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Abstract: Non-linear neutrosophic numbers (NLNNs) are different kinds of neutrosophic numbers 

with at least one non-linear membership function (either of truthiness, falsity or indeterminacy 

part) of the information. Furthermore, a linear programming problem with non-linear 

neutrosophic numbers as coefficients/parameters is a special type of programming problem known 

as a non-linear linear programming problem (NLN-LPP). This paper elaborates on the concepts of 

non-linear neutrosophic number (NLNN) sets, different forms of non-linear neutrosophic numbers 

(NLNNs), , ,   cuts on non-linear neutrosophic numbers (NLNNs), possibility mean, possibility 

standard deviation, and possibility variance of non-linear neutrosophic numbers (NLNNs). In this 

paper, we also propose the solution technique for non-linear neutrosophic linear programming 

problems (NLN-LPPs) in which all coefficients/parameters are non-linear neutrosophic numbers 

(NLNNs). In this continuation, we suggest a new modified possibility score function for non-linear 

NNs in terms of possibility means and possibility standard deviations of non-linear neutrosophic 

numbers (NLNNs) for better use of all parts of information. This modified score function is used to 

convert non-linear neutrosophic number (NLNN) coefficients/parameters of non-linear 

neutrosophic linear programming problem (NLN-LPP) into equivalent crisp values. Thereafter, the 

equivalent crisp problem is solved with the usual method to obtain the optimal solution of 

non-linear neutrosophic linear programming problem (NLN-LPP). The proposed solution 

algorithm is unique and new for solving non-linear neutrosophic linear programming problems. A 

numerical example is solved with the proposed algorithm to legitimate the research output. A case 

study is also discussed to show its applicability in solving real-life problems. 

Keywords: Linear programming problem; Non-linear neutrosophic numbers (NLNNs), Possibility 

score function of Non-linear neutrosophic numbers (NLNNs), Possibility mean of Non-linear 

neutrosophic numbers (NLNNs), Possibility standard deviation of Non-linear neutrosophic 

numbers (NLNNs). 

 

 

1. Background of the Problem and Motivation – An Introduction   

In 1965, Prof. Zadeh [1] introduced the concept of fuzzy set theory to deal with the uncertainty and 

ambiguity in information due to human language error and human perceptions. Prof. Zadeh [1] 

defined a set  : ( ) ,0 ( ) 1;T T

A AA x x x x X      with objects x having ( )T

A x  degree of acceptance 

of particular characteristic. This set A is called as fuzzy set with membership function ( )T

A x . Since 

1965, many researchers have contributed in the area of fuzzy set, fuzzy logic, and its application in 

solving real-world problems. 

Fuzzy sets (FSs) are further classified into two major types – (i) Linear fuzzy set - FS with linear 

membership function e.g. triangular, trapezoidal, pentagonal (Chakraborty et al. [2]), hexagonal 
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(Chakraborty et al. [3]), heptagonal (Maity et al. [4]), etc.  (ii) Non-linear Fuzzy set – FS with 

non-linear membership functions e.g. logarithmic, exponential membership function, etc. In general, 

fuzzy set (FS) theory avoids the involvement of other parts of information. Later, Atanassov [5-6] 

proposed the intuitionistic fuzzy set (IFS) theory and properties of IFS. Intuitionistic fuzzy set (IFS) – 

a more generalized FS theory that considers two parts of information i.e. acceptance (truthiness of 

information) and non-acceptance (falsity of information). Liu and Yuan [7] combined intuitionistic 

fuzzy set (IFS) and triangular fuzzy number (TFN) to introduce the intuitionistic triangular fuzzy set 

(ITFS) theory which has triangular membership functions for the truthiness and falsity part of 

information. Ye [8] extended the TIFS to trapezoidal form to introduce intuitionistic trapezoidal 

fuzzy set (ITrFS). On the other hand, a linear programming problem is one of the simplest problems 

of MPPs (Mathematical programming problems) which has linear objective function and linear 

constraints. LPPs play a vital role in formulating simple real-life problems that arise in Business, 

Govt. policies, industries, etc. LP problems are easy to solve with the Graphical and Simplex method 

depending upon the number of decision variables involved. The simplex method is a generalized 

method for solving any LPP with some manual computational efforts. In contrast with the past, 

LPPs and NLPPs (non-linear programming problems) are solved quickly and efficiently with the 

help of computational tools like LINGO©, MATLAB©, etc.  

