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Abstract: Owing to a wide range of applications in various fields, the neutrosophic theory initiated 

by Smarandache has been highly featured in research. This concept led to the evolution of 

neutrosophic topological spaces which is being explored extensively. The focus of this paper is to 

introduce and study the concept of neutrosophic Υ − neighbourhood and neutrosophic 

Υ −continuity in neutrosophic topological spaces. Further, we define the notion of neutrosophic 

Υ −irresolute functions. We also observe their attributes and relationship with functions existing in 

literature. Moreover, we present some equivalent conditions for the existence of these functions in 

which the concept of neighbourhood has been wielded.     

Keywords: neutrosophic Υ − open, neutrosophic Υ − closed, neutrosophic Υ − neighbourhood, 

neutrosophic Υ −continuous, neutrosophic Υ −irrseolute. 

 

 

1. Introduction 

 Several theories were developed as mathematical approaches to rectify the difficulties pertained 

to uncertainty. Accordingly, the concept of neutrosophy initiated by Florentine Smarandache[1] 

evolved as a branch of philosophy to study the scope and nature of neutralities. This induced the 

concept of neutrosophic logic which further led to the conceptualization of neutrosophic sets as a 

generalization of fuzzy sets and intuitionistic fuzzy sets. A neutrosophic set is characterized by three 

independent components namely membership, indeterminacy and non-membership functions 

defined on the non-standard unit interval. Later, Salama and Albowi[3] in 2012 induced the concept 

of neutrosophic sets in topological spaces which originated as neutrosophic topological spaces. In 

addition, some basic notions and properties of topological structures such as interior, closure, 

subspaces and separation axioms have been presented in [4-8]. G. C. Ray and Sudeep[9] proposed 

the definitions of neutrosophic point and neighbourhood structure. They have also explored the 

relation of quasi coincidence between neutrosophic sets and characterized the neutrosophic 

topological spaces by means of quasi-neighbourhood. Meanwhile, Salama et.al[10] in 2014, studied 

the concept of continuous functions in neutrosophic topological spaces. Further, P. Iswarya and                    
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K. Bageerathi[11], in 2016 introduced the concept of semi-open sets in neutrosophic topological 

spaces and later the notion of semi-continuous functions[12,13] were also studied. Dhavaseelan and 

Saeid Jafari[14], in 2017 established the idea of generalized closed sets and continuous functions in 

neutrosophic topological spaces. C. Maheshwari and S. Chandrasekar[15] defined the notion of 

gb-closed sets and continuous functions in 2019. Moreover, some novel concepts of continuous 

functions and other topological structures have been defined and studied by various authors[16-18] 

in the subsequent years. Recently, the authors[19] of this paper introduced and analyzed a new class 

of neutrosophic sets namely neutrosophic Υ −open sets and neutrosophic Υ −closed sets. The main 

objective of this paper is to introduce and study the concepts of neutrosophic Υ −neighbourhood, 

neutrosophic Υ − continuous and irresolute functions in neutrosophic topological spaces. The 

characterization and composition of these functions have been presented through results and 

counter examples. Further, various equivalent conditions for the existence of these concepts have 

also been observed.  

        The structure of the paper is as follows: section 2 comprises of the prerequisites essential for 

this work. Section 3 establishes a novel concept of neighbourhood namely neutrosophic 

Υ −neighbourhood and Υ −quasi neighbourhood. Section 4 imparts the notion of neutrosophic 

Υ −continuous functions and its attributes. Further, section 5 presents the idea of neutrosophic 

Υ −irresolute functions and the article is ceased with a conclusion in section 6.   

2. Preliminaries 

In this section, we have presented some basic notions and results required for the progression of 

this work. 

Definition 2.1[3]: Let 𝑈 be a non-empty fixed set. A neutrosophic set 𝐿 is an object having the 

form 𝐿 = {< 𝑢, 𝜇𝐿(𝑢), 𝜎𝐿(𝑢), 𝛾𝐿(𝑢) >: 𝑢 ∈ 𝑈}  where 𝜇𝐿(𝑢), 𝜎𝐿(𝑢)and 𝛾𝐿 (𝑢) represent the degree of 

membership, the degree of indeterminacy and the degree of non-membership respectively of each 

element 𝑢 ∈ 𝑈. A neutrosophic set𝐿 = {< 𝑢, 𝜇𝐿(𝑢), 𝜎𝐿(𝑢), 𝛾𝐿 (𝑢) >: 𝑢 ∈ 𝑈}  can be identified to an 

ordered triple < 𝜇𝐿 , 𝜎𝐿 , 𝛾𝐿 > in [1,0]  on 𝑈. 

Definition 2.2[3]: Let 𝑈  be a non-empty set and 𝐿 = {< 𝑢, 𝜇𝐿(𝑢), 𝜎𝐿(𝑢), 𝛾𝐿(𝑢) >: 𝑢 ∈ 𝑈},                        

𝑀 = {< 𝑢, 𝜇𝑀(𝑢), 𝜎𝑀(𝑢), 𝛾𝑀(𝑢) >: 𝑢 ∈ 𝑈} be neutrosophic sets in 𝑈. Then 

(i) 𝐿 ⊆ 𝑀 if 𝜇𝐿(𝑢) ≤ 𝜇𝑀(𝑢), 𝜎𝐿(𝑢) ≤ 𝜎𝑀(𝑢) and 𝛾𝐿(𝑢) ≥ 𝛾𝑀(𝑢) for all 𝑢 ∈ 𝑈. 

(ii) 𝐿 ∪ 𝑀 = {< 𝑢, max{𝜇𝐿(𝑢), 𝜇𝑀(𝑢)}, max{𝜎𝐿(𝑢), 𝜎𝑀(𝑢)}, min{𝛾𝐿 (𝑢), 𝛾𝑀(𝑢)}>:𝑢 ∈ 𝑈} 

(iii) 𝐿 ∩ 𝑀 = {< 𝑢, min{𝜇𝐿(𝑢), 𝜇𝑀(𝑢)}, min{𝜎𝐿(𝑢), 𝜎𝑀(𝑢)}, max{𝛾𝐿 (𝑢), 𝛾𝑀 (𝑢)}>:𝑢 ∈ 𝑈} 

(iv) 𝐿𝑐 = {< 𝑢, 𝛾𝐿 (𝑢), 1 − 𝜎𝐿(𝑢), 𝜇𝐿(𝑢) >: 𝑢 ∈ 𝑈} 

(v) 0𝑁𝑡𝑟
= {< 𝑢, 0,0,1 >: 𝑢 ∈ 𝑈} and 1𝑁𝑡𝑟

= {< 𝑢, 1,1,0 >: 𝑢 ∈ 𝑈} 

Definition 2.3[3]: A neutrosophic topology on a non-empty set 𝑈 is a family 𝜏𝑁𝑡𝑟
 of neutrosophic 

sets in 𝑈 satisfying the following axioms: 

(i) 0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

∈ 𝜏𝑁𝑡𝑟
 

(ii) ⋃𝐿𝑖 ∈ 𝜏𝑁𝑡𝑟
∀{𝐿𝑖: 𝑖 ∈ 𝐼} ⊆ 𝜏𝑁𝑡𝑟

 

(iii) 𝐿1 ∩ 𝐿2 ∈ 𝜏𝑁𝑡𝑟
 for any 𝐿1, 𝐿2 ∈ 𝜏𝑁𝑡𝑟

 

The pair (𝑈, 𝜏𝑁𝑡𝑟
)  is called a neutrosophic topological space. The members of 𝜏𝑁𝑡𝑟

 are called 

neutrosophic open and its complements are called neutrosophic closed. 
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Definition 2.4[5]: A neutrosophic set 𝐿 = {< 𝑢, 𝜇𝐿(𝑢), 𝜎𝐿(𝑢), 𝛾𝐿 (𝑢) >: 𝑢 ∈ 𝑈} is called a neutrosophic 

point if for any element 𝑣 ∈ 𝑈, 𝜇𝐿(𝑣) = 𝑎, 𝜎𝐿(𝑣) = 𝑏, 𝛾𝐿(𝑣) = 𝑐  for 𝑢 = 𝑣  and 𝜇𝐿(𝑣) = 0, 𝜎𝐿(𝑣) =

0, 𝛾𝐿 (𝑣) = 1  for 𝑢 ≠ 𝑣, where 𝑎, 𝑏, 𝑐  are real standard or non standard subsets of [1,0]  . A 

neutrosophic point is denoted by 𝑢𝑎,𝑏,𝑐 .  For the neutrosophic point 𝑢𝑎,𝑏,𝑐 , 𝑢  will be called its 

support.  

Definition 2.5[4]: Let (𝑈, 𝜏𝑁𝑡𝑟
) be a neutrosophic topological space and 𝑆 be a non-empty subset of 

𝑈. Then, a neutrosophic relative topology on S is defined by 

𝜏𝑁𝑡𝑟
𝑆 = {𝐿 ∩ 1𝑁𝑡𝑟

𝑆 ∶ 𝐿 ∈ 𝜏𝑁𝑡𝑟
} 

where 

1𝑁𝑡𝑟
𝑆 = {

< 1,1,0 >, 𝑖𝑓𝑠 ∈ 𝑆
< 0,0,1 >, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Thus, (𝑆, 𝜏𝑁𝑡𝑟
𝑆 ) is called a neutrosophic subspace of (𝑈, 𝜏𝑁𝑡𝑟

). 

