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Abstract. In this paper, we define projection and 
bidirectional projection measures between interval rough 
neutrosophic sets and prove their basic properties. Then 
two new multi attribute decision making strategies are 
proposed based on interval rough neutrosophic projection 

and bidirectional projection measures respectively. Then 
the proposed methods are applied for solving multi 
attribute decision making problems. Finally, a numerical 
example is solved to show the feasibility, applicability 
and effectiveness of the proposed strategies.
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1 Introduction

The concept of neutrosophic set[1, 2, 3, 4, 5] introduced by 
Smarandache is a generalization of crisp set[6], fuzzy 
set[7] and intuitionistic fuzzy set[8]. To use neutrosophic 
set in real fields, Wang et al. extended it to single valued 
neutrosophic set[9]. 
Broumi et al. introduced rough neutrosophic set[10, 11] by 
combining the concept of rough set[12] and neutrosophic 
set. 
Broumi and Smarandache defined interval rough 
neutrosophic set[13] by combining the concept of rough 
set and interval neutrosophic set theory[14].  
Projection measure is a very useful for solving decision 
making problems because it takes into account the distance 
as well as the included angle between points. Yue [15] 
studied projection based MADM problem in crisp 
environment.Yue also[16] presented a projection method 
to obtain weights of the experts in a group decision making 
problem. Xu and Da [17] and Xu [18] studied projection 
method for decision making in uncertain environment with 
preference information. Yang et al. [19] develop projection 
method for material selection in fuzzy environment. Xu 
and Hu [20] developed two projection based models for 
MADM in intuitionistic fuzzy and interval valued 
intuitionistic fuzzy environment. Zeng et al. [21] provided 
weighted projection algorithm for intuitionistic fuzzy 

MADM problems and interval-valued intuitionistic fuzzy 
MADM problems. Chen and Ye [22] developed the 
projection based model for solving MADM problem and 
applied it to select clay-bricks in construction field.  
To overcome the shortcomings of the general projection 
measure Ye [23] introduced a bidirectional projection 
measure between single valued neutrosophic numbers and 
developed MADM method for selecting problems of 
mechanical design schemes under a single valued 
neutrosophic environment. Ye [24] also presented the 
bidirectional projection method for multiple attribute group 
decision making with neutrosophic numbers. Dey et al. 
[25] defined weighted projection measure with interval 
neutrosophic environment and applied it to solve MADM 
problems with interval valued neutrosophic information. 
Yue [26] proposed a projection based approach for partner 
selection in a group decision making problem with 
linguistic value and intuitionistic fuzzy information.Dey et 
al. [27] defined projection, bidirectional projection and 
hybrid projection measures between bipolar neutrosophic 
sets and presented bipolar neutrosophic projection based 
models for MADM problems. Pramanik et al. [28] defined 
projection and bidirectional projection measure between 
rough neutrosophic sets and proposed the decision making 
methods based on them.
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Research gap MADM strategy using projection and 
bidirectional projection measures under interval rough 
neutrosophic environment. 
Research questions  

(i) Is it possible to define two new projection and 
bidirectional projection measure between 
interval rough neutrosophic sets? 

(ii)  Is it possible to develop two new MADM 
strategies based on the proposed measures in 
interval rough neutrosophic environment? 

The objectives of the paper are 
(i) To define two new projection and bidirectional 

projection measure between interval rough 
neutrosophic sets. 

(ii) To develop two new MADM strategies based on 
the proposed measures in interval rough 
neutrosophic environment. 

Contributions 
(i) In this paper, we propose projection and 

bidirectional projection measures under 
interval rough neutrosophic environment.  

(ii) In this paper, we develop two new MADM 
strategies based on the proposed measures in 
interval rough neutrosophic environment. 

(iii) We also present numerical example to show the 
effectiveness and applicability of the 
proposed measures. 

Rest of the paper is organized as follows: Section 2 
describes preliminaries of neutrosophic number, SVNS, 
RNS and IRNS. Section 3 presents definitions and 
properties of proposed projection and bidirectional 
projection measure between IRNSs. Section 4 describes 
the MADM methods based on projection and bidirectional 
projection measures of IRNSs.  In section 5 we describe a 
numerical example. Finally, section 6 presents the 
conclusion. 