1.1. Fuzzy and neutrosophic programming problems – Literature Review 

With time, fuzzy set theory and fuzzy numbers were incorporated in MPPs (LPPs, multiobjective 

programming problems (MOPPs), Bi-level/Multi-level programming problems (BLPPs/MLPPs), 

other extension problems, etc.) and many new solution techniques have been developed by 

researchers for solving MPPs with fuzzy parameters/coefficients. Some of the notable contributions 

are: Luhandjula [9] developed a new solution technique for fuzzy linear programming problem 

(FLPP). Arikan and Gunjar [10] proposed a new solution algorithm known as a two-phase approach 

for MOPPs with fuzzy coefficients. Wu [11] proposed to solve MOPP with fuzzy coefficients using 

the scalarization technique. For BLPPs/MLPPs, Shih et al. [12] suggested a general solution approach 

to solve fuzzy multi-level programming problems (FMLPPs). Baky [13] proposed an algorithm for 

ML-MOPPs through fuzzy goal programming approach. Osman et al. [14] suggested an interactive 

solution approach for ML-MOPPs with fractional objective functions and fuzzy parameters. Fuzzy 

set theory is based on only one aspect of information i.e. truthiness and avoids the other two parts of 

information which are indeterminacy and falsity. On the other hand, intuitionistic fuzzy set (IFS) 

theory considers two parts of information i.e. truthiness and falsity but ignores a third important 

part of information i.e. indeterminacy. To disseminate these shortcomings of FS and IFS, 

Samarandche [15] introduced a new theory known as Neutrosophic set theory (NN set theory) 

dealing with the object along with three parts of information - truthiness, falsity, and indeterminacy. 

Later, Samarandche [16-17] specified some properties of neutrosophic set (NS) theory and linear 

neutrosophic numbers (NNs) including Addition and subtraction of linear NNs, , ,    cuts on 

linear NNs, etc. Wang et al. [27] discovered a new type of NS – Single valued neutrosophic set 

(SVNS) to apply in real-life problems. Ye [18] introduced trapezoidal interval-valued NNs (IV 

TrNNs) by combining triangular neutrosophic numbers (TrNNs) and trapezoidal fuzzy numbers 

(TrFNs). Since the past few years, the combination of neutrosophic set theory (linear NNs) and MPPs 

(specifically for LPPs) has become a prominent area of research.  This is exhibited in a literature 

survey of recent years, e.g. Hussian et al. [19] used properties of NNs to convert neutrosophic LPP 

into an equivalent crisp LPP. Abdel-Basset et al. [20] suggested a new ranking function for the 

solution of neutrosophic LPP. Bera and Mahapatra [21] suggested a real-life application of 

neutrosophic LPP and developed a simplex method to solve it. Darehmiraki [22] proposed a new 

parametric ranking function to solve neutrosophic LPPs. Khatter [23] used properties of possibility 

mean of NNs to solve neutrosophic LPPs. Tamilarasi and Paulraj [24] developed a solution 

technique for neutrosophic LPPs with triangular NNs and de-neutrosophication of NNs with Melin 
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transform. Similar to FS theory, neutrosophic sets (NN sets) are classified as (i) linear NN sets and 

(ii) Non-linear NN sets. A linear NN set is a neutrosophic set with all linear membership functions 

(membership for truthiness, falsity, and indeterminacy) whereas a non-linear NN set is a 

neutrosophic set with at least one non-linear membership function (either of truthiness, falsity or 

indeterminacy).On the non-linear neutrosophic numbers (NLNNs), Chakraborty et al. [25] and 

Javier and Francisco [26] discussed about properties of NLNNs and their applications. Recently, 

Rabie A et al. [28] suggested a dual artificial variable-free simplex algorithm for neutrosophic linear 

programming problems. Badr El-Sayed et al. [29] discovered the exterior point simplex method for 

solving neutrosophic linear programming problems. Badr El-Sayed et al. [30] proposed two phase 

method approach for solving neutrosophic linear programming problems. Badr El-Sayed et al. [31] 

proposed an application part of neutrosophic goal programming in the context of sustainable 

development of Egypt. 

1.2. Novelty and Major Contributions 

Neutrosophic set theory plays a vital role in dealing with the uncertain and vague information that 

arises in real-world industrial problems. Many researchers have contributed on neutrosophic set 

theory and applied new techniques for solving real problems. Some of recent contributions are: 

Abdel-Basset M et al. [32] suggested important neutrosophic techniques for solving problems in 

various smart environments. Maissam Jdid and Smarandache [33] described the use of neutrosophic 

technique in solving two important operation research problems of ‘optimal design of warehouses’ 

and ‘capital budget allocation’. Abduallah Gamal et al. [34] proposed the use of type -2 neutrosophic 

number to obtain optimal solution of multi-criteria decision-making problems of autonomous 

vehicles and distributed resources. During the literature survey on NNs, it is disclosed that contrary 

to research on linear NNs, only a few researchers contributed on properties of non-linear 

neutrosophic numbers (NLNNs), arithmetic operations on NLNNs, its application in formulating 

real problems, etc. These are: Chakraborty et al. [25] discussed different types of Non-linear 

trapezoidal NNs and their properties. Javier and Francisco [26] discovered the basic properties of 

NLNNs, a new scoring function, and demonstrated its application to multiple criteria assessment 

problems of industry. Some typo errors have been pointed out in the work of Javier and Francisco 

[26] in defining different properties of NLNNs which are rectified in this manuscript. Further, the 

involvement of non-linear NNs in MPPs (LPPs or other complex MPPs) as coefficients/parameters is 

hardly ever been researched to date due to the computational complexities of Non-linear NNs, and 

therefore, no solution methodology has been developed for non-linear neutrosophic linear 

programming problem (NLN-LPP) till date.  This motivates us to extend the use of NLNNs in LPPs, 

propose a modified score function of NLNNs, and propose a solution technique for NLN-LPPs.  In 

this view, the main contribution of this paper can be summarized: 

(i) Proposed a new modified possibility score function for non-linear neutrosophic numbers 

(NLNNs) with the concept of normal approximation. 

