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Abstract. In this paper, multi attribute decision making 

problem based on grey relational analysis in neutrosophic 

cubic set environment is investigated. In the decision 

making situation, the attribute weights are considered as 

single valued neutrosophic sets. The neutrosophic weights 

are converted into crisp weights. Both positve and neg-

ative GRA coefficients, and weighted GRA coefficients 

are determined.   

Hamming distances for weighted GRA coefficients and 

standard (ideal) GRA coefficients are determined. The 

relative closeness coefficients are derived in order to rank 

the alternatives. The relative closeness coefficients are 

designed in ascending order. Finally, a numerical example 

is solved to demonstrate the applicability of the proposed 

approach. 

Keywords: Grey relational coefficient, interval valued neutrosophic set, multi attribute decision making, neutrosophic set,  

neutrosophic cubic set, relative closeness coefficient 

1 Introduction 

In management section, banking sector, factory, plant 
multi attribute decision making (MADM) problems are to 
be extensively encountered. In a MADM situation, the most 

appropriate alternative is selecting from the set of alter-
natives based on highest degree of acceptance. In a decision 
making situation, decision maker (DM) considers the ef-
ficiency of each alternative with respect to each attribute. In 
crisp MADM, there are several approaches [1, 2, 3, 4, 5] in 
the literature. The weight of each attribute and the elements 

of decision matrix are presented by crisp numbers. But in 
real situation, DMs may prefer to use linguistic variables 
like ‘good’, ‘bad’, ‘hot’, ‘cold’, ‘tall’, etc.  So, there is an 
uncertainty in decision making situation which can be 
mathematically explained by fuzzy set [6]. Zadeh [6] 
explained uncertainty mathematically by defining fuzzy set 

(FS). Bellman and Zadeh [7] studied decision making in 
fuzzy environment. Atanassov [8, 9] narrated uncertainty by 
introducing non-membership as independent component 
and defined intuitionistic fuzzy set (IFS). Degree of indeter-
minacy (hesitency) is not independent .  

Later on DMs have recognized that indeterminacy plays 

an important role in decision making. Smarandache [10] 
incorporated indeterminacy as independent component and 
developed neutrosophic set (NS) and together with  Wang 
et a. [11] defined single valued neutrosophic set (SVNS) 
which is an instance of neutrosophic set. Ye [12] proposed 

a weighted correlation coefficients for ranking the altern-
atives for multicriteria decision making (MCDM). Ye [13] 
established single valued neutrosophic cross entropy for 
MCDM problem. Sodenkamp [14] studied multiple-criteria 

decision analysis in neutrosophic environment. Mondal and 
Pramanik [15] defined neutrosophic tangent similarity 
measure and presented its application to MADM. Biswas et 
al. [16] studied cosine similarity measure based MADM 
with trapezoidal fuzzy neutrosophic numbers. Mondal and 
Pramanik [17] presented multi-criteria group decision 

making (MCGDM) approach for teacher recruitment in 
higher education. Mondal and Pramanik [18] studied 
neutrosophic decision making model of school choice.  Liu 
and Wang [19] presented MADM method based on single-
valued neutrosophic normalized weighted Bonferroni mean. 
Biswas et al. [20] presented TOPSIS method for MADM 

under single-valued neutrosophic environment. Chi and Liu 
[21] presented extended TOPSIS method for MADM on 
interval neutrosophic set. Broumi et al. [22] presented 
extended TOPSIS method for MADM based on interval 
neutrosophic uncertain linguistic variables. Nabdaban and 
Dzitac [23] presented a very short review of TOPSIS in 

neutrosophic environment. Pramanik et al. [24] studied 
hybrid vector similarity measures and their applications to 
MADM under neutrosophic environment. Biswas et al. [25] 
presented triangular fuzzy neutrosophic set information and 
its application to MADM. Sahin and Liu [26] studied 
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maximizing deviation method for neutrosophic MADM 
with incomplete weight information. Ye [27] studied 
bidirectional projection method for MADM with neutr-
osophic numbers of the form a + bI, where I is characterized 
by indeterminacy. Biswas et al. [28] presented value and 
ambiguity index based ranking method of single-valued 

trapezoidal neutrosophic numbers and its application to 
MADM. Dey et al. [29] studied extended projection-based 
models for solving MADM problems with interval-valued 
neutrosophic information. 