2 Preliminaries 

In this Section, we provide some basic definitions 
regarding SVNSs, IRNSs which are useful in the paper. 

2.1 Neutrosophic set: 
In 1999, Smarandache gave the following definition of 
neutrosophic set(NS) [1]. 
Definition 2.1.1. Let X be a space of points (objects) with 
generic element in X denoted by x. A NS A in X is 

characterized by a truth-membership function TA, an 
indeterminacy membership function IA  and a falsity 
membership function FA. The functions TA , IA  and FA are 
real standard or non-standard subsets of (-0,1+) that is 
TA:X  (-0, 1+) , IA:X  (-0, 1+) and FA:X  (-0, 1+).  It 
should be noted that there is no restriction on the sum of 
TA(x) , IA(x) and FA(x) i.e. 

A A A
0 T (X) I (X) F (X) 3    

 Definition 2.1.2: (complement)  
The complement of a neutrosophic set A is denoted by 
C(A) and is defined by Tc(A)(x) = {1+}-TA(x),Ic(A)(x)={1+}-
IA(x),Fc(A)(x)={1+}-FA(x). 
Definition 2.1.3: (Containment) 
 A neutrosophic set A is contained in the other 
neutrosophic set B, denoted by A  B iff 

A B A B

A B A B

A B A B

inf T (x) inf T (x),supT (x) supT (x),
infI (x) infI (x),supI (x) supI (x),
infF (x) infF (x),supF (x) supF (x) x X

 

 

   

Definition 2.1.4: (Single-valued neutrosophic set).  
Let X be a universal space of points (objects) with a 
generic element of X denoted by x. A single valued 
neutrosophic set A is characterized by a truth membership 
function TA(x) , a falsity membership function FA(x) and 
indeterminacy function IA(x) with 

Xin  x   [0,1]   (x)F  and  (x)I(x),T AAA 
When X is continuous, a SNVS S can be written as follows 

A A A
x

A T (x),F (x), I (x) /x x X    

 and when X is discrete, a SVNS S can be written as 
follows  

A A A
A T (x),F (x), I (x) /x x X    

For a SVNS S, 0≤supTA(x) + supIA(x) + supFA(x) ≤3. 
Definition2.1.5:  
The complement of a single valued neutrosophic set A is 
denoted by c(A) and is defined by Tc(A)(x) = FA(x), Ic(A)(x) 
= 1-IA(x), Fc(A)(x) = TA(x). 
Definition 2.1.6: A SVNS A is contained in the other 
SVNS B, denoted as AB iff, 

A B A B
T (x) T (x), I (x) I (x) 

and 
B

F (x) F (x) x X.
A

    

2.2Rough neutrosophic set 

Rough neutrosophic sets [10, 11] are the generalization of 
rough fuzzy sets [29, 30] and rough intuitionistic fuzzy sets 
[31]. 
Definition 2.2.1: 
 Let Y be a non-null set and R be an equivalence relation 
on Y. Let P be neutrosophic set in Y with the membership 
function TP , indeterminacy function IP and non-
membership function FP . The lower and the upper 
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approximations of P in the approximation (Y, R) denoted 
by are respectively defined as:

N(P) N(P) N(P)

R

N(P) x,T (x), I (x), F (x) /
y [x] , x Y

 

  

 and 

N(P)N(P) N(P)

R

N(P) x,T (x), I (x),F (x) /
y [x] , x Y

 

  

where, 
N(P) R P

N(P) R P

N(P) R P

T (x) z [x] T (Y),
I (x) z [x] I (Y),
F (x) z [x] F (Y)

  

  

  

and 

R PN(P)

R PN(P)

R PN(P)

T (x) z [x] T (Y),
I (x) z [x] I (Y),
F (x) z [x] F (Y)

  

  

  

. 