(ii) Proposed a novel and unique solution technique for non-linear neutrosophic linear 

programming problem (NLN-LPP) using a modified possibility score function. 

(iii) Elaborated different properties of non-linear neutrosophic numbers (NLNNs) in the corrected 

form in a systematic manner for future researchers. 

In nutshell, this paper elaborates on the concepts of non-linear neutrosophic number (NLNN) sets, 

different forms of NLNNs, , ,   cuts on non-linear neutrosophic numbers (NLNNs), possibility 

mean, possibility standard deviation, and possibility variance of NLNNs. In this paper, we propose 

the solution technique for non-linear neutrosophic linear programming problems (NLN-LPPs) in 

which all coefficients/parameters are NLNNs. In this continuation, we suggest a new modified 

possibility score function for non-linear NNs in terms of possibility means and possibility standard 
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deviations of NLNNs for better use of all parts of information. This modified score function is used 

to convert NLNN coefficients/parameters of NLN-LPP into equivalent crisp values. Thereafter, the 

equivalent crisp problem is solved with the usual method to obtain the optimal solution of 

NLN-LPP. The proposed solution algorithm is unique and new for solving non-linear neutrosophic 

linear programming problems. A numerical example is solved with the proposed algorithm to 

legitimate the research output. A case study is also discussed to show its applicability in solving 

real-life problems. 

This paper is organized in a section-wise format: This first section of the paper gives a systematic 

introduction of the current research problem and focused literature review from the beginning. In 

sub-section 1.1, literature review on fuzzy and neutrosophic programming problems are presented. 

Sub-section 1.2 discloses the causes of motivation for proposing this research work, novelty of 

proposed work and major contributions. Some preliminaries on the neutrosophic set (NN set) are 

presented in next section 2 and its subsections. , ,    cut sets of NLNNs are defined and derived 

in subsection 2.1. Possibility mean, possibility variance, and possibility standard deviations are 

defined and derived in subsection 2.2. The modified possibility score function for NL-NNs is 

proposed in section 3. The formulation of non-linear neutrosophic linear programming problem 

(NLN-LPP) and suggested solution technique for NLN-LPPs are described and explained in section 

4. To better understand the proposed algorithm, one numerical example and a case study of an 

industrial decision-making problem based on NLN-LPP are illustrated in section 5. Conclusions and 

research directions for future researchers are proposed in the last section. 

2. Neutrosophic Set: Preliminaries  

In this section, we shall discuss some generic preliminaries on neutrosophic set (NN set) related to 

the research area under study. As we know that neutrosophic set (introduced by Smarandche [15]) is 

a set of objects with membership function values of truthiness, indeterminacy, and falsity of 

information of objects of concern set. Later, Wang et al. [27] gave the concept of single-valued NN 

which is NN set with values of membership functions lying within the interval [0, 1]. In continuation 

of this context, a single-valued neutrosophic set is mathematically defined by the following generic 

definition:  

Definition 1. (Wang et al. [27]): A neutrosophic set A in X is characterized as 

 : ( ), ( ), ( ),T T T

A A AA x x x x x X     where ( ), ( ), ( ) [0,1]A A AT x I x F x   represents degree of 

membership for truthiness, indeterminacy and falsity parts of information respectively along with 

condition 0 ( ) ( ) ( ) 3A A AT x I x F x    . If all membership functions of defined SVNNs are linear, then 

it is called as linear SVNNs. It is being reiterated that NNs are further classified as linear NNs and 

Non-linear NNs (NLNNs) on the linearity of all membership functions and non-linearity of at least 

one membership function of NN. Chakrabort et al. [25] presented the definition of non-linear 

trapezoidal type NN as: 

Definition 2. (Chakraborty et al. [25]): A single valued non-linear trapezoidal NN is defined as: 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 2 1 2: ( , , , ; , , , ; , , , ; , ; , ; , ; , , ); ( ), ( ), ( ),A A AA x a a a a b b b b c c c c p p q q r r T x I x F x x X        (1) 

where ( ), ( ), ( ) [0,1]A A AT x I x F x   represents membership for truthiness, indeterminacy and falsity of 

information respectively are given as: 
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along with conditions 0 ( ) ( ) ( ) 3A A AT x I x F x    and 
1 2 1 2 1, ; , ; , 1p p q q r r  . 