Definition 2.6[14]: Let 𝑈  and 𝑉  be two non-empty sets and 𝑓𝑁𝑡𝑟
: 𝑈 ⟶ 𝑉  be a function.                                      

If 𝑀 = {< 𝑣, 𝜇𝑀(𝑣), 𝜎𝑀(𝑣), 𝛾𝑀(𝑣) >: 𝑣 ∈ 𝑉} is a neutrosophic set in 𝑉, then the preimage of 𝑀 under 

𝑓𝑁𝑡𝑟
, denoted by 𝑓𝑁𝑡𝑟

−1(𝑀), is the neutrosophic set in 𝑈 defined by 

𝑓𝑁𝑡𝑟
−1(𝑀) = {< 𝑢, 𝑓𝑁𝑡𝑟

−1(𝜇𝑀)(𝑢), 𝑓𝑁𝑡𝑟
−1(𝜎𝑀)(𝑢), 𝑓𝑁𝑡𝑟

−1(𝛾𝑀)(𝑢) >∶ 𝑢 ∈ 𝑈} 

If 𝐿 = {< 𝑢, 𝜇𝐿(𝑢), 𝜎𝐿(𝑢), 𝛾𝐿(𝑢) >: 𝑢 ∈ 𝑈} is a neutrosophic set in 𝑈, then the image of 𝐿 under 𝑓𝑁𝑡𝑟
, 

denoted by 𝑓𝑁𝑡𝑟
(𝐿), is the neutrosophic set in 𝑉 defined by  

𝑓𝑁𝑡𝑟
(𝐿) = {< 𝑣, 𝑓𝑁𝑡𝑟

(𝜇𝐿)(𝑣), 𝑓𝑁𝑡𝑟
(𝜎𝐿)(𝑣), (1 − 𝑓𝑁𝑡𝑟

(1 − 𝛾𝐿)) (𝑣) > ∶ 𝑣 ∈ 𝑉} where 

𝑓𝑁𝑡𝑟
(𝜇𝐿)(𝑣) = {

𝑠𝑢𝑝𝑢∈𝑓𝑁𝑡𝑟
−1 (𝑣)𝜇𝐿(𝑢),       if 𝑓𝑁𝑡𝑟

−1(𝑣) ≠ ∅

0,                               otherwise
 

𝑓𝑁𝑡𝑟
(𝜎𝐿)(𝑣) = {

𝑠𝑢𝑝𝑢∈𝑓𝑁𝑡𝑟
−1 (𝑣)𝜎𝐿(𝑢),       if 𝑓𝑁𝑡𝑟

−1(𝑣) ≠ ∅

0,                               otherwise
 

(1 − 𝑓𝑁𝑡𝑟
(1 − 𝛾𝐿)) (𝑣) = {

𝑖𝑛𝑓𝑢∈𝑓𝑁𝑡𝑟
−1 (𝑣)𝛾𝐿(𝑢),       if 𝑓𝑁𝑡𝑟

−1(𝑣) ≠ ∅

1,                               otherwise
 

Definition 2.7: Let (𝑈, 𝜏𝑁𝑡𝑟
) and (𝑉, 𝜌𝑁𝑡𝑟

) be neutrosophic topological spaces. Then the function 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  is said to be neutrosophic continuous[10] (respectively, neutrosophic 

semi−continuous[12], neutrosophic 𝛼 −continuous[14], neutrosophic 𝛽 −continuous, neutrosophic 

𝑔𝑠 − continuous, neutrosophic 𝑔𝑏 − continuous[15]) if 𝑓𝑁𝑡𝑟
−1(𝑀)  is 𝑁𝑡𝑟 open(respectively 

𝑁𝑡𝑟 semi − open, 𝑁𝑡𝑟𝛼 − open, 𝑁𝑡𝑟𝛽 − open, 𝑁𝑡𝑟𝑔𝑠 − open, 𝑁𝑡𝑟𝑔𝑏 − open) in (𝑈, 𝜏𝑁𝑡𝑟
)  for every 

𝑁𝑡𝑟open set 𝑀 in (𝑉, 𝜌𝑁𝑡𝑟
). 

Definition 2.8[7]: Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
). 

Then a neutrosophic set 𝑁 in 𝑈 is said to be neutrosophic neighbourhood(𝑁𝑡𝑟𝑛𝑏ℎ𝑑) of  𝑢𝑎,𝑏,𝑐 if 

there exists a 𝑁𝑡𝑟open set 𝑀 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀 ⊆ 𝑁. 

Definition 2.9[6]: A neutrosophic point 𝑢𝑎,𝑏,𝑐 is said to be neutrosophic quasi – coincident with a 

neutrosophic set 𝐿, denoted by 𝑢𝑎,𝑏,𝑐𝑞𝐿 if 𝑢𝑎,𝑏,𝑐 ∉ 𝐿𝑐. If 𝑢𝑎,𝑏,𝑐 is not neutrosophic quasi – coincident 

with 𝐿, we denote it by 𝑢𝑎,𝑏,𝑐𝑞̂𝐿. 

Definition 2.10[6]: A neutrosophic set 𝑀 is said to be neutrosophic quasi – coincident with a 

neutrosophic set 𝐿, denoted by 𝑀𝑞𝐿 if 𝑀 ⊈ 𝐿𝑐. If 𝑀 is not neutrosophic quasi – coincident with 𝐿, 

we denote it by 𝑀𝑞̂𝐿. 

Definition 2.11[6]: A neutrosophic set 𝑁  in 𝑈  is said to be neutrosophic quasi- 

neighbourhood(𝑁𝑡𝑟𝑄𝑛𝑏ℎ𝑑) of  𝑢𝑎,𝑏,𝑐 if there exists a 𝑁𝑡𝑟open set 𝑀 such that 𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝑁. 
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Definition 2.12[19]:A neutrosophic set 𝐿 of a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
) is said to be 

neutrosophic 𝚼 −open if for every non-empty 𝑁𝑡𝑟 closed set 𝐹 ≠ 1𝑁𝑡𝑟
, 𝐿 ⊆ 𝑁𝑡𝑟𝑐𝑙(𝑁𝑡𝑟𝑖𝑛𝑡(𝐿 ∪ 𝐹)).                                  

The complement of neutrosophic Υ −open set is neutrosophic Υ −closed. The class of neutrosophic 

Υ −open sets in (𝑈, 𝜏𝑁𝑡𝑟
) is denoted by 𝑁𝑡𝑟ΥO(𝑈, 𝜏𝑁𝑡𝑟

). 

Theorem 2.13[19]: The union of an arbitrary collection of 𝑁𝑡𝑟Υ −open sets is also 𝑁𝑡𝑟Υ −open. 

Theorem 2.14[19]: In any neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
), 

(i) Every 𝑁𝑡𝑟open set is 𝑁𝑡𝑟Υ −open. 

(ii) Every 𝑁𝑡𝑟semi−open set is 𝑁𝑡𝑟Υ −open. 

(iii) Every 𝑁𝑡𝑟𝛼 − open set is 𝑁𝑡𝑟Υ −open. 

(iv) Every 𝑁𝑡𝑟Υ −open set is 𝑁𝑡𝑟𝛽 − open. 

(v) Every 𝑁𝑡𝑟Υ −open set is 𝑁𝑡𝑟𝑔𝑠 − open. 

(vi) Every 𝑁𝑡𝑟Υ −open set is 𝑁𝑡𝑟𝑔𝑏 − open. 

Remark 2.15[19]: The above theorem is also true for 𝑁𝑡𝑟Υ −closed sets. 

Theorem 2.16[19]: A neutrosophic set 𝐿 in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ −

open if and only if for every neutrosophic point 𝑢𝑎,𝑏,𝑐 ∈ 𝐿, there exists a 𝑁𝑡𝑟Υ − open set 𝑀𝑢𝑎,𝑏,𝑐
 

such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀𝑢𝑎,𝑏,𝑐
⊆ 𝐿. 

Definition 2.17[19]: Let be a neutrosophic topological space and 𝐿 be a neutrosophic set in 𝑈. 

(i) The neutrosophic 𝚼 −interior of 𝐿 is the union of all 𝑁𝑡𝑟Υ −open sets contained in 𝐿. 

It is denoted by 𝑁𝑡𝑟Υ𝑖𝑛𝑡(𝐿). 

(ii) The neutrosophic 𝚼 − closure of 𝐿  is the intersection of all 𝑁𝑡𝑟Υ − closed sets 

containing 𝐿. It is denoted by 𝑁𝑡𝑟Υ𝑐𝑙(𝐿). 

3. Neutrosophic 𝚼 −neighbourhood 

This section conceptualizes the idea of neutrosophic Υ −neighbourhood and neutrosophic 

Υ −quasi neighbourhood. Moreover, their characterizations have been depicted through results and 

illustrations. 

Definition 3.1: Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
). Then 

a neutrosophic set 𝑁 in 𝑈 is said to be a   

(i) neutrosophic 𝚼 −neighbourhood(𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑) of  𝑢𝑎,𝑏,𝑐  if there exists a 𝑁𝑡𝑟Υ − open set 𝑀 

such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀 ⊆ 𝑁. 

(ii) neutrosophic 𝚼 −quasi neighbourhood(𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑) of  𝑢𝑎,𝑏,𝑐 if there exists a 𝑁𝑡𝑟Υ − open 

set 𝑀 such that 𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝑁.  

Example 3.2: Let 𝑈 = {𝑎, 𝑏} and 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} where𝐿 = {< 𝑎, 0.7,0.5,0.3 >< 𝑏, 0.2,0.7,0.1 >}. 

Now, let us consider a neutrosophic point 𝑎0.1,0.2,0.5  in 𝑈.  Then, there is a 𝑁𝑡𝑟Υ − open  set         

𝑀 = {< 𝑎, 0.8,0.8,0.1 >< 𝑏, 0.5,0.9,0.1 >}  such that 𝑎0.1,0.2,0.5 ∈ 𝑀 ⊆ 𝑁  where𝑁 = {< 𝑎, 0.9,0.8,0.1 >  

< 𝑏, 0.6,0.9,0.1 >}. Hence 𝑁 is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑎0.1,0.2,0.5. 

Example 3.3: Let 𝑈 = {𝑎, 𝑏} and 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} where𝐿 = {< 𝑎, 0.8,0.7,0.1 >< 𝑏, 0.4,0.9,0.1 >}. 

