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Abstract. The neutrosophic theory is known for its prominent application in real life, possessing unclear,
indeterminate information. Interval valued neutrosophic theory is even more flexible to handle indeterminacy
effectively since the membership functions are depicted as intervals that lie in [0, 1]. In this article, the operations
on Strong Interval Valued Neutrosophic graph have been newly defined along with their related theorems. The
Strong Interval Valued Neutrosophic Digraph has been newly introduced for evaluating the blood pressure
that fluctuates during the blood flow of the human heart. By considering the hemodynamic parameters of a
healthy adult of age above 35 years without any cardiac malfunction, we model the cardiac functioning of the
human heart during the Systolic and Diastolic phases as Strong Interval Valued Neutrosophic Digraph and its

evaluation observed to be analogous to the conventional biological approach.

Keywords: Interval Valued Neutrosophic Graph; Strong Interval Valued Neutrosophic Digraph; Cardiac Cycle
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1. Introduction

To address the ambiguity and imprecision on crisp sets, Zadeh, L., [1] in the year 1965,
described the fuzzy set (FS) theory and consequently fuzzy logic. This proposed theory is
identified with a membership function assigning all the members of a given Universal set X,

a degree of membership m4 in a FS A.
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Interval-valued fuzzy sets (IVFS) were initially analyzed by Sambuc [2] who termed as ¢
- floues functions, to identify the features of unpredictability by attributing the membership
degrees. Atanassov, K., [3] defined the intuitionistic fuzzy sets (IFS) assigning to each member
of the Universal set both a degree of membership and one of the non-membership n4 such
that 0 < ma(z) + na(x) <1 which relaxes the duality in the fuzzy set and as a consequence,
it allows to address the positive and negative side of an imprecise concept.

The IFS by K. Atanassov [3] corresponds with the definition of vague sets introduced by
Gau and Byehrer [4] accordingly by Bustince and Burillo [5]. Further, he introduced the
interval-valued intuitionistic fuzzy set (IVIFS) as an extension of both IFS and IVFS. Inspired
by the real-time situations, winning/defeating or tie scores from sports games, and yes/no/NA
from decision making, Florentin Smarandache [6] proposed the concept of the neutrosophic
set (NS) to understand the standard as well as the non-standard analysis.

Thus NS is a systematic paradigm that generalizes the concepts in [1], [3]. Wang et. al [7]
defined the single-valued neutrosophic set (SVNS) by defining 7', I and F from a nonempty set
A to [0,1]. The interval-valued neutrosophic set (IVNS) [§], is more efficient than the SVNS,
in which their membership functions are all independent as well as their values are included
in [0,1].

Fuzzy analogous of several graph - theoretic concepts are described by Azriel Rosenfield [9).
and thus fuzzy graphs (FG) have diversified applications in the areas of Science, Engineering,
Technology, etc and it is essential to model those problems in comparison to the classical graph.
With additional remarks on Fuzzy graphs, Bhattacharya [10], established that the concepts in
fuzzy graphs do not match with the graph-theoretical concepts all the time.

The Intuitionistic fuzzy graph (IFG) |11] arises by taking the vertex and edge sets as IF'S. K.
Atanassov |12] in 2019, introduced eight different types of interval-valued intuitionistic fuzzy
graphs (IVIFG) and their representations by index matrices.

In many situations, as the relations between the vertices (nodes) are indeterminate, the fuzzy
graphs along with their extensions fail, Smarandache [13], defined neutrosophic graph (NG).
Thus the single-valued neutrosophic graph (SVNG) is a NG model that generalizes the FG
and IFG and Said Broumi [14], [15] further extended to interval-valued neutrosophic graphs
(IVNG) and its stron form which are used to model the real-life problems with uncertain,
irreconcilable, non-deterministic, unpredictable information effectively and further Mohammed
Akram extended to interval-valued neutrosophic digraph (IVNDG) [16] to analyze the applied
network models.

Furthermore, Shouzhen Zeng et. al [17] introduced maximal product, rejection, symmetric
difference, residue product on SVNG having application in FAO for finding the most rea-

sonable organization for the farmers to develop more food grains and to increase yearning.
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Recently, Haque et. al [18], [19], [20], [21] defined various operational laws, logarithmic opera~
tional law and exponential operational law for evaluating Multi-criteria group decision-making
(MCGDM), Multi -attribute decision-making(MADM) problems under spherical fuzzy, inter-

val neutrosophic environments.

1.1. Motivation and Nowvelty

Based on the literature survey, we found that SIVNG has not been explored in detail. This
motivates us to study the operations such as maximal product, rejection, symmetric difference
and residue product of any two SIVNGs. Further SIVNG helps to maintain the optimal
minimum value between any two nodes. By considering this, we model the cardiac functioning
of the human heart under SIVN environment. Also, the blood flow cannot be reversed and
falls within certain range. This necessitates us to model the cardiac cycle of the human heart
as the SIVNDG, which is a novel concept. By modelling the cardiac functioning of the human
heart as SIVNDG helps to explore the blood flow of the human heart in each phase.