Deng [30, 31] studied grey relational analysis (GRA). 
Pramanik and Mukhopadhyaya [32]  developed GRA based 

intuitionistic fuzzy multi criteria decision making (MCDM) 
approach for teacher selection in higher education. Dey et al. 
[33] established MCDM in intuitionistic fuzzy environment 
based on GRA for weaver selection in Khadi institution. 
Rao, and Singh [34] established modified GRA method for 
decision making in manufacturing situation. Wei [35] 

presented GRA method for intuitionistic fuzzy MCDM. 
Biswas et al. [36] studied GRA method for MADM under 
single valued neutrosophic assessment based on entropy. 
Dey et al. [37] presented extended GRA based neutrosophic 
MADM in interval uncertain linguistic setting. Pramanik 
and K. Mondal [38] employed GRA for interval neutros-

ophic MADM and presented numerical examples. 
Several neutrosophic hybrid sets have been recently  

proposed in the literature, such as neutrosophic soft set 
proposed by Maji [39], single valued soft expert set pro-
posed by Broumi and Smarandache  [40], rough neutros-
ophic set proposed by  Broumi, et al. [41], neutrosophic bi-

polar set proposed by Deli et al. [42], rough bipolar neutro-
sophic set proposed by Pramanik and Mondal [43], neutro-
sophic cubic set proposed by Jun et al. [44] and Ali et al. 
[45]. Jun et al. [44]  presented the concept of neut-rosophic 
cubic set by extending the concept of cubic set proposed by 
Jun et al. [46] and introduced the notions of truth-internal 

(indeterminacy-internal, falsity-internal) neut-rosophic 
cubic sets and truth-external (indeterminacy-external, 
falsity-external) and investigated related properties. Ali et al. 
[45] presented concept of neutrosophic cubic set by 
extending the concept of cubic set [46] and defined internal 
neutrosophic cubic set (INCS) and external neutrosophic 

cubic set (ENCS).  In their study,  Ali et al.[45]  also 
introduced an adjustable approach to neutrosophic cubic set 
based decision making.  

GRA based MADM/ MCDM problems have been pro-
posed for various neutrosophic hybrid environments [47, 48, 
49, 50]. MADM with neutrosophic cubic set is yet to appear 

in the literature. It is an open area of research in 
neutrosophic cubic set environment. 

The present paper is devoted to develop GRA method 
for MADM in neutrosophic cubic set environment. The 
attribute weights are described by single valued neutros-
ophic sets. Positive and negative grey relational coefficients 

are determined. We define ideal grey relational coefficients 
and relative closeness coefficients in neutrosophic cubic set 

environment. The ranking of alternatives is made in 
descending order.   

The rest of the paper is designed as follows: In Section 
2, some relevant definitions and properties are recalled.  
Section 3 presents MADM in neutrosophic cubic set 
environment based on GRA. In Section 4, a numerical 

example is solved to illustrate the proposed approach. 
Section 5 presents conclusions and future scope of research. 

2 Preliminaries 

In this section, we recall some established definitions 
and properties which are connected in the present article. 

2.1 Definition (Fuzzy set) [6] 

 Let W be a universal set. Then a fuzzy set F over W can 
be  defined by F={<w,  )w(F : w ∈W} where :)w(F W 

 [0, 1]is called membership function of F and )w(F is 
the degree of  membership to which w F. 

2.2 Definition (Interval valued fuzzy set) [52] 

Let W be a universal set. Then, an interval valued fuzzy 

set F over W is defined by F = {[  w:w/)]w(F),w(F  W}, 
where )w(F

 and )w(F
  are referred to as the lower and 

upper degrees of membership w ∈W where 

0 ≤ )w(F
+ )w(F

≤ 1, respectively. 

 2.3 Definition (Cubic set) [46] 

Let W be a non-empty set. A cubic set C in W is of the 

form c = {  w/))w(),w(F,w  W} where F is an interval 
valued fuzzy set in W and  is a fuzzy set in W.  