Now, let us consider a neutrosophic point 𝑎0.2,0.9,0.7  in 𝑈.  Then, there is a 𝑁𝑡𝑟Υ − open  set        

𝑀 = {< 𝑎, 0.9,0.8,0.1 >< 𝑏, 0.7,0.9,0.1 >}  such that 𝑎0.2,0.9,0.7𝑞𝑀 ⊆ 𝑁  where 𝑁 = {< 𝑎, 0.9,0.9,0.1 >  

< 𝑏, 0.8,0.9,0.1 >}. Hence 𝑁 is a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑎0.2,0.9,0.7. 

Theorem 3.4: Every 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 (resp. 𝑁𝑡𝑟𝑄𝑛𝑏ℎ𝑑)  of a neutrosophic point 𝑢𝑎,𝑏,𝑐 in a neutrosophic 

topological space (𝑈, 𝜏𝑁𝑡𝑟
) is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑(resp.𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑) of 𝑢𝑎,𝑏,𝑐 . 
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Proof: Let 𝑁 be a 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 (resp. 𝑁𝑡𝑟𝑄𝑛𝑏ℎ𝑑) of a neutrosophic point 𝑢𝑎,𝑏,𝑐 in 𝑈. Then, there exists 

a 𝑁𝑡𝑟open set 𝑀 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀 ⊆ 𝑁 (resp. 𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝑁). Now, by theorem 2.14, 𝑀 is 

𝑁𝑡𝑟Υ − open in 𝑈. Hence there exists a 𝑁𝑡𝑟Υ − open set 𝑀 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀 ⊆ 𝑁  (resp. 

𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝑁). Therefore 𝑁 is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑(resp. 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑) of 𝑢𝑎,𝑏,𝑐 . 

The following example substantiates that the converse of the above-stated theorem need not be true. 

Example 3.5: (i) Let 𝑈 = {𝑎, 𝑏}  and 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿}  where 𝐿 = {< 𝑎, 0.6,0.6,0.2 >< 𝑏, 0.2,0.9, 

0.1 >}. Now, let us consider a neutrosophic point 𝑎0.7,0.1,0.5 in 𝑈. Then there is a 𝑁𝑡𝑟Υ − open set 

𝑀 = {< 𝑎, 0.8,0.7,0.2 >< 𝑏, 0.3,0.9,0.1 >}  such that 𝑎0.7,0.1,0.5 ∈ 𝑀 ⊆ 𝑁  where 𝑁 = {< 𝑎, 0.8,0.9, 

0.1 >< 𝑏, 0.4,0.9,0.1 >}.  This implies 𝑁  is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑  of 𝑎0.7,0.1,0.5.  However, 𝑁  is not a 

𝑁𝑡𝑟𝑛𝑏ℎ𝑑 of 𝑎0.7,0.1,0.5.  

(ii) Let 𝑈 = {𝑎, 𝑏}  and 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿}  where 𝐿 = {< 𝑎, 0.7,0.9,0.1 >< 𝑏, 0.5,0.7,0.4 >} . Now,                  

let us consider a neutrosophic point 𝑎0.1,0.1,0.7  in 𝑈.  Then there is a 𝑁𝑡𝑟Υ − open  set                               

𝑀 = {< 𝑎, 0.8,0.9,0.1 >< 𝑏, 0.7,0.7,0.2 >}  such that 𝑎0.1,0.1,0.7𝑞𝑀 ⊆ 𝑁  where 𝑁 = {< 𝑎, 0.9,0.9,0.1 >  

< 𝑏, 0.9,0.8,0.1 >}. This implies 𝑁 is a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑎0.1,0.1,0.7. However, 𝑁  is not a 𝑁𝑡𝑟𝑛𝑏ℎ𝑑            

of 𝑎0.1,0.1,0.7. 

Theorem 3.6: A neutrosophic set 𝐿 in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − open if 

and only if for every neutrosophic point 𝑢𝑎,𝑏,𝑐 ∈ 𝐿, 𝐿 is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 .  

Proof: Let 𝐿  be 𝑁𝑡𝑟Υ − open in 𝑈. Also, for each 𝑢𝑎,𝑏,𝑐 ∈ 𝐿, 𝐿 ⊆ 𝐿.  Then, by definition 3.1(i), it 

follows that 𝐿 is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . Conversely, assume that for every 𝑢𝑎,𝑏,𝑐 ∈ 𝐿, 𝐿 is a 𝑁𝑡𝑟Υ −

𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . Then, there exists a 𝑁𝑡𝑟Υ − open set 𝑀 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑀 ⊆ 𝐿. Therefore, 

by theorem 2.16, 𝐿 is 𝑁𝑡𝑟Υ − open. 

Theorem 3.7: Every 𝑁𝑡𝑟Υ − open set 𝐿 in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
) is a 𝑁𝑡𝑟Υ −

𝑄𝑛𝑏ℎ𝑑 of every neutrosophic point quasi−coincident with 𝐿. 

Proof: The proof is obvious since for every neutrosophic point 𝑢𝑎,𝑏,𝑐𝑞𝐿,  we have                    

𝑢𝑎,𝑏,𝑐𝑞𝐿 ⊆ 𝐿. 

Theorem 3.8: Let 𝐿  be a 𝑁𝑡𝑟Υ − closed set in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
)  and 

𝑢𝑎,𝑏,𝑐𝑞𝐿𝑐 . Then, there exists a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 𝑀 of  𝑢𝑎,𝑏,𝑐 such that 𝐿𝑞̂𝑀. 

Proof:  Since 𝐿  is 𝑁𝑡𝑟Υ − closed  in 𝑈, 𝐿𝑐  is 𝑁𝑡𝑟Υ − open in 𝑈  such that 𝑢𝑎,𝑏,𝑐𝑞𝐿𝑐 .  Then, by 

theorem 3.7, 𝐿𝑐  is a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . Hence there exists a 𝑁𝑡𝑟Υ − open set 𝑀 in 𝑈 such 

that 𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝐿𝑐 . Again, by theorem 3.7, 𝑀 is a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . Also, since 𝑀 ⊆ 𝐿𝑐 , 𝐿𝑞̂𝑀. 

Hence there exists a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 𝑀 of  𝑢𝑎,𝑏,𝑐 such that 𝐿𝑞̂𝑀.  

Theorem 3.9: Let 𝐿 be a neutrosophic set in a neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
). Then a 

neutrosophic point 𝑢𝑎,𝑏,𝑐 ∈ 𝑁𝑡𝑟Υ𝑐𝑙(𝐿)  if and only if every 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑  of 𝑢𝑎,𝑏,𝑐  is 

quasi-coincident with 𝐿. 

Proof: Let 𝑢𝑎,𝑏,𝑐 ∈ 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) and 𝑁 be a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 such that 𝑁𝑞̂𝐿. Then, there exists 

a 𝑁𝑡𝑟Υ − open  set 𝑀  such that 𝑢𝑎,𝑏,𝑐𝑞𝑀 ⊆ 𝑁.  Since 𝑁𝑞̂𝐿, 𝑁 ⊆ 𝐿𝑐  and therefore 𝑀 ⊆ 𝐿𝑐  which 

implies 𝐿 ⊆ 𝑀𝑐 .  Now, 𝑀𝑐  is a 𝑁𝑡𝑟Υ − closed  set containing 𝐿  and 𝑁𝑡𝑟Υ𝑐𝑙(𝐿)  is the smallest 

𝑁𝑡𝑟Υ − closed set containing 𝐿. Hence 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) ⊆ 𝑀𝑐 . Also, since 𝑢𝑎,𝑏,𝑐𝑞𝑀, 𝑢𝑎,𝑏,𝑐 ∉ 𝑀𝑐. Therefore 

𝑢𝑎,𝑏,𝑐 ∉ 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) which is a contradiction. Conversely, suppose every 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐  is 

quasi-coincident with 𝐿. If 𝑢𝑎,𝑏,𝑐 ∉ 𝑁𝑡𝑟Υ𝑐𝑙(𝐿), then there exists a 𝑁𝑡𝑟Υ − closed set 𝑀  such that 

𝐿 ⊆ 𝑀 and 𝑢𝑎,𝑏,𝑐 ∉ 𝑀. This implies that 𝑢𝑎,𝑏,𝑐𝑞𝑀𝑐 , where 𝑀𝑐 is a 𝑁𝑡𝑟Υ − open set in 𝑈. Now, by 

theorem 3.7, 𝑀𝑐 is a 𝑁𝑡𝑟Υ − 𝑄𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 such that 𝑀𝑐𝑞̂𝐿 which is a contradiction. 
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4. Neutrosophic 𝚼 −continuous functions 

Topology is constantly intrigued by issues that are either directly or indirectly related to 

continuity.  Accordingly, continuity plays a prominent role in the characterization of topological 

spaces. This section deals with the origination of neutrosophic Υ − continuous  functions in 

neutrosophic topological spaces. Further, we have observed their properties and discussed the 

composition of functions.  

Definition 4.1: Let (𝑈, 𝜏𝑁𝑡𝑟
) and (𝑉, 𝜌𝑁𝑡𝑟

) be neutrosophic topological spaces. Then the function 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) is said to be neutrosophic 𝚼 − continuous if 𝑓𝑁𝑡𝑟

−1(𝑀) is 𝑁𝑡𝑟Υ − open in 

(𝑈, 𝜏𝑁𝑡𝑟
) for every 𝑁𝑡𝑟open set 𝑀 in (𝑉, 𝜌𝑁𝑡𝑟

). 