So, 

N(P) N(P) N(P)
0 T (x) I (x) F (x) 3     

 and
 

N ( P )N(P) N(P)
0 T (x) I (x) F (x) 3     

Here  and denote “max” and “min” operators
respectively,TP(y),IP(y) and FP(y) are  the membership , 
indeterminacy and non-membership of Y  with respect to 
P. 
Thus NS mapping ,   
N, N : N(Y) N(Y) are, respectively, referred to as the 
lower and upper rough NS approximation operators, and 
the pair  (N(P), N(P))  is called the rough neutrosophic set 

in (Y, R). 

Definition 2.2.2  If  N(P) (N(P), N(P))

 is a rough neutrosophic set in (Y, R) , the rough 
complement of N(P) is the rough neutrosophic set denoted 
by 

C C~ N(P) ((N(P)) ,(N(P)) )  
,where 

C(N(P))  and C(N(P))
are  the  complements of neutrosophic sets N(P)  and 
N(P) respectively. 
2.3 Interval rough neutrosophic set 
Interval neutrosophic rough set is the hybrid structure of 
rough sets and interval neutrosophic sets. According to 
Broumi and Smarandache  interval neutrosophic roughset 
is the generalizations of interval valued intuitionistic fuzzy 
rough set. 

Definition 2.3.1  
Let R be an equivalence relation on the universal set 
U.Then the pair (U, R) is called a Pawlak 
approximationspace. An equivalence class of R containing 
x will bedenoted by [x]R for X    U, the lower and upper 
approximationof X with respect to (U, R) are denoted by 
respectively, 
RX and RX and are defined by 
RX  = {x   U : [x]R  X }, 

RX  = { x   U : [x]R  X ≠ Ø}.
Now if RX   = RX , then X is called definable; otherwise 
Xis called a rough set. 
Definition 2.3.2  
Let U be a universe and X, a rough set in U. An 
intuitionistic fuzzy rough set A in U is characterized by a 
membership function μA:U→ [0, 1] and non-membership 
functionνA: U→ [0, 1] such that μA(RX)=1and νA(RX) = 0 
ie, [μA (x),νA (x)]=[1,0] if x∈ (RX) and μA(U− R X)= 0, 
νA(U− R X)=1 
ie, 

A A
 0   RX RX  ( ) (RX )RX 1        
Definition 2.3.3 
Assume that, (U, R) be a Pawlak approximation space, for 
an interval neutrosophic set 
A = {<x, [TA

L(x),TA
U(x)], [IA

L(x),IA
U(x)], [FA

L(x),FA
U(x)]> 

: xU} 
The lower approximation AR and the upper approximation 

RA of A in the Pawlak approximation space (U, R) are 
expressed as follows: 

R

R

R

R

R

L
R y [x] A y [x] A

L
y [x] A y [x] A

L
y [x] A y [x] A

L
R y [x] A y [x] A

L
y [x] A y [x] A

A  = {<x, [ {T (y)}, {T (y)}],
[ {I (y)}, {I (y)}],
[ {F (y)}, {F (y)}]> : x U}

A  = {<x, [ {T (y)}, {T (y)}],
[ {I (y)}, {I (y)}]















  





R

L
y [x] A y [x] A

,
[ {F (y)}, {F (y)}]> : x U}


  

The symbols  and   indicate “min” and “max” 
operators respectively. R denotes an equivalence relation 
for interval neutrosophic set A. Here [x]R is the 
equivalence class of the element x. It is obvious that 

R

R

R

R R R

L
y [x] A y [x] A

U
y [x] A y [x] A

U
y [x] A y [x] A

U U U
y [x] A y [x] A y [x] A

[ {T (y)}, {T (y)}] [0,1],
[ {I (y)}, {I (y)}] [0,1],

[ {F (y)}, {F (y)}] [0,1].
and 0 {T (y)} {I (y)} {F (y)} 3







  

  

  

  

    

Then AR is an interval neutrosophic set (INS) 
Similarly, we have 
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R R

R R

R R

L U
y [x] A y [x] A

L U
y [x] A y [x] A

L U
y [x] A y [x] A

 [ {T (y)}, {T (y)}] [0,1],
 [ {I (y)}, {I (y)}] [0,1],
 [ {F (y)}, {F (y)}] [0,1]

 

 

 

  

  

  

and 

R R

R

U U
y [x] A y [x] A

U
y [x] A

0  {T (y)} {I (y)}
{F (y)}] 3
 



    

 

Then AR is an interval neutrosophic set. 

