| NSS Neutrosophic Sets and Systems, Vol. 60, 2023

University of New Mexico

I,
4 -

A New Notion of Neighbourhood and Continuity in
Neutrosophic Topological Spaces

C. Reenal, K. S. Yaamini2”

Assistant Professor, Department of Mathematics, St. Mary’s College (Autonomous),

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli)
Thoothukudi-1, Tamil Nadu, India.
E-mail: reenastephany@gmail.com

2Research Scholar, Reg. N0.21212212092002, Department of Mathematics, St. Mary’s College (Autonomous),

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli)

Thoothukudi-1, Tamil Nadu, India.
E-mail: ksyaamini@gmail.com

*Correspondence: ksyaamini@gmail.com

Abstract: Owing to a wide range of applications in various fields, the neutrosophic theory initiated
by Smarandache has been highly featured in research. This concept led to the evolution of
neutrosophic topological spaces which is being explored extensively. The focus of this paper is to
introduce and study the concept of neutrosophic Y — neighbourhood and neutrosophic
Y —continuity in neutrosophic topological spaces. Further, we define the notion of neutrosophic
Y —irresolute functions. We also observe their attributes and relationship with functions existing in
literature. Moreover, we present some equivalent conditions for the existence of these functions in
which the concept of neighbourhood has been wielded.
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neutrosophic Y —continuous, neutrosophic Y —irrseolute.

1. Introduction

Several theories were developed as mathematical approaches to rectify the difficulties pertained
to uncertainty. Accordingly, the concept of neutrosophy initiated by Florentine Smarandache[1]
evolved as a branch of philosophy to study the scope and nature of neutralities. This induced the
concept of neutrosophic logic which further led to the conceptualization of neutrosophic sets as a
generalization of fuzzy sets and intuitionistic fuzzy sets. A neutrosophic set is characterized by three
independent components namely membership, indeterminacy and non-membership functions
defined on the non-standard unit interval. Later, Salama and Albowi[3] in 2012 induced the concept
of neutrosophic sets in topological spaces which originated as neutrosophic topological spaces. In
addition, some basic notions and properties of topological structures such as interior, closure,
subspaces and separation axioms have been presented in [4-8]. G. C. Ray and Sudeep[9] proposed
the definitions of neutrosophic point and neighbourhood structure. They have also explored the
relation of quasi coincidence between neutrosophic sets and characterized the neutrosophic
topological spaces by means of quasi-neighbourhood. Meanwhile, Salama et.al[10] in 2014, studied

the concept of continuous functions in neutrosophic topological spaces. Further, P. Iswarya and

C. Reena, K. S. Yaamini, A New Notion of Neighbourhood and Continuity in Neutrosophic Topological Spaces


mailto:reenastephany@gmail.com
mailto:ksyaamini@gmail.com
mailto:ksyaamini@gmail.com

Neutrosophic Sets and Systems, Vol. 60, 2023 75

K. Bageerathi[11], in 2016 introduced the concept of semi-open sets in neutrosophic topological
spaces and later the notion of semi-continuous functions[12,13] were also studied. Dhavaseelan and
Saeid Jafari[14], in 2017 established the idea of generalized closed sets and continuous functions in
neutrosophic topological spaces. C. Maheshwari and S. Chandrasekar[15] defined the notion of
gb-closed sets and continuous functions in 2019. Moreover, some novel concepts of continuous
functions and other topological structures have been defined and studied by various authors[16-18]
in the subsequent years. Recently, the authors[19] of this paper introduced and analyzed a new class
of neutrosophic sets namely neutrosophic Y —open sets and neutrosophic Y —closed sets. The main
objective of this paper is to introduce and study the concepts of neutrosophic Y —neighbourhood,
neutrosophic Y —continuous and irresolute functions in neutrosophic topological spaces. The
characterization and composition of these functions have been presented through results and
counter examples. Further, various equivalent conditions for the existence of these concepts have
also been observed.

The structure of the paper is as follows: section 2 comprises of the prerequisites essential for
this work. Section 3 establishes a novel concept of neighbourhood namely neutrosophic
Y —neighbourhood and Y —quasi neighbourhood. Section 4 imparts the notion of neutrosophic
Y —continuous functions and its attributes. Further, section 5 presents the idea of neutrosophic

Y —irresolute functions and the article is ceased with a conclusion in section 6.
2. Preliminaries

In this section, we have presented some basic notions and results required for the progression of
this work.
Definition 2.1[3]: Let U be a non-empty fixed set. A neutrosophic set L is an object having the
form L ={<u,u,(u),o,(w),y,(w) >:u € U} where u,(u),o,(uw)and y, (u) represent the degree of
membership, the degree of indeterminacy and the degree of non-membership respectively of each
element u € U. A neutrosophic setL = {< u,y; (w), o, (w),y, (W) >:u € U} can be identified to an
ordered triple < y;,0;,y;, > in 701" [on U.
Definition 2.2[3]: Let U be a non-empty set and L ={<u,u, (u), o, )y, (W) >:uceU}
M = {<u, puy (W), oy (), vy () >:u € U} be neutrosophic sets in U. Then
i) LeEMif p,(u) < ppyW),o,(w) <oy(w) and y,(uw) =y, (w) forall u € U.
ii) LUM = {<u, max{u, W), uy W)}, max{s, (w), o (W)}, min{y, (w), yy (w)}>u € U}
iii) L N M = {<u, min{y, (w), uy (W)}, min{o, (w), oy (W)}, maxfy, (W), yy W}>u € U}
iv) Lf ={<u,y,(w),1—0,(w),u,(u) >ueU}
v) Oy, ={<1,0,0,1>u €U} and 1y, ={<u 1,1,0 >:u € U}

~ o~~~

Definition 2.3[3]: A neutrosophic topology on a non-empty set U is a family 7y, of neutrosophic
setsin U satisfying the following axioms:

(i) Oy, 1y,, € Tn,,

(i) UL; € Ty, V{Li:i €I} S Ty,

(iii) Ly N L, € Ty,, forany Ly, L, € Ty,

The pair (U,ty,,) is called a neutrosophic topological space. The members of 7y, are called

neutrosophic open and its complements are called neutrosophic closed.
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Definition 2.4[5]: A neutrosophic set L = {< u, u; (), o, (w),y,(w) >:u € U} is called a neutrosophic
point if for any element v € U,u,(v) =a,0,(v) = b,y,(v) =c for u=v and p,(v) =0,0,(v) =
0,y,(v) =1 for u+# v, where a,b,c are real standard or non standard subsets of ] 01°[. A
neutrosophic point is denoted by u,;.. For the neutrosophic point u,; ., u will be called its
support.
Definition 2.5[4]: Let (U, ty,,) be a neutrosophic topological space and S be a non-empty subset of
U. Then, a neutrosophic relative topology on S is defined by

Ty, ={LN13, :LETy,}
where

. {< 1,1,0>,  ifs€S
Ner 7 < 0,0,1 >, otherwise

Thus, (S, ’L'j\q,n) is called a neutrosophic subspace of (U,1y,,).
Definition 2.6[14]: Let U and V be two non-empty sets and fy, :U—V be a function.
If M ={<v,uyW),ouW),yy() >:v €V} is aneutrosophic setin V, then the preimage of M under
f,,» denoted by fy.1(M), is the neutrosophic set in U defined by

fig M) = {< u, figs ) W), fvy (1) @, fivyy (Y (W) >: u € U}
If L ={<wuu,(u),o,@),y, (w) >:u€ U} is a neutrosophic set in U, then the image of L under fy,,
denoted by fy, (L), is the neutrosophic setin V defined by

Fuer ) = {< ¥, fuey @)@, fu, (@) @), (1= fir,, (1 = 1)) () > : v €V} where

SUPyepat My (W), if fyl(v) # 0
ey ) (@) ={ uefy s P v |
O otherwise
_ , - <0
holoow={ P it f@ o
O otherwise
f wepig @2 (4 i fir (v) # 0
(1 = fn, (1 — ]/L)) ) = { uefyl YL e |
L otherwise

Definition 2.7: Let (U,ty,,) and (V,py,, ) be neutrosophic topological spaces. Then the function
fne: U,ty,) — (V,py,,) is said to be neutrosophic continuous[10] (respectively, neutrosophic
semi—continuous[12], neutrosophic a —continuous[14], neutrosophic  —continuous, neutrosophic
gs — continuous, neutrosophic gb — continuous[15]) if fN‘; (M) is N, open(respectively
N¢. semi — open, Ny« —open, N,[f —open, N.gs—open, N,gb—open) in (U ty,) for every
Nyopenset M in (V, pNtT).

Definition 2.8[7]: Let u,, . be a neutrosophic point in a neutrosophic topological space (U,1y,,).
Then a neutrosophic set N in U is said to be neutrosophic neighbourhood(N,.nbhd) of u,, . if
there exists a N.openset M such that u,,. € M S N.

Definition 2.9[6]: A neutrosophic point u, . is said to be neutrosophic quasi — coincident with a
neutrosophic set L, denoted by u,, .qL if u,, . & L°. If u,, . is notneutrosophic quasi — coincident
with L, we denote it by u,, (gL.

Definition 2.10[6]: A neutrosophic set M is said to be neutrosophic quasi — coincident with a
neutrosophic set L, denoted by MqL if M & L°. If M is not neutrosophic quasi — coincident with L,
we denote it by MqL.

Definition 2.11[6]: A neutrosophic set N in U 1is said to be neutrosophic quasi-
neighbourhood(N,,Qnbhd) of u,, . if there existsa Nyopenset M such that u,, .qM S N.
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Definition 2.12[19]:A neutrosophic set L of a neutrosophic topological space (U,ty,,) is said to be
neutrosophic Y —open if for every non-empty Ny.closed set F # 1y _,L < Ntrcl(Ntrint(L UF )).
The complement of neutrosophic Y —open set is neutrosophic Y —closed. The class of neutrosophic
Y —open sets in (U, TNW) is denoted by N, YO(U, TN”).

Theorem 2.13[19]: The union of an arbitrary collection of N, Y —open sets is also N, Y —open.

Theorem 2.14[19]: In any neutrosophic topological space (U, TN”),

(1) Every Ni.opensetis N, Y —open.
(ii) Every N .semi—open setis N, Y —open.
(iii) Every Nya — opensetis N, Y —open.

(iv) Every N, Y —opensetis N[/ — open.

(v) Every N, Y —opensetis N, gs— open.

(vi) Every N, Y —open setis N, gb— open.
Remark 2.15[19]: The above theorem is also true for N..Y —closed sets.
Theorem 2.16[19]: A neutrosophic set L in a neutrosophic topological space (U,ty,,) is Ni, Y —
open if and only if for every neutrosophic point u,,, € L, there exists a N, Y — open set My,
such that u,, . €M, CSL.

a,b,c

Definition 2.17[19]: Let be a neutrosophic topological space and L be a neutrosophic setin U.

(1) The neutrosophic Y —interior of L is the union of all N,,.Y —open sets contained in L.
It is denoted by N, Yint(L).
(ii) The neutrosophic Y —closure of L is the intersection of all N.Y — closed sets

containing L. It is denoted by N, Ycl(L).