1.2. Organization of the article

In this article, Section 2 contains preliminaries. In Section 3, the maximal product (x),
rejection (|), symmetric difference (@), residue product (e) of any two SIVNG have been
introduced and if G7 and Gg are any two SIVNGs, we prove that G x Ga, Gy | G2, G1 @ G»
and G e Gy is again a SIVNG. Further, the degree and total degree of these operations and
their related theorems are discussed in detail. In Section 4, we propose the Strong Interval-
valued Neutrosophic Digraph (SIVNDG) based on a Strong Interval-valued Neutrosophic graph
(SIVNG) [6] to explore the cardiac cycle of the human heart.By converting the blood pressure
values to SIVN values, we study the blood flow of the human heart. Section 5 contains the
Sensitivity analysis and Comparative study. Section 6 and Section 7 deals with Results and
discussion. Section 8 possess the need and limitation and impact of the research work and

Section 9 contains the conclusion.

2. Preliminaries

Definition 2.1. An Interval Valued Neutrosophic Graph (IVNG) [14] of a graph G’ = (P, Q'),
we mean a pair G = (P,Q), where P = ([th,, t%], [il, i%], [fb, f4]) is an IVN - set on P’ and
Q = ([t o) [ZZQ, io) [ fé?, f]) is an IVN - relation on Q' that satisfies the following conditions:
(1) P' = {p1,p2,...,pn} such that t, : P' — [0,1], t% : P' — [0,1], i% : P' — [0,1],
i% P —[0,1], f& : P’ = [0,1], f&: P’ — [0,1] represent the corresponding degree
of membership functions of T, I and F of p; € P’ with 0 < tp(p;) + ip(p;) + fp(pi) <

3,p: € P'(i = 1,2, ...,n).
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(2) The mappings t, : P’ x P' — [0,1], t&, : P’ x P' = [0,1], iy : P' x P' = [0,1],

=

iy : PP x P' = [0,1], f§, : P' x P' = [0,1], f§ : P' x P' = [0,1] are such that
(1) to(pispj) < min(tp(pi), th(ps)),
(2) t&(pispj) < min(tp(pi), th(p;)),
(3) ig(pirpj) = maz(ip(pi), ip(p;)),
(4) ity (pis pj) = maz(ip(pi),ip(pj)),
(5) f5(pirps) = maz(fp(pi), fp(ps)),
(6) f&5(pisps) = maz(fp(ps), fp(p))),
where (pi,p;) € Q and 0 < tqQ(pi,pj) + iQ(pi,p;) + fo(pi,p;) < 3,Y(pi,pj) € Q'(4,] =

1,2,...,n).

Definition 2.2. An IVNG G = (P,Q) of G = (P', Q') is called Strong IVNG (SIVNG) [15]
if for any pair (p;,p;) € Q" we have :

(1) to(pisps) = min(tp(p), tp(p))),
(2) t&(pispsj) = min(tp(pi), tp(ps)),
(3) i (piypj) = maz(ilp(pi), ip (),
(4) i¢y(pi, pj) = max(ip(pi), ip(p;)),
(5) f5(pisps) = maz(fp(p), fp(p))),
(6) f&(pispy) = maz(fp(pi), f3(ps))-

Definition 2.3. A Strong Interval Valued Neutrosophic Digraph (SIVNDG) on a non-empty
Universal set X is a pair G = (P,a), where P = ([th, t%], [i%,i%], [fh, f&]) is an IVN - set
corresponds to X and Q = ([t! o), [zb,z}fg], [ fé, fo)) is an IVN - relation corresponds to X
such that

(1) to(pi,p5) = th(pi) A the(p)),
(2) t8(Pip;) = th(pi) At (p;),
(3) ity (D)) = il (pi) V il (py),
(4) i (pi-p;) = 1% (pi) V i%(p;),
(5) f5(0i,0)) = fo(pi) V fb(p)),
(6) f&(pipy) = fi(pi) V f(pj),

Vpi,pj € X.

Example 2.4. Consider a SIVN-digraph G = (P,a) on X = {l1,ls,l3,l4} in Figure|l| The
vertices and the edges of G along with their membership functions are given by

P = {l; < [0.1,0.2],[0.3,0.4],[0.2,0.5] >,l < [0.4,0.5],[0.2,0.3],]0.1,0.5] >,l3 <
[0.2,0.3],[0.3,0.5],]0.6,0.8] >,14 < [0.4,0.6],[0.3,0.5],[0.2,0.4] >},

Q = {lhls < [0.1,0.2],[0.3,0.4],[0.2,0.5] >,l3ls < [0.2,0.3],[0.3,0.5],[0.6,0.8] >,l3ly <
[0.2,0.3],]0.3,0.5],[0.6,0.8],141; < [0.1,0.2],[0.3,0.5],[0.2,0.5] >}.
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1;<[0.1,0.2],[0.3,0.4],[0.2,0.5]>

14<10.4,0.6],[0.3,0.5],[0.2,0.4]>
12<[0.4,0.5],[0.2,0.3],[0.1,0.5]>

13=[0.2,0.3],[0.3,0.5],[0.6,0.8]>

FiGURE 1. Strong Interval Valued Neutrosophic Digraph G

3. Operations on SIVNG

In this section, we introduce two different operations on SIVNG, maximal product and

symmetric difference. We prove that for any two SIVNGs, the maximal product and symmetric
difference is a SIVNG.

Definition 3.1. The maximal product Gy * Ga = (P1 x Py, Q1 * Q2) of two SIVNGs G; =
(P1,Q1) and Gy = (Py,Q3) on the crisp graphs G} = (P}, Q}) and Gy = (P, Q5) is defined as

(1) (th, * th ) (p1, p2) = maz{th, (p1),th, (p2)},

(tp, * th,)(p1,p2) = maz{tp (p1), tzfaQ(Pz)}?