If AR = RA  then A is a definable set, otherwise A is an 

interval valued neutrosophic rough set. Here, AR and RA  
are called the lower and upper approximations of interval 
neutrosophic set with respect to approximation space (U,R) 

respectively. AR and RA  are simply denoted by A and A
respectively. 
3 Projection and Bidirectional projection measure 
of interval rough neutrosophic sets : 
Existing projection and bidirectional projection measure 
does not deal with interval rough neutrosophic set(IRNS)s. 
Therefore, a new projection and bidirectional projection 
measure between IRNSs is proposed. 
Assume that there are two IRNSs 

i iM iM iM iM iM iM

iM iM iM iM iM iM

M { x ,([T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ] : i 1,2,..., n}

     

     

 

 

and 

i iN iN iN iN iN iN

iN iN iN iN iN iN

N { x ,[T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ] :i 1,2,..., n}

     

     

 

 

Then the inner product of M and N denoted by M.N can be 
defined as 

n

iM iN iM iN iM iN iM iNi 1

iM iN iM iN iM iN iM iN

iM iN iM iN iM iN iM iN

M.N [ T .T T T I I I I

F F F F T T T T

I I I I F F F F ]

       



       

       

   

   

   

The modulus of M can be defined as 

iM iM iM iM
n

2 2
iM iM iM iMi 1

2 2 2
iM iM iM iM

T T I I

M F F (T ) (T )

(I ) (I ) (F ) (F )

2 2 2 2

2 2

( ) ( ) ( ) ( )

( ) ( )

   

   


   

   
 

     
 
     

 and the modulus of N can be defined as 

iN iN iN iN
n

2 2
iN iN iN iNi 1

2 2 2
iN iN iN iN

T T I I

N F F (T ) (T )

(I ) (I ) (F ) (F )

2 2 2 2

2 2

( ) ( ) ( ) ( )

( ) ( )

   

   


   

   
 

     
 
     

Definition4.1.The projection of M on N can be defined as 

N

1Pr oj(M) M.N.
N

  

Definition4.2.The bidirectional projection measure 
between the RNSs M and N is defined as 

1BPr oj(M, N)
1 M N M.N

M N
M N M N M.N


 


 

Here also the bidirectional projection measure satisfies 
the following properties : 
(1) BProj(M,N) = BProj(N,M);  

       (2) 0 1;BProj(M,N)   
       (3) BProj(M,N) = 1, iff M = N. 
Proof: 

(i)  

BPr oj(M, N)
1

1 M N M.N
1

1 N M N.M
BPr oj(N,M)


 


 



(ii)As  
1 0

1 M N M.N


 
 

and 
1 1

1 M N M.N


 
 

 so, ;1N)BProj(M,0 

(iii)If M=N then 
BPr oj(M, N)

BPr oj(M,M)
1

1 M M M.M
1




 


4. Projection And Bidirectional Projection Based
Decision Making Methods For MADM Problems 
With Interval Rough Neutrosophic Information 
In this section, we develop projection and bidirectional 
projection based decision making models to solve MADM 
problems with interval rough neutrosophic information. 
Consider C={C1, …..,Cm} be the set of attributes and 
A={A1,……, An} be a set of alternatives. Now we provide 
two algorithms for MADM problems involving interval 
rough neutrosophic information. 
4.1. Algorithm 1.(see Fig 1) 
Step 1. The value of alternative Ai(i=1,…..,n) for the 
attribute Cj(j=1,……,m) is evaluated by the decision maker 
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in terms of IRNSs and the interval rough neutrosophic 
decision matrix is constructed as:  

11 12 1m

21 22 2m

ij n m

n1 n2 nm

z z .........z
z z .........z

D z ... ... ... ... ... ...
... ... ... ... ... ...
z z .........z



 
 
   
 
 
 
 

 

where 

iM iM iM iM iM iM

iM iM iM iM iM iM

[T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ])
ij

z  = <(

>

     

