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Abstract. In this paper, a neutrosophic optimization model has been first constructed 

for the neutrosophic geometric programming subject to (max-product) neutrosophic relation 

constraints. For finding the maximum solution, two new operations (i.e. ⋈, Θ) between aij and 

bi have been defined, which have a key role in the structure of the maximum solution. Also, 

two new theorems and some propositions are introduced that discussed the cases of the 

incompatibility in the relational equations Aox =  b, with some properties of the operation Θ. 

Numerical examples have been solved to illustrate new concepts. 
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1. Introduction

The first scientist who put forward the fuzzy relational equations was Elie Sanchez, a 

famous fuzzy biology mathematician in 1976 [2], while the theoretical concept of the 

neutrosophic logic has been put by the popular polymath Florentin Smarandache at 1995 [11]. 

B. Y. Cao constructed the mathematical models of fuzzy relation geometric programming 

(FRGP) at 2005 [1], his works include the structuring of the maximum and minimum solution 

of the (FRGP) depending upon the original model for the maximum solution and the minimum 

solution for the fuzzy relation equations that was put by Elie Sanchez. At 2015, Huda E. Khalid 

introduced an original structure of the maximum solution for the fuzzy neutrosophic relation 

geometric programming (FNRGP) [6], Also at 2016, she put a novel algorithm for finding the 

minimum solution for the same (FNRGP) problems [7]. As of 2016 so far Huda E. Khalid et al 

[3-10] introducing a big qualitative shift in the concept of neutrosophic geometric 

programming (NGP) by establishing new concepts for the notion of (over, off, under) in the 

same (NGP), as well as she introduced and for the first time, a new type of the neutrosophic 

geometric programming using (over, off, under) neutrosophic less than or equal which 

contained a new version of the convex condition, furthermore, new decomposition theorems 

of neutrosophic sets were presented, and new representations for the neutrosophic sets using 

(α, β, γ)-cuts, with strong (α, β, γ)-cuts had been defined. 

 In this article, section 2 contains the preliminaries which are necessary for the sake of 

this paper, while in section 3, a max- product neutrosophic relation geometric programming 

model has been proposed with an innovative investigation of the maximum solution for this 
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model and two new theorems with some propositions, section 4 presents numerical examples 

to illustrate the proposed method. The final section was dedicated to the conclusion. 

2. Basic Concepts 

Without loss of generality, the elements of b must be rearranged in decreasing or increasing 

order and the elements of the matrix A are correspondingly rearranged.  

2.1 Definition [7] 

In this definition, the author proposed the following axioms:  

a- decreasing partial order  

1-The greatest element in  [0,1) ∪ I is equal to I, max(I, x) = I          ∀  x ∈ [0,1)   

2- The fuzzy values in a decreasing order will be rearranged as follows: 1 > x1 > x2 > x3 >

⋯ > xn ≥ 0  

3- One is the greatest element in  [0,1] ∪ I, max(I, 1) = 1           

b- Increasing partial order  

1- the smallest element in  (0,1] ∪ I is I , min(I, x) = I          ∀  x ∈ (0,1]   

2- The fuzzy values in increasing order will be rearranged as follows: 0 < x1 < x2 < x3 <

⋯ < xn ≤ 1 

3- Zero is the smallest element in  [0,1] ∪ I, min(I, 0) = 0   

2.2 Definition [7] 

If there exists a solution to 𝐴𝑜𝑥 = 𝑏 it's called compatible. Suppose 𝑋(𝐴, 𝑏) = {(𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 ∈

[0,1]𝑛 ∪ 𝐼, 𝐼𝑛 = 𝐼, 𝑛 > 0 |𝐴𝑜𝑥 = 𝑏, 𝑥𝑗 ∈ [0,1] ∪ 𝐼 } is a solution set of  𝐴𝑜𝑥 = 𝑏 we define  𝑥1 ≤

𝑥2 ⟺ 𝑥𝑗
1  ≤ 𝑥𝑗

2 (1 ≤ 𝑗 ≤ 𝑛), ∀ 𝑥1, 𝑥2 ∈ X(A, b). Where " ≤ " is a partial order relation on X(A, b). 

2.3 Corollary [1] 

If  X(A, b) ≠ ∅. Then �̂� ∈ 𝑋(𝐴, 𝑏). 

