems. Journal of the Operations Research Society of Japan, 19(2), 

174-191. 

33. Isbell, J.R., and Marlow, W.H. (1956). Attention Games. Naval Research Logistic Quarterly, (3): 

71- 94. 

34. Jain, E., Dahiya, K., & Verma, V. (2018). Integer quadratic fractional programming problems 

with bounded variables. Annals of Operations Research, 269(1), 269-295. 

35. Jafari, H., & Sheykhan, A. (2021). Using a new algorithm to improve the search answer in 

quadratic assignment problem (QAP). International journal of research in industrial 

engineering, 10(2), 165-173. 

36. Ju, X., Rosenberger, J. M., Chen, V. C., & Liu, F. (2022). Global optimization on non-convex 

two-way interaction truncated linear multivariate adaptive regression splines using mixed 

integer quadratic programming. Information Sciences, 597, 38-52. 

37. Jiao, H. W., & Shang, Y. L. (2023). Two-level linear relaxation method for generalized linear 

fractional programming. Journal of the Operations Research Society of China, 11(3), 569-594. 

38. Kassa, S. M., & Tsegay, T. H. (2018). An iterative method for tri-level quadratic fractional 

programming problems using fuzzy goal programming approach. Journal of Industrial 

Engineering International, 14(2), 255-264. 

39. Kausar, H., Adhami, A. Y., & Rahman, A. (2021). Quadratic Fractional Bi-level Fuzzy 

Probabilistic Programming Problem When 𝒃𝒊 Follows Exponential Distribution. Reliability: 

Theory & Applications, 16(2 (62)), 289-300. 

40. Khatter, K. (2020). Neutrosophic linear programming using possibilistic mean. Soft 

Computing, 24(22), 16847-16867. 

41. Khurana, A., & Arora, S. R. (2011). An algorithm for solving quadratic fractional program with 

linear homogeneous constraints. Vietnam Journal of Mathematics, 39(4), 391-404. 

42. Kim, C., & Mehrotra, S. (2021). Solution Approaches to Linear Fractional Programming and Its 

Stochastic Generalizations Using Second Order Cone Approximations. SIAM Journal on 

Optimization, 31(1), 945-971. 

43. Kumar, R., Edalatpanah, S. A., Gayen, S., & Broum, S. (2021). Answer Note “A novel method 

for solving the fully neutrosophic linear programming problems: Suggested modifications”. 

Neutrosophic sets and systems, 39(1), 12. 

44. Lachhwani, K. (2020). On multi-level quadratic fractional programming problem with 

modified fuzzy goal programming approach. International Journal of Operational Research, 

37(1), 135-156. 

45. Lara, F. (2019). Quadratic fractional programming under asymptotic analysis. J. of Convex 

Anal, 26, 15-32. 



Neutrosophic Sets and Systems, Vol. 58, 2023     629  

 

 

S. A. Edalatpanah, E. Abdolmaleki, Hamiden Abd El- Wahed Khalifa, Sapan Kumar Das, A novel computational method for 
neutrosophic uncertainty related quadratic fractional programming problems 

46. Lur, Y. Y., Ho, W. H., Lu, T. H., & Wen, C. F. (2014). Approximate solutions for continuous-

time quadratic fractional programming problems. Taiwanese Journal of Mathematics, 18(6), 

1791-1826. 

47. Mishra, S., & Ghosh, A. (2006). Interactive fuzzy programming approach to bi-level quadratic 

fractional programming problems. Annals of Operations Research, 143(1), 251-263. 

48. Mekawy, I. M. (2022). A novel method for solving multi-objective linear fractional 

programming problem under uncertainty. Journal of fuzzy extension and applications, 3(2), 

169-176. 

49. Mohanta, K. K., & Toragay, O. (2023). Enhanced performance evaluation through neutrosophic 

data envelopment analysis leveraging pentagonal neutrosophic numbers. J. Oper. Strateg Anal, 

1(2), 70-80. 

50. Pandey, P., and Punnen, A. P. (2007). A simplex algorithm for piecewise linear fractional 

programming problems. European Journal of Operational Research, (178): 343- 358. 

51. Park, C. H., & Lim, H. (2021). A parametric approach to integer linear fractional programming: 

Newton’s and Hybrid-Newton methods for an optimal road maintenance problem. European 

Journal of Operational Research, 289(3), 1030-1039. 

52. Pop, B., and Stancu- Minasian, I. M. (2008). A method of solving fully fuzzified fractional 

programming problems. Journal of Applied Mathematics and Computation, (27): 227- 242. 