3. Neutrosophic Y —neighbourhood

This section conceptualizes the idea of neutrosophic Y —neighbourhood and neutrosophic
Y —quasi neighbourhood. Moreover, their characterizations have been depicted through results and
illustrations.
Definition 3.1: Let u,, . be a neutrosophic point in a neutrosophic topological space (U, ty,,). Then
a neutrosophic set N in U is said tobe a
(i) neutrosophic Y —neighbourhood(N,. Y —nbhd) of wu,, . if there exists a N, Y — open set M
such that u,, . € M € N.
(ii) neutrosophic Y —quasi neighbourhood(N,,.Y — Qnbhd) of u,; . if there exists a N,,Y — open
set M such that uy, .gM S N.
Example 3.2: Let U = {a, b} and TN, = {0n,, Iy, L} whereL = {< q,0.7,0.5,0.3 >< b,0.2,0.7,0.1 >}.

.....
.....

.....

.....
.....

.....

Theorem 3.4: Every N,nbhd (resp. N..Qnbhd) of a neutrosophic point u,,. in a neutrosophic

topological space (U,7y,,) isa N.Y —nbhd(resp.Ny, Y — Qnbhd) of ug .
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Proof: Let N be a Ny, nbhd (resp. N,.Qnbhd) of a neutrosophic point u, ;. in U. Then, there exists
a Njopen set M in U such that u,, . € M & N (resp. u,,.gqM € N). Now, by theorem 2.14, M is
N, Y —open in U. Hence there exists a N, Y —open set M in U such that u,;, . € M S N (resp.
Ugp,cqM € N). Therefore N isa N, Y —nbhd(resp. N, Y — Qnbhd) of u,; .

The following example substantiates that the converse of the above-stated theorem need not be true.
Example 3.5: (i) Let U ={a,b} and ty, ={0y,,, 1y, L} wherel ={<a,0.6,0.6,0.2 ><b,0.2,0.9,

0.1 >}. Now, let us consider a neutrosophic point ay;¢195 in U. Then there is a N, Y — open set

.1,0.
.....
.....

.....

.....
.....

of ay1,0.1,07
Theorem 3.6: A neutrosophic set L in a neutrosophic topological space (U,1y,,) is N, Y — open if

and only if for every neutrosophic point u, ;. € L,L is a N.,)Y —nbhd of ug,,, .

Proof: Let L be N, Y —open in U. Also, for each u,;,. € L,L € L. Then, by definition 3.1(i), it
follows that L isa N, Y —nbhd of u,, .. Conversely, assume that for every u,;,. € L,L isa Ny, Y —
nbhd of uy, .. Then, there exists a Ny, Y —open set M in U such that u,,. € M € L. Therefore,
by theorem 2.16, L is N, Y — open.

Theorem 3.7: Every N, Y —open set L in a neutrosophic topological space (U,ty,,) is a N Y —
Qnbhd of every neutrosophic point quasi—coincident with L.

Proof: The proof is obvious since for every neutrosophic point u,,.qL, we have
UgpcqL € L.

Theorem 3.8: Let L be a N, Y —closed set in a neutrosophic topological space (U,ty,,) and
Ug p,cqLe. Then, there exists a Ny, Y — Qnbhd M of ug,, . such that LgM.

Proof: Since L is NiY —closed in U,L° is N,Y —open in U such that u,,.qL°. Then, by
theorem 3.7, L¢ is a Ny, Y — Qnbhd of u,, .. Hence there exists a N, Y —open set M in U such
that u,, .qM S L¢. Again, by theorem 3.7, M is a N.,Y — Qnbhd of u,, .. Also, since M € L°,LGM.
Hence there exists a N;,.Y — Qnbhd M of wug,, . such that LgM.

Theorem 3.9: Let L be a neutrosophic set in a neutrosophic topological space (U, Ty,.). Then a
neutrosophic point ug,. € N, Ycl(L) if and only if every N,Y—Qnbhd of u,,. is
quasi-coincident with L.

Proof: Let u,;, . € N, Ycl(L) and N be a N, Y — Qnbhd of u,, . such that NGL. Then, there exists
a N.,Y—open set M such that u,,.qM S N. Since NGL,N € L° and therefore M S L° which
implies L € M°. Now, M¢ is a N,Y —closed set containing L and N, Ycl(L) is the smallest
N.,Y — closed set containing L. Hence N, Ycl(L) € M¢. Also, since uy; .qM,uy, . € M€. Therefore
Ugpc & N Yel(L) which is a contradiction. Conversely, suppose every N, Y — Qnbhd of u,, . is
quasi-coincident with L. If u,, . & N, Ycl(L), then there exists a N, Y — closed set M such that
LEM and u,, . € M. This implies that u,;, .qM¢, where M¢ is a N, Y — open set in U. Now, by
theorem 3.7, M€ isa N, Y — Qnbhd of u,;, . such that M°GL which is a contradiction.
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4. Neutrosophic Y —continuous functions

Topology is constantly intrigued by issues that are either directly or indirectly related to
continuity. Accordingly, continuity plays a prominent role in the characterization of topological
spaces. This section deals with the origination of neutrosophic Y — continuous functions in
neutrosophic topological spaces. Further, we have observed their properties and discussed the
composition of functions.

Definition 4.1: Let (U,7y,,) and (V,py,,) be neutrosophic topological spaces. Then the function
fve: (U,ty,,) — (V, py,,) is said to be neutrosophic Y — continuous if fu(M) is Ni,.Y — open in
(U,ty,,) forevery Ny .open set M in (V, pN”).

Example 4.2: Let U={ab}V ={x,y}1y, = {0y, 1y, LM} and py,_ = {0y, 1y, N} where
L ={<a0.6,0.3,05><b0.5,0804 >} M={<aqa0.5020.7 ><b020.709 >} and N = {< x,0.9,
0.9,0.1 ><,0.8,0.9,0.2 >}. Consider the collections P={P:LcP,M°cP}and Q={Q:LcC
Q;Q ¢ M€, M°¢ ¢ Q} of neutrosophic sets in U. Then NtrYO(U, TN") = {ON”,L, M,P,Q, thr}. Define
fug: U,ty,) — (V,py,,) as fy,(@ =y and fy (b)=x. Then, f5'(N)={<a080.9,02>
<b,09090.1>}€P which implies fy!(N) is N,Y—open in U. Hence fy, Iis
N..Y —continuous.