Similar to fuzzy relation equations, the above corollary works on neutrosophic relation 

equations. 
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2.4 Basic Notes [3, 10] 

1. A component I to the zero power is undefined value, (i.e. 𝐼 0 is undefined), since. 𝐼 0 =

𝐼1+(−1) = 𝐼1 ∗  𝐼−1 =
𝐼

𝐼
, which is an impossible case (avoid to divide by 𝐼). 

2. The value of 𝐼 to the negative power is undefined (i.e. 𝐼−𝑛, 𝑛 >  0 is undefined). 

3. The Innovative Structure of the Maximum Solution. 

We call 

min 𝑓(𝑥) = (𝑐1. 𝑥1
𝛾1) ∨ (𝑐2. 𝑥2

𝛾2) ∨ …∨ (𝑐𝑛 . 𝑥𝑛
𝛾𝑛)

𝑠. 𝑡.                      𝐴𝑜𝑥 =  𝑏                                          
𝑥𝑗 ∈ [0,1] ∪ 𝐼,       1 ≤ 𝑗 ≤ 𝑛                                 

}                                                                                (1)  

 A ( ∨, . ) (max- product) neutrosophic geometric programming, where 𝐴 = (𝑎𝑖𝑗), 1 ≤

𝑖 ≤ 𝑚 , 1 ≤ 𝑗 ≤ 𝑛, is (𝑚 × 𝑛) dimensional neutrosophic matrix, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 an n-

dimensional variable vector, 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑚)
𝑇 (𝑏𝑖 ∈ [0,1] ∪ 𝐼) an m- dimensional constant 

vector, 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛)
𝑇  (𝑐𝑗 ≥ 0) an n- dimensional constant vector, 𝛾𝑗 is an arbitrary real 

number, and the composition operator ‘’𝑜’’ is ( ∨, . ) ,  i.e. ⋁ (𝑎𝑖𝑗 . 𝑥𝑗) = 𝑏𝑖
𝑛
𝑗=1 .  

Note that the program (1) is undefined and has no minimal solution in the case of 𝛾𝑗 < 0 with 

some 𝑥𝑗′𝑠 taking indeterminacy value. Therefore, if 𝛾𝑗 < 0 with indeterminacy value in some 

𝑥𝑗′𝑠, then the greatest solution �̂�𝑗 is an optimal solution for problem (1), the author introduced 

theorem 3.4 to treat this issue. 

 

3.1 The Shape of the Maximum Solution �̂�. 

Since 1976, the biological mathematician Elie Sanchez put the formula of the maximum 

solution in both composite fuzzy relation equations of type (⋁, ⋀) operator and (⋁, . ) operator 

[2], these definitions won’t be adequate with neutrosophic relation equations especially 

neutrosophic geometric programming type, therefore and for the importance of relational 

neutrosophic geometric programming (RNGP) in real-world problems, the author established 

a new structure for the maximum solution of (RNGP) with the (⋁, ⋀)operator in ref. [6], while 

this article was dedicated to set up the maximum solution of (RNGP) with the (⋁, . ) operator. 

Every mathematician who works with neutrosophic theory know that the generality 

which characterizes the neutrosophic theory are determined in many ways of which, 
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max(𝐼, 𝑥) = min(𝐼, 𝑥) = 𝐼    ∀ 𝑥 ∈ (0,1) 

This property gives some vague and difficulty for determining the maximum solution of the 

relation equations 𝐴𝑜𝑥 = 𝑏, the author still searches about the answer of the following question. 

How will be the shape of the greatest solution �̂� ? 

Actually, any single solution (the same solution that suggested by Elie Sanchez 1976) would 

not be accepted and won’t be appropriate for the program (1), unless there are two integrated 

pre-maximum solutions gathered to get the final shape of �̂�, as follow: 

1. The first integrated pre-maximum solution named �̂�𝑣1 which supports the fuzzy part 

of the problem, this solution has an adjoint matrix named 𝐴𝑣1, this adjoint matrix is 

derived from the matrix 𝐴. 

2. The second integrated pre-maximum solution named �̂�𝑣2 which supports the 

neutrosophic part of the problem, this solution has an adjoint matrix named 𝐴𝑣2, which 

is derived from the matrix 𝐴 too. 