2.4 Definition (Neutrosophic set (NS)) [10] 

Let W be a space of points (objects) with generic 
element w in W. A neutrosophic set N in W is denoted by 
N= {< w: TN(w), IN(w), FN(w)>: w W} where TN, IN, FN 

represent membership, indeterminacy and non-membership 
function respectively. TN, IN, FN can be defined as follows: 

NT : W →]


0, 1+ [

NI : W →]


0, 1+ [

AF : W →]


0, 1+ [

Here, TN(w), IN(w), FN(w) are the real standard and non-
standard subset of ]


0, 1+ [ and


0 ≤ TN(w)+IN(w)+FN(w) ≤ 3+. 

2.5 Definition (Complement of neutrosophic set) 
[10] 

The complement of a neutrosophic set N is denoted by 
Nand defined as 
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N= {<w: TN(w), IN(w), FN(w)>, Ww }

TN(w) = {1+}- TN(w) 

IN(w) = {1+} -IN(w) 

FN(w) = {1+} - FN(w) 

2.6 Definition (Containment) [10, 20] 

A neutrosophic set P is contained in the other 
neutrosophic set Q, P ⊆ Q, if and only if 

inf (TP ) ≤ inf (TQ),sup (TP ) ) ≤ sup ((TQ), 

inf (IP )   inf (IQ),sup (IP ) )   sup ((IQ). 

inf (FP )   inf (FQ),sup (FP ) )   sup ((FQ). 

2.7 Definition (Union)  [10]  

The union of two neutrosophic sets P and Q is a 

neutrosophic set R, written as R = P ∪ Q, whose truth-

membership, indeterminacy-membership and falsity 

membership functions are related to those of P and Q by 

    TR(w) = TP(w) + TQ(w) – TP(w) ×TQ(w), 

 IR(w) = IP(w) + IQ(w) – IP(w) × IQ(w), 

FR(w) = FP(w) + FQ(w) – FP(w) × FQ(w), for all wW. 

2.8 Definition (Intersection)  [10]

The intersection of two neutrosophic sets P and Q is a 
neutrosophic set C, written as R =P∪Q, whose truth-
membership, indeterminacy-membership and falsity- 
membership functions are related to those of P and Q by  

TR(w) = TP(w) ×TQ(w), 

 IR(w) = IP(w) × IQ(w), 

FR(w) = FP(w) × FQ(w), for all wW. 

2.9 Definition (Hamming distance) [20, 53]           

Let  n...,,2,1i,)w(F),w(I),w(T:wP iPiPiPi   and

 n...,,2,1i,)w(F),w(I),w(T:wQ iQiQiPi  be  any two 

neutrosophgic sets. Then the Hamming distance between P 

and Q can be defined as follows:  

)Q,P(d =

))w(F)w(F)w(I)w(I)w(T)w(T(
n

1i
iQiPiQiPiQiP 



                                                                                       

2.10 Definition (Normalized Hamming distance) 

The normalized Hamming distance between two 
SVNSs, A and B can be defined as follows: 

)Q,P(dN =   

 


n

1i
iQiPiQiPiQiP ))w(F)w(F)w(I)w(I)w(T)w(T(

n3

1
   

2. 11 Definition (Interval neutrosophic set) [51]

Let W be a non-empty set. An interval neutrosophic set 
(INS) P in W is characterized by the truth-membership 
function PT, the indeterminacy-membership function PI and 
the falsity-membership function PF. For each point w ∈ W, 
PT(w), PI(w),PF(w))⊆[0,1]. Here P can be presented as 

follows:  

P ={< w, )]w(P),w(P[ U
T

L
T , )]w(P),w(P[ U

I
L
I , 

)]w(P),w(P[ U
F

L
F  > :w ∈W}. 

2.12 Definition (Neutrosophic cubic set) [44, 45] 

Let W be a set. A neutrosophic cubic set (NCS) in W is 

a pair ),P(  where P = { /)w(P),w(P),w(P,w FIT wW}  is 

an interval neutrosophic set in W and  

 Ww/)w(),w(),w(,w FIT  is a neutrosophic set 

in W. 

3 GRA for MADM in neutrosophic cubic set 
environment  

We consider a MADM problem with r alternatives {A1, 
A2, …, Ar} and s attributes {C1, C2, …, Cs}. Every attribute 
is not equally important to decision maker. Decision maker 
provides the neutrosophic weights for each attribute. Let 

 T
s21 w...,,w,w W  be the neutrosophic weights of the attrib-

utes.  