Thereafter, Javier and Francisco [26] proposed an alternate definition of non-linear NN for triangular 

values in view of mapping of parameter values   and   with their minimum and maximum 

values. According to Javier and Francisco [26], NLNNs are defined as follows: 

Definition 3. (Javier and Francisco [26]):  

         ( , ) : ( , , ; , , ); ( ), ( ), ( );m nA x a a a w y u T x I x F x x X              (5) 

is a single valued non-linear NN (SVNN) whose respective membership function ( ), ( )T x I x and 

( )F x  are defined as: 
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Where parameters ( , , ) [1, ]T I Fm m m m   ; ( , , ) [1, ]T I Fn n n n   . It can be observed from definition 

(6)-(8), when (1,1,1)m  ; (1,1,1)n  , then NLNN reduces to a triangular linear NN. 

2.1. , ,    cut- sets of non-linear neutrosophic numbers (NLNNs) 

Definition 4. : The , ,   cut sets of NLNN  ( , ) : ( , , ; , , ); ( ), ( ), ( );m nA x a a a w y u T x I x F x x X  are 

defined as:         ( , , ) , ( ) , ( ) , ( ) :A x T x I x F x x X                                        (9) 

With the conditions 0 ; 1; 1w y u         and 3     . Using the definition (5) - (8) of 
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Thus  cut set of NLNN ( , ; , , )m nA     is a closed interval described as: 
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In similar manner,  and cut set of NLNN ( , ; , , )m nA     are closed interval sets described as: 
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2.2 Possibility mean, possibility variance and possibility standard deviation of non-linear neutrosophic 

numbers (NLNNs) 

Definition 5. (Possibility mean of a NLNN): (Javier and Francisco [26]): For a NLNN as defined in (5) 

– (8),  ( , ) : ( , , ; , , );m nA x a a a w y u x X  and its  cut set i.e.
( , ; ) ( , ), ( , )

T T

L U

m n T TA T m T n      , then f- 

weighted possibility mean of truth membership function is defined as: 
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Where f-weight is considered as 2f
w

  as suggested by Chakraborty et al. [25]. Similarly, g- 
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2 2

( , )

2 3 2 3(1 )
( )

2 (1 2 )(1 ) (1 2 )(1 )

I I I I

I m n

I I I I

m a m a a n a n a ay
M A

m m n n

    
       

            (16) 

Also, h- weighted ( 2(1 )
(1 )

h
u





) possibility mean of indeterminacy membership function is 

defined as: 

                           
2 2

( , )

2 3 2 3(1 )
( )

2 (1 2 )(1 ) (1 2 )(1 )

F F F F

F m n

F F F F

m a m a a n a n a au
M A

m m n n

    
       

             (17) 

Definition 6. (Possibility variance of a NLNN): (Javier and Francisco [26]): For a NLNN as defined in 

(5)–(8),  ( , ) : ( , , ; , , );m nA x a a a w y u x X  and its  cut set i.e. 
( , ; ) ( , ), ( , )

T T

L U

m n T TA T m T n      , then 

f- weighted possibility variance of truth membership function is defined as: 

          
2 2 2 2 2 2 2

( , )

( ) ( ) ( )
( )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

T T T T

T m n

T T T T T T T T T T T T

m a a n a a n m a aa aa aa
V A w

m m n n m n m n m n m n

     
   

         
   (18) 

Where f-weight is considered as 2f
w

  as suggested by Chakraborty et al. [25]. Similarly, g- 

weighted ( 2(1 )
(1 )

g
y





) possibility variance of indeterminacy membership function is defined 

as: 

      
2 2 2 2 2 2 2

( , )

( ) ( ) ( )
( ) (1 )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

I I I I

I m n

I I I I I I I I I I I I

m a a n a a n m a aa aa aa
V A y

m m n n m n m n m n m n

     
    

         
   (19) 

Also, h- weighted ( 2(1 )
(1 )

h
u





) possibility mean of indeterminacy membership function is 

defined as: 

     
2 2 2 2 2 2 2

( , )

( ) ( ) ( )
( ) (1 )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

F F F F

F m n

F F F F F F F F F F F F

m a a n a a n m a aa aa aa
V A u

m m n n m n m n m n m n

     
    

         
  (20) 

Definition 7. (Possibility standard deviation of a NLNN): (Javier and Francisco [26]): For a NLNN 

 ( , ) : ( , , ; , , );m nA x a a a w y u x X  and its  cut set i.e. ( , ; ) ( , ), ( , )
T T

L U

m n T TA T m T n      , then 

possibility standard deviation of its membership functions are defined as: 

Possibility S.D = Possibility variance  
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  Possibility standard deviation of truth membership 
( , ) ( , )( ) ( )T m n T m nD A V A  

i.e.   