Theorem 4.3: Every N.continuous function is N, Y — continuous.

Proof: Let fy, :(U,ty,,) — (V,py,) be a Ny.continuous function. Let M be a Nyopen set in V.
Since fy,, is Ny-continuous, fN‘;(M) is Ny-open in U. By theorem 2.14, fN‘ti(M) is N, Y — open in
U. Hence fy,, is N, Y — continuous.

The following example substantiates that the converse of the above-stated theorem need not be true.
Example 4.4: Let U ={a, b}V ={x,y}, Ty, = {ON”, 1, L, M} and py,, = {ONW, 1Ntr’N} where L =
{<a,0.6,04,09 >< b,0.5,0.7,1 >}, M = {< a,0.7,0.6,0.8 >< b,0.6,0.8,0.9 >} and N ={<x,0.6,
0.9,0.3 ><y,0.7,0.6,0.2 >}. Consider the collections P={P:McP,L°cP}and Q={Q:Mc
Q;Q ¢ L¢; L° ¢ Q} of neutrosophic sets in U.Then NtrYO(U,TNtr) = {ON",L,M,?,Q, 1Ntr}' Define
fug: (U,ty,) — (V,py,,) as fy,(@=y and fy (b)=x. Then, fy1(N)={<a0.7,0.602>
< b,0.6,0.9,0.3 >} € Q which implies fy!(N) is N, Y —open but not Nyopen in U. Hence fy, is
N, Y — continuous but not N .continuous.

Theorem 4.5: Let fy, :(U,ty,,) — (V,py,,) be a function between two neutrosophic topological
spaces.

(i) If fy,, is Ny-semi— continuous, then fy,  is N, Y — continuous.

(ii) If fy,, is Ny-a — continuous, then fy, is N Y — continuous.

(iii) If fy,, is N Y — continuous, then fy,_is Ny — continuous.

(iv) If fy,, is Ny Y — continuous, then fy, is N.gs — continuous.

(v) If fy,, is N, Y — continuous, then fy is Ny, gb — continuous.

Proof: Proof is obvious.

However, the ensuing examples reveal that the converse of these implications is not necessarily true
in general.

Example 4.6: Let U ={ab},V= {x,y},‘[Ntr = {ONtr’thr’L} and py,, = {ON", Iy, M} where
L ={<a,0.204,0.7 ><b,0.1,02,03 >} ,M ={<x,0,0.1,0.6 ><y,0.1,0.2,0.9 >}. Consider  the
collections P ={P: ONWCPCL}, 0={Q: L¢Q ;0¢L ;QcL} and R={R:LcRclL}
of neutrosophic sets in U. Then, N,a0(U,1y,,) = {0, 1n,,, L} NvSO(U, Ty,.) = {On,,, L, L, R, 1y, }
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and N, YO(U,ty,,) = {Oy,. L L5, P,Q,R, 1y, }. Define fy, :(U,ty,) — (V,py,) as fy, (@) =y and
fn,, (b) = x. Then, fN‘;(M) ={<a,0.1,0.2,09 >< b,0,0.1,0.6 >} € P which implies fN‘;(M)is N, Y —
open. However, it is neither Ni.semi—open nor N,a—open in U. Hence fy_  is N,Y—
continuous but not N,.semi — continuous and N..a — continuous.

Example 4.7: Let U={ab},V={xy}1y, = {ON”,lN”,L} and py,, = {ON”, 1y, M}  where
L={<a0.7,08,0.6 ><b,0.70.705>} and M ={<x,0.5,0.7,02><7y,0.609,0.1>}. Consider
the collections P ={P: L°c P cl}, Q:{Q:Lchthr}, R={R: L°¢R ;R¢l° ;RcC
LY, S§={S: L°¢S;S¢L° ;S¢l}, T={T: L°cT¢&L} and W={W: 0Oy, cWcL} of
neutrosophic sets in U. Then, N,pBO(U,ty,)={0y,.L P QRS T 1y, }Nygso(U,ty, )=
{0y, L,Q,R,S W, 1y, },  NpgbO(U,ty, ) ={0y,,.,LP,QRST, W1y} and N,YO(U1y, )=
{On,,,L,Q,1y,,}. Define fy, :(U,ty,) — (V,pn,) as fy,(a) =x and fy,, (b) =y. Then, fy (M) =
{<a,05,0.7,0.2 >< b,0.6,0.9,0.1 >} €S which implies fN‘;(M) is N8 —open, N;.gs—open and
Ny gb — open but not N, Y —open. Hence fy, is N,f — continuous, N..gs— continuous and
N;-gb — continuous but not N, Y — continuous.

Theorem 4.8: Let fy, :(U,ty,,) — (V,py,,) be a function between two neutrosophic topological
spaces. Then the following statements are equivalent:

(i) fn,, 18 N Y — continuous.

(ii) The inverse image of every Ny.closed setin (V,py, ) is Ny, Y —closed in (U, TNW).

(i) f,, (N, Ycl(L)) € Ny.cl ( fer (L)) for every neutrosophic set L in U.

(iv) N..Ycl (fN‘ti(M)) gy e (N,,.cl(M)) for every neutrosophic set M in V.

Proof:

(i)=(ii) Let fy, be a N,Y —continuous function and N be a N.closed set in V. Then N¢ is
N -open in V. Since fy, is N, Y — continuous, fy,'(N€) is N, Y —open in U. That is, (fy,!(N))*
is N, Y —open in U. Hence fy!(N) is N, Y — closed in U.