Example 4.2: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿, 𝑀} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑁}  where      

𝐿 = {< 𝑎, 0.6,0.3,0.5 >< 𝑏, 0.5,0.8,0.4 >}, 𝑀 = {< 𝑎, 0.5,0.2,0.7 >< 𝑏, 0.2,0.7,0.9 >}  and 𝑁 = {< 𝑥, 0.9, 

0.9,0.1 >< 𝑦, 0.8,0.9,0.2 >}.  Consider the collections 𝒫 = {𝑃 ∶ 𝐿 ⊂ 𝑃, 𝑀𝑐 ⊂ 𝑃} and 𝒬 = {𝑄 ∶ 𝐿 ⊂

𝑄; 𝑄 ⊄ 𝑀𝑐 ; 𝑀𝑐 ⊄ 𝑄} of neutrosophic sets in 𝑈. Then 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝑀, 𝒫, 𝒬, 1𝑁𝑡𝑟
}. Define 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑦  and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑥.  Then, 𝑓𝑁𝑡𝑟

−1(𝑁) = {< 𝑎, 0.8,0.9,0.2 >              

< 𝑏, 0.9,0.9,0.1 >} ∈ 𝒫  which implies 𝑓𝑁𝑡𝑟
−1(𝑁)  is 𝑁𝑡𝑟Υ − open  in 𝑈.  Hence 𝑓𝑁𝑡𝑟

 is 

𝑁𝑡𝑟Υ −continuous.  

Theorem 4.3: Every 𝑁𝑡𝑟continuous function is 𝑁𝑡𝑟Υ − continuous. 

Proof: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a 𝑁𝑡𝑟continuous function. Let 𝑀 be a 𝑁𝑡𝑟open set in 𝑉. 

Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟continuous, 𝑓𝑁𝑡𝑟

−1(𝑀) is 𝑁𝑡𝑟open in 𝑈. By theorem 2.14, 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ − open in 

𝑈. Hence 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous. 

The following example substantiates that the converse of the above-stated theorem need not be true. 

Example 4.4: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿, 𝑀} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑁}  where 𝐿 =

{< 𝑎, 0.6,0.4,0.9 >< 𝑏, 0.5,0.7,1 >}, 𝑀 = {< 𝑎, 0.7,0.6,0.8 >< 𝑏, 0.6,0.8,0.9 >}  and 𝑁 = {< 𝑥, 0.6, 

0.9,0.3 >< 𝑦, 0.7,0.6,0.2 >}.  Consider the collections 𝒫 = {𝑃 ∶ 𝑀 ⊂ 𝑃, 𝐿𝑐 ⊂ 𝑃} and 𝒬 = {𝑄 ∶ 𝑀 ⊂

𝑄; 𝑄 ⊄ 𝐿𝑐 ; 𝐿𝑐 ⊄ 𝑄} of neutrosophic sets in 𝑈.Then 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝑀, 𝒫, 𝒬, 1𝑁𝑡𝑟
}.  Define 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑦  and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑥.  Then, 𝑓𝑁𝑡𝑟

−1(𝑁) = {< 𝑎, 0.7,0.6,0.2 >             

< 𝑏, 0.6,0.9,0.3 >} ∈ 𝒬 which implies 𝑓𝑁𝑡𝑟
−1(𝑁) is 𝑁𝑡𝑟Υ − open but not 𝑁𝑡𝑟open in 𝑈. Hence 𝑓𝑁𝑡𝑟

 is 

𝑁𝑡𝑟Υ − continuous but not 𝑁𝑡𝑟continuous. 

Theorem 4.5: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a function between two neutrosophic topological 

spaces. 

(i) If 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟semi − continuous, then 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

(ii) If 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟𝛼 − continuous, then 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

(iii) If 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, then 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟𝛽 − continuous. 

(iv) If 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, then 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟𝑔𝑠 − continuous. 

(v) If 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, then 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟𝑔𝑏 − continuous. 

Proof: Proof is obvious. 

However, the ensuing examples reveal that the converse of these implications is not necessarily true 

in general. 

Example 4.6: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where         

𝐿 = {< 𝑎, 0.2,0.4,0.7 >< 𝑏, 0.1,0.2,0.3 >} , 𝑀 = {< 𝑥, 0,0.1,0.6 >< 𝑦, 0.1,0.2,0.9 >}.  Consider the 

collections 𝒫 = {𝑃 ∶  0𝑁𝑡𝑟
⊂ 𝑃 ⊂ 𝐿}, 𝒬 = {𝑄 ∶  𝐿 ⊄ 𝑄 ; 𝑄 ⊄ 𝐿 ; 𝑄 ⊂ 𝐿𝑐}  and ℛ = {𝑅 ∶ 𝐿 ⊂ 𝑅 ⊂ 𝐿𝑐} 

of neutrosophic sets in 𝑈. Then, 𝑁𝑡𝑟𝛼𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿}, 𝑁𝑡𝑟𝑆𝑂(𝑈, 𝜏𝑁𝑡𝑟

) = {0𝑁𝑡𝑟
, 𝐿, 𝐿𝑐 , ℛ, 1𝑁𝑡𝑟

} 
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and 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝐿𝑐 , 𝒫, 𝒬, ℛ, 1𝑁𝑡𝑟
}. Define 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑉, 𝜌𝑁𝑡𝑟

)  as 𝑓𝑁𝑡𝑟
(𝑎) = 𝑦  and 

𝑓𝑁𝑡𝑟
(𝑏) = 𝑥. Then, 𝑓𝑁𝑡𝑟

−1(𝑀) = {< 𝑎, 0.1,0.2,0.9 >< 𝑏, 0,0.1,0.6 >} ∈ 𝒫 which implies 𝑓𝑁𝑡𝑟
−1(𝑀)is 𝑁𝑡𝑟Υ −

open . However, it is neither 𝑁𝑡𝑟semi − open  nor 𝑁𝑡𝑟𝛼 − open  in 𝑈.  Hence 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −

continuous but not 𝑁𝑡𝑟semi − continuous and 𝑁𝑡𝑟𝛼 − continuous. 

Example 4.7: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where                

𝐿 = {< 𝑎, 0.7,0.8,0.6 >< 𝑏, 0.7,0.7,0.5 >} and 𝑀 = {< 𝑥, 0.5,0.7,0.2 >< 𝑦, 0.6,0.9,0.1 >}.  Consider                

the collections 𝒫 = {𝑃 ∶  𝐿𝑐 ⊂ 𝑃 ⊂ 𝐿},  𝒬 = {𝑄 ∶ 𝐿 ⊂ 𝑄 ⊂ 1𝑁𝑡𝑟
},  ℛ = {𝑅 ∶   𝐿𝑐 ⊄ 𝑅 ; 𝑅 ⊄ 𝐿𝑐  ; 𝑅 ⊂

𝐿},   𝒮 = {𝑆 ∶  𝐿𝑐 ⊄ 𝑆 ; 𝑆 ⊄ 𝐿𝑐  ; 𝑆 ⊄ 𝐿},  𝒯 = {𝑇 ∶  𝐿𝑐 ⊂ 𝑇 ⊄ 𝐿}  and 𝒲 = {𝑊 ∶  0𝑁𝑡𝑟
⊂ 𝑊 ⊂ 𝐿𝑐}  of 

neutrosophic sets in 𝑈.  Then, 𝑁𝑡𝑟𝛽𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝒫, 𝒬, ℛ, 𝒮, 𝒯, 1𝑁𝑡𝑟
}, 𝑁𝑡𝑟𝑔𝑠𝑂(𝑈, 𝜏𝑁𝑡𝑟

) =

{0𝑁𝑡𝑟
, 𝐿, 𝒬, ℛ, 𝒮, 𝒲, 1𝑁𝑡𝑟

},  𝑁𝑡𝑟𝑔𝑏𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝒫, 𝒬, ℛ, 𝒮, 𝒯, 𝒲, 1𝑁𝑡𝑟
}  and 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟

) =

{0𝑁𝑡𝑟
, 𝐿, 𝒬, 1𝑁𝑡𝑟

}. Define 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑥  and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑦.  Then, 𝑓𝑁𝑡𝑟

−1(𝑀) =                

{< 𝑎, 0.5,0.7,0.2 >< 𝑏, 0.6,0.9,0.1 >} ∈ 𝒮  which implies 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟𝛽 − open, 𝑁𝑡𝑟𝑔𝑠 − open and 

𝑁𝑡𝑟𝑔𝑏 − open  but not 𝑁𝑡𝑟Υ − open . Hence 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟𝛽 − continuous , 𝑁𝑡𝑟𝑔𝑠 − continuous  and 

𝑁𝑡𝑟𝑔𝑏 − continuous but not 𝑁𝑡𝑟Υ − continuous.  

Theorem 4.8: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a function between two neutrosophic topological 

spaces. Then the following statements are equivalent: 

(i) 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous. 

(ii) The inverse image of every 𝑁𝑡𝑟closed set in (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ −closed in (𝑈, 𝜏𝑁𝑡𝑟

). 

(iii) 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)) for every neutrosophic set 𝐿 in 𝑈. 

(iv) 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑁𝑡𝑟𝑐𝑙(𝑀)) for every neutrosophic set 𝑀 in 𝑉. 

Proof:  

(i)⟹(ii) Let 𝑓𝑁𝑡𝑟
 be a 𝑁𝑡𝑟Υ − continuous function and 𝑁  be a 𝑁𝑡𝑟closed set in 𝑉. Then 𝑁𝑐  is 

𝑁𝑡𝑟open in 𝑉. Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, 𝑓𝑁𝑡𝑟

−1(𝑁𝑐) is 𝑁𝑡𝑟Υ − open in  𝑈. That is, (𝑓𝑁𝑡𝑟
−1(𝑁))𝑐 

is 𝑁𝑡𝑟Υ − open in  𝑈. Hence 𝑓𝑁𝑡𝑟
−1(𝑁) is 𝑁𝑡𝑟Υ − closed in  𝑈. 

(ii)⟹(i) Let 𝑀 be 𝑁𝑡𝑟open in 𝑉. Then 𝑀𝑐  is 𝑁𝑡𝑟closed in 𝑉. By assumption, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) is 𝑁𝑡𝑟Υ −

closed in  𝑈.  That is, (𝑓𝑁𝑡𝑟
−1(𝑀))𝑐 is 𝑁𝑡𝑟Υ − closed in  𝑈.  Hence 𝑓𝑁𝑡𝑟

−1(𝑀)  is 𝑁𝑡𝑟Υ − open in  𝑈. 