The following definition describes the mathematical formula of �̂�𝑣1 and �̂�𝑣2. 

 

3.2 Definition  

𝑎𝑖𝑗 ⋈ 𝑏𝑖 = {

𝑏𝑖

𝑎𝑖𝑗
,                  𝑖𝑓  𝑎𝑖𝑗 > 𝑏𝑖 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 ∈ [0,1]

1,                    𝑖𝑓  𝑎𝑖𝑗 ≤ 𝑏𝑖 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 ∈ [0,1]

 1 ,              𝑖𝑓             𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]

                                                  (2) 

𝑎𝑖𝑗Θ𝑏𝑖 =

{
 
 

 
 

𝑛𝐼

𝑎𝑖𝑗
,            𝑖𝑓  𝑎𝑖𝑗 > 𝑛 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]

  
  

1,               𝑖𝑓  𝑎𝑖𝑗 ≤ 𝑛 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]  

𝑛𝑜𝑡 𝑐𝑜𝑚𝑝.     𝑖𝑓             𝑎𝑖𝑗 = 𝑚𝐼 ,𝑚 ∈ (0,1] , 𝑏𝑖 ∈ [0,1] ∪ 𝐼

1                      𝑖𝑓                                                  𝑎𝑖𝑗 , 𝑏𝑖𝑗 ∈ [0,1]  
 

                                              (3) 

 

Where ⋈ is an operator defined at [0,1], while the operator  Θ is defined at [0,1] ∪ 𝐼. 

Let  �̂�𝑗 = ⋀ (𝑎𝑖𝑗 ⋈ 𝑏𝑖),        (1 ≤ 𝑗 ≤ 𝑛)
𝑚
𝑖=1  ,                                                                                          (4) 

be the components of the pre-maximum solution �̂�𝑣1, (i.e. �̂�𝑣1 = (�̂�1, �̂�2, … , �̂�𝑛)). 

Let  �̂�𝑗 = ⋀ (𝑎𝑖𝑗Θ𝑏𝑖),        (1 ≤ 𝑗 ≤ 𝑛)
𝑚
𝑖=1  ,                                                                                             (5) 
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be the components of the pre maximum solution �̂�𝑣2,  (i.e. �̂�𝑣2 = (�̂�1, �̂�2, … , �̂�𝑛)). 

Now the following question will be raised, 

Which one �̂�𝑣1 or �̂�𝑣2 should be the exact maximum solution? 

Neither �̂�𝑣1 nor �̂�𝑣2 will be the exact solution! the exact solution is the integration between 

them. Before solving 𝐴𝑜�̂� = 𝑏, we first define the matrices 𝐴𝑣1, 𝐴𝑣2. 

Let 𝐴𝑣1 be a matrix has the same dimension and the same rows elements of 𝐴 except for those 

rows of the indexes 𝑖 = 𝑖𝑜 corresponding to those indexes of 𝑏𝑖𝑜 = 𝑛𝐼, those special rows of 

𝐴𝑣1 will be zeros. 

Let 𝐴𝑣2 be a matrix has the same dimension and the same rows elements of 𝐴 except for those 

rows of the indexes 𝑖 = 𝑖𝑜 corresponding to those indexes of 𝑏𝑖𝑜 ∈ [0,1], those special rows of 

𝐴𝑣2 will be zeros. 

Consequently, 

 𝐴𝑜�̂� = 𝑏 = (𝐴𝑣1𝑜�̂�𝑣1) + (𝐴𝑣2𝑜�̂�𝑣2)                                                                                                      (6) 

The formula (6) is the greatest solution in 𝑋(𝐴, 𝑏). 

The maximum value of the objective function 𝑓(�̂�) = 𝑓(�̂�𝑣1) ∨ 𝑓(�̂�𝑣2). 

3.3 Theorem  

If 𝑎𝑖𝑗 = 𝑚𝐼, 𝑚 ∈ (0,1], 𝑏𝑖 ∈ [0,1] ∪ 𝐼 then 𝐴𝑜𝑥 = 𝑏, is not compatible. 