Step 1 Construction of decision matrix 

Step1.The decision matrix (see Table 1) is constructed 
as follows: 

Table 1: Decision matrix 

srrsrs2r2r1r1rr

s2s2222221212

s1s1121211111

s21

s

),A(...),A(),A(A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

),A(...),A(),A(A

),A(...),A(),A(A

C...CC





































  rij )(aA

Here ),A(
ijij


i j
a ,  ]F,F[],I,I[],T,T[A U

ij

L

ij

U

ij

L

ij

U

ij

L

ijij
 , 

)F,I,T(
ijijijij

 , 
i j
a means the rating of alternative Ai with 

respect to the attribute Cj. Each weight component 
j
w of 

attribute 
j

C has been taken as neutrosophic set and 

)F,I,T(
jjj


j
w ,  ]F,F[],I,I[],T,T[A U

ij

L

ij

U

ij

L

ij

U

ij

L

ijij


are interval neutrosophic set and )F,I,T(
ijijijij

 is a 

neutrosophic set. 

(1) 

(2) 
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Step 2 Crispification of neutrosophic weight set 

Let  jjjj F,I,Tw   be the j – th neutrosophic weight 
for the attribute

j
C . The equivalent crisp weight of  jC is 

defined as follows:

 






n

1j

2

j

2

j

2

j

2

j

2

j

2

jc

j

FIT

FIT
w and 1w

s

1j

c

j 


.   

Step 3 Conversion of interval neutrosophic set into neu-

trosophic set decision matrix  

In the decision matrix (1), each 
 ]F,F[],I,I[],T,T[A U

ij
L
ij

U
ij

L
ij

U
ij

L
ijij  is an INS. Taking

mid value of each interval the decision matrix reduces to 
single valued neutrosophic decision matrix (See Table 2). 

Table 2: Neutrosophic decision matrix 

srrsrs2r2r1r1rr

s2s2222221212

s1s1121211111

s21

s

),M(...),M(),M(A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

),M(...),M(),M(A

),M(...),M(),M(A

C...CC





































 rij )(mM

where each  
ijij

,M 
i j
m and 













 


2

FF
,

2

II
,

2

TT U
ij

L
ij

U
ij

L
ij

U
ij

L
ij

ijM  .F,I,T m

ij

m

ij

m

ij


Step 4 Some definitions of GRA method for MADM with 

NCS  

The GRA method for MADM with NCS can be pre-
sented in the following steps: 

Step 4.1 Definition: 

The ideal neutrosophic estimates reliability solution 

(INERS) can be denoted as 

       ],...,,,,,[,
q21

 
q21
MMMM

and defined as    jjjj F,I,TM , where
m
ij

i
j TmaxT 

, 

m

ij
i

m

j
IminI 

, 
m

ij
i

m

j
FminF 

and )F,I,T(
jjjj

   

where ij
i

j
TmaxT 

, ij
i

j
IminI 

, ij
i

j
FminF 

in the neutro-

sophic cubic decision matrix 
qpij
)(mM


 , i = 1,2,...,r and j 

= 1, 2, ..., s. 

Step 4.2 Definition: 

The ideal neutrosophic estimates unreliability solution 

(INEURS) can be denoted as 
          s21 ,...,,,,,, s21 MMMM

and defined as    m

j

m

j

m

jj
F,I,TM  where

m

ij
i

m

j
TminT 

, 

m

ij
i

m

j
ImaxI 

, 
m

ij
i

m

j
FmaxF 

and )F,I,T(
jjjj

  where 

ij
i

j
TminT 

, ij
i

j
ImaxI 

, ij
i

j
FmaxF 

 in the neutrosophic 

cubic decision matrix 
s rij )(mM , i = 1,2,...,r and j = 1, 2, 

...,s. 

Step 4.3 Definition: 

The grey relational coefficients of each alternative 

from INERS can be defined as: 

 







































ij
ji

ij

ij
ji

ij
ji

ij
ji

ij

ij
ji

ij
ji

ijij

maxmax

maxmaxminmin
,

maxmax

maxmaxminmin

,

Here, 

)M,M(d
ijjij

 

  



r

1i

m
ij

m
j

m
ij

m
j

m
ij

m
j FFIITT

and  
ijjij

,d     



r

1i
ijjijjijj FFIITT  , 

i = 1, 2 ,..., r and j = 1, 2, ..., s, ]1,0[ . 