(i))=(@) Let M be N,.open in V. Then M¢ is Nclosed in V. By assumption, fy,}(M¢) is N, Y —
closed in U. That is, (fy,:(M))°is N, Y —closed in U. Hence fy!(M) is N, Y —open in U.

Therefore, fy,, is N Y — continuous.

(ii))=(iii) Let L be a neutrosophic setin U. Now, L C fy! (thr (L)) implies L € fy 1(N,,cl (thr(L))

Since Ng,.cl (thT(L)) is Ny.closed in V, by assumption fy ! (Ntrcl (thr (L))) is a N, Y — closed set
containing L. Also, N;,Ycl(L) is the smallest N, Y — closed set containing L. Hence, N, Ycl(L) €

frpr (Ngycl ( fue, (L) ) Therefore, fy,, (N, Ycl(L)) € Ny,.cl ( fre, (L) )

(iii)=(ii) Let N be a N.closed set in V. Then, by assumption

fro, (Ntchl (i (N))) C N,.cl (thr (i (N))) C Nypcl(N) = N implies Ny, Yel (figl(V)) € i (V).

Also, fy,1(N) € N, Ycl (fN‘; (N)). Hence fy,!(N) is N, Y — closed in U.
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(iii)=>(iv) Let M be a neutrosophic set in V and let L = fy!(M). By assumption, fy, (N, Yel(L)) €

Nercl (fi, (L)) = Nopcl(M).This implies N, Yl (fi2(M)) € fi (N cl(M)).
(iv)=(iii) Let M = fy, (L). Then, by assumption, N, Ycl(L) = N, Ycl (f,v‘; (M)) € fu. (Nepcl(M))

fil (Ntrcl (fuer (L))). This implies fi,, (Ne, Ycl(L)) € Nyvel (fi, (1))-
(iv)= (i) Let M be N,open in V. Then M€ is Nclosed in V. By assumption, fy!(M¢)=

filt (N cl(M)) 2 Ny Yel (£ 2(M9)). Also, we know that fig (M) € Ny, Yl (fig:(M)).  Hence

c
fN_tvl” (M) = N, Ycl (fN_; (MC)). Therefore, fN_; (M€) is N, Y —closed in U. That is, (f,\fti (M)) is

N, Y —closed in U. Hence fy (M) is N, Y —open in U. Therefore fy, is N, Y — continuous.
Example 4.9: (i) Consider the topological spaces and the functions defined in example 4.2. Here f,,
is N Y — continuous and NtrYC(U, ‘L'Nn) = {ON", L¢, M€, P, Q’, 1NW} where P’ ={P°: P € P} and
Q' ={0°: Q € 9}. Now, fN_;(NC) ={<a,0.2 0.1,0.8 ><b,0.1,0.1,09 >} € P'. Hence the inverse
image of every Ny.closed set in (V,py,,) is Ni,Y —closed in (U,1y,,) if fy,, is N, Y — continuous.
(ii) Let U ={a,b},V = {x,y}, 7y, ={On,.1n,.L}and py,. = {0y, 1y, M} where L ={<a,0.2,04,
0.9 >< b,0.3,0.8,0.7 >} and M ={<x,0.9,0.7,0.1 >< y,0.8,0.9,0.2 >}. Consider the collections
P={P:PcLPclland Q={Q:Qcl%Q¢L; L&Q} of neutrosophic sets in U. Then
N, YC(U, ‘L'N”) = {ONW,LC,?, Q'an}' Now, define fy, :(U,ty,) — (V,py,) as fy,(a) =x and
fu, () =y. Then, fy1(M¢) ={<a,0.1,0.3,09 ><b,0.2,0.1,0.8 >} € P. Now, fy (M) = (fy,L(M))°
is N, Y —closed implies fy!(M) is N, Y —open. Hence fy, is N, Y — continuous if the inverse
image of every Ny.closed setin (V,py,,) is N Y — closed in (U, TN”).

Theorem 4.10: A function fy, :(U,ty,) — (V,py,) is N, Y —continuous if and only if
frr (N int(M)) € N, Yint (fN‘; (M)) for every neutrosophic set M in V.

Proof: Let fy, be a N,Y— continuous function and M be a neutrosophic set in V. Then

Ng.int(M) is Ngopen in V. By assumption, fN‘ti(Ntrint(M)) is N,Y—open in U. Now,

f,\,;i(Ntrint(M)) € fy, (M) and N, Yint (fN‘;(M)) is the largest N,Y—open set contained in
frr(M). Hence fN‘;(Ntrint(M)) C N, Yint (fN‘ti(M)). Conversely, let M be a N,.open set in V.

Then fy (M) = fi: (Noyint (M) € Ny, Yine (fi2(M)).  Also, Ny, Yint (fy2(M)) € fyX(M).  This

implies fy.'(M) is N, Y —open in U. Hence fy, is N, Y — continuous.

Theorem 4.11: Let fy, : (U,ty,,) — (V,py,,) be a function between two neutrosophic topological
spaces. Then the following statements are equivalent:

(i) fn,, 18 NiY — continuous.

(ii) For each neutrosophic point u, ., the inverse image of every Ny, nbhd of fy, (uqp.) is Ny Y —
nbhd of ug,p..

(iii) For each neutrosophic point u,j, in U and every N,nbhd N of thr(ua‘b‘c), there exists a
N, Y —openset L in U such that u,,. € L and fy, (L) € N.
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Proof:
(i)=(ii) Let u, ), be a neutrosophic point in U and let N be a N.,nbhd of fy, (uqp)- Then there

exists a Ny open set M in V such that thr(ua_b_C) € M < N. Since fy, is N,Y — continuous,
frr(M) is Ny, Y —open in U. Also, Uy, € fy,r (fN” (ua,b,c)) € fv,s(M) < fy,L(N). Hence there exists

a N, Y —open set fy.2(M) such that u, . € fy,:(M) S fy,2(N). This implies fy,:(N) is N, Y —nbhd
of Ugpc
(ii)=(iii) Let u,;, . be a neutrosophic point in U and let N be a N,nbhd of fy,_(uqp.). Then by

assumption, fN‘tl(N) is N Y —nbhd of u,;,.. Then there exists a N, Y —open set L in U such
that g, €L € fyX(N). Thus g, € L and fy, (L) € fy,, (f,v—; (N)) c N.

