Neutrosophic Sets and Systems, Vol. 59, 2023
University of New Mexico

*.:

An Introduction to The Dual Symbolic 3-Plithogenic
And 4-Plithogenic Numbers

1Khadija Ben Othman, 2Maretta Sarkis, > Djamal Lhiani

L-Umm Al-Qura Univerity, Mekka, Saudi Arabia
2Abu Dhabi University, Abu Dhabi, United Arab Emirates

3University of Blida 1, Department of Mathematics, Algeria
Co-khagijabenothman33@gmail.com

Abstract:

The objective of this paper is to use dual numbers with symbolic 3-plithogenic and
4-plithogenic numbers in one numerical system called dual symbolic

3-plithogenic/4-plithogenic numbers.

Also, the elementary algebraic properties of the suggested systems will be
discussed in terms of theorems and related examples that explain the validity of

these algebraic number systems.

Keywords: Symbolic 3-plithogenic number, dual number, dual symbolic
3-plithogenic number, Symbolic 4-plithogenic number, dual symbolic

4-plithogenic number.

Introduction and preliminaries.

Dual numbers are considered as a generalization of real numbers, where they are
defined as follows:

D = {a + bt; t?> = 0,a,b € R}[1]. Dual numbers make together a commutative ring
with many interesting properties.

Addition on D is defined as follows:
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(ag + bot) + (a; + byt) = (ag + ay) + (by + by)t

Multiplication on D is defined as follows:

(ao + bot). (ay + byt) = (apay) + (aohy + boay)t

In [2-4], smarandache presented symbolic n-plithogenic sets, then they were used in
generalizing many famous algebraic structures such as rings, matrices, and other
structures [6-11].

We refer to many similar numerical systems that generalize real number, such as
neutrosophic numbers, split-complex number, and weak fuzzy numbers [12-18].
These generalized numbers were applicable in cryptography and matrix
theory[19-24].

Through this paper, we use symbolic 3-plithogenic real numbers and symbolic
4-plithogenic real numbers to build a new generalization of real numbers, and we
present some of its elementary algebraic properties.

Main concepts.

Definition.

The set of symbolic 3-plithogenic dual numbers is defined as follows:

3—=SPp ={(xo +x1t) + (o + ¥1)Py + (2o + z1)P; + (So + 510)P3; X, V1, 21, S; €

R, t? = 0}.

Definition.

Addition of 3 — SPj, is defined:

[(mg + myt) + (ko + k1) Py + (5o + 51:0)P; + (g + 118) Ps] + [(ng + ny8) +

(lo + Lit)P; + (qo + q18) Py + (go + g1t)P3] = (mg +ng) + (my +ny)t + [(ko + [p) +
(ky + 1)t]Py + [(so + qo) + (1 + q)t]P, + [(ro + go) + (1 + g1)t]Ps.

(3 — SPp, +) is an abelian group.

Remark.

A symbolic 3-plithogenic dual number X = (xq+ x1t) + (yo +y1t)P; +
(2o + z1t)Py + (5o + 51t)P3

can be written:

X=(x0+y0P1 +Z0P2+50P3)+t(xl+y1P1+Z1P2+51P3).
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Definition.

Let

X = (%o + x1Py + %3P, + x3P3) + t(%g + X1 Py + X, P, + X3P3) = My + Mj,t,

Y = (yo +y1P1 + y2P; + y3P3) + (Yo + 1Py + Yo P, + Y3P3) = Ny + Not € 3 — SPp,
then:

Multiplication on 3 — SPj, is defined as follows:

X.Y = MyN, + t(M,N, + N;M,)

Example.

Consider X = (1+ P, + P, + P3) +t(2 — P;),Y = P, + t(1 — P3), we have:
X+Y=(1+42P, +P,+P) +t(3—2P;)

XY=A+P +P,+P)P, +t[(1+ P+ P, +P3)(1—P;) +(2—P3)P;] =

2Py + P, +P3) +t[(1—P3+ P, —Ps+P; —P; + P, — P;) + 2P, — P3] =

(2P, + P, +P;) +t(1 + P, + P, — 3P;).

Remark.