We call   
ijij

, as positive grey relational coeffi-

cient. 

Step 4.4 Definition: 

The grey relational coefficient of each alternative from 

INEURS can be defined as: 

 ,ij ij     































ij
ji

ij

ij
ji

ij
ji

ij
ji

ij

ij
ji

ij
ji

maxmax

maxmaxminmin

maxmax

maxmaxminmin
,

 

Here,

)M,M(d
ijjij

    



r

1i

m
ij

m
j

m
ij

m
j

m
ij

m
j FFIITT

and: 

 
ijjij

,d     



r

1i
ijjijjijj FFIITT  , i = 1, 

2,..., r and j = 1, 2, ..., s, ]1,0[ . 

We call   
ijij

, as negative grey relational coefficient. 

 is called distinguishable coefficient or identification coef-

ficient and it is used to reflect the range of comparison en-

vironment that controls the level of differences of the grey 

relational coefficient. 0  indicates comparison environ-

ment disappears and 1  indicates comparison environ-

ment is unaltered. Generally, 5.0 is assumed for decision 

making. 
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Step 4.5 Calculation of weighted grey relational coeffi-

cients for MADM with NCS 

We can construct two sr order matrices namely 



GR
M  

srijij ,


   and 

GR
M  

srijij
,



  . The crisp weight is

to be multiplied with the corresponding elements of 

GR
M

and 

GR
M     to obtain weighted matrices 



GRW
M  and 



GRW
M

 and defined as: 



GRW
M  

srij
c
jij

c
j w,w



    srijij

~
,~


 

and 

GRW
M  

srij
c
jij

c
j w,w



    srijij

~
,~


 

Step 4.6 

From the definition of grey relational coefficient, it is 

clear that grey relational coefficients of both types must be 

less than equal to one. This claim is going to be proved in 

the following theorems.  

Theorem 1 

The positive grey relational coefficient is less than unity 

i.e. ,1ij  and 1ij  . 

Proof: 

From the definition 












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

Now, 
 
ijij

ji
minmin

 
ij

ji
ijij

ji
ij

ji
maxmaxmaxmaxminmin

1
maxmax

maxmaxminmin

ij
ji

ij

ij
ji

ij
ji











 

1
ij
   

 Again, from the definition, we can write: 












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

Now, 
 
ijij

ji
minmin

 
ij

ji
ijij

ji
ij

ji
maxmaxmaxmaxminmin












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

1
ij
  .

Theorem 2 

The negative grey relational coefficient is less than unity 

i.e. 1,1
ijij
  . 

Proof: 

  From the definition, we can write 












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

Now, 
 
ijij

ji
minmin

 
ij

ji
ijij

ji
ij

ji
maxmaxmaxmaxminmin












ij

ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

1
ij
   

 Again, from the definition 












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ji
ij

ij
ji

ij
ji

ij

maxmax

maxmaxminmin

 Now, 
 
ijij

ji
minmin

 
ij

ji
ijij

ji
ij

ji
maxmaxmaxmaxminmin  








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
ij

ji
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maxmax

maxmaxminmin

1
ij
  .

Note 1: 

i. Since 1
ij
 1w, c

j
 1wthen c

jij


1
~

ij  

ii. Since 1
ij
 1w, c

j
 1wthen c

jij


1
~

ij  

iii. Since 1
ij
 1w, c

j
 1wthen c

jij
 1

~
ij    

iv. Since 1
ij
 1w, c

j
 1wthen c

jij
 1

~
ij    

Step 4.7 

We define the ideal or standard grey relational coeffi-

cient as (1, 1). Then we construct ideal grey relational coef-

ficient matrix of order sr  (see Table 3). 

Table 3: Ideal grey relational coefficient matrix 

of order sr  

     
     

     
sr

1,1...1,11,1

...................

1,1...1,11,1

1,1...1,11,1

I

























Step 5 Determination of Hamming distances 

We find the distance 
id  between the corresponding el-

ements of i-th row of I and 
GRW M  by employing Hamming 
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distance. Similarly, 
id  can be determined between I   and 



GRW
M by employing Hamming distance as follows: 

 ]~
1~1[

s2

1
d

s

1j
ijiji  



 , i = 1, 2, …, r.