(i, * ip,)(p1,p2) = min{iy, (p1), i, (p2)},

(iiﬁl * ZPQ)(p17p2> mm{lp (p1), lp2(p2)},

(fby * fp,) (1, 02) = min{fp, (p1), fp, (p2)},

(fB, = f5,)(p1,p2) = min{ fp (m), [#,(p2)}, V(p1,p2) € (P| X Py).
(2) (tlQl * tle)((p p2)(p, q2)) = maz{th (p)7tQ2(pQQQ)}7

(s, * t6,)((0:p2) (D, @2)) = mazx{t}, (p), th, (P2a2)},

(ity, * i, ) (D p2) (P, 42)) = min{il (p),ify, (p2g2)},

(igy, * i0,)((p, p2) (P, 42)) = min{ip, (p), i), (P2g2) },

(lel * fQ2)((p,p2)(p, q)) = mm{fﬂ (p>7fclg (p2q2)},

(f8, * 18,)((0,p2) (D, q2)) = min{ {3 (p), f4,(p2¢2)}, Vp € Py and paga € Q5.
(3) (to, * th,)((p1,7)(q1,7)) = maz{tly, (p1a1), th, (r)},

(ts, * to,)((pr, ) (g1, 1)) = maz{ty (pra1), th, (1)},

(ily, * ig,)((p1,7)(q1, 7)) = min{igy, (p1q1), i, (1)},

(ity, * igy,)((p1,7)(qr, 7)) = mind{igy, (p1q1), i, (r)},
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(fo, * f6,)((p1.7)(a1, 7)) = min{f§, (m1ar), fp, (1)},
(18, * 18,)((p1,7) (@1, 7)) = min{ f&, (maq1), f3,(r)}, Vpig1 € Q) and 7 € P,

Theorem 3.2. The maximal product of two SIVNGs G1 and G2 is a SIVNG.

Proof. Let G; = (P1,Q1) and Gg = (P, Q2) be two SIVNGs on G/1 = (P{,Qll) and G/2 =
(P,, Qy) respectively and ((p1,p2), (q1,¢2)) € Q] X Q5. Then, we have,
Case 1. If p; = ¢1 = p,
(th, * t,) (D, p2), (; 42)) = maz{th, (p), thy, (p2g2)}
= maz{th, (p), min{th, (p2),tp, (q2)}}
= min{mazx{tp, (p),th, (p2)}, maz{th, (p), th,(a2)}}
= min{(th, * th,)(p,p2), (th, * th,)(p, ¢2)}
In the same way, the other conditions can also be verified.
Case 2. If pp=qo =,
(th, *tg,)((p1,7), (q1,7)) = maz{ty, (mar), th, (r)}
= maz{min{ty, (1), tp (a1)}, tp, (1)}
= min{maz{tp, (p1), th, (r)}, maz{th, (a1), th, (r)}}
= min{(tp, * th,)(p1,7), (tp, *tp,)(a1,7)}
The other conditions can also be verified using the same approach.

Thus, the maximal product G * Gg is a SIVNG.

Example 3.3. Consider two SIVNGs G and G5 as represented in Figure |2 Their maximal
product G1 * G2 is represented in Figure

p1<00.1,0.2]. q1=1[0.1,0.3]_:_[ 01,0.3] q2<[0.1.0.4].

[0.2,0.3], (03.04], 53045 [0.1,0.3],

[0.3.0.4]> 0506]> (ooen 0304
=[0.1.0.2], <[0.1,0.2], =[0.1,0.3], <[0.1,0.4].
[0.3.0.5]. [0.3.0.5], [0.3.0.4], 0.2,0.4],
[0.3,0.4]> [0.3,0.4]> [05.0.6] 0.5.0.6]
Pr<[0.2.0.4], < [i].EJ]_..i], pa<[0.4,0.6]. qs=[0.2,0.4], <[0.2.0.4], q3<[0.3,0.4].
[0303], [0.3.05], [03.0.3] 01,02,  [0204],  [0.2.04],
[0.1,0.2]= [0.1.0.2]= [0.1,0.2]> [0.2.05]> [0.5.,0.6]= [0.5.0.6]>

FI1GURE 2. Strong Interval Valued Neutrosophic Graphs G and Go

Definition 3.4. Let G; = (P1,@Q1) and Gy = (P3,Q2) be two SIVNGs. The degree for any
vertex (p1,p2) € (P| x Py) is,

()26 (P1:P2) = 32 (11 1) (ar,a0)ye@, @, (Eu * 1,) (1, 12). (01, 02))

DD maz{th, (p1),t, (p2q2)} + 2 prare@, pa—ao maz{ty (mar),th, (p2)},
(dt“)Gl*GQ (pl,pZ) = Z((p1,p2)7(q1,q2))EQ/1><Q/2 (t'lél * t62)((p17p2)7 (Q17 Q2))
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(01.q2)[0.1.0.4],  <[0.1.0.4]. (p1.q3)=[0.3.0.4].