     

with 
3(y)}]{F(y)}{I(y)}{T 0 U

A[x]y
U
A[x]y

U
A[x]y RRR

 

Step 2. Calculate the weighted alternative decision matrix 
For the attribute Cj (j=1,……,m) the weight vector of 
attribute is considered as : W = (w1, w2, … , wm) with 

j
w 0      and  

n

ji 1
w 1



  

On calculating 

j iM j iM j iM j iM

j iM j iM j iM j iM

j iM j iM j iM j iM

s [w T , w T ],[w I , w I ],

[w F , w F ],[w T , w T ],

[w I , w I ],[w F , w F ])

ij
= <(

>

   

   

   

for i=1, 2, … , n and j=1, 2, … , m , we obtain the 
weighted alternative decision matrix 

11 12 1m

21 22 2m

ij n m

n1 n2 nm

s s .........s
s s .........s

S s ... ... ... ... ... ...
... ... ... ... ... ...
s s .........s



 
 
   
 
 
 
 

Step 3. Determine the ideal solution S*. 
For benefit type attribute, 

*
i ij i ij i ij i ij i ij i ij

S {(min T , max I , max F ), (max T , min I , min F )}

For cost type attribute, 
*

i ij i ij i ij i ij i ij i ij
S {(max T ,min I ,min F ),(min T ,max I ,max F )}  

Step 4. Compute the projection measure between S* and Zi 
= <Zij>nxm for all i = 1, ….., n and j = 1, ….., m. 
Step 5. Ranking of alternatives is prepared based on the 
values of projection measure. The highest value reflects the 
best alternatives. 
Step 6. End. 

 

 Fig 1. A flowchart of the proposed decision making 
method 

4.2. Algorithm 2.(see Fig 2) 
Step 1. The value of alternative Ai(i=1,…..,n) for the 
attribute Cj(j=1,……,m) is evaluated by the decision maker 
in terms of IRNSs and the interval rough neutrosophic 
decision matrix is constructed as:  

11 12 1m

21 22 2m

ij n m

n1 n2 nm

z z .........z
z z .........z

D z ... ... ... ... ... ...
... ... ... ... ... ...
z z .........z



 
 
   
 
 
 
 

where 

iM iM iM iM iM iM

iM iM iM iM iM iM

[T ,T ],[I , I ],[F ,F ],

[T ,T ],[I , I ],[F ,F ])
ij

z  = <(

>

     

     

with 

Start 

Set the criteria (in terms of IRNSs) 

Construct the decision matrices 

Determine the ideal alternative 

Calculate the projection measure 
between the alternatives and the 
ideal alternative 

Rank the alternative 

End 

Obtain the weighted decision matrices 
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3(y)}]{F

(y)}{I(y)}{T 0
U
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U
AR[x]y

U
AR[x]y









Step 2. Calculate the weighted alternative decision matrix 
For the attribute Cj (j=1,……,m) the weight vector of 
attribute is considered as : W = (w1, w2, … , wm) with 

j
w 0      and 

n

ji 1
w 1



  

On calculating 

j iM j iM j iM j iM

j iM j iM j iM j iM

j iM j iM j iM j iM

s [w T , w T ],[w I , w I ],

[w F , w F ],[w T , w T ],

[w I , w I ],[w F , w F ])

ij
= <(

>

   

   

   

for i=1, 2, … , n and j=1, 2, … , m , we obtain the 
weighted alternative decision matrix 

11 12 1m

21 22 2m

ij n m

n1 n2 nm

s s .........s
s s .........s

S s ... ... ... ... ... ...
... ... ... ... ... ...
s s .........s



 
 
   
 
 
 
 

Step 3. Determine the ideal solution S*. 
For benefit type attribute, 

*
i ij i ij i ij i ij i ij i ij

S {(min T , max I , max F ), (max T , min I , min F )}

For cost type attribute, 
*

i ij i ij i ij i ij i ij i ij
S {(max T ,min I ,min F ),(min T ,max I ,max F )}  

. 
Step 4. Compute the bidirectional projection measure 
between S* and Zi = <Zij>nxm for all i = 1, ….., n and j = 1, 
….., m. 
Step 5. Ranking of alternatives is prepared based on the 
values of bidirectional projection measure. The highest 
value reflects the best alternatives. 
Step 6. End. 