Proof  

Let 𝑎𝑖𝑗 = 𝑚𝐼 , 𝑏𝑖 ∈ [0,1] ∪ 𝐼 , the essential question in this case is  

What is the value of 𝑥𝑗 ∈ [0,1] ∪ 𝐼 satisfying 

⋁ (𝑎𝑖𝑗 . 𝑥𝑗) = 𝑏𝑖  1≤𝑗≤𝑛  ?                                                                                                                                          (7) 

It is well known that the equation (7) can be written as an upper-bound constraint and a lower- 

bound constraint, that is, 

⋁ (𝑎𝑖𝑗 . 𝑥𝑗) ≤ 𝑏𝑖  1≤𝑗≤𝑛                                                                                                                                     (8) 

⋁ (𝑎𝑖𝑗 . 𝑥𝑗) ≥ 𝑏𝑖  1≤𝑗≤𝑛                                                                                                                                      (9) 
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First, 

The inequality (8) can be written in 𝑛 constraints:  

𝑎𝑖𝑗 . 𝑥𝑗 ≤ 𝑏𝑖   , 𝑖. 𝑒.  𝑥𝑗 ≤
𝑏𝑖

𝑎𝑖𝑗
  ,1 ≤ 𝑗 ≤ 𝑛 . 

Hence   𝑥𝑗 ≤ ∧ (
𝑏𝑖

𝑎𝑖𝑗
), where the notation ‘’ ∧’’ denotes the minimum operator. 

So, we have  𝑥𝑗 ∈ [0, ∧ (
𝑏𝑖

𝑎𝑖𝑗
)] ∪ 𝐼, but 𝑎𝑖𝑗 = 𝑚𝐼, this is a contradict for the fact that the variables 

of the system  𝐴𝑜𝑥 = 𝑏 are being in the interval [0,1] ∪ 𝐼. 

Second,  

 The inequality (9) can be written in 𝑛 constraints:  

(𝑎𝑖𝑗 . 𝑥𝑗) ≥ 𝑏𝑖   , 𝑖. 𝑒.  𝑥𝑗 ≥
𝑏𝑖

𝑎𝑖𝑗
  ,1 ≤ 𝑗 ≤ 𝑛 . 

Hence,  𝑥𝑗 ≥∨ (
𝑏𝑖

𝑎𝑖𝑗
), where the notation ‘’ ∨’’ denotes the maximum operator. 

Thus, we have 𝑥𝑗 ∈ [∨ (
𝑏𝑖

𝑎𝑖𝑗
) , 1] ∪ 𝐼, but 𝑎𝑖𝑗 = 𝑚𝐼, in this proof we faced the division on the 

indeterminate component (𝐼) which is prohibited behavior. Consequently the variable 𝑥𝑗 will 

either belong to the interval [0,∧ (𝑏𝑖/𝐼)] ∪ 𝐼 or belong to the interval[∨ (𝑏𝑖/𝐼),1] ∪ 𝐼, this implies 

that the system of the relation equation 𝐴𝑜𝑥 = 𝑏 will be not compatible. 

Therefore, the system of the relative equations 𝐴𝑜𝑥 = 𝑏 is incompatible at 𝑎𝑖𝑗 = 𝑚𝐼,𝑚 ∈ (0,1]. 

So, the restriction of  𝐴𝑜𝑥 = 𝑏 for being compatible is that all elements of the matrix 𝐴 (𝑖. 𝑒. 𝑎𝑖𝑗) 

are belonging to the interval [0,1]. 

3.4 Theorem  

 If 𝛾𝑗 < 0  (1 ≤ 𝑗 ≤ 𝑛), then the greatest solution to the problem (1) is an optimal solution.  

 Proof  

Since 𝛾𝑗 < 0  (1 ≤ 𝑗 ≤ 𝑛),with 𝑥𝑗 ∈ [0,1] ∪ 𝐼, then 
𝑑(𝑥

𝑗

𝛾𝑗
)

𝑑𝑥𝑗
= 𝛾𝑗𝑥𝑗

𝛾𝑗−1
< 0 for each 𝑥𝑗 ∈ [0,1] ∪ 𝐼, this 

means that 𝑥𝑗
𝛾𝑗  is monotone decreasing function of 𝑥𝑗. It is clear that 𝑐𝑗𝑥𝑗

𝛾𝑗  is also a monotone 

decreasing function about  𝑥𝑗. Therefore, ∀ 𝑥 ∈ 𝑋(𝐴, 𝑏), when 𝑥 ≤ �̂�, then 𝑐𝑗 . 𝑥𝑗
𝛾𝑗
≥