<[0.1,0.3],  [0.1.0.3]. [0.2.0.3], [0.2.0.3]. <[0.2,0.4].
[0.2,03],  [0.3.0.4]> [0.3.0.4]> [0.3,04] [0.2,0.3],
[0.3.0.4]= ° » [0.3.0.4]=
L1)=[0.1,0.3]. Lq4)=[0.2,0.4],
a0, e onszangsdy | N @aiozon
[0.3,0.4]> DA [0.2,0.4]>

p.A\-
4(\."—3
\“__“!. “”O_””Uln_”_
(p3.04)<[0.4.0.6],  \ (p2.q1)<[0-2.0.4],
[0.1,0.2] [03.0.4],
[0.1,0.2]> [0.1,0.2]>
<[0.4.0.6], & <[0.2,0.4],
[0.2.0.4], N [0.3,0.4],
[0.1,0.2]> s (0.1,0.2]>
T A
Sy

.0,

10,3

(p3.43)<[0.4.0.6] (p2.92)<[0.2.0.4].

10.2

[0:2.0.4], [0.1.03],
[0.01.0.2]> (0.1,0.2)>
<[040.5] <[0.2,0.4],
[0.2.0.41, [0.2.0.4],
[0.1.02)> [0.1.02]>

Eain(E};]Z[ﬂ‘-i,ﬂ.ﬂ . (p2.q3)=[0.3.0.4].
1.0.3], [0.2.0.4].
[0.1,0.2]> 0109 [0.1,0.2]>
=[0.4.0.6] <[0.2,0.4],
[0.3.0.4], W [0.2,0.4],
[0.1,0.2]> RER [0.1,0.2]>
4
(P2.q1)<[0.4,0.6]." (p2.q4)<[0.2.0.4],
[0.3.0.4], [0.1.0.2].[0.1.0.2]=

[0.1,02]=

FIGURE 3. Maximal Product G1 * Go

= 2p—qr e, MATE (1), 10, (P202)} +22, 0 e po—q, Max{iy, (P101), 13, (P2)},
(dit) G156 (P1:P2) = 32 (o1 o) (a1 2@’ x2, (00 * 1,) (P15 P2), (1, 02))

=3 g peaaec, Mnip, (911G, (0202)} + 35, 4 e pamg Mindity, (P101) i, (P2) }
(di) G102 (P15 D2) = 22 (o1 o) (0100 @ x @, (0 % 10,) (P15 12), (415 42))

= 2 —qu e, TP (P1), 10, (P202)} + 22, el pamg, MEEG, (P101), 18, (P2) ),
(dp) e (P192) = X1 o) (arane@ <@, (T * 10, (P1:p2), (01, 42))

= Zm:ql,m(pe% mi”{ffal (p1), fcl,92 (p2g2)} + ZplqleQ’l,m:qz mz’n{fél (P1q1), ffDQ (p2)},
(dpu)Grscs (P1,p2) = Z((m’m),(ql,%))e@gXQ;(fc%l * fcqjg)((pl,pz)y (91, 42))

= 2 pi—avpease, TS B (1), 15, (P242)} + 22,0, 0! pomae MG, (1101), [5,(P2)}-

Theorem 3.5. Let Gi = (P1,Q1) and Gy = (P2, Q2) be two SIVNGSs. If thI > tZQQ, b,
1y iy < iy i < i, o < fhy I <[5, and thy > th th >t il < il i
i’él,f]lgz < fé17f1%2 < 5, then for every (p1,p2) € (P, x P,), we have,

(da) (GrGo) (P1,P2) = (d) (@) (P2, (1) +(d)(G) (1)1 p, ) (P2)

(dev) (GrGa) (P1,P2) = (d)(Ga) (P2)Tp, (P1) +(d) () (P1)E(p,) (P2)

(dit)(G1+Go) (P1,D2) = (d)(GQ)(pQ)ilF’l (p1) +(d)(G1)(p1)il(p2)(p2)

(div) (G1+G2) (P1,P2) = (d)(G) (P2)ip, (P1) +(d)(Gy) (P1)i{p, ) (P2)

(dg1) (@reca) (P1,12) = (d)(G) (02) f, (1) +(d) (1) (P1) f{y) (P2)

(dfu)(GyGo) (P15 P2) = (d)(Go) (P2) [P, (P1) +(d) (1) (P1) f () (P2)

A
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Proof. Consider,

(d0) 61562 (P1,P2) = 3 (1 o) (ar.aonye, @, (o * t,) (P15 12), (41, 2))

=3 g paaeec, Mt (1) 10, (P202)} + 32, ot gy M {, (P101), tp, (P2)}
- Zm:m P202€Q) tlQ2 (p2q2) + ZPIQI €Q’ p2=q2 tlQl (p1(J1)

= (d)(Gy) (p2)th, (p1) +(d)(G’1)(p1)tl(p2)(p2>

Similarly, the other conditions can also be proved.

Definition 3.6. Let G; = (P1,Q1) and G2 = (P2, Q2) be two SIVNGs. The total degree for
any vertex (p1,p2) € (P x Py) is,

(b)) 10 (P13 22) = 3 (1 ) an g’ @) (s * £, (01, 92), (01, @2)) +(th, # 1) (p1, )
= e, maz{tl (p1), th, (p2g2)} + Y 0@ pomo max{ty, (P1q1), th, (p2)}
—i—maa:{tp1 (p1), tp2(P2)}v

(tdp)yecy (D1, P2) = Z((phm)’(qth))eQ,lXQ;(%I * t52>((p1,p2)7 (q1,492)) +(t1ﬁ1 * t}%)(m,pz)
= Zpl =q1,p202€Q, max{tlfgl (p1), t%z (P2g2)} + EP1Q1€QI17P2=q2 maz{t 1 (1), tll% (p2)}
+maz{tp (p1),tp,(p2)},