1
22 2 2 2 2 2 2

( , )

( ) ( ) ( )
( )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

T T T T

T m n

T T T T T T T T T T T T

m a a n a a n m a aa aa aa
D A w

m m n n m n m n m n m n

      
    

           

   (21) 

Possibility standard deviation of indeterminacy membership 
( , ) ( , )( ) ( )I m n I m nD A V A  

i.e   

1
22 2 2 2 2 2 2

( , )

( ) ( ) ( )
( ) (1 )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

I I I I

I m n

I I I I I I I I I I I I

m a a n a a n m a aa aa aa
D A y

m m n n m n m n m n m n

      
     

           

 (22) 

and possibility standard deviation of falsity membership function 
( , ) ( , )( ) ( )F m n F m nD A V A  

i.e 

1
22 2 2 2 2 2 2

( , )

( ) ( ) ( )
( ) (1 )

4(1 )(2 ) 4(1 )(2 ) ( 2 )( )

F F F F

F m n

F F F F F F F F F F F F

m a a n a a n m a aa aa aa
D A u

m m n n m n m n m n m n

      
     

           

(23) 

 

Remark 1. It is to be noted that there were some typo errors in definitions of possibility mean, 

possibility variance and possibility standard deviations of NLNNs given by Javier and Francisco [26] 

which are respectively corrected here and presented definitions (5) – (8) are in corrected form.   

Remark 2. It can also be observed from definition (5) – (8), when (1,1,1)m  ; (1,1,1)n  , then NLNN 

reduces to a single valued triangular NN (SVTNN) and accordingly their characteristics as: by 

definitions (15) – (23),        

Possibility means (1,1)

( 4 )
( )

6
T

a a a w
M A

 
 (1,1)

( 4 )(1 )
( )

6
I

a a a y
M A

  
 ; (1,1)

( 4 )(1 )
( )

6
F

a a a u
M A

  
  

Possibility variance
2

(1,1)

( )
( )

24
T

a a w
V A


 ; 

2

(1,1)

( ) (1 )
( )

24
I

a a y
V A

 
 ;

2

(1,1)

( ) (1 )
( )

24
F

a a u
V A

 
  

Possibility SD   (1,1)( ) ( )
24

T

w
D A a a  ; (1,1)

(1 )
( ) ( )

24
I

y
D A a a


  ; (1,1)

(1 )
( ) ( )

24
F

u
D A a a


   

 

3. Proposed modified possibility score function for non-linear neutrosophic numbers (NLNNs)  

Possibility score functions are used for ranking purposes and conversion of NNs into their 

equivalent crisp values. Javier and Francisco [26] proposed a possibility score function for NLNNs as 

a simple addition of the average of possibility means and possibility standard deviations related to 

truthiness. Indeterminacy and falsity membership values of NLNNs. Here we argue that this score 

function is a limitation to express all x values of the domain set in decision-making context. 

Therefore, to better characterize the role of all range values x in expressing the possibility score 

function, we propose a modified form of possibility score function for NLNNs: 

                          
( , ) ( , ) ( , )

( , )

( ) ( ) ( )
( )

3

T m n I m n F m n

m n

PS A PS A PS A
PS A

 
                 (24) 

Where ( , ) ( , ) ( , )( ), ( ), ( )T m n I m n F m nPS A PS A PS A  are respective possibility score functions for truth, 

indeterminacy and falsity membership functions which are defined as: 

                            ( , ) ( , ) ( , )( ) ( ) 2.58 ( )T m n T m n T m nPS A M A D A                         (25) 

                            ( , ) ( , ) ( , )( ) ( ) 2.58 ( )I m n I m n I m nPS A M A D A                         (26) 

                           ( , ) ( , ) ( , )( ) ( ) 2.58 ( )F m n F m n F m nPS A M A D A                         (27) 
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As the normal curve is the best fitted curve for all membership values in general conditions and this 

curve covers values with 99% confidence in interval 2.58 . .Mean S D  This is the main reason of 

proposing the possibility score function ((23) – (26)) in the modified form so that membership 

functions T(x), I(x) and F(x) graphs can be well approximated to normal curve with statistical 

parameters - possibility means and possibility standard deviation. The proposed modified 

possibility score function displays the contribution of all x values as in the normal curve.   

 

4. Formulation of Non-linear Neutrosophic Linear Programming Problem (NLN-LPP) and 

Proposed Solution Technique  

During the literature review, it has already been disclosed in particular that non-linear 

neutrosophic linear programming problems have not been discussed so far due to the non-linear 

complexities of functions. So, now we propose non-linear neutrosophic linear programming 

problems (NLN –LPP) as linear programming problems with non-linear neutrosophic numbers 

(NLNNs) as parameters/ coefficients of LPPs. In mathematical format, a single objective NLN-LPP 

with N decision variables can be described as:  

1,( , ) 1 2,( , ) 2 ,( , )/ ....m n m n N m n NMaximize Minimize Z c x c x c x     (Objective function) 

Subject to the set of constraints,   11,( , ) 1 12,( , ) 2 1 ,( , ) 1,( , ) .... ( )m n m n N m n N m na x a x a x b     

                               21,( , ) 1 22,( , ) 2 2 ,( , ) 2,( , ).... ( )m n m n N m n N m na x a x a x b     

. 

. 