(iii) = (i) Let M be a Ny open set in V and let ug;. € fy,}(M). Since M is N open and
fer (ua_b_c) € M,M is a Ny,nbhd of fy,, (ua,blc). Hence it follows (iii) that there exists a N, Y —open

set L in U such that ugp € L and fy, (L) € M. This implies ugp € L € fi* (fin, (1)) € fil (M).

By theorem 2.16, fN‘;(M) is Ni.Y —open in U. Therefore fy, is N Y — continuous.

Remark 4.12: The statements of theorem 4.8, 4.10 and 4.11 are all equivalent.

Definition 4.13: A neutrosophic topological space (U,ty,,) is said to be N,.Ty —space if every
Ny Y —open setin (U, ty,,) is Nyopen.

Remark 4.14: The composition of two N, Y — continuous functions need not be N, Y — continuous.
Example 4.15: Let U = {a,b},V = {x,y}and W = {p,q}. Consider the neutrosophic topologies Ty, =
{On,,. 1n,,. L} oy, = (On,, 1, M} and &y, ={Oy,, 1y, N} where L={<q03,0409> <
b, 04,0508 >}, M ={<x0906,03><y,080.504>} and N ={<p,0.9,0.6,0.1><gq,090.7
0.2 >}. Consider the collections P = {P ¢ Oy, cPc L},Q ={Q:LcQcl},R={R:ReL;L&
R; R c L} of neutrosophic setsin U and § = {S t:McScl Ntr}’ the collection of neutrosophic sets
in V. Then, N,YO(U,ty,)={0y, LLP QR 1y} and N,YO(V,py,)={0y,. M3 1y, }.
Define fy, : (U,ty,,) — (V,py,) as fy, (@) =x and fy,_(b) =y. Then fy!(M) = {< a,0.9,0.6,0.3 >
<b,0.8,0.9,0.4 >} is N, Y —open in (U,ty,, ). Also, define gy, :(V,py,,) — (W,éy,,) as gy, (x) =
q and gy, (y) = p. Then gy! (N) = {< x,0.9,0.7,0.2 >< y,0.9,0.6,0.1 >} € § which implies gy (N)
is Ny, Y —open in (V,py,,)- This implies that both fy, and gy, are N.Y — continuous. Now, let

IN,, © thT:(U, TNW) — (W, thT) be the composition of two N.Y — continuous functions. Then,
9ny, © fx,, is not N, Y — continuous since (gy,, ° thr)_l(N) = frer (g;/tlr(N)) ={<a,0.9,0.7,0.2 ><

b,0.9,0.6,0.1 >} isnot N, Y —open in (U, TN”).

Theorem 4.16: Let (U, TN”), (v, pNtT) and (W,&y,.) be neutrosophic topological space and
let (V, pNtT) be N¢.Ty —space. Then the composition gy,, ° fy,,: (U, TNtr) - (W, ENtr) of two N, Y —
continuous functions  fy,:(U,ty,) — (V,py,) and gy,.:(V,pn,) = W,&y,,) is NgY-—
continuous.

Proof: Let N be any Ny.open set in W. Since gy,, is NiY — continuous, g,T,tlr(N) is N, Y —open in

V. Then, by assumption gy (N) is N, open in V. Also, since fy, is N, Y — continuous,

frr (g;,tlr(N)) = (gNt‘r ° fN”)_l(N) is N, Y—openin U. Hence gy,, ° fy,, is NiY — continuous.
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Theorem 4.17: Let fy, :(U,ty,,) — (V,py,,) be a N, Y — continuous function and gy,.: (V, py,,) —
(W,¢&y,,) be a Ny.continuous function. Then their composition gy, o fy,,: (U, TN”) — (W, thr)is
N..Y — continuous.

Proof: Let N be any N,.opensetin W. Since gy, is N .continuous, gy’ (N) is Nyopen in V.Also,
since gy,, is N Y — continuous, fy.! (g,\‘,tlr(N)) = (gN” ° fN”)_l(N) is N, Y —open in U. Hence

N © fng, 18 Ni'Y — continuous.

Theorem 4.18: Let fy, : (U, ty,) — (V,py,,) be a N, Y — continuous function where (U,7y,,) is a
N, Ty —space. If S is a subset of U, then the restriction fy, |s: (S, 7x,.) — (V,py,,) is also N, Y —
continuous.

Proof: Let M be a N.open set in V. Since fy, is N, Y — continuous, fN‘;(M) is N, Y —open in U.
Now, since U is a N, Ty —space, fy,:(M) is N,open in U. Hence fN”|S—1(M) = fu (M) N 13, is
N¢-open in S. By theorem 2.14, fN”|S—1(M) is N, Y —open in S. Hence fy,|s is N,Y—