(b ), (91 p2) = Z((phm)’(qm))eQ,le; (ity, *i6,)((p1,p2), (q1,42)) + (i, * ip,)(p1,p2)
- Zm:ql D202€Q min{ilPl (p1), ile (P2g2)} + Zpl‘]l €Q},p2=q2 mm{zl@l (prar), ilp? (p2)}
+mz’n{z’lpl (p1), ipo (p2)},

(tdiu)Gl*GQ(plaPQ) = Z((phpz),(ql,qz))EQ;XQIQ(iZQl * ’l'éQ)((php?)u (QL QZ)) +(21]é1 * 'l'11£->2)(p1)p2)
- ZP1:q1,p2Q2EQ/2 mzn{ﬁiﬁ (p1), 1Gs (P2g2)} + ZP1Q1EQ/17P2:q2 mzn{fél (pray), g (p2)}
+min{ip (p1),ip, (p2)},

(td 1) Gracis (P1, 12) = Z((pl,pg),(ql,qz))eQ’le'g(féh % £5,)((p1,12), (01, @2)) +(fb, * fp,)(p1,p2)
- Zm:thzqze% mm{fllD1 (p1), fclgg (p2g2)} + Zp1q1662/1,p2:q2 mm{fé’l (Pra1), fjlj? (p2)}
+min{fp (p1), fp,(P2)},

(tdgu)Gyecy (P1,D2) = Z((pl,pQ),(ql,qz))EQlle;(féjl * [6,)((p1,2): (91, g2)) +(fB, * [B,)(P1,p2)
- ZP1=Q17P2Q2EQ; mln{f]% (pl)v fC%Q (p2q2)} + ZP1Q1€Q/1,P2=Q2 mzn{fél (p1g1)7 f}% (pz)}

+min{ fp, (p1), [, (p2)}-

Theorem 3.7. Let Gi = (P1,Q1) and Gy = (Pa,Q2) be two SIVNGSs. If thI > QQ,t}él
tyilp, < ity < ity fhy < fhy [ < 18, and th > th th > th b, < G, i,
i’él,f]laz < fél,f}% < [, then for every (p1,p2) € (Pll X PQI), we have,

tdyp) (Gyeca) (P15 12) = (d)(G) (02)t, (P1) +(d) (@) (P1)E{ py) (P2) + maz{th, (p1), th, (p2)}
tdiw) (G +a2) (P1,P2) = (d)(ay) (P2)Ep, (P1) +(d) () (P1)1 (pQ)(p2) +maz{ty (p1),tp,(p2)}

(
(
(tdy) (G1%G2) (p1,p2) = (d)(G2)(p )iZJDI(pl) +(d)( )(pl) (P )(p2) +mzn{zpl(p1),zp2(p2)}
(
(

IN IV

tdin) (G1xG2) (P15 P2) = (d) (G (P2)ip, (1) +(d)(Gy) (P1)i{'p, (2) + mind{ip, (p1), ip, (p2)}
tdp)(ai+Go) (P1,02) = (d )Gz)(pQ)fllDI(pl) +(d) 61y (P1) f{py) (2) + min{ fp, (1), fp, (p2)}
(tdgu)(GixGo) (P15 P2) = (d)(Go) (P2) B, (P1) (d)(G1)(p1)f(P2)(p2) +min{ f, (1), fp,(p2)}
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Proof. Consider the case of (tds«)q,«a.)(P1,p2), We have,

(tdfu)GreGo (P15 2) = 22 (o1 o (arsae)) e x @, ([ ¥ 10,)((P1,02), (q15.42)) +(fB, * f5,)(p1,p2)
=3 g paaeec, MNSE (01, 15, (0202)} + 30, 4 e pamgs MRS, (P101), [, (p2)}
+min{fp (p1), fp,(p2)}

- ZIH:QLPQQQGQ; 16,(p242) + Zpl(ﬂEQ/l,pQ:qz 16, (p1q1) +min{f3 (p1), fp,(p2)},

In the same way, the other conditions can also be verified.

Example 3.8. Consider two SIVNGs G = (P1,Q1) and Gy = (FP2,Q2) as represented in
Figure [l Their maximal product Gy * Gy is represented in Figure
From Figures 4| and [5, d;, tdy for the vertex (ps, g2) are calculated below.

p1<[0.2.0.3]. q1<[0.2,0.3].
[0.2.0.3], [0.2,0.3],
[0.3.0.4]> [0.3,0.4]=

<[0.2,0.3], <[0.2,0.3], <[0.2,0.3],
[0.3.0.4], [0.3.0.4], [0.3.0.4],
[0.3,0.4]> [0.3,0.4]> [0.3,0.4]>
p2=[0.2,0.4]. p3=[0.3.0.4]. q2=[0.2,0.4].
[0.3.0.4], [0.3,0.4], [0.3.0.4],
[0.2,0.3]> [0.2,0.4]> [0.2,0.3]>

FIGURE 4. Strong Interval Valued Neutrosophic Graphs G| and Go

.qp)=[0.2.0.3].
Eﬁ%]f b 10203, @ra)<i02.04],

[0.2,0.3], [0.2,0.3] <[0.2,0.3] ( <[0.3.0.4
——4 03], 2,03], P3.q1)<[0.3.0.4],
[0.3.0.4] [0.3,0.4]> [0.2,0.3]= [0.2,0.3], [0.2,0.3],
(03.04]>  [0.3.04]