(3—=SPp,+,.) Is a commutative ring.

Invertibility:

Theorem.

Let X = (my + myP; + myP, + myP;) + t(ny + n Py + nyP, + n3P;) € 3 —SPy, then
X is invertible if and only if my # 0,my + my # 0,mg + my + my, # 0,my + my +

m, + my # 0 and:

;1 1 1 1 1
PO L N P )
X Imy my+m; my me+my+m, my+my

1 1
+( - )7
mog+my+m,+ms myg+mg+m,
Ng ng + ny ny
-t 2 ( 2 2) Py
(my) (mg +my) (my)
( ng +ny +n, ny +ny )
(mo +my; +my,)? (mo +m,)? 2

( ng+n,+n, +n3 ng+n, +n, > ]
(mg+my +m, + m3)2  (my+my +my,)?/ 3

Proof.
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X isinvertible if and only if % is defined as follows:

1 1

}_(m0+m1P1+m2P2+m3P3)+t(n0+n1P1+n2P2+n3P3)

_ (mo+m1P1+m2P2+m3P3)—t(n0+n1P1+n2P2+n3P3)

- [(mo +m1P1+m2P2 +m3P3)+t(no +n1P1+n2P2 +n3P3)][(m0+m1P1 +m2P2 +m3P3)_t(n0+n1P1+n2P2 +n3P3)]

_(m0+m1P1+m2P2+m3P3)—t(no +n1P1 +n2P2 +n3P3)
(m0+m1P1+m2P2 +m3P3)2

SO that my + m1P1 + m2P2 + m3P3 is invertible in 3 — SPR

ThlS is equivalent to my * 0, my + mq * 0, my + mq + m, * O, my + mq + m, +

ms # 0.

On the other hand, % = L —t (o414 Py +12 Py +sPs)”

m0+m1P1+m2P2+m3P3 (m0+m1P1+m2P2+m3P3)2

puty=[_+(1 S P S U P S S
my mo+mq my Mmo+mq+my mo+mq mo+mq+myo+ms

) ] t[ ( Nno+nq _ Ng ) ( Nno+tni+n, _ Nno+nq ) +
mo+mq+m; (mg)? (mg+my)?  (mo)? 1 2

(mo+my+my)?2  (mo+mq)?
( Nno+tni+ny+ns No+ni+n, ) ]
(mo+m1+m2+m3)2 (m0+m1+m2)2 3

Compute the result of XY to get:

XYy =1

So that, X~ 1 = % =Y

Example.

Take X = (1+ P;) + t(2 + P;) €3 — SPy:

O N Ll S LN IS ISR

t(2-2py).

Natural power.

Theorem.

Let X = (my + myP; + myP, + mgPs3) + t(ng + nyP; + ny,P, + n3P3) € 3 — SPp, then:
"= (me)" + ((my + m™ — (me)™)Py + (Mg + my + my)" — (Mg + my)")P, +

((myg+my + my + m3)™ — (my + my + my)")P; + n(ny + Py + n, P, +

n3P3)[(me)"~t + ((mg + m)" ™ — (M) P, + ((mg + my +my)" ™+ —

(mg + m)™ HP,((my + my + my + mg)"* — (my + my + my)" )P;] for n € N.

Proof.

Let X =A+ Bt;A,B € 3 — SPp, then:
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A" = A™ + nA"1Bt, we get:
A" = (mo)™ + ((mg + my)™ — (me)™)Py + ((mg + my + my)" — (Mg + my)™)P, +
((my + my + my + m3)"™ — (my + my + my)") P, then the proof holds.
Example.
Take X = (1+ P;) +t(2 — P;) € 3 — SP,
X3=1+(1—-1DP,+(1—-1DP, +(8—=1P; +3t(2—P)[1+ (1 - 1P, +
(1-1)P,+(4—1)P;] =1+ 7P; +3t[(2—P3)(1 +3P;)] =1+ 7P; + t(6 + 6P).
Idempotency.
Definition.
Let X € 3 —SPp, then X is called idempotent if and only if X? = X.
Theorem.
Let X = (mg + myP; + myPy+m3P;) + t(ng + NPy + nyPy4n3P;) € 3 —SP,, then X
is called idempotent if and only if:
1. mg +myP; + my,P,+m3P; isidempotent.
2. (ng+n Py +ny,Py + n3P3)[2my — 14+ 2my Py + 2m,Py+2m3P;] = 0
Proof.
X =M + Nt is idempotent if and only if:

M2=M
2UN=N=NQ2M-1)=0

X?=X= {
For M = my + myP; + myP,+m3P;, N = nyg + n P, + n,P,+n3P; € 3 — SPg.
This implies the proof.