53. Rivieccio, U. (2008). Neutrosophic logics: Prospects and problems. Fuzzy sets and systems, 

159(14), 1860-1868. 

54. Schaible, S. (1976). Fractional programming I, duality. Management Science, (22A): 658- 667. 

55. Schaible, S. (1982). Bibliography in fractional programming. Operations Research, (26): 211- 241 

56. Sharma, K. C., and Singh, J., (2013). Solution methods for linear factorized quadratic 

optimization and quadratic fractional optimization problem. Journal of Mathematics, 8(3): 81- 

86. 

57. Sharma, V., Dahiya, K., & Verma, V. (2017). A ranking algorithm for bi-objective quadratic 

fractional integer programming problems. Optimization, 66(11), 1913-1929. 

58. Singh, S., & Haldar, N. (2015). A new method to solve bi-level quadratic linear fractional 

programming problems. International game theory review, 17(02), 1540017. 

59. Sivri, M. A.,   lbayrak, I., and Tamelcan, G. (2018). A novel approach for solving quadratic 

fractional programming problems.Croatian Operational Research Review, (9): 199- 209. 

60. Smarandache, F. (2020). Generalizations and alternatives of classical algebraic structures to 

neutroAlgebraic structures and antiAlgebraic structures. Journal of Fuzzy Extension and 

Applications, 1(2), 85-87. 



Neutrosophic Sets and Systems, Vol. 58, 2023     630  

 

 

S. A. Edalatpanah, E. Abdolmaleki, Hamiden Abd El- Wahed Khalifa, Sapan Kumar Das, A novel computational method for 
neutrosophic uncertainty related quadratic fractional programming problems 

61. Smarandache, F., '' A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic, 

American Research Press, Rehoboth, NM, USA, 1998. 

62. Suleiman, N. A., and Nawkhass, M. A. (2013). A new modified simplex method to solve 

quadratic fractional programming problem and compared it to a traditional simplex method by 

using pseudo affinity of quadratic fractional functions. Applied Mathematical Sciences, 7(76), 

3749-3764. 

63. Tantawy, S. F. (2007). A new procedure for solving linear fractional problems. Mahematical and 

Computer Modeling, 48(5- 6): 969- 973. 

64. Tantawy, S. F., (2008). An iterative method for solving linear fractional programming problem with 

sensitivity analysis. Mathematical and Computational Applications, 13(3): 147- 151. 

65. Taghi-Nezhad, N. A., & Taleshian, F. (2018). A solution approach for solving fully fuzzy quadratic 

programming problems. Journal of applied research on industrial engineering, 5(1), 50-61. 

66. Thamaraiselvi, A., and Santhi, R.,'' A new approach for optimization of real life transportation problem in 

neutrosophic environment,'' Mathematical Problems in Engineering, vol. 2016, Article ID 5950747, 9 pages 

67. Xiao, H., Zhang, X., Lin, D., Khalifa, A. E. W., & Edalatpanah, S. A. (2022). A new methodology for solving 

piecewise quadratic fuzzy cooperative continuous static games. Advances in Mathematical Physics, 2022. 

68. Yang, M., & Xia, Y. (2020). On Lagrangian duality gap of quadratic fractional programming with a 

two-sided quadratic constraint. Optimization Letters, 14(3), 569-578. 

69. Ye, J. (2014). Single-valued neutrosophic minimum spanning tree and its clustering method. Journal of 

intelligent Systems, 23(3), 311-324. 

70. Ye, J. (2018). Neutrosophic number linear programming method and its application under neutrosophic 

number environments. Soft computing, 22(14), 4639-4646. 

71. Youness, E. A.; Maaty, M. A., and Eldidamony, H. A. (2016). A two- dimensional approach for 

finding solutions of nonlinear fractional programming problems. Journal of Computer Science 

Approaches, 2(1): 6-10. 

72. Zadeh, L.A. (1965). Fuzzy sets. Information Control, (8): 338- 353. 

73. Zhang, A., & Hayashi, S. (2011). Celis-Dennis-Tapia based approach to quadratic fractional 

programming problems with two quadratic constraints. Numerical Algebra, Control & 

Optimization, 1(1), 83-98. 

74. Zhou, T., El-Wahed Khalifa, H. A., Najafi, S. E., & Edalatpanah, S. A. (2022). Minimizing the 

machine processing time in a flow shop scheduling problem under piecewise quadratic fuzzy 

numbers. Discrete Dynamics in Nature and Society, 2022. 

received: June 3, 2023.  Accepted: Oct 1, 2023 