<[0.2,0.3], <[0.2,0.4], <[0.3.0.4],
[0.2,0.3], [0.3,0.4], [0.3.0.4],
[0.3.0.4]> [0.2,0.3]= [0.2.0.4]=

- B _ <[03.05.  (p3.q2)<[0.3.0.5],
(P1.a2)<[0.3.0.5], «[0.3.0.5], (p2.q2)<[0.3.0.5], [0.3.0.4], [0.3,0.4],
[0.2,0.3], [0.3.04].  [0.3,0.4], [0.2,0.3]> [0.2,0.3]=

[0.2,0.3]> [0.2,03]=  [02,03]-

FIGURE 5. Maximal Product G1 * G

By direct calculations, d;i(ps,q2) = 0.3 + 0.3 = 0.6, d;u(p3,q2) = 0.4+ 0.4 = 0.8, d;(p3, q2) =
[0.6,0.8].

tdpi(p1,q1) = 0.2+ 0.2+ 0.2 = 0.6, tdgu(pr, q1) = 0.4+ 0.3+ 0.3 = 1.0, tds(p1,q1) = [0.6,1].
By using theorem, d;i(ps,q2) = 1(0.3) + 1(0.3) = 0.6, d;u(ps,q2) = 1(0.4) + 1(0.4) = 0.8,
di(p3, q2) = [0.6,0.8].

tdp(pi,q1) = 1(02) + 1(0.2) + min{0.2,0.2} = 0.6, tdpu(pi,q1) = 1(0.4) + 1(0.3) +
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Gk

min{0.4,0.3} = 1.0, td¢(p1,q1) = [0.6, 1].

Definition 3.9. The rejection Gy | G2 = (Py | P2, Q1 | Q2)of two SIVNGs G =

Go = (P, Q2) is defined as

(P1,Q1) and

(1) (th, | th,)(p1,p2) = min{th, (p1), th, (p2)},
(tp, | th,)(p1,p2) = min{tp (p1), tp,(p2)},
(Zpl | ZP )(p1,p2) = max{zpl (Pl)JiDg (p2)}
(ip, [ 15,)(p1,p2) = maz{ip, (p1),7p,(p2)},
(fP1 | fP )(p1,p2) = max{fpl (p1), fll;2(p2)},
(fB, | F15,)(p1,p2) = maz{fp, (pr), [, (p2)}, ¥(p1,p2) € (Py x Py)
(2) (th, | th,)((p:p2), (P, g2)) = min{th, (p), th, (p2), t, (42)},
(t, | t6,) (P p2), (P, q2)) = min{tp, (p), tp, (p2), th, (2)},
(ZQ1 | i, ) (s p2), (P, 42)) = maz{ip, (p),ilp, (p2), i}, (g2)},
(@6, 1 14,) (P p2), (P, 42)) = maz{ip, (p), ip, (p2),ip,(g2)},
(o, | £5,)((p,p2), (P, 42)) = max{fp, (p), fp,(p2), fp,(a2)},
(le | 18,)((p,p2), (P, g2)) = maz{fp, (), b, (p2), 1, (42)}, VP € Pp,paga & Qs
(3) (th, | to,)((p1,7), (q1,7)) = min{th (p1), th, (q1), tp, ()},
(e, 1t5,)((p1,7), (g1, 7)) = min{ty, (p1), tp, (q1), tp, (1)},
(ity, 1ig,) ((p1,7), (q1,7)) = maz{ilp, (p1), iy, (q1), %, (1)},
(ig, 1 i6,)((p1,7), (@1, 7)) = maz{ip, (p1),ip (1), ip,(r)},
(fo, | 16,)((p1,7), (q1,7)) = max{ fp, (p1), fp, (@), fp, (1)},
(le | 16,)((P1,7), (a1, 7)) = maz{ fp, (p1), [P, (1), [B,(r)}, Vian ¢ Q.7 € Py
(4) (to, | th,)((P1,p2), (g1, 42)) = min{t (p1), tp, (q1), s, (p2), th, (g2)},
(o, | th,)(P1,p2), (a1, 42)) = min{tp (1)t} (@1),th, (P2), th,(a2)},
(ZQl | i, (P15 02), (41, 42)) = maz{ilp (p1), %, (q1), %, (P2), i, (¢2)},
(i6y, 1 i6,)((p1,p2), (a1, 42)) = maz{ip (1), 1%, (q1), 7%, (P2), i, (q2) },
(fo, | 16,)((P1:p2)s (@1, 92)) = maz{ i, (p1), fb, (01), Fb,(P2), F, (42)}
(f6, 1 16,)(p1,p2), (a1,42)) = maz{fp (p1), fp,(a1), fp,(p2), [B,(q2)},

Vpig1i & Q1. p2ge & Q.

Example 3.10. Consider two SIVNGs G; = (P1,Q1) and Go = (P»,Q2) as represented in

Figure @ Their rejection Gy | G is represented in Figure

Theorem 3.11. The rejection of two SIVNGs Gy and G2 is a SIVNG.