𝑐𝑗 . �̂�𝑗
𝛾𝑗
         (1 ≤ 𝑗 ≤ 𝑛), such that 𝑓(𝑥) ≥ 𝑓(�̂�), so �̂� is an optimal solution to the problem (1). 
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It remains to study the case that if 𝛾𝑗 < 0  with the component �̂�𝑗 in �̂�𝑣2 equal to 𝐼, we know that 

𝐼𝑛 is undefined for 𝑛 ≤ 0, in this case, the component 𝑥𝑗 = 𝐼 that has a power 𝛾𝑗 < 0 will be 

replaced by that corresponding 𝑥𝑗 in the �̂�𝑣1. 

3.5 Proposition  

Let 𝑎 ∈ (0,1), 𝑏 = 𝑚𝐼 & 𝑐 = 𝑛𝐼, 𝑛,𝑚 ∈ (0,1], 𝑖𝑓 𝑚 ≥ 𝑛 , then 𝑎 Θ𝑏 ≥ 𝑎 Θ 𝑐. 

Proof 

1) Let  𝑎 > 𝑚 ⟹ 𝑎 > 𝑛, 

But we have 𝑚 ≥ 𝑛 ⟹ 𝑏 ≥ 𝑐 ⟹ 
𝑏

𝑎
≥

𝑐

𝑎
  ⟹  𝑎 Θ𝑏 ≥ 𝑎 Θ 𝑐. 

2) Let  𝑎 ≤ 𝑚 ⟹ 𝑎 Θ 𝑏 = 1, since 𝑚 ≥ 𝑛 ⟹ 𝑎 Θ 𝑐 ≤ 1 

Hence,  𝑎 Θ 𝑐 ≤ 𝑎 Θ 𝑏. 

3.6 Corollary  

Let 𝑎 ∈ (0,1), 𝑏 = 𝑚𝐼,   𝑐 = 𝑛𝐼,𝑚, 𝑛 ∈ (0,1], if 𝑚 ≥ 𝑛 then 𝑎 Θ (𝑏⋁𝑐) ≥ 𝑎 Θ 𝑐 

Proof 

Since  𝑚 ≥ 𝑛 ⟹ 𝑏 ≥ 𝑐 ⟹  𝑏⋁𝑐 = 𝑏, from proposition 2.5, we have  

 𝑎 Θ 𝑏 ≥ 𝑎 Θ 𝑐         (𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 𝑏⋁𝑐 𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑏) ⟹  𝑎 Θ (𝑏⋁𝑐) ≥ 𝑎 Θ 𝑐. 

3.7 Proposition  

 Let 𝑎 ∈ (0,1), 𝑏 = 𝑚𝐼,𝑚 ∈ (0,1], then 𝑎. (𝑎 Θ 𝑏) = 𝑎⋀𝑏. 

Proof 

1) Let  𝑎 > 𝑚 ⟹
𝑚𝐼

𝑎
=

𝑏

𝑎
= 𝑎 Θ 𝑏 [multiply both sides by 𝑎] ⟹ 

𝑏 = 𝑎. (𝑎 Θ 𝑏)                                                                                                                                                     (10) 

2) Let   𝑎 ≤ 𝑚 ⟹ 𝑎 Θ 𝑏 = 1 [multiply both sides by 𝑎] ⟹ 

𝑎 = 𝑎. (𝑎 Θ 𝑏)                                                                                                                                              (11) 

From (10) & (11) we have 𝑎. (𝑎 Θ 𝑏) = 𝑎⋀𝑏. 
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3.8 Proposition  

Let 𝑎 ∈ (0,1), 𝑏 = 𝑚𝐼,𝑚 ∈ (0,1], then  𝑎. (𝑎 Θ 𝑏) = {
𝑏          𝑎 > 𝑎𝑚
1           𝑎 ≤ 𝑎𝑚

 . 