Therefore, 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous. 

(ii)⟹(iii) Let 𝐿 be a neutrosophic set in 𝑈. Now, 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1 (𝑓𝑁𝑡𝑟

(𝐿)) implies 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)) 

Since 𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿)) is 𝑁𝑡𝑟closed in 𝑉, by assumption 𝑓𝑁𝑡𝑟

−1 (𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿))) is a 𝑁𝑡𝑟Υ − closed set 

containing 𝐿. Also, 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) is the smallest 𝑁𝑡𝑟Υ − closed set containing 𝐿. Hence, 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) ⊆

𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)). Therefore, 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)). 

(iii)⟹(ii) Let 𝑁 be a 𝑁𝑡𝑟closed set in 𝑉. Then, by assumption  

𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑁))) ⊆ 𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝑓𝑁𝑡𝑟

−1(𝑁))) ⊆ 𝑁𝑡𝑟𝑐𝑙(𝑁) = 𝑁  implies 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
−1(𝑁)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑁).  

Also,  𝑓𝑁𝑡𝑟
−1(𝑁) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑁)). Hence 𝑓𝑁𝑡𝑟
−1(𝑁) is 𝑁𝑡𝑟Υ − closed in 𝑈. 
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(iii)⟹(iv) Let 𝑀 be a neutrosophic set in 𝑉 and let 𝐿 = 𝑓𝑁𝑡𝑟
−1(𝑀). By assumption, 𝑓𝑁𝑡𝑟

(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆

𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿)) = 𝑁𝑡𝑟𝑐𝑙(𝑀).This implies 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑐𝑙(𝑀)). 

(iv)⟹(iii) Let 𝑀 = 𝑓𝑁𝑡𝑟
(𝐿). Then, by assumption, 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) = 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑐𝑙(𝑀)) ⊆

𝑓𝑁𝑡𝑟
−1 (𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿))). This implies 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)). 

(iv) ⟹ (i) Let 𝑀  be 𝑁𝑡𝑟open  in 𝑉.  Then 𝑀𝑐  is 𝑁𝑡𝑟closed  in 𝑉.  By assumption, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) =

𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑐𝑙(𝑀𝑐)) ⊇ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀𝑐)).  Also, we know that 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀𝑐)).  Hence 

𝑓𝑁𝑡𝑟
−1(𝑀𝑐) = 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀𝑐)). Therefore, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐)  is 𝑁𝑡𝑟Υ − closed in 𝑈.  That is, (𝑓𝑁𝑡𝑟

−1(𝑀))
𝑐

 is 

𝑁𝑡𝑟Υ − closed in 𝑈. Hence 𝑓𝑁𝑡𝑟
−1(𝑀)  is 𝑁𝑡𝑟Υ − open in 𝑈. Therefore 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

Example 4.9: (i) Consider the topological spaces and the functions defined in example 4.2. Here 𝑓𝑁𝑡𝑟
 

is 𝑁𝑡𝑟Υ − continuous  and 𝑁𝑡𝑟Υ𝐶(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿𝑐 , 𝑀𝑐 , 𝒫′, 𝒬′, 1𝑁𝑡𝑟
} where 𝒫′ = {𝑃𝑐 ∶ 𝑃 ∈ 𝒫}  and 

𝒬′ = {𝑄𝑐 ∶ 𝑄 ∈ 𝒬}. Now, 𝑓𝑁𝑡𝑟
−1(𝑁𝑐) = {< 𝑎, 0.2 0.1, 0.8 >< 𝑏, 0.1,0.1,0.9 >} ∈ 𝒫′.  Hence the inverse 

image of every 𝑁𝑡𝑟closed set in (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − closed in (𝑈, 𝜏𝑁𝑡𝑟

) if 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous.  

(ii) Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where 𝐿 = {< 𝑎, 0.2,0.4, 

0.9 >< 𝑏, 0.3,0.8,0.7 >}  and   𝑀 = {< 𝑥, 0.9,0.7,0.1 >< 𝑦, 0.8,0.9,0.2 >}.  Consider the collections 

𝒫 = {𝑃 ∶ 𝑃 ⊂ 𝐿, 𝑃 ⊂ 𝐿𝑐} and 𝒬 = {𝑄 ∶ 𝑄 ⊂ 𝐿𝑐 ; 𝑄 ⊄ 𝐿;  𝐿 ⊄ 𝑄}  of neutrosophic sets in 𝑈.  Then 

𝑁𝑡𝑟Υ𝐶(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿𝑐 , 𝒫, 𝒬, 1𝑁𝑡𝑟
}. Now, define 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑉, 𝜌𝑁𝑡𝑟

)  as 𝑓𝑁𝑡𝑟
(𝑎) = 𝑥  and 

𝑓𝑁𝑡𝑟
(𝑏) = 𝑦.  Then, 𝑓𝑁𝑡𝑟

−1(𝑀𝑐) = {< 𝑎, 0.1,0.3,0.9 >< 𝑏, 0.2,0.1,0.8 >} ∈ 𝒫. Now, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) = (𝑓𝑁𝑡𝑟

−1(𝑀))𝑐 

is 𝑁𝑡𝑟Υ − closed implies 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ − open. Hence 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous if the inverse 

image of every 𝑁𝑡𝑟closed set in (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − closed in (𝑈, 𝜏𝑁𝑡𝑟

).    

Theorem 4.10: A function 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − continuous  if and only if  

𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑖𝑛𝑡(𝑀)) ⊆ 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟

−1(𝑀)) for every neutrosophic set 𝑀 in 𝑉. 

Proof: Let 𝑓𝑁𝑡𝑟
 be a 𝑁𝑡𝑟Υ − continuous  function and 𝑀  be a neutrosophic set in 𝑉.  Then 

𝑁𝑡𝑟𝑖𝑛𝑡(𝑀)  is 𝑁𝑡𝑟open  in 𝑉.  By assumption, 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑖𝑛𝑡(𝑀))  is 𝑁𝑡𝑟Υ − open  in 𝑈.  Now, 

𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟𝑖𝑛𝑡(𝑀)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑀)  and 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟
−1(𝑀))  is the largest 𝑁𝑡𝑟Υ − open  set contained in 

𝑓𝑁𝑡𝑟
−1(𝑀) . Hence 𝑓𝑁𝑡𝑟

−1(𝑁𝑡𝑟𝑖𝑛𝑡(𝑀)) ⊆ 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟
−1(𝑀)).  Conversely, let 𝑀  be a 𝑁𝑡𝑟open set in 𝑉. 

Then 𝑓𝑁𝑡𝑟
−1(𝑀) = 𝑓𝑁𝑡𝑟

−1(𝑁𝑡𝑟𝑖𝑛𝑡(𝑀)) ⊆ 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟
−1(𝑀)).  Also, 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟

−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑀). This 

implies 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ − open in 𝑈. Hence 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

Theorem 4.11: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a function between two neutrosophic topological 

spaces. Then the following statements are equivalent: 

(i) 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous. 

(ii) For each neutrosophic point 𝑢𝑎,𝑏,𝑐 , the inverse image of every 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) is 𝑁𝑡𝑟Υ −

𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐. 

(iii) For each neutrosophic point 𝑢𝑎,𝑏,𝑐in 𝑈  and every 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 𝑁  of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐), there exists a 

𝑁𝑡𝑟Υ −open set 𝐿 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 and 𝑓𝑁𝑡𝑟
(𝐿) ⊆ 𝑁. 
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Proof:  

(i)⟹(ii) Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in 𝑈 and let 𝑁 be a 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐). Then there 

exists a 𝑁𝑡𝑟 open set 𝑀  in 𝑉  such that 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) ∈ 𝑀 ⊆ 𝑁.  Since 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous , 

𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ −open in 𝑈. Also, 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟

−1 (𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐)) ∈ 𝑓𝑁𝑡𝑟

−1(𝑀) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁). Hence there exists 

a 𝑁𝑡𝑟Υ −open set 𝑓𝑁𝑡𝑟
−1(𝑀) such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟

−1(𝑀) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁). This implies 𝑓𝑁𝑡𝑟

−1(𝑁) is 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 

of 𝑢𝑎,𝑏,𝑐 . 

(ii)⟹(iii) Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in 𝑈 and let 𝑁 be a 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐). Then by 

assumption, 𝑓𝑁𝑡𝑟
−1(𝑁) is  𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑  of 𝑢𝑎,𝑏,𝑐 . Then there exists a 𝑁𝑡𝑟Υ −open set 𝐿 in 𝑈  such 

that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁).  Thus 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 and 𝑓𝑁𝑡𝑟

(𝐿) ⊆ 𝑓𝑁𝑡𝑟
(𝑓𝑁𝑡𝑟

−1(𝑁)) ⊆ 𝑁. 

(iii) ⟹ (i) Let 𝑀  be a 𝑁𝑡𝑟 open set in 𝑉  and let 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟
−1(𝑀).  Since 𝑀  is 𝑁𝑡𝑟 open and 

𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) ∈ 𝑀, 𝑀 is a 𝑁𝑡𝑟𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟

(𝑢𝑎,𝑏,𝑐). Hence it follows (iii) that there exists a 𝑁𝑡𝑟Υ −open 

set 𝐿 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 and 𝑓𝑁𝑡𝑟
(𝐿) ⊆ 𝑀. This implies 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 ⊆ 𝑓𝑁𝑡𝑟

−1 (𝑓𝑁𝑡𝑟
(𝐿)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑀). 

By theorem 2.16, 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ −open in 𝑈. Therefore 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

Remark 4.12: The statements of theorem 4.8, 4.10 and 4.11 are all equivalent. 

Definition 4.13: A neutrosophic topological space (𝑈, 𝜏𝑁𝑡𝑟
) is said to be 𝑵𝒕𝒓𝑻𝚼 −space if every 

𝑁𝑡𝑟Υ −open set in (𝑈, 𝜏𝑁𝑡𝑟
) is 𝑁𝑡𝑟open.  