Proof. Let G1 = (P, Q1) and Gy = (P, @Q2) be two SIVNGs on G} = (P}, Q)) and G, =

(PQI, QIQ) respectively and ((p1,p2), (q1,92)) € Qll X QI2‘ Then, we have,
Case 1. If p1 = q1,p2q2 ¢ Ql2
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p1=[0.4,0.5], <[0.2,0.4], p2=[0.2,0.4], q1=[0.2,0.5]. q3=[0.1,0.2],
[0.10.2], [0.3.0.6]. [0.5,0.6], [0.3,0.4], [0.2.0.4],
[0.2.0.3]> [0.2,03]= [0.1.0.2]> [0.1,0.4]> [0.1,0.5]=
<[0.1,02], <[0.1.0.3], =[0.2,0.5],
[0.2.0.4], [0.5,0.6]. [0.3,0.4],
[0.2.0.3]> [0.2.0.4]= [0.4,0.6]>
: . - R
pe=[0.1,0.2], =[0.1,0.2], p3=[0.1,0.3]. <[0.3,05], "
[0.2,0.4], [0.4,0.5],  [0.4,0.5], [0.1,0.3],
[0.L0.3]>  [02,04]> [0.2,0.4]> [0.4,0.6]=

FIGURE 6. Strong Interval Valued Neutrosophic Graphs G; and Go

(P1:92)<[0.3.0.5],

®[0.1.0.3],
[0.4,0.6]=
<[0.1,0.2],
(P1.91)<[0-2.0.51[0.3,0.4], = (p1.93)<[0.1.0.2], o
(Paqa)<[0.1,02], <[0.1,0.2], [0.3.0.4], [0.2,0.5]= [0.2,0.4], (p2:41)<[0.2,0.4].
[0.2,0.4], [0.5.0.6),  [0.2.0.4] v [0.2.0.5]= [0.5.0.6],
[0.1,0.5]= [0.1,0.5]= %%, [0.1,0.4]=
- A 4,0 <
LA w; q'i" "I/, = é
Z = 2 = =
=] = NG B S
= | <01.02), = K3 L= =
T | (050610406 g 2 =
-« = = 5 Z—e
rr) = = = 101,05 = ()
<[0.1,0.2], & A0 21057 3 B 1950, 2 0204
0204], = 508 o\ = & = 10.1,0,4,. 2 0504,
[0.40.6> = e % \\\1} - 2 [0.406>
AN
(p4.q1)=<[0.1,0.2<[0.1,0.2], e (p2.93)<[0.1,0.2],
[0.3,0.4], [0.5.0.6], Sl [0.5.0.6].
[0.1,04]>  [0.10.5]> (p3.q3)<[0.10.2], <[0.1,0.2], (p3.qD)=<[0.1.0.3], [0.1.0.5]=
[0.4,0.5], [0.4.0.5]. [0.4,0.5],
[0.2.0.5]> [0.2.0.5]> [0.2,0.4]>
® (p3.q)<[0.1.0.3].

[0.4.0.5],
[0.4,0.6]>

FIGURE 7. Rejection G | G

(tg, | to,)((p1,p2), (b1, 42)) = min{th, (p1), tp, (p2), th, (42)}
= W’n{"mn{tpl (p1), t, (q1)}, min{th, (p2), th, (a2)}}

= min{(th, | th,)(p1.p2), (th, | th,) (a1, q2)}

In the same way, the other conditions can also be verified.
Case 2. If po = g2, p1q1 ¢ Q)

(ity, 1ib,)((p1,p2), (q1,42)) = maz{il (p1), i, (q1), %5, (p2)}
= maz{maz{ip, (p1), ip, (01)}, maz{ip, (p2), ip, (¢2)}}

= mal“{(ilpl | ilPQ)(pl,pQ)a (ilp1 | ilpz)((h,tm)}

Similarly, the other conditions can also be verified.

Case 3. If piq1 ¢ Q1,202 ¢ Q5

(b, | £5,)((p1,p2), (a1, 42)) = max{fp, (1), fb, (@), fh,(P2), f1,(q2)}
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= maz{maz{fp, (p1), fp, (01)}, maz{fp,(p2), fp,(¢2)}}
= mam{(fllgl | fJZDQ)(pI,]h)a (leD1 | fJIDQ)(Q1,Q2)}

Similarly, the other conditions can also be verified.

Definition 3.12. Let G; = (P, Q1) and Gy = (P, (Q)2) be two SIVNGs. The degree for any
vertex (p1,p2) € (Py x Py) is,

(dtl)G1|G2(p1;p2) = Z((m’pg),(pl,qg))gQ’lXQ’Q(tlQl | tlQ2)<(p1ap2)7 (p1,42))

= p—apeag, Mt (P1): 1, (P2), 1, (@)} + 32, 00! y—gy Mt (P1), tp, (01), i, (2)}
3 010, paaagar, MANED, (01): (1), th, (p2), th, (g2)}

(den) 6162 (P13 P2) = 22 (o1 o) (oo e, x @, (Eoy | 86,)((P1,92), (P15 42))

= 2 p—qrmeang@, TR (1) 1, (P2), 81, (42)} + 22, 0 ¢ py—gu ML, (P1): U5, (01), T, (P2) }
+ 2 e maeq, MItE (1), (@), th, (p2), th, (42)}

(di1) G116 (P1:12) = X1y (ora2))e@, x@, (10u | 1,) (P1:12), (P1,42))

= g peaag, M0 i, (P1), i, (92) i, (@2)} + 32, 4 4 g MaT{ilp, (P1), i, (@1) i, (2)}
+ 3 @ pang, M0t {ip, (1), ilp, (@1), ip, (P2), i, (02)}

(din) 611G (P1:P2) = 22 (1 o) (o0 €@, x @, (16 1 80,)((P1,02), (P1, ¢2))