continuous.
5. Neutrosophic Y —irresolute functions

Analogous to the previous section, this segment deals with the concept of neutrosophic Y —
irresolute functions and its behavior.
Definition 5.1: Let (U,ty,,) and (V,py,,) be neutrosophic topological spaces. Then the function
fug,: (U,ty,) — (V,py,,) is said to be neutrosophic Y —irresolute if fy (M) is N, Y —open in
(U,ty,,) forevery N..Y —open set M in (V, pNtr).
Example 5.2: Let U ={a b}V ={xy} Ty, = {ONtr’thr’L} and py, = {ONtr’ 1Ntr’M} where
L={<a050.6,03><b0.6,0702>} and M ={<x0.5,0.703><y,080.7,02>} Also,
consider the collections P ={P:LcPc 1y, } and Q ={Q: M c Q c 1y, } of neutrosophic sets in
U and V respectively. Then, NtTYO(U, ‘L'N”) ={Oy,,,L,P,1y,,} and NtrYO(V, pNtr) = {< Oy, M,
9,1y} Now, let us define fy :(Uty,)— (V,pn,) as fy,(@=x and fy (b)=y.
Then,fN‘;(M) ={<a,0.5,0.7,0.3 >< b,0.8,0.7,0.2 >} € P and for each Q € Q, there exists some P €
P such that fy1(Q) = P. Hence the inverse image of every N, Y —open setin V is N, Y — open in
U. Therefore fy, is N Y —irresolute.
Theorem 5.3: Every N, Y —irresolute function is N, Y — continuous.
Proof: Let fy, :(U,ty,,) — (V,py,) be a N, Y —irresolute function and M be a N..open set in V.
Then, by theorem 2.14, M is N, Y —open in V. Since fy, is N, Y —irreolsute, fy.!(M) is N, Y —
open in U. Hence fy, is N, Y — continuous.
The following example substantiates that the converse of the above-stated theorem need not be true.
Example 5.4: Let U={a,b}, V={xy} TN, = {ON",thr, L} and py, = {ONtr’thr’M} where
L ={<a,0.1,0.3,0.7 >< b,0.3,0.2,0.8 >} and M = {< x,0.7,0.7,0.1 >< y,0.8,0.8,0.3 >}. Consider the
collections P ={P: ONWCPCL}, 90={Q: L¢Q ;0¢L ;QcL} and R={R:LcRclL}
of neutrosophic sets in U. Then, NtrYO(U, TN") = {ON", L L°P,Q R, 1 Ntr}' Now, let us define
fug,: (U,ty,) — (V,pp,,) as fy, (@) =x and fy, (b) = y. Then,fy!(M) = {< a,0.7,0.7,0.1 >< b,0.8,
0.8,0.3 >} = L° which implies fy, is N Y —continuous. However, the inverse image of a N, Y —
open set § ={<x,0.80.7,01><y,0.9,08,0.2>} in V is not N, Y —open in U. Hence fy, is

N Y — continuous but not N, Y —irresolute.
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Theorem 5.5: Let fy, :(U,ty,,) — (V,py,,) be a N, Y — continuous function where (V,py, ) is a
N, Ty —space. Then fy,_ is N Y —irresolute.

Proof: Let M be N.,Y —open in V. Then, by assumption M is Ny.open in V. Since fy, is Ny Y —
continuous, fN‘tl (M) is Ni Y —open in U. Hence fy,_ is N..Y —irresolute.

Theorem 5.6: Let fy, :(U,ty,) — (V,py,,) be a function between two neutrosophic topological
spaces. Then the following statements are equivalent:

() fw,, is Ng Y —irresolute.

(i) The inverse image of every N Y — closed setin (V,py, ) is N Y — closed in (U, TN”).

(iii) fy,, (Ntchl(L)) C N, Ycl (thr(L)) for every neutrosophic set L in U.
(iv) Ny Ycl (fN‘;(M)) =y e (N, Ycl(M)) for every neutrosophic set M in V.

V) fu,r (N, Yint(M)) S N, Yint ( frr (M )) for every neutrosophic set M in V.

(vi) For each neutrosophic point u, ., the inverse image of every N.Y —nbhd of fy, (ugpc) is
N, Y —nbhd of ugp .

(vii) For each neutrosophic point u,; in U and every N, Y —nbhdN of fy, (ua‘b‘c), there exists a
N Y —open set L in U such that u,;,. € L and fy, (L) € N.

Proof:

(i)=(i) Let fy, be a N.Y —irresolute function and N be a N Y — closed set in V. Then N€ is
N, Y —open in V. Since fy, is N,Y— irresolute, fy!(N¢) is N,Y—open in U. That is,
(fut(N))¢ is N, Y —open in U. Hence fy,}(N) is N, Y — closed in U.

(i))=(@) Let M be N, Y —open in V. Then M¢ is N, Y —closed in V. By assumption, fy!(M¢) is
N Y —closed in U. That is, (fy,}(M))¢s N, Y —closed in U. Hence fy (M) is N, Y —open in

U. Therefore, fy,, is Ny Y —irresolute.

(i))=(iii) Let L be a neutrosophic set in U. Now, L € fy! (thr (L)) =L Cfyl <Ntchl (thr(L))>.

Since N, Ycl (thT(L)) is Ny, Y —closed in V, by assumption fy! <Ntchl (thr(L))> is a N, Y—
closed set containing L. Also, N, Ycl(L) is the smallest N, Y — closed set containing L. Hence,

Ny Yel(L) € fi! (Nt,Ycl (Fuer (L))). Therefore, fy,, (N, Yel(L)) € N, el (fiy, (1)).
(iii)= (ii) Let N be a N,Y—closed set in V. Then, by assumption fy, (Ntchl (f,ﬁ(N))) c
N, Yl (thr (f (N))) C N, Ycl(N) =N implies N, Ycl (fi:(N)) € fil (V). Also,  fi:(N) €

N, Ycl (fN‘ti(N)). Hence fy.*(N) is N, Y —closed in U.
(iii)=(iv) Let M be a neutrosophic set in V and let L = fy,1(M). By assumption, fy, (N, Ycl(L)) S

N, Ycl (thT (L)) = N, Ycl(M).This implies N, Ycl (f,v‘; (M)) S fuk(Ny Yel(M)).
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(iv)=(iii) Let M = fy,_(L). Then, by assumption, N, Ycl(L) = N, Ycl (f,v‘ti (M)) € fu, (N, Yel(M))

= fuk (Ntchl (thr(L))). This implies thr(Ntchl(L)) C N, Ycl (thr (L)).
(iv)e=(v) This can be proved by taking complements.