Remark 4.14: The composition of two 𝑁𝑡𝑟Υ − continuous functions need not be 𝑁𝑡𝑟Υ − continuous. 

Example 4.15: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}and 𝑊 = {𝑝, 𝑞}. Consider the neutrosophic topologies 𝜏𝑁𝑡𝑟
=

{0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝐿}, 𝜌𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝑀}  and 𝜉𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑁}  where 𝐿 = {< 𝑎, 0.3,0.4,0.9 >   <

𝑏, 0.4,0.5,0.8 >},  𝑀 = {< 𝑥, 0.9,0.6,0.3 >< 𝑦, 0.8,0.5,0.4 >}  and 𝑁 = {< 𝑝, 0.9,0.6,0.1 >< 𝑞, 0.9,0.7 

0.2 >}. Consider the collections 𝒫 = {𝑃 ∶  0𝑁𝑡𝑟
⊂ 𝑃 ⊂ 𝐿}, 𝒬 = {𝑄 ∶ 𝐿 ⊂ 𝑄 ⊂ 𝐿𝑐}, ℛ = {𝑅 ∶ 𝑅 ⊄ 𝐿; 𝐿 ⊄

𝑅; 𝑅 ⊂ 𝐿𝑐} of neutrosophic sets in 𝑈 and 𝒮 = {𝑆 ∶ 𝑀 ⊂ 𝑆 ⊂ 1𝑁𝑡𝑟
}, the collection of neutrosophic sets 

in 𝑉.  Then, 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝐿𝑐 , 𝒫, 𝒬, ℛ, 1𝑁𝑡𝑟
}  and 𝑁𝑡𝑟Υ𝑂(𝑉, 𝜌𝑁𝑡𝑟

) = {0𝑁𝑡𝑟
, 𝑀, 𝒮, 1𝑁𝑡𝑟

}.  

Define 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑥 and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑦. Then 𝑓𝑁𝑡𝑟

−1(𝑀) = {< 𝑎, 0.9,0.6,0.3 > 

< 𝑏, 0.8,0.9,0.4 >} is 𝑁𝑡𝑟Υ −open in (𝑈, 𝜏𝑁𝑡𝑟
). Also, define  𝑔𝑁𝑡𝑟

: (𝑉, 𝜌𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

) as 𝑔𝑁𝑡𝑟
(𝑥) =

𝑞 and 𝑔𝑁𝑡𝑟
(𝑦) = 𝑝. Then 𝑔𝑁𝑡𝑟

−1 (𝑁) = {< 𝑥, 0.9,0.7,0.2 >< 𝑦, 0.9,0.6,0.1 >} ∈ 𝒮 which implies 𝑔𝑁𝑡𝑟
−1 (𝑁) 

is 𝑁𝑡𝑟Υ −open in (𝑉, 𝜌𝑁𝑡𝑟
). This implies that both 𝑓𝑁𝑡𝑟

 and 𝑔𝑁𝑡𝑟
 are 𝑁𝑡𝑟Υ − continuous. Now, let                     

𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

)  be the composition of two 𝑁𝑡𝑟Υ − continuous  functions. Then, 

𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

 is not 𝑁𝑡𝑟Υ − continuous since (𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

)
−1

(𝑁) = 𝑓𝑁𝑡𝑟
−1 (𝑔𝑁𝑡𝑟

−1 (𝑁)) = {< 𝑎, 0.9,0.7,0.2 ><

𝑏, 0.9,0.6,0.1 >} is not 𝑁𝑡𝑟Υ −open in (𝑈, 𝜏𝑁𝑡𝑟
). 

Theorem 4.16: Let (𝑈, 𝜏𝑁𝑡𝑟
), (𝑉, 𝜌𝑁𝑡𝑟

)  and (𝑊, 𝜉𝑁𝑡𝑟
)  be neutrosophic topological space and                     

let (𝑉, 𝜌𝑁𝑡𝑟
) be 𝑁𝑡𝑟𝑇Υ −space. Then the composition 𝑔𝑁𝑡𝑟

∘ 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑊, 𝜉𝑁𝑡𝑟
) of two 𝑁𝑡𝑟Υ −

continuous  functions 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  and 𝑔𝑁𝑡𝑟

: (𝑉, 𝜌𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

)  is 𝑁𝑡𝑟Υ −

continuous. 

Proof: Let 𝑁 be any 𝑁𝑡𝑟open set in 𝑊. Since 𝑔𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, 𝑔𝑁𝑡𝑟

−1 (𝑁) is 𝑁𝑡𝑟Υ −open in 

𝑉.  Then, by assumption 𝑔𝑁𝑡𝑟
−1 (𝑁)  is 𝑁𝑡𝑟 open in 𝑉.  Also, since 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous , 

𝑓𝑁𝑡𝑟
−1 (𝑔𝑁𝑡𝑟

−1 (𝑁)) = (𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

)
−1

(𝑁) is  𝑁𝑡𝑟Υ −open in 𝑈. Hence 𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 
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Theorem 4.17: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a 𝑁𝑡𝑟Υ − continuous function and 𝑔𝑁𝑡𝑟

: (𝑉, 𝜌𝑁𝑡𝑟
) ⟶

(𝑊, 𝜉𝑁𝑡𝑟
) be a 𝑁𝑡𝑟continuous function. Then their composition 𝑔𝑁𝑡𝑟

∘ 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑊, 𝜉𝑁𝑡𝑟
)is 

𝑁𝑡𝑟Υ − continuous. 

Proof: Let 𝑁 be any 𝑁𝑡𝑟open set in 𝑊. Since 𝑔𝑁𝑡𝑟
 is 𝑁𝑡𝑟continuous, 𝑔𝑁𝑡𝑟

−1 (𝑁) is 𝑁𝑡𝑟open in 𝑉.Also, 

since 𝑔𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, 𝑓𝑁𝑡𝑟

−1 (𝑔𝑁𝑡𝑟
−1 (𝑁)) = (𝑔𝑁𝑡𝑟

∘ 𝑓𝑁𝑡𝑟
)

−1
(𝑁)  is 𝑁𝑡𝑟Υ − open in 𝑈.  Hence   

𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

Theorem 4.18: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a 𝑁𝑡𝑟Υ − continuous function where (𝑈, 𝜏𝑁𝑡𝑟

) is a 

𝑁𝑡𝑟𝑇Υ −space. If 𝑆 is a subset of 𝑈, then the restriction 𝑓𝑁𝑡𝑟
|𝑆 ∶ (𝑆, 𝜏𝑁𝑡𝑟

𝑆 ) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) is also 𝑁𝑡𝑟Υ −

continuous. 

Proof: Let 𝑀 be a 𝑁𝑡𝑟open set in 𝑉. Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, 𝑓𝑁𝑡𝑟

−1(𝑀) is 𝑁𝑡𝑟Υ −open in 𝑈. 

Now, since 𝑈 is a 𝑁𝑡𝑟𝑇Υ −space, 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟open in 𝑈. Hence 𝑓𝑁𝑡𝑟

|𝑆
−1(𝑀) = 𝑓𝑁𝑡𝑟

−1(𝑀) ∩ 1𝑁𝑡𝑟
𝑆  is 

𝑁𝑡𝑟 open in 𝑆.  By theorem 2.14,  𝑓𝑁𝑡𝑟
|𝑆

−1(𝑀)  is 𝑁𝑡𝑟Υ − open in 𝑆.  Hence 𝑓𝑁𝑡𝑟
|𝑆  is 𝑁𝑡𝑟Υ −

continuous. 

5. Neutrosophic 𝚼 −irresolute functions 

Analogous to the previous section, this segment deals with the concept of neutrosophic Υ −

irresolute functions and its behavior. 

Definition 5.1: Let (𝑈, 𝜏𝑁𝑡𝑟
) and (𝑉, 𝜌𝑁𝑡𝑟

) be neutrosophic topological spaces. Then the function 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  is said to be neutrosophic Υ − irresolute if 𝑓𝑁𝑡𝑟

−1(𝑀)  is 𝑁𝑡𝑟Υ − open in 

(𝑈, 𝜏𝑁𝑡𝑟
) for every 𝑁𝑡𝑟Υ − open set 𝑀 in (𝑉, 𝜌𝑁𝑡𝑟

). 

Example 5.2: Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿}  and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where         

𝐿 = {< 𝑎, 0.5,0.6,0.3 >< 𝑏, 0.6,0.7,0.2 >}  and 𝑀 = {< 𝑥, 0.5,0.7,0.3 >< 𝑦, 0.8,0.7,0.2 >}.  Also, 

consider the collections 𝒫 = {𝑃 ∶ 𝐿 ⊂ 𝑃 ⊂ 1𝑁𝑡𝑟
} and 𝒬 = {𝑄 ∶ 𝑀 ⊂ 𝑄 ⊂ 1𝑁𝑡𝑟

} of neutrosophic sets in 

𝑈  and 𝑉  respectively. Then, 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝒫, 1𝑁𝑡𝑟
}  and 𝑁𝑡𝑟Υ𝑂(𝑉, 𝜌𝑁𝑡𝑟

) = {< 0𝑁𝑡𝑟
, 𝑀, 

𝒬, 1𝑁𝑡𝑟
}.  Now, let us define 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑉, 𝜌𝑁𝑡𝑟

)  as 𝑓𝑁𝑡𝑟
(𝑎) = 𝑥 and 𝑓𝑁𝑡𝑟

(𝑏) = 𝑦. 

Then,𝑓𝑁𝑡𝑟
−1(𝑀) = {< 𝑎, 0.5,0.7,0.3 >< 𝑏, 0.8,0.7,0.2 >} ∈ 𝒫 and for each 𝑄 ∈ 𝒬, there exists some 𝑃 ∈

𝒫 such that 𝑓𝑁𝑡𝑟
−1(𝑄) = 𝑃. Hence the inverse image of every 𝑁𝑡𝑟Υ − open set in 𝑉 is 𝑁𝑡𝑟Υ − open in 

𝑈. Therefore 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute. 