Fig 2. A flowchart of the proposed decision making 
method  

5. A Numerical Example:

Assume that a decision maker intends to select the most 
suitable laptop for random use from the three initially 
chosen laptops (A1, A2, A3) by considering four attributes 
namely: features C1, reasonable price C2, customer care C3, 
risk factor C4. Based on the proposed approach discussed 
in section 5, the considered problem is solved by the 
following steps: 
Step1: Construct the decision matrix with interval rough 
neutrosophic number 
The decision maker construct the decision matrix with 
respect to the three alternatives and four attributes in terms 
of interval rough neutrosophic number. 

Start 

Set the criteria (in terms of IRNSs) 

Construct the decision matrices 

Determine the ideal alternative 

Calculate the bidirectional 
projection measure between 
the alternatives and the ideal 
alternative 

Rank the alternative 

End 

Obtain the weighted decision matrices 
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Step 2: The weight vectors considered by the decision 
maker are 0.35, 0.25, 0.25 and 0.15 respectively. The 
weighted decision matrix is: 

C1 C2 C3 C4

S1 <([0.21,0.245], 
[0.105,0.175], 
[0.105,0.14]), 
([0.28,0.315], 
[0.035,0.105], 
[0.035,0.07])> 

<([0.125,0.175], 
[0.075,0.1], 
[0.025,0.05]), 
([0.175,0.225], 
[0.075,0.125], 
[0.075,0.1])> 

<([0.125,0.15], 
[0.1,0.125], 
[0.1,0.15]), 
([0.175,0.2], 
[0.05,0.1], 
[0.075,0.1])> 

<([0.12,0.135], 
[0.045,0.06], 
[0.075,0.09]), 
([0.105,0.12], 
[0.045,0.075], 
[0.045,0.75])> 

S2 <([0.245,0.28], 
[0.07,0.105], 
[0.0,0.07]), 
([0.245,0.315], 
[0.035,0.07], 
[0.035,0.07])> 

<([0.15,0.175], 
[0.025,0.05], 
[0.0,0.05]), 
([0.15,0.175], 
[0.025,0.075], 
[0.025,0.075])> 

<([0.125,0.175], 
[0.05,0.075], 
[0.025,0.05]), 
([0.15,0.225], 
[0.075,0.125], 
[0.05,0.1])> 

<([0.105,0.12], 
[0.045,0.75], 
[0.015,0.045]), 
([0.075,0.105], 
[0.075,0.09], 
[0.03,0.045])> 

S3 <([0.21,0.245], 
[0.105,0.14], 
[0.0,0.105]), 
([0.21,0.315], 
[0.035,0.7], 
[0.035,0.7])> 

<([0.125,0.175], 
[0.05,0.1], 
[0.05,0.1]), 
([0.15,0.2], 
[0.025,0.075], 
[0.025,0.05])> 

<([0.15,0.2], 
[0.05,0.1], 
[0.075,0.1]), 
([0.15,0.2], 
[0.05,0.125], 
[0.075,0.125])> 

<([0.06,0.105], 
[0.03,0.06], 
[0.06,0.075]), 
([0.075,0.12], 
[0.03,0.075], 
[0.0,0.03])> 

Step3: Determine the benefit type attribute and cost type 
attribute 
Here three benefit type attributes C1, C2, C3 and one cost 
type attribute C4. We calculate the ideal alternative as 
follows: 

*S { ([.21,.245],[.07,.175],[.105,.14]),
([.28,.315],[.035,.07],[.035,.07]) ,
 



([.15,.175],[.075,.1],[.05,.1]),
([.175,.225],[.025,.075],[.025,.05]) ,




([.15,.15],[.1,.1],[.1,.1]),
([.175,.225],[.075,.125],[.075,.125]) ,

([.12,.135],[.03,.06],[.015,.045]),
([.075,.105],[.075,.09],[.045,.075]) ) }





 

Step4:Calculate the projection and bidirectional projection 
measure of the alternatives

1

2

S 0.918273,
S 0.829533,





3
*

*
1

*
2

*
3

S 0.832331.
S 0.818175.