 ]~
1~1[

s2

1
d

s

1j
ijiji  



 , i = 1, 2, …, r. 

Step 6 Determination of relative closeness coefficient 

The relative closeness coefficient can be calculated as: 








ii

i

i
dd

d

 i = 1, 2, ..., r. 

Step 7 Ranking the alternatives 

According to the relative closeness coefficient, the rank-

ing order of all alternatives is determined. The ranking order 

is made according to descending order of relative closeness 

coefficients. 

4 Numerical example 

Consider a hypothetical MADM problem. The prob-

lem consists of single decision maker, three alternatives 

with three alternatives {A1, A2, A3} and four attributes {C1, 

C2, C3, C4}.  The solution of the problem is presented using 

the following steps: 

Step 1. Construction of neutrosophic cubic decision ma-

trix 

The decison maker forms the decision matrix which is 

displayed in the  Table 4, at the end of article. 

Step 2. Crispification of neutrosophic weight set 

The neutrosophic weights of the attributes are taken as: 

 T
)4.0,3.0,6.0(),1.0,2.0,9.0(),1.0,1.0,6.0(),1.0,2.0,5.0(W

The equivalent crisp weights are

  Tc )2719.0(),3228.0(),2146.0(),1907.0(W 

Step 3 Conversion of interval neutrosophic set into neu-

trosophic set in decision matrix  

Taking the mid value of INS in the Table 4, the new decision 

matrix is presented in the following Table 5, at the end of 

article.  

Step 4 Some Definitions of GRA method for MADM 

with NCS 

The ideal neutrosophic estimates reliability solution (IN-

ERS)   ,M and the ideal neutrosophic estimates unrelia-

bility solution (INEURS)   ,M are presented in the Ta-

ble 6, at the end of article. 

j,i))M,M(d()(
ijjij

  is presented as below: 



















45.025.015.005.0

25.07.0065.0

15.005.095.085.0

 

The   j,i),d()(
ijjij
  is presented as below: 

















 

5.02.03.025.0

2.02.05.005.0

15.04.02.145.0

j,i))M,M(d()(
ijjij

  is presented as below: 

















 

25.06.065.005.1

45.002.145.0

55.07.03.025.0

The   j,i),d()(
ijjij
  is presented as: 

The positive grey relational coefficient 

GR
M

 
43ijij

,


  is presented in the Table 7, at the end of article. 

The negative grey relational coefficient 

GR
M  

43ijij
,



  is 

presented in the Table 8, at the end of article. 

Now, we multiply the crisp weight with the corresponding 

elements of 

GR
M and 

GR
M to get weighted matrices


GRW M

and 


GRW
M and which are described in the Table 9 and 10 

respectively, at the end of article. 

Step 5 Determination of Hamming distances 

Hamming distances are calculated as follows: 

,84496.0d
1
 ,83845625.0d

1


,82444375.0d
2
 ,85328875.0d

2


,82368675.0d
3
 .85277.0d

3


Step 6 Determination of relative closeness coefficient

The relative closeness coefficients are calculated as:

501932.0
dd

d

11

1

1









491403576.0
dd

d

22

2

2









49132.0
dd

d

33

3

3









 

Step 7 Ranking the alternatives 

The ranking of alternatives is made according to de-

scending order of relative closeness coefficients. The rank-

ing order is shown in the Table 11 below. 
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Conclusion 
This paper develops GRA based MADM in neutr-

osophic cubic set environment. This is the first approach of 

GRA in MADM in neutrosophic cubic set environment. 
The proposed approach can be applied to other decision 
making problems such as pattern recognition, personnel se-
lection, etc.   

The proposed approach can be applied for decision mak-
ing problem described by internal NCSs and external NCSs. 

We hope that the proposed approach will open up a new av-
enue of research in newly developed neutrosophic cubic set 
environment.   
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Table 4: Construction of neutrosophic cubic decision matrix 

 43ij )(aA

































))4.0,1.0,5.0(

]),4.0,2.0[],7.0,5.0[],8.0,6.0(([

))3.0,4.0,5.0(

]),3.0,0[],3.0,1.0[],9.0,6.0(([

))2.0,1.0,8.0(

]),6.0,4.0[],7.0,4.0[],9.0,8.0(([

))1.0,15.0,25.0(

]),2.0,0[],4.0,1.0[],9.0,4.0(([
A

.