Definition.

The set of symbolic 4-plithogenic dual numbers is defined as follows:

4 —SPy = {(xg + x1t) + (yo + y1OPy + (29 + 2, )P, + (5o + s1.t)P5 + (Iy +
LLt)Py; x;, v, 21, i, |; € R, t2 = 0}.

Definition.

Addition of 4 — SP;, is defined:

[(mg + myt) + (ko + k1t)Py + (S + 518) P + (1 + 11t)P3 + (do + dit)Py] +
[(no + nit) + (Lo + L) Py + (qo + 1) P, + (go + g1t)Ps + (co + 1) Py] =
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(mo + ng) + (my +ny)t + [(ko + o) + (ky + 1)E]Py + [(so + qo) + (51 + q1)t]P; +
[(ro + go) + (1 + g)t]Ps + [(do + o) + (dy + ¢1)t]Py.

(4 — SPp, +) is an abelian group.

Remark.

A symbolic 4-plithogenic dual number X = (x¢+ x1t) + (yo + y1t)P; +
(zg + z1)P, + (5o + 51t)P; + (dy + d1t)P,

can be written:

X = (xg +yoP;y + zoPy + soP3 + dyP,) + t(xy + y1P; + 2. P, + 5, P; + d,P,).
Definition.

Let

X = (xg + x1P; + X3Py + x3P3 + x4 P) + t(Xo + %, Py + %, Py + X3P + %,P,) = M, +
M,t,

Y=o+ y1P1 +YPy +¥3Ps + Y4Ps) + t(Jo + 91 P1 + Y2 Py + Y3Ps + Y4Py) = Ny +
Nyt € 4 — SPp,

then:

Multiplication on 4 — SPj, is defined as follows:

X.Y = M;N, + t(M;N, + N, M,)

Example.

Consider X = (1+P,) +t(2—P;),Y =P, + t(1 — P,), we have:

X+Y=(1+4P, +P)+t(3—P;—P,)
XY=QA+P)P,+t[(1+P)A—-P)+(2—=P)P] =(P,+P)+t[(1—Py)+ 2P, —
P;] = (P, +P,) +t(1+2P, —P; —P,).

Remark.

(4 —SPp,+,.) Is a commutative ring.

Invertibility:

Theorem.

Let

X = (mg + myP; + myP, + myP; + myP,) + t(ng + n Py + nyP, + 3Py + nyP,) € 4 —
SPp,
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then X is invertible if and only if my # 0,my +my # 0,my + my + my, # 0,my +

my+my,+my #0,my+m; +my, +my+my #0 and:

— 1 1 1 1 1 1 1
ST EUY NI P S S T P SR S
X my mo+mq my mo+m,+ms, mo+mq mo+my+my+ms

1 1 1 no Ng+ny no
) s P [ (- )
mo+my+m, Mmo+my+my+mz+m, mo+mq+my,+m; (my) (my+m,) (my)

( Nng+n,+n, ng+ng ) +( Nng+n,+n,+n; nog+n,+n, ) ( no+n,+n,+nz+ny
(mo+mq+my)2  (my+m,)? 2 (mo+my+my+m3)2  (mo+my+m,)2 3 (mo+mq+my+mg+my)?

No+n,+n,+ns ) ]
(mo +myi+m, +m3)2 4

Proof.