                    1,( , ) 1 2,( , ) 2 ,( , ) ,( , ).... ( )M m n M m n MN m n N M m na x a x a x b     

And Non-negativity restrictions    
1 2, ,..., 0Nx x x                                              (28) 

Where superscript on coefficients indicates that concern coefficients are single valued NLNNs 

with the set of values  ( , ) : ( , , ; , , ); ( , ) ( , , ; , , );m n T I F T I FA x a a a w y u m n m m m n n n x X   . The other 

notations have usual meaning in respect of LPPs. Such problems (27) have incomplete, vague and 

uncertain information on coefficients in terms of NLNNs are defined as NLN-LPPs. In the real 

world, such decision-making problems are expected to have a crisp optimal solution. Thus, we here 

propose a solution methodology for NLN-LPPs in which firstly all NLNNs are converted into 

equivalent crisp values using respective modified possibility score functions. Mathematically, 

converted equivalent crisp LPP with modified possibility score functions can be described as: 

1,( , ) 1 2,( , ) 2 ,( , )/ ( ) ( ) .... ( )m n m n N m n NMaximize Minimize Z PS c x PS c x PS c x     (Objective function) 

Subject to,                    11,( , ) 1 12,( , ) 2 1 ,( , ) 1,( , ) ( ) ( ) .... ( ) ( ) ( )m n m n N m n N m nPS a x PS a x PS a x PS b     

                           21,( , ) 1 22,( , ) 2 2 ,( , ) 2,( , )( ) ( ) .... ( ) ( ) ( )m n m n N m n N m nPS a x PS a x PS a x PS b     

. 

. 

                       1,( , ) 1 2,( , ) 2 ,( , ) ,( , )( ) ( ) .... ( ) ( ) ( )M m n M m n MN m n N M m nPS a x PS a x PS a x PS b     

And                                            
1 2, ,..., 0Nx x x                    (29) 

Where ,( , )( )ij m nPS A  indicates the corresponding possibility score function values as defined in (24) – 

(27). The satisfactory solution to original NLN-LPP is the optimal solution of equivalent crisp LPP 

(29).   

 

5. Numerical illustration and case study 

To describe the proposed algorithm, we shall consider the following numerical example and a 

case study of industrial problem based on NLN-LPP as: 
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Numerical Example 

1,( , ) 1 2,( , ) 2 3,( , ) 3m n m n m nMaximize Z c x c x c x    

Subject to,                         
11,( , ) 1 12,( , ) 2 13,( , ) 3 1,( , ) m n m n m n m na x a x a x b    

                 
21,( , ) 1 22,( , ) 2 23,( , ) 3 2,( , )m n m n m n m na x a x a x b    

and non-negativity restrictions               
1 2, ,..., 0Nx x x      

where neutrosophic coefficients are given as:  

1 ((2,3,4);0.5,0.25,0.25,(2,2,2);(2,2,2))c  ; 2 ((3,4,5);0.5,0.25,0.25,(2,2,2);(2,2,2))c 

3 ((4,5,6);0.5,0.25,0.25,(2,2,2);(2,2,2))c  ; 11 ((3,4,5);0.5,0.25,0.25,(1,1,1);(1,1,1))a   

12 ((4,5,6);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 13 ((4,5,6);0.5,0.25,0.25, (1,1,1);(1,1,1))a   

1 ((6,7,8);0.5,0.25,0.25, (1,1,1);(1,1,1))b  ; 21 ((1,2,3);0.5,0.25,0.25,(1,1,1);(1,1,1))a   

22 ((3,4,5);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 23 ((2.5,3.5,4.5);0.5,0.25,0.25, (1,1,1);(1,1,1))a   

2 ((5,6,7);0.5,0.25,0.25,(1,1,1);(1,1,1))b   

For the proposed solution technique, we calculate possibility means (by equations (15) – (17)), 

possibility SD (by equations (21) – (23)) and modified possibility score function (by equations (24) – 

(27)) corresponding to each NN coefficient of the problem. These values are described in tabular 

format (Table 1, Appendix A) in correspondence to the neutrosophic coefficients of the problem. 

Using these values, the given NLN-LPP is converted into equivalent crisp problem as: 

1 2 33.211 3.8192 4.2109Maximize Z x x x    

Subject to,                         
1 2 3 3.5229 4.1896 4.1896 5.2313x x x    

              
1 2 32.2729 3.5229 3.2313 4.8559x x x    

and non-negativity restrictions                       
1 2 3, , 0x x x      

Solving with the Simplex method, the optimal solution obtained is as: 
1 0,x   

2 0x  , 
3 1.2486x  , 

5.2578Z    which is also the solution to original NLN-LPP. If we use possibility score function as 
*

( , ) ( , ) ( , )( ) ( ) ( )m n m n m nPS A M A D A   (as suggested by Javier and Francisco [26]) to convert NLNNs into 

corresponding equivalent crisp values and solve the converted crisp LPP, we obtain the optimal 

solution of the problem as: 
1 0,x   

2 0x  , 
3 1.2885x  , 4.9001Z  . On comparison, it is clear that 

the modified possibility score function gives better values of objective function. 

 

Case Study 

Let us consider a case study of ‘XYZ’ company manufacturing certain fashion items in different 

production slots. The production variables of these items as well as demands are decided with the 

help of information gathered via social media networks, reviews, customer comments, etc. It is 

known to decision-makers of production units that this information is not fully true and reliable. 