))1.0,2.0,6.0(

]),3.0,2.0[],3.0,1.0[],5.0,4.0(([
))2.0,1.0,4.0(

]),5.0,3.0[],6.0,4.0[],7.0,5.0(([

))3.0,3.0,7.0(

]),3.0,1.0[],3.0,2.0[],9.0,7.0([

))1.0,2.0,5.0(

]),7.0,3.0[],6.0,4.0[],8.0,6.0([
A

))2.0,3.0,7.0(

]),3.0,2.0[],3.0,1.0[],7.0,4.0(([

))1.0,5.0,4.0(

]),2.0,0[],2.0,1.0[],9.0,6.0(([

))4.0,5.0,2.0(

]),6.0,3.0[],4.0,2.0[],3.0,1.0([

))3.0,2.0,3.0(

]),5.0,2.0[],5.0,3.0[],3.0,2.0(([
A

CCCC

3

2

1

4321

Table 5: Construction of neutrosophic decision matrix 

 4M 3ij )(m

























))4.0,1.0,5.0(),3.0,6.0,7.0(())3.0,4.0,5.0(),15.0,2.0,75.0(())2.0,1.0,8.0(),5.0,55.0,85.0(())1.0,15.0,25.0(),1.0,25.0,65.0((A

.

))1.0,2.0,6.0(),25.0,2.0,45.0((
))2.0,1.0,4.0(),4.0,5.0,6.0(())3.0,3.0,7.0(),2.0,25.0,8.0(())1.0,2.0,5.0(),5.0,5.0,7.0((A

))2.0,3.0,7.0(),25.0,2.0,55.0(())1.0,5.0,4.0(),1.0,15.0,75.0(())4.0,5.0,2.0(),45.0,3.0,2.0(())3.0,2.0,3.0(),35.0,4.0,25.0((A

CCCC

3

2

1

4321

Table 6: The ideal neutrosophic estimates reliability solution (INERS)   ,M

and the ideal neutrosophic estimates unreliability solution (INEURS)   ,M

  ,M 








)1.0,15.0,5.0(

),1.0,25.0,7.0(









)2.0,1.0,8.0(

),2.0,25.0,85.0(









)1.0,1.0,5.0(

),1.0,15.0,75.0(









)1.0,1.0,7.0(

),25.0,2.0,7.0(

  ,M









)3.0,2.0,25.0(

),5.0,5.0,25.0(









)4.0,5.0,2.0(

),5.0,55.0,2.0(









)3.0,5.0,4.0(

),4.0,5.0,6.0(









)4.0,3.0,5.0(

),3.0,6.0,45.0(

Table 7: The positive grey relational coefficient 

GR
M  

43ijij
,



 



GR
M

















)5909.0,5135.0()8125.0,6552.0()7222.0,76.0()7647.0,9048.0(

)8125.0,6552.0()8125.0,4042.0()5909.0,1()1,4222.0(

)7222.0,76.0()65.0,9048.0()3611.0,333.0()6190.0,3585.0(
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Table 8: The negative grey relational coefficient 

GR
M  

43ijij
,



 



GR
M

















)75.0,7059.0()75.0,5.0()3333.0,48.0()7059.0,3636.0(

)5454.0,5714.0()5454.0,1()4286.0,3333.0()5714.0,5714.0(

)6.0,5217.0()75.0,4615.0()1,6667.0()5454.0,7059.0(

Table 9: Weighted matrix 

GRW M  

GRW
M

















)16066.0,13962.0()26228.0,21150.0()15498.0,163096.0()14583.0,17252.0(

)22092.0,17815.0()26228.0,13048.0()12681.0,2146.0()1907.0,08051.0(

)19637.0,20664.0()20982.0,29207.0()07749.0,07153.0()11804.0,06836.0(

Table 10: Weighted matrix


GRW
M

 



GRW
M

















)20392.0,19193.0()2421.0,1614.0()07153.0,10301.0()13461.0,06934.0(

)14829.0,15536.0()17606.0,3228.0()08173.0,07153.0()10896.0,10896.0(

)16314.0,14185.0()2421.0,14897.0()2146.0,14307.0()10401.0,13461.0(
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