S .S 0.815425,
S .S 0.563137,
S .S 0.7337.











*

*

*

* * *

1 S

2 S

3 S

1 3 2S S S
*

1
*

2
*

3
* *

2 3

Pr oj(S ) 0.99663886,
Pr oj(S ) 0.68828490,
Pr oj(S ) 0.89675192.

Pr oj(S ) Pr oj(S ) Pr oj(S ) .
BPr oj(S ,S ) 0.92453705,
BPr oj(S ,S ) 0.99364454,
BPr oj(S ,S ) 0.98972051.

BPr oj(S ,S ) BPr oj(S ,S ) B







  







   *
1

Pr oj(S ,S ).
Step5: Rank the alternatives 
Ranking of alternatives is prepared based on the 
descending order of projection and bidirectional measures. 
The highest value reflects the best alternatives. 
Hence, according to the projection measure, the laptop A1 
is the best alternative and according to the bidirectional 

C1 C2 C3 C4 
A1 <([.6, .7], [.3, .5], 

[.3, .4]), ([.8, .9], 
[.1, .3], [.1, .2])> 

<([.5, .7], [.3, .4], 
[.1, .2]), ([.7, .9], 
[.3, .5], [.3, .4])> 

<([.5, .6], [.4, .5], 
[.4, .6]), ([.7, .8], 
[.2, .4], [.3, .4])> 

<([.8, .9], [.3, .4], 
[.5, .6]), ([.7, .8], 
[.3, .5], [.3, .5])> 

A2 <([.7, .8], [.2, .3], 
[.0, .2]), ([.7, .9], 
[.1, .2], [.1, .2])> 

<([.6, .7], [.1, .2], 
[.0, .2]), ([.6, .7], 
[.1, .3], [.1, .3])> 

<([.5, .7], [.2, .3], 
[.1, .2]), ([.6, .9], 
[.3, .5], [.2 .4])> 

<([.7, .8], [.3, .5], 
[.1, .3]), ([.5, .7], 
[.5, .6], [.2, .3])> 

A3 <([.6, .7], [.3, .4], 
[.0, .3]), ([.6, .9], 
[.1, .2], [.1, .2])> 

<([.5, .7], [.2, .4], 
[.2, .4]), ([.6, .8], 
[.1, .3], [.1, .2])> 

<([.6, .8], [.2, .4], 
[.3, .4]), ([.6, .8], 
[.2, .5], [.3, .5])> 

<([.4, .7], [.2, .4], 
[.4, .5]), ([.5, .8], 
[.2, .5], [.0, .2])> 
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projection measure, the laptop A2 is the best alternative. As 
bidirectional projection measure gives better result than 
projection measure, so A2 is the best laptop for random 
use. 
6. Comparative study and discussions:
Mondal and Pramanik study the MADM method in 
interval rough neutrosophic environment using cosine, dice 
and Jaccard similarity measure [32]. We take the same 
problem and solve the problem using projection and 
bidirectional projection measure based decision making 
method. In the existing  methods, S2 is the best 
alternatives. But in new method S1 is the best alternative. 
7. Conclusion:
In this paper, we have defined projection measure, 
weighted projection measure,  bidirectional projection 
measure, weighted bidirectional projection measure 
between interval rough neutrosophic sets. We have also 
proved their basic properties. We have developed two new 
MADM strategies based on the proposed projection and 
bidirectional projection measures respectively. Finally, we 
have solved  a numerical example to demonstrate the 
feasiblity, applicability and effectiveness of the proposed 
strategies. The proposed strategies can be applied to solve 
different MADM problems such as teacher selection [33, 
34, 35], school selection [36], weaver selection [37, 38, 
39], brick field selection [40, 41], logistics center location 
selection [42, 43], data mining [44] etc. The proposed 
strategies can also  be extended for MAGDM in interval 
rough neutrosophic environment. 
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