Decision makers assume that related information on social media is in NNs format i.e. truthiness, 

falsity, and indeterminacy also their degree of memberships varies mostly in a non-linear way. For 

sake of simplicity in this case study, it is assumed that production and demand coefficients are in 

SVTNN. The profit maximization LP problem of this company with NLNNs can be presented as: 

1,( , ) 1 2,( , ) 2m n m nMaximize Z c x c x      (Profit) 

Subject to,                         11,( , ) 1 12,( , ) 2 1,( , ) m n m n m na x a x b   

21,( , ) 1 22,( , ) 2 2,( , )m n m n m na x a x b   

31,( , ) 1 32,( , ) 2 3,( , )m n m n m na x a x b   

41,( , ) 1 42,( , ) 2 4,( , )m n m n m na x a x b   

and non-negativity restrictions              
1 2, 0x x    

where neutrosophic coefficients are given as:  



Neutrosophic Sets and Systems, Vol. 06 , 20 32      16  

 

 
 

Kailash Lachhwani, Solving Non-linear Neutrosophic Linear Programming Problems 

1 ((4,5,6);0.5,0.25,0.25, (1,1,1);(1,1,1))c  ; 2 ((6,7,8);0.5,0.25,0.25,(1,1,1);(1,1,1))c  ; 

11 ((4,5,6);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 12 ((1,2,3);0.5,0.25,0.25,(1,1,1);(1,1,1))a  ; 

21 ((2.5,3.5,4.5);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 22 ((3.5,4.5,5.5);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 

31 ((5,6,7);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 32 ((5,6,7);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 

41 ((5.5,6.5,7.5);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 42 ((3,4,5);0.5,0.25,0.25, (1,1,1);(1,1,1))a  ; 

1 ((1,2,3);0.5,0.25,0.25,(1,1,1);(1,1,1))b  ; 2 ((8,9,10);0.5,0.25,0.25, (1,1,1);(1,1,1))b  ; 

3 ((5,6,7);0.5,0.25,0.25,(1,1,1);(1,1,1))b  ; 4 ((1.5,2.5,3.5);0.5,0.25,0.25, (1,1,1);(1,1,1))b     

with the proposed solution technique and tabulated values (Table 2, Appendix A), this problem is 

converted into equivalent crisp problem as:                                  

1 24.1758 5.4305Maximize Z x x      (profit) 

Subject to,                             1 2 4.2457 2.9679 3.3989x x   

1 23.0282 3.9957 5.1853x x   

1 24.6322 5.4120 5.1853x x   

1 25.7870 3.9120 2.1478x x   

and non-negativity restrictions                       
1 2, 0x x    

With the help of simplex method, the optimal solution to this crisp problem is obtained as:  
1 0,x   

2 0.5490x  ,
3 0x  , 2.9815Z  which is also the solution to original NLN-LPP. This is too better 

solution to the problem than solution by technique based on possibility score function by Javier and 

Francisco [26] which is  
1 0,x   

2 0.5414x  ,
3 0x  , 2.7063Z  . 

 

6. Conclusions and future research directions  

Non-linear neutrosophic numbers (NLNNs) are different kinds of neutrosophic numbers (NNs) 

with at least one non-linear membership function (either of truthiness, falsity or indeterminacy part) 

of the information. Furthermore, a non-linear neutrosophic linear programming problem 

(NLN-LPP) is a special type of linear programming problem in which coefficients/parameters are 

non-linear neutrosophic numbers. This paper presents comprehensive research on non-linear 

neutrosophic numbers (NLNNs) and non-linear neutrosophic linear programming problems 

(NLN-LPPs). Here, the author proposed a novel solution technique for NLN-LPPs based on the 

proposed modified possibility score function. This proposed modified possibility score function 

covers the almost entire range of values of NNs. Besides this, this paper elaborates on the concepts of 

non-linear neutrosophic (NLNN) sets, different forms of NLNNs, ,  ,  - cuts on NLNNs, 

possibility mean, possibility standard deviation, and possibility variance of NLNNs in corrected 

forms for clear understanding to future researchers. As future research, this work can be extended to 

solve non-linear neutrosophic non-linear programming problems (NLN-NLPPs), non-linear 

neutrosophic multiobjective programming problems (NLN-MOPPs), non-linear neutrosophic 

bi-level and multi-level programming problems (NLN-BL/MLPPs), etc. There is a scope of research 

investigations on basic operations on NLNNs – addition, substation, multiplication, and division of 

two or more NLNNs. 
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Appendix A.  