Proof  

1) Let  𝑎 > 𝑎𝑚 , from definition (3.2) we have 𝑎 Θ (𝑎.𝑚) =
𝑎.𝑚𝐼

𝑎
= 𝑚𝐼 = 𝑏. 

2) Let 𝑎 ≤ 𝑎𝑚 , again from definition (3.2) we have 𝑎 Θ (𝑎. 𝑏) = 1. 

Hence,    𝑎 Θ (𝑎. 𝑏) = {
𝑏          𝑎 > 𝑎𝑚
1           𝑎 ≤ 𝑎𝑚

 

 

4 Numerical examples 

In the upcoming examples, the (max- product) neutrosophic geometric problem is considered. 

 

4.1 Example  

Let min𝑓(𝑥) = (0.3. 𝑥1
2) ∨ (1.8𝐼 . 𝑥2

1

3) ∨ (𝐼 . 𝑥3

1

4) 

s. t.   𝐴𝑜𝑥 = 𝑏 

𝑥𝑗 ∈ [0,1]⋃𝐼     (1 ≤ 𝑗 ≤ 𝑛)     

Where   𝑏 = (1,
1

3
𝐼,
1

5
𝐼)𝑇 ,  𝐴 = (

. 6 1 . 2

. 5 . 2 . 1

. 3 . 5 . 1
)

3×3

 

Using the formula (2), we can find the components of 𝑥𝑣1 as follows  

𝑥1 =⋀(𝑎𝑖1 ⋈ 𝑏𝑖) =

3

𝑖=1

(𝑎11 ⋈ 𝑏1) ∧ (𝑎21 ⋈ 𝑏2) ∧ (𝑎31 ⋈ 𝑏3)

= (0.6 ⋈  1) ∧ (0.5 ⋈  
1

3
𝐼) ∧ (0.3 ⋈  0.2𝐼) = 1 ∧ 1 ∧ 1 = 1 

𝑥2 =⋀(𝑎𝑖2 ⋈ 𝑏𝑖) =

3

𝑖=1

(𝑎12 ⋈ 𝑏1) ∧ (𝑎22 ⋈ 𝑏2) ∧ (𝑎32 ⋈ 𝑏3)

= (1 ⋈  1) ∧ (0.2 ⋈ 
1

3
𝐼) ∧ (0.5 ⋈  0.2𝐼) = 1 ∧ 1 ∧ 1 = 1 
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𝑥3 =⋀(𝑎𝑖3 ⋈ 𝑏𝑖) =

3

𝑖=1

(𝑎13 ⋈ 𝑏1) ∧ (𝑎23 ⋈ 𝑏2) ∧ (𝑎33 ⋈ 𝑏3) 

= (0.2 ⋈  1) ∧ (0.1 ⋈  
1

3
𝐼) ∧ (0.1 ⋈  0.2𝐼) = 1 ∧ 1 ∧ 1 = 1 

 

∴  𝑥𝑣1  = (𝑥1, 𝑥2, 𝑥3)
𝑇 = (1,1,1)𝑇 

Using the formula (3), we can find the components of 𝑥𝑣2 as follows  

𝑥1 =⋀(𝑎𝑖1Θ 𝑏𝑖) =

3

𝑖=1

(𝑎11Θ 𝑏1) ∧ (𝑎21Θ 𝑏2) ∧ (𝑎31Θ 𝑏3)

= (0.6 Θ 1) ∧ (0.5 Θ 
1

3
𝐼) ∧ (0.3 Θ 0.2𝐼) = 1 ∧

1
3⁄

0.5
𝐼 ∧

0.2

0.3
𝐼 =

2

3
𝐼 

𝑥2 =⋀(𝑎𝑖2Θ 𝑏𝑖) =

3

𝑖=1

(𝑎12Θ 𝑏1) ∧ (𝑎22Θ 𝑏2) ∧ (𝑎32Θ 𝑏3)

= (1 Θ 1) ∧ (0.2 Θ 
1

3
𝐼) ∧ (0.5 Θ 0.2𝐼) = 1 ∧ 1 ∧

2

5
𝐼 =

2

5
𝐼 

 

𝑥3 =⋀(𝑎𝑖3Θ𝑏𝑖) =

3

𝑖=1

(𝑎13Θ 𝑏1) ∧ (𝑎23Θ 𝑏2) ∧ (𝑎33Θ 𝑏3) 