(V=) Let M be a N, Y —open set in V. Then fi:(M) = f: (N, Yint(M)) € Ny, Yine (£ (M)).

Also, N Yint (fN‘;(M)) € fyo(M). This implies fy!(M) is N, Y —open in U. Hence fy, is

N, Y —irresolute.
(i)=(vi) Let u,, . be a neutrosophic point in U and let N be a N, Y —nbhd of fy, (ugp.)- Then
there exists a N,Y—open set M in V such that thr(ua,b,C) EMCN. Since fy, s

N, Y —irresolute, fN_;(M) is N, Y —open in U. Also, uy. € fN_t}‘ (fN"(ualb‘C)) € fl\fti(M) c fN_;(N)

Hence there exists a N, Y —open set fy!(M) such that ug,,. € fy,2(M) € fy.!(N). This implies
fus(N) is Ny, Y —nbhd of ugy,,.

(vi)=(vii) Let u,, . be a neutrosophic pointin U and let N be a N, Y —nbhd of fy, (ugp)- Then
by assumption, fi,!(N) is N, Y —nbhd of u,; .. Then there exists a N, Y —open set L in U such

that ugpc €L € figd(N). Thus gy € L and fy, (L) € fy,, (fil(V)) € N.

(vi)=>(i) Let M be a N, Y —open set in V and let u, € fy,:(M). Since M is N, Y — open and
thT(ua_b_C) € M,M is a N, Y —nbhd of fN”(ua‘b‘c). Hence it follows from (vii) that there exists a
N, Y —open set L in U such that ug,.€L and fy, (L) €M. This implies u,, €L C

fror (thT(L))EfN‘;(M). By theorem 3.6, fy!(M) is N,Y—open in U. Therefore fy, is

N, Y —irresolute.

Example 5.7: (i) Consider the topological spaces and the function fy, defined in example 5.2. Here
fu,, is N Y —irresolute and N, YC(U,ty,. ) = {Oy,.L5,P" 1y, } NoYC(V,py,.) = {0y, M, Q" 1y, }
where P'={P°:PeP} and Q ={0Q°:Q € Q}. Now, fN‘ti(M‘:) ={<a,0.3,0.3,0.5 >< b,0.2,0.3,
0.8>} € P’ and for each Q € Q’, there exists some P € P’ such that fN‘ti (Q) = P. Hence the
inverse image of every N.,Y —closed set in (V,py,) is N, Y —closed in (U,ty, ) if fy, is
N, Y —irresolute.

(ii) Let U ={a,b},V ={x,y}, Ty, = {ON”, 1Ntr’L} and py,, = {ONtr’ 1y, M} where L ={<a,0.7,0.5,
0.5 >< b,0.8,0.6,0.4 >} and M ={< x,0.8,0.6,0.4 >< y,0.9,0.7,0.1 >}. Consider the collections
P={P:0y,cPcl} and Q={Q:0y, €Qc M} of neutrosophic sets in U and V
respectively.  Then, N, YC(U, TN”) = {ON”,LC,?, 1N"} and N, YC(V, pNtr) = {ON”,MC, 9, 1Ntr}'
Now, define fy, :(U,ty,) — (V,py,,) as fy,(@)=x and fy, (b)=y. Then, [fyl(M°)=
{<a,0.1,03,09 >< b,0.2,0.1,08 >} € P and for each Q € Q, there exists some P € P such that
fur(Q) = P. Now, fyt(M¢) = (fy,l(M))¢ is N,Y—closed implies fy(M) is N,Y —open .
Similarly, we can prove that the inverse image of every N, Y —open set in (V,py,,) is N, Y —open
in (U, TNH). Hence fy, is NgY —irresolute if the inverse image of every N,Y —closed set in
(V,pn,,) is N, Y —closed in (U, TN").
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Theorem 5.8: If fy :(U,ty,) — (V,py,) and gy,.:(V,py,) — (W,&y,) are N.Y — irresolute
functions, then their composition gy, e fy,.: (U, ‘L'Ntr) — (W, thr) is also Ng.Y —irresolute.

Proof: Let N be N, Y —open in W. Since gy, is N, Y —irresolute, gy' (N) is N, Y —open in V.
Again, since fy, is N Y —irresolute, fy! (g;,tlr(N)) = (gNtrofN”)_l(N) is N, Y —open in U.

Hence gy, ° fy,, is N Y —irresolute.
Theorem 5.9: If fy :(U,ty,,) — (V,py,) is Ny Y —irresolute and gy,,: (V,py,) — (W,$y,,) is
Ny, Y — continuous, then gy, ° fy,, (U, TNH) — (W, fN”) is N Y — continuous.

Proof: Let N be N,open in W. Since gy, is N,Y — continuous, gy (N) is N, Y —open in V.
Also, since fy, is N, Y —irresolute, fy (f,v‘; (N)) = (gNtr ° fN”)_l(N) is N, Y — open in U. Hence

Ny © fg, 18 NiY — continuous.
6. Conclusions

The theory of neutrosophic sets is essential in many application areas since indeterminacy is
ubiquitous and these membership functions are crucial. In this paper, we have introduced and
analyzed the concepts of neutrosophic Y —neighbourhood and neutrosophic Y —continuity. In
addition, we have also defined neutrosophic Y —irreolute functions in neutrosophic topological
spaces. As mentioned earlier, continuity features a prominent position in the characterization of
topological spaces. Accordingly, this concept can be wielded in the description of various
topological structures in future. Moreover, several other topological concepts such as
homeomorphisms, connectedness and separation axioms could be explored by means of

neutrosphic Y —open sets and neutrosophic Y —continuity.
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