Table 1. Possibility score function values for NLNN coefficients of numerical example  

NLNN 

Coeffici

ent 

( , )( )T m nM A  
( , )( )F m nM A

 

( , )( )I m nM A

 

( , )( )T m nD A

 

( , )( )F m nD A

 

( , )( )I m nD A

 

( )TPS A  ( )TPS A * ( )FPS A  

 

( )FPS A * ( )IPS A  ( )IPS A * ( )PS A  ( )PS A * 

1c  1.5 2.25 2.25 0.4081 0.5 0.5 2.553 1.9081 3.54 2.75 3.54 2.75 3.211 2.4693 

2c  2 3 2.825 0.4081 0.5 0.5 3.053 2.4081 4.2897 3.5 4.115 3.325 3.8192333 3.0777 

3c  2.5 3.75 3.75 0.4081 0.5 0.5 3.553 2.9081 4.03974 4.25 5.04 4.25 4.2109133 3.8027 

11a  2 3 3.75 0.2886 0.3535 0.3535 2.7447 2.2886 3.9121 3.3535 3.9121 4.1035 3.5229667 3.2485 

12a  2.5 3.75 3.75 0.2886 0.3535 0.3535 3.2447 2.7886 4.6621 4.1035 4.6621 4.1035 4.1896333 3.6652 

13a  2.3333 3.75 3.75 0.2886 0.3535 0.3535 3.2447 2.6219 4.6621 4.1035 4.6621 4.1035 4.1896333 3.6096 

21a  0.8333 1.5 1.5 0.2886 0.3535 0.3535 1.7447 1.1219 2.6621 1.8535 2.4121 1.8535 2.2729667 1.6096 

22a  1.8333 3 3 0.2886 0.3535 0.3535 2.7447 2.1219 3.9121 3.3535 3.9121 3.3535 3.5229667 2.9429 

23a  1.5833 2.75 2.625 0.2886 0.3535 0.3535 2.4947 1.8719 3.6621 3.1035 3.5371 2.9785 3.2313 2.6513 

1b  3.3333 4.375 5.25 0.2886 0.3535 0.3535 4.2447 3.6219 5.2871 4.7285 6.1621 5.6035 5.2313 4.6513 

2b  2.8333 4.5 4.5 0.2886 0.3535 0.3535 3.7437 3.1219 5.4121 4.8535 5.4121 4.8535 4.8559667 4.2763 

*Possibility score function *

( , ) ( , ) ( , )( ) ( ) ( )m n m n m nPS A M A D A   suggested by Javier and Francisco [26] 
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Table 2. Possibility score function values for NLNN coefficients of case study  

NLNN 

Coeffici

ent 

( , )( )T m nM A  
( , )( )F m nM A

 

( , )( )I m nM A

 

( , )( )T m nD A

 

( , )( )F m nD A

 

( , )( )I m nD A

 

( )TPS A  ( )TPS A * ( )FPS A  

 

( )FPS A * ( )IPS A  ( )IPS A * ( )PS A  ( )PS A * 

1c  2.5 3.75 3.75 0.2886 0.3535 0.3535 3.2034 2.7886 4.66203 4.1035 4.66203 4.1035 4.17582 3.6652 

2c  
3.5 5.25 5.25 0.2886 0.3535 0.3535 3.9676 3.7886 6.16203 5.6035 6.16203 5.6035 5.430553 4.9985333 

11a  
2.5 3.75 3.75 0.2886 0.3535 0.3535 3.4132 2.7886 4.66203 4.1035 4.66203 4.1035 4.245753 3.6652 

12a  1 1.5 1.5 0.2886 0.3535 0.3535 4.0799 1.2886 2.41203 1.8535 2.41203 1.8535 2.967987 1.6652 

21a  1.75 2.625 2.625 0.2886 0.3535 0.3535 2.0108 2.0386 3.53703 2.9785 3.53703 2.9785 3.028287 2.6652 

22a  2.25 3.375 3.375 0.2886 0.3535 0.3535 3.4132 2.5386 4.28703 3.7285 4.28703 3.7285 3.995753 3.3318667 

31a  3 4.5 4.5 0.2886 0.3535 0.3535 3.07278 3.2886 5.41203 4.8535 5.41203 4.8535 4.63228 4.3318667 

32a  3 4.5 4.5 0.2886 0.3535 0.3535 3.7445 3.2886 5.41203 4.8535 5.41203 4.8535 5.41203 4.3318667 

41a  3.25 4.875 4.875 0.2886 0.3535 0.3535 3.9945 3.5386 5.78703 5.2285 5.78703 5.2285 5.78703 4.6652 

42a  2 3 3 0.2886 0.3535 0.3535 2.7445 2.2886 3.91203 3.3535 3.91203 3.3535 3.91203 2.9985333 

1b  1 1.5 1.5 0.2886 0.3535 0.3535 5.3729 1.2886 2.41203 1.8535 2.41203 1.8535 3.398987 1.6652 

2b  3 4.5 4.5 0.2886 0.3535 0.3535 4.732 3.2886 5.41203 4.8535 5.41203 4.8535 5.185353 4.3318667 

3b  3 4.5 4.5 0.2886 0.3535 0.3535 4.732 3.2886 5.41203 4.8535 5.41203 4.8535 5.185353 4.3318667 

4b  0.125 1.875 1.875 0.2886 0.3535 0.3535 0.8695 0.4136 2.7870 2.2285 2.7870 2.2285 2.1478 1.6235 

*Possibility score function *

( , ) ( , ) ( , )( ) ( ) ( )m n m n m nPS A M A D A   suggested by Javier and Francisco [26]  
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