= (0.2 Θ 1) ∧ (0.1 Θ 
1

3
𝐼) ∧ (0.1 Θ 0.2𝐼) = 1 ∧ 1 ∧ 1 = 1 

 

∴  𝑥𝑣2 = (𝑥1, 𝑥2, 𝑥3)
𝑇 = (

2

3
𝐼,
2

5
𝐼, 1)

𝑇

 

In this example, 𝐴𝑣1 = (
. 6 1 . 2
0 0 0
0 0 0

) , 𝐴𝑣2 = (
0 0 0
. 5 . 2 . 1
. 3 . 5 . 1

),  

𝐴𝑜𝑥 = (𝐴𝑣1𝑜𝑥𝑣1) + (𝐴𝑣2𝑜𝑥𝑣2) = (
. 6 1 . 2
0 0 0
0 0 0

)𝑜 [
1
1
1
] + (

0 0 0
. 5 . 2 . 1
. 3 . 5 . 1

) 𝑜

[
 
 
 
 
2

3
𝐼

2

5
𝐼

1 ]
 
 
 
 

=

[
 
 
 
 
1
1

3
𝐼

1

5
𝐼]
 
 
 
 

= 𝑏 

 

Since 𝐴𝑜𝑥 = 𝑏, then there is a solution in 𝑋(𝐴, 𝑏) and 𝑥 is the greatest solution 

to 𝐴𝑜𝑥 = 𝑏. The value of 𝑓(𝑥) is calculated as follow, 
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𝑓(𝑥) = 𝑓(𝑥𝑣1) ∨ 𝑓(𝑥𝑣2) 

𝑓(𝑥) = 〈(0.3 . (1)2) ∨ (1.8𝐼 . (1)
1

3) ∨ (𝐼 . (1)
1

4)〉 ∨ 〈(0.3. (
2

3
𝐼)2) ∨ (1.8𝐼 . (

2

5
𝐼)

1

3
) ∨

(𝐼 . (1)
1

4)〉 = 〈(0.3 ) ∨ (1.8𝐼) ∨ (𝐼 )〉 ∨ 〈(0.133𝐼) ∨ (1.33𝐼) ∨ (𝐼)〉 = 1.8𝐼  

Do not forget that the indeterminate component 𝐼 to the power 𝑛 where 𝑛 > 0 

is equal to 𝐼 (i.e. 𝐼𝑛 = 𝐼  𝑓𝑜𝑟 𝑛 > 0). 

 

4.2 Example  

 

Let 𝐴 = (
0.1 1 0.4
𝐼 0.9 0
0.5 0.2𝐼 0.7

) , 𝑏 = (
1
0.3𝐼
0.6

), 

It easy to see that some components of the matrix 𝐴 are of the form 

𝑎𝑖𝑗 = 𝑚𝐼,𝑚 ∈ (0,1], while 𝑏𝑖 ∈ [0,1] ∪ 𝐼, in this case, and by theorem (3.2), the 

system of the relation equation 𝐴𝑜𝑥 = 𝑏 is incompatible.  

 

4.3 Example  

 

Let min𝑓(𝑥) = (0.2𝐼. 𝑥1
−
2

3) ∨ (1.3. 𝑥2

1

3) ∨ (𝐼 . 𝑥3

1

2) ∨ (0.35. 𝑥4
−2) 

s. t.   𝐴𝑜𝑥 = 𝑏 

𝑥𝑗 ∈ [0,1]⋃𝐼     (1 ≤ 𝑗 ≤ 𝑛)     

 

Where   𝑏 = (0.3, 0.7𝐼, 0.5, 0.2𝐼)𝑇 ,  𝐴 = (

. 2 . 3 . 4 . 6

. 3 . 2 . 9 . 8
1
0

0
. 5

. 1 1
1 0

)

4×4

 

 

Using the formula (2), the components of 𝑥𝑣1 are  

𝑥1 =⋀(𝑎𝑖1 ⋈ 𝑏𝑖)

4

𝑖=1

= 0.5 

𝑥2 =⋀(𝑎𝑖2 ⋈ 𝑏𝑖)