Theorem 5.3: Every 𝑁𝑡𝑟Υ −irresolute function is 𝑁𝑡𝑟Υ − continuous. 

Proof: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a 𝑁𝑡𝑟Υ −irresolute function and 𝑀 be a 𝑁𝑡𝑟open set in 𝑉. 

Then, by theorem 2.14, 𝑀 is 𝑁𝑡𝑟Υ − open in 𝑉. Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irreolsute, 𝑓𝑁𝑡𝑟

−1(𝑀) is 𝑁𝑡𝑟Υ −

open in 𝑈. Hence 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous.  

The following example substantiates that the converse of the above-stated theorem need not be true. 

Example 5.4: Let 𝑈 = {𝑎, 𝑏},  𝑉 = {𝑥, 𝑦},  𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿}  and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where         

𝐿 = {< 𝑎, 0.1,0.3,0.7 >< 𝑏, 0.3,0.2,0.8 >} and 𝑀 = {< 𝑥, 0.7,0.7,0.1 >< 𝑦, 0.8,0.8,0.3 >}. Consider the 

collections 𝒫 = {𝑃 ∶  0𝑁𝑡𝑟
⊂ 𝑃 ⊂ 𝐿}, 𝒬 = {𝑄 ∶  𝐿 ⊄ 𝑄 ; 𝑄 ⊄ 𝐿 ; 𝑄 ⊂ 𝐿𝑐}  and ℛ = {𝑅 ∶ 𝐿 ⊂ 𝑅 ⊂ 𝐿𝑐} 

of neutrosophic sets in 𝑈.  Then, 𝑁𝑡𝑟Υ𝑂(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿, 𝐿𝑐 , 𝒫, 𝒬, ℛ, 1𝑁𝑡𝑟
}. Now, let us define 

𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑥 and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑦. Then,𝑓𝑁𝑡𝑟

−1(𝑀) = {< 𝑎, 0.7,0.7,0.1 >< 𝑏, 0.8, 

0.8,0.3 >} = 𝐿𝑐 which implies 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −continuous. However, the inverse image of a 𝑁𝑡𝑟Υ −

open  set 𝑆 = {< 𝑥, 0.8,0.7,0.1 >< 𝑦, 0.9,0.8,0.2 >}  in 𝑉  is not 𝑁𝑡𝑟Υ − open  in 𝑈.  Hence 𝑓𝑁𝑡𝑟
 is 

𝑁𝑡𝑟Υ − continuous but not 𝑁𝑡𝑟Υ −irresolute.  
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Theorem 5.5: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a 𝑁𝑡𝑟Υ − continuous function where (𝑉, 𝜌𝑁𝑡𝑟

) is a 

𝑁𝑡𝑟𝑇Υ −space. Then 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute.  

Proof: Let 𝑀 be 𝑁𝑡𝑟Υ − open in 𝑉. Then, by assumption 𝑀 is 𝑁𝑡𝑟open in 𝑉. Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −

continuous, 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ − open in 𝑈. Hence 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ −irresolute. 

Theorem 5.6: Let 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
) be a function between two neutrosophic topological 

spaces. Then the following statements are equivalent: 

(i) 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute. 

(ii) The inverse image of every 𝑁𝑡𝑟Υ − closed set in (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − closed in (𝑈, 𝜏𝑁𝑡𝑟

). 

(iii) 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)) for every neutrosophic set 𝐿 in 𝑈. 

(iv) 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑁𝑡𝑟Υ𝑐𝑙(𝑀)) for every neutrosophic set 𝑀 in 𝑉. 

(v) 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟Υ𝑖𝑛𝑡(𝑀)) ⊆ 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟

−1(𝑀)) for every neutrosophic set 𝑀 in 𝑉. 

(vi) For each neutrosophic point 𝑢𝑎,𝑏,𝑐 , the inverse image of every 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) is 

𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐. 

(vii) For each neutrosophic point 𝑢𝑎,𝑏,𝑐in 𝑈 and every 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑𝑁 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐), there exists a 

𝑁𝑡𝑟Υ −open set 𝐿 in 𝑈 such that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 and 𝑓𝑁𝑡𝑟
(𝐿) ⊆ 𝑁. 

Proof:  

(i)⟹(ii) Let 𝑓𝑁𝑡𝑟
 be a 𝑁𝑡𝑟Υ −irresolute function and 𝑁  be a 𝑁𝑡𝑟Υ − closed set in 𝑉. Then 𝑁𝑐  is 

𝑁𝑡𝑟Υ − open  in 𝑉.  Since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − irresolute, 𝑓𝑁𝑡𝑟

−1(𝑁𝑐)  is 𝑁𝑡𝑟Υ − open  in  𝑈.  That is, 

(𝑓𝑁𝑡𝑟
−1(𝑁))𝑐   is 𝑁𝑡𝑟Υ − open in  𝑈. Hence 𝑓𝑁𝑡𝑟

−1(𝑁) is 𝑁𝑡𝑟Υ − closed in  𝑈. 

(ii)⟹(i) Let 𝑀 be 𝑁𝑡𝑟Υ − open in 𝑉. Then 𝑀𝑐 is 𝑁𝑡𝑟Υ − closed in 𝑉. By assumption, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) is 

𝑁𝑡𝑟Υ − closed in  𝑈. That is, (𝑓𝑁𝑡𝑟
−1(𝑀))𝑐 is 𝑁𝑡𝑟Υ − closed in  𝑈. Hence 𝑓𝑁𝑡𝑟

−1(𝑀) is 𝑁𝑡𝑟Υ − open in  

𝑈. Therefore, 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute. 

(ii)⟹(iii) Let 𝐿 be a neutrosophic set in 𝑈. Now, 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1 (𝑓𝑁𝑡𝑟

(𝐿)) ⟹ 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1 (𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿))). 

Since 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿))  is 𝑁𝑡𝑟Υ − closed in 𝑉,  by assumption 𝑓𝑁𝑡𝑟

−1 (𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿)))  is a 𝑁𝑡𝑟Υ −

closed set containing 𝐿.  Also, 𝑁𝑡𝑟Υ𝑐𝑙(𝐿)  is the smallest 𝑁𝑡𝑟Υ − closed set containing 𝐿. Hence, 

𝑁𝑡𝑟Υ𝑐𝑙(𝐿) ⊆ 𝑓𝑁𝑡𝑟
−1 (𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿))). Therefore, 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)). 

(iii) ⟹ (ii) Let 𝑁  be a 𝑁𝑡𝑟Υ − closed  set in 𝑉.  Then, by assumption 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑁))) ⊆

𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝑓𝑁𝑡𝑟

−1(𝑁))) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙(𝑁) = 𝑁  implies 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
−1(𝑁)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑁).   Also,  𝑓𝑁𝑡𝑟
−1(𝑁) ⊆

𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
−1(𝑁)). Hence 𝑓𝑁𝑡𝑟

−1(𝑁) is 𝑁𝑡𝑟Υ − closed in 𝑈. 

(iii)⟹(iv) Let 𝑀 be a neutrosophic set in 𝑉 and let 𝐿 = 𝑓𝑁𝑡𝑟
−1(𝑀). By assumption, 𝑓𝑁𝑡𝑟

(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆

𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟
(𝐿)) = 𝑁𝑡𝑟Υ𝑐𝑙(𝑀).This implies 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟Υ𝑐𝑙(𝑀)). 
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(iv)⟹(iii) Let 𝑀 = 𝑓𝑁𝑡𝑟
(𝐿). Then, by assumption, 𝑁𝑡𝑟Υ𝑐𝑙(𝐿) = 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁𝑡𝑟Υ𝑐𝑙(𝑀)) 

= 𝑓𝑁𝑡𝑟
−1 (𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿))). This implies 𝑓𝑁𝑡𝑟
(𝑁𝑡𝑟Υ𝑐𝑙(𝐿)) ⊆ 𝑁𝑡𝑟Υ𝑐𝑙 (𝑓𝑁𝑡𝑟

(𝐿)). 

(iv)⟺(v) This can be proved by taking complements. 

(v)⟹(i) Let 𝑀 be a 𝑁𝑡𝑟Υ − open set in 𝑉. Then 𝑓𝑁𝑡𝑟
−1(𝑀) = 𝑓𝑁𝑡𝑟

−1(𝑁𝑡𝑟Υ𝑖𝑛𝑡(𝑀)) ⊆ 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟
−1(𝑀)). 

Also, 𝑁𝑡𝑟Υ𝑖𝑛𝑡 (𝑓𝑁𝑡𝑟
−1(𝑀)) ⊆ 𝑓𝑁𝑡𝑟

−1(𝑀). This implies 𝑓𝑁𝑡𝑟
−1(𝑀)  is 𝑁𝑡𝑟Υ − open  in 𝑈.  Hence 𝑓𝑁𝑡𝑟

 is 

𝑁𝑡𝑟Υ −irresolute. 

(i)⟹(vi) Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in 𝑈 and let 𝑁 be a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐). Then 

there exists a 𝑁𝑡𝑟Υ − open  set 𝑀  in 𝑉  such that 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) ∈ 𝑀 ⊆ 𝑁.  Since 𝑓𝑁𝑡𝑟

 is 

𝑁𝑡𝑟Υ −irresolute, 𝑓𝑁𝑡𝑟
−1(𝑀) is 𝑁𝑡𝑟Υ − open in 𝑈. Also, 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟

−1 (𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐)) ∈ 𝑓𝑁𝑡𝑟

−1(𝑀) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁). 

Hence there exists a 𝑁𝑡𝑟Υ − open set 𝑓𝑁𝑡𝑟
−1(𝑀)  such that 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟

−1(𝑀) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁).  This implies 

𝑓𝑁𝑡𝑟
−1(𝑁) is 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . 