X is invertible if and only if % is defined as follows:

1

X
1

(Mg+My Py +My Py +M3P3+myPy)+t(g+n1 Py +N2 Py +N3P3+14Py)

(mg + myP; + myP, + myP; + myP,) — t(ng + n P, + n, P, + ngP; + n,P,)
[(my + myP; + myuP, + myP; + myP,) + t(ng + ny Py + nyP, + ngPy + n, P)][(my + my Py + myP, + myPy + myP,) — t(ng + ny P, + ny P, + ngPy + ny,Py))

(mo +m1P1 +m2P2 +m3P3 +m4P4)—t(n0 +n1P1 +n2P2 +Tl3P3 +Tl4_P4)
(mo +m1P1 +m2P2 +m3P3 +m4P4_)2

So that my + m; P; + myP, + m3P; + m,P, is invertible in 4 — SPg.
This is equivalent to my#0,myg+my #0,my+my+m, #0,my+my +my +mg #

0,my+mqy + my + my +my # 0.

On the other hand,
1 1 (ng+n, Py +n,Py+n3P3+1,P,)?
X  my+mqPi+myPy+msP3+myP, (mg+mqPy+myPy+msP3+myP,)?
Put

1 1 1 1 1 1 1
= ) ) G-
my mo+mq my mo+mq+my, mo+mq mo+my+my+ms mo+mq+m,

1 1 Un no+ng No no+ni+n,

( S ) A P
mo+mq+my+msz+my, mo+mq+my+msg (mo) (m0+m1) (mo) (mo+m1+m2)
ng+ng Nngt+ni+n,+ns nog+n,+n, Ngt+Nni+ny+nz+ny

z) P2t 2 2) 13 2

(mo+my) (mo+my+my+ms) (mo+my+m;) (mo+mq+my+mz+my)
No+n,+ny+ng ) ]

(m0+m1+m2+m3)2 4

Compute the result of XY to get:
XY =1
So that, X! = % =Y

Natural power.
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Theorem.

Let
X = (my+myP; + myP, + mgP; + myP,) + t(ng + ny Py + ny,P, + n3P; + n,P,) €
4 —SPp,
then:
X" = (mo)" + ((mo + m™ — (m)™") Py + ((my + my + my)" — (Mg + my)")P, +
((myg+my +my +my)" — (my +my + my)™")P; + (Mg + my + my + m3 + my)™ —
(mg + my + my, + m3)")Py + n(ng + n Py + 1Py + ngPs + nyP)[(mg)" 1 +
((mg +my)"™t = (M) HPy + (Mg + my +mp)" ™1 — (my + m)" )P, ((my + my +
my +m3)" 1 — (my + my + my)" P; + ((mg + my +my +my +my)* 1 —
(mg + my + my, + m3)""1)P,] for n € N.
Proof.
Let X =A+ Bt;A,B € 4 — SPp, then:
A" = A™ + nA"1Bt, we get:
A" = (mg)"™ + ((mo + my)"™ — (me)™)Py + (Mo + my + my)" — (M + my)™)P; +
((my+my+my+mz)" —(mg+my +my)")P; + (Mg +my + my + mg + my)" —
(mgy + my + my, + m3)™)P,, then the proof holds.
Idempotency.
Definition.
Let X € 4 — SPp, then X is called idempotent if and only if X? = X.
Theorem.
Let X = (my + myP; + myPy+mzPs+myP,) + t(ng + ny Py + nyPy+ngPs+myP,) €
4 — SPp, then X is called idempotent if and only if:
1. mg +myP; + myP,+m3P;+m,P, isidempotent.
2. (ng+n Py +nyPy + n3Py +n,P)[2my — 1+ 2my Py +
2myP,+2myPs+2my, Pyl = 0
Proof.
X =M + Nt is idempotent if and only if:

M?=M

2
X _X:{ZMN=N=>N(2M—1)=O
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For M =my+ mP; + myP,+m3P;+m,Py, N = nyg + nyP; + n,P,+n3P; + nyP, € 4 —
SPg.
This implies the proof.
Conclusion
In this paper, we have studied for the first time the combination of symbolic
3-plithogenic numbers and 4-plithogenic numbers with dual numbers. The novel
algebraic structures generated by them are called dual symbolic 3-plithogenic
numbers and dual symbolic 4-plithogenic numbers.
We have determined the invertibility condition and the formula of the inverse for
dual symbolic 3-plithogenic and 4-plithogenic numbers.
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