4

𝑖=1

= 1 
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𝑥3 =⋀(𝑎𝑖3 ⋈ 𝑏𝑖) =

4

𝑖=1

3

4
 

𝑥4 =⋀(𝑎𝑖4 ⋈ 𝑏𝑖) =

4

𝑖=1

1

2
 

 

∴  𝑥𝑣1  = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 = (0.5,1,

3

4
, 0.5)

𝑇

 

Using the formula (3), the components of 𝑥𝑣2 are  

𝑥1 =⋀(𝑎𝑖1Θ 𝑏𝑖) =

4

𝑖=1

1 

𝑥2 =⋀(𝑎𝑖2Θ 𝑏𝑖) =

4

𝑖=1

2

5
𝐼 

 

𝑥3 =⋀(𝑎𝑖3Θ𝑏𝑖) = 0.2𝐼

4

𝑖=1

 

𝑥4 =⋀(𝑎𝑖4 Θ𝑏𝑖) = 0.875𝐼

4

𝑖=1

 

 

∴  𝑥𝑣2 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 = (

2

5
𝐼, 1,0.2𝐼, 0.875𝐼)

𝑇

 

In this example, 𝐴𝑣1 = (

. 2 . 3 . 4 . 6
0 0 0 0
1
0

0
0

. 1 1
0 0

) , 𝐴𝑣2 = (

0 0 0 0
. 3 . 2 . 9 . 8
0
0

0
. 5

0 0
1 0

),  

𝐴𝑜𝑥 = (𝐴𝑣1𝑜𝑥𝑣1) + (𝐴𝑣2𝑜𝑥𝑣2)

= (

. 2 . 3 . 4 . 6
0 0 0 0
1
0

0
0

. 1 1
0 0

)𝑜

[
 
 
 
 
0.5
1
3

4
0.5]
 
 
 
 

+ (

0 0 0 0
. 3 . 2 . 9 . 8
0
0

0
. 5

0 0
1 0

)𝑜

[
 
 
 
 
2

5
𝐼

1
0.2𝐼
0.875𝐼]

 
 
 
 

= [

0.3
0.7𝐼
0.5
0.2𝐼

] = 𝑏 
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Since 𝐴𝑜𝑥 = 𝑏, then there is a solution in 𝑋(𝐴, 𝑏) and 𝑥 is the greatest solution 

to 𝐴𝑜𝑥 = 𝑏. The value of 𝑓(𝑥) is calculated as follow, 

𝑓(𝑥) = 𝑓(𝑥𝑣1) ∨ 𝑓(𝑥𝑣2) 

𝑓(𝑥) = 〈(0.2𝐼 . (
1

2
)−

3

2) ∨ (1.3. (1)
1

3) ∨ (𝐼 . (
3

4
)

1

2
) ∨ (0.35. (0.5)−2)〉 ∨

〈(0.2𝐼 . (1)−
3

2) ∨ (1.3. (0.4𝐼)
1

3) ∨ (𝐼 . (0.2𝐼)
1

2) ∨ (0.35. (0.5)−2)〉 = 〈(0.57𝐼 ) ∨

(1.3) ∨ (0.87𝐼 ) ∨ (0.5𝐼 )〉 ∨ 〈(0.2𝐼) ∨ (0.96𝐼) ∨ (0.45𝐼) ∨ (0.5𝐼)〉 = 1.3  

 

 

5 Conclusion 

 It is important to know that the fuzzy geometric programming problems (FGPP) have 

wide applications in the business management, communication system, civil engineering, 

mechanical engineering, structural design and optimization, chemical engineering, optimal 

control, decision making, and electrical engineering, unfortunately, the fuzzy logic lacks to 

cover the indeterminate solution of any real-world problems, this pushed the author to 

construct a new branch of the neutrosophic geometric programming (NGP) problems subject 

to neutrosophic relation equations (NRE) and made a series of articles in an attempt to cover 

the theoretical sides of (NGP) problems. This paper contains a new (NGP) model subject to 

(NRE) with setting up a definition for the maximum solution of this program as well as some 

new theorems dealt with the consistency of the problem and some propositions of the new 

operation Θ. The future prospects are to make a deep study for the above-mentioned 

applications from the point of view of relational neutrosophic geometric programming (RNGP) 

problems.  
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