(vi)⟹(vii) Let 𝑢𝑎,𝑏,𝑐 be a neutrosophic point in 𝑈 and let 𝑁 be a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐). Then 

by assumption, 𝑓𝑁𝑡𝑟
−1(𝑁) is  𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑢𝑎,𝑏,𝑐 . Then there exists a 𝑁𝑡𝑟Υ − open set 𝐿 in 𝑈 such 

that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 ⊆ 𝑓𝑁𝑡𝑟
−1(𝑁).  Thus 𝑢𝑎,𝑏,𝑐 ∈ 𝐿 and 𝑓𝑁𝑡𝑟

(𝐿) ⊆ 𝑓𝑁𝑡𝑟
(𝑓𝑁𝑡𝑟

−1(𝑁)) ⊆ 𝑁. 

(vii)⟹(i) Let 𝑀 be a 𝑁𝑡𝑟Υ − open set in 𝑉 and let 𝑢𝑎,𝑏,𝑐 ∈ 𝑓𝑁𝑡𝑟
−1(𝑀). Since 𝑀 is 𝑁𝑡𝑟Υ − open and 

𝑓𝑁𝑡𝑟
(𝑢𝑎,𝑏,𝑐) ∈ 𝑀, 𝑀 is a 𝑁𝑡𝑟Υ − 𝑛𝑏ℎ𝑑 of 𝑓𝑁𝑡𝑟

(𝑢𝑎,𝑏,𝑐). Hence it follows from (vii) that there exists a 

𝑁𝑡𝑟Υ − open  set 𝐿  in 𝑈  such that 𝑢𝑎,𝑏,𝑐 ∈ 𝐿  and 𝑓𝑁𝑡𝑟
(𝐿) ⊆ 𝑀.  This implies 𝑢𝑎,𝑏,𝑐 ∈ 𝐿  ⊆

𝑓𝑁𝑡𝑟
−1 (𝑓𝑁𝑡𝑟

(𝐿)) ⊆ 𝑓𝑁𝑡𝑟
−1(𝑀).  By theorem 3.6, 𝑓𝑁𝑡𝑟

−1(𝑀)  is 𝑁𝑡𝑟Υ − open  in 𝑈.  Therefore 𝑓𝑁𝑡𝑟
 is 

𝑁𝑡𝑟Υ −irresolute. 

Example 5.7: (i) Consider the topological spaces and the function 𝑓𝑁𝑡𝑟
 defined in example 5.2. Here 

𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − irresolute and 𝑁𝑡𝑟Υ𝐶(𝑈, 𝜏𝑁𝑡𝑟

) = {0𝑁𝑡𝑟
, 𝐿𝑐 , 𝒫′, 1𝑁𝑡𝑟

}, 𝑁𝑡𝑟Υ𝐶(𝑉, 𝜌𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝑀𝑐 , 𝒬′ , 1𝑁𝑡𝑟
} 

where 𝒫′ = {𝑃𝑐 ∶ 𝑃 ∈ 𝒫}  and 𝒬′ = {𝑄𝑐 ∶ 𝑄 ∈ 𝒬}.  Now, 𝑓𝑁𝑡𝑟
−1(𝑀𝑐) = {< 𝑎, 0.3,0.3,0.5 >< 𝑏, 0.2,0.3, 

0.8 >} ∈ 𝒫′  and for each 𝑄 ∈ 𝒬′ ,  there exists some 𝑃 ∈ 𝒫′  such that 𝑓𝑁𝑡𝑟
−1(𝑄) = 𝑃.  Hence the                        

inverse image of every 𝑁𝑡𝑟Υ − closed  set in (𝑉, 𝜌𝑁𝑡𝑟
)  is 𝑁𝑡𝑟Υ − closed  in (𝑈, 𝜏𝑁𝑡𝑟

)  if 𝑓𝑁𝑡𝑟
 is 

𝑁𝑡𝑟Υ −irresolute.           

(ii) Let 𝑈 = {𝑎, 𝑏}, 𝑉 = {𝑥, 𝑦}, 𝜏𝑁𝑡𝑟
= {0𝑁𝑡𝑟

, 1𝑁𝑡𝑟
, 𝐿} and 𝜌𝑁𝑡𝑟

= {0𝑁𝑡𝑟
, 1𝑁𝑡𝑟

, 𝑀}  where 𝐿 = {< 𝑎, 0.7,0.5, 

0.5 >< 𝑏, 0.8,0.6,0.4 >}  and   𝑀 = {< 𝑥, 0.8,0.6,0.4 >< 𝑦, 0.9,0.7,0.1 >}.  Consider the collections 

𝒫 = {𝑃 ∶ 0𝑁𝑡𝑟
⊂ 𝑃 ⊂ 𝐿𝑐}  and 𝒬 = {𝑄 ∶ 0𝑁𝑡𝑟

⊂ 𝑄 ⊂ 𝑀𝑐}  of neutrosophic sets in 𝑈  and 𝑉 

respectively. Then, 𝑁𝑡𝑟Υ𝐶(𝑈, 𝜏𝑁𝑡𝑟
) = {0𝑁𝑡𝑟

, 𝐿𝑐 , 𝒫, 1𝑁𝑡𝑟
} and 𝑁𝑡𝑟Υ𝐶(𝑉, 𝜌𝑁𝑡𝑟

) = {0𝑁𝑡𝑟
, 𝑀𝑐, 𝒬, 1𝑁𝑡𝑟

}.           

Now, define 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  as 𝑓𝑁𝑡𝑟

(𝑎) = 𝑥  and 𝑓𝑁𝑡𝑟
(𝑏) = 𝑦.  Then, 𝑓𝑁𝑡𝑟

−1(𝑀𝑐) =           

{< 𝑎, 0.1,0.3,0.9 >< 𝑏, 0.2,0.1,0.8 >} ∈ 𝒫  and for each 𝑄 ∈ 𝒬,  there exists some 𝑃 ∈ 𝒫  such that 

𝑓𝑁𝑡𝑟
−1(𝑄) = 𝑃.  Now, 𝑓𝑁𝑡𝑟

−1(𝑀𝑐) = (𝑓𝑁𝑡𝑟
−1(𝑀))𝑐  is 𝑁𝑡𝑟Υ − closed  implies 𝑓𝑁𝑡𝑟

−1(𝑀)  is 𝑁𝑡𝑟Υ − open . 

Similarly, we can prove that the inverse image of every 𝑁𝑡𝑟Υ − open set in (𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − open 

in (𝑈, 𝜏𝑁𝑡𝑟
).  Hence 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − irresolute if the inverse image of every 𝑁𝑡𝑟Υ − closed set in 

(𝑉, 𝜌𝑁𝑡𝑟
) is 𝑁𝑡𝑟Υ − closed in (𝑈, 𝜏𝑁𝑡𝑟

).   



Neutrosophic Sets and Systems, Vol. 60, 2023 86  

 

 

C. Reena, K. S. Yaamini, A New Notion of Neighbourhood and Continuity in Neutrosophic Topologcial Spaces 

Theorem 5.8: If 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  and 𝑔𝑁𝑡𝑟

: (𝑉, 𝜌𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

)  are 𝑁𝑡𝑟Υ − irresolute 

functions, then their composition 𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

) is also 𝑁𝑡𝑟Υ −irresolute. 

Proof: Let 𝑁 be 𝑁𝑡𝑟Υ − open in 𝑊. Since 𝑔𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute, 𝑔𝑁𝑡𝑟

−1 (𝑁) is 𝑁𝑡𝑟Υ − open in 𝑉. 

Again, since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − irresolute, 𝑓𝑁𝑡𝑟

−1 (𝑔𝑁𝑡𝑟
−1 (𝑁)) = (𝑔𝑁𝑡𝑟

∘ 𝑓𝑁𝑡𝑟
)

−1
(𝑁)  is 𝑁𝑡𝑟Υ − open  in 𝑈. 

Hence 𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ −irresolute. 

Theorem 5.9: If 𝑓𝑁𝑡𝑟
: (𝑈, 𝜏𝑁𝑡𝑟

) ⟶ (𝑉, 𝜌𝑁𝑡𝑟
)  is 𝑁𝑡𝑟Υ − irresolute and  𝑔𝑁𝑡𝑟

: (𝑉, 𝜌𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

)  is 

𝑁𝑡𝑟Υ − continuous, then 𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

: (𝑈, 𝜏𝑁𝑡𝑟
) ⟶ (𝑊, 𝜉𝑁𝑡𝑟

) is 𝑁𝑡𝑟Υ − continuous. 

Proof: Let 𝑁  be 𝑁𝑡𝑟 open in 𝑊.  Since 𝑔𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ − continuous, 𝑔𝑁𝑡𝑟

−1 (𝑁)  is 𝑁𝑡𝑟Υ − open in 𝑉. 

Also, since 𝑓𝑁𝑡𝑟
 is 𝑁𝑡𝑟Υ −irresolute, 𝑓𝑁𝑡𝑟

−1 (𝑓𝑁𝑡𝑟
−1(𝑁)) = (𝑔𝑁𝑡𝑟

∘ 𝑓𝑁𝑡𝑟
)

−1
(𝑁) is 𝑁𝑡𝑟Υ − open in 𝑈. Hence 

𝑔𝑁𝑡𝑟
∘ 𝑓𝑁𝑡𝑟

 is 𝑁𝑡𝑟Υ − continuous. 

6. Conclusions 

The theory of neutrosophic sets is essential in many application areas since indeterminacy is 

ubiquitous and these membership functions are crucial. In this paper, we have introduced and 

analyzed the concepts of neutrosophic Υ −neighbourhood and neutrosophic Υ −continuity. In 

addition, we have also defined neutrosophic Υ −irreolute functions in neutrosophic topological 

spaces. As mentioned earlier, continuity features a prominent position in the characterization of 

topological spaces. Accordingly, this concept can be wielded in the description of various 

topological structures in future. Moreover, several other topological concepts such as 

homeomorphisms, connectedness and separation axioms could be explored by means of 

neutrosphic Υ −open sets and neutrosophic Υ −continuity.     
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