= 2 p—armag@), MOTE (1), 18, (P2), 18, (92)} + 22 0 ¢y —an M0, (1), 15, (01), 7, (P2) }
+ 20120 pasgar, Mar{ip, (p1), 75, (q1), i, (P2), i, (q2)}

(dfl)GﬂGg (p1,p2) = Z((pl,pz),(pl,qz))GQllelg (fégl | fcl,QQ)((plap2)a (P1,q2)) =

Y g pearg@, MLy (1), Ty (P2), Sy (02)} + 32, 01 0! ey M0t {5, (1) S, (1), Fp, (p2)}
+ 3 a1¢Q, paasgt, MAT b, (1) fb (1), I, (P2), fp, (42)}

(df“)Gl\Gz (p1,p2) = Z((phm),(m,qz))e@’lXQ;(féﬁl | f52)((p1,p2), (p1,g2)) =

2 pi—ar g, M B (1), [5,(2), [8,(02) ) + 22 0 ¢t pr—qy M S5, (1), 3, (1), [, (P2) }
+ 2 g @ maeq, MU B (01), 5, (1), f5,(p2), f7,(42)}

Definition 3.13. Let G; = (P1,Q1) and G2 = (P,, Q2) be two SIVNGs. The total degree for
any vertex (p1,p2) € (P} x Py) is,

() 611G (P15 2) = 22 (o1 0 (p1s02)) €@, D (th, | t,)((p1,p2), (p1,42)) + (th, | t,)(p1,12)
o, ML (51): o (2), o (620} 5, 5 gy It (P1): o, (1), (p2))
+ 3 a1¢ Q) paasgt, MNAD, (1), (a1), tp, (p2), tp, (g2)} + min{tp, (p1), tp, (p2)}
(i) G162 (P1P2) = 22 (o1 o) (1))@ @, (G | 80,)((P15p2)s (P15 42)) +(tp, | £8,) (1, p2)

= 2 p—au g, LD (P1), U, (D2), t8, (02)} + 22, 120" pregy MEATE, (1), 15, (01), T, (P2) }
T2 0180, peangq, MR (01), 88, (@), U5, (P2), 1, (g2) } + min{lp, (p1), th, (p2)}
(tdi1) G, |G, (P, p2) = Z((phm),(p“p))eQ’lXQ’Z(ilQl | ile)((th)a (p1,42)) +(ilpl | iiDQ)(Pl,pz)

= 2 =1 et maz{ip, (p1), ip, (p2), ip, (g2) } + 210140, pr—ay maz{ilp, (p1),ip, (1), ip, (p2)}
+ 3 0100, paasgt, MAE{ip, (1), g, (1), ilp, (P2), i, (42) } + maa{i, (p1), i, (p2)}
(i) 162 (P13 P2) = 22y o) (o1, €@ x @, (F0y |80,)((P1,p2)5 (P15 42)) + (ifp, | i, ) (P1, p2)
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= 2 p—armag@, MO B (1), 05, (P2), 15, (92)} + 22, 0 ¢y —an 20, (1), 15, (01), i, (P2) }
20120 peangq, MaT{ip, (P1), 18, (01), 1p, (2), 1p, (g2)} + maz{ip, (p1), ip, (p2)}

(td 1) 61165 (P1:12) = 2 (1 o) (g e’ x @, (FOr | J6,)(P1:92), (P1,42)) + (fp, | ) (P1,p2) =
Y g paarg@, MOy (1), P, (P2), I, (42)} + 32, 01 0! ey M0t {5, (1), f, (1), £, (p2)}
S b0 g, AT L (91, Fhy (01). Ty (p2). T (@2)} + maz{fh, (p1). £, (p2))
(tdfu)G1|G2(p17p2) = Z((pl,pg),(pl,q,z))e@;XQ'Q(f&jl | féjz)((pla]%), (P1,q2)) +(f1%1 | f}ﬁz)(pl,pg) =
2pi—ar i@, M B (1), [, (02), [,(02) ) + 22 0 ¢t pr—qy M0 SB, (1), 5, (1), [, (P2) }
+ 2 @ g, MU B (01), f5, (1), 18, (p2), f5,(g2)} + maz{fp, (p1), B, (P2)}

From Figure (7, d;(p1, q3) and td;(p1, q3) for the vertex (p1,qs) are calculated below.

di(p1,93) =034+04+04=1.1,dju(p1,q3) =0.4+0.5+0.5=1.4,d;(p1,q3) = [1.1,1.4].

td; (pl, C]3) =03+04+4+044+0.2=1.3,td;u (pl, q3) =044+05+054+04=1.38, tdi(pl, q3) =
[1.3, 1.8].

Definition 3.14. The symmetric difference G; @ Ga = (P1 @ P2, Q1 @ @Q2) of two SIVNGs
G1 = (P1,Q1) and Go = (P»,Q2) is defined as

(1) (th, &1th,) min{tp, (p1), th, (p2)},

p1, D2 )
= mm{tpl (p1), tpz (p2)},
)
)

P1,P2

(
(

) =
)

p1,p2) = maz{il, (p1), i, (p2)},
) (

(q1,7) )
(q1,7)) = maxf{igy, (pra1), g, (1)},
)(qw“)) maz{fH (p1a1), fp, (1)},

5
S¥
Kﬁ

IS

(V]
gy
i
=
:
N~—
=
’:‘
3
Il

maz{f§ (p1a1), [p,(r)}, VP € Q) and r € P,.
min{th, (p1), ts, (1), th, (P2g2)},

)

(4) (th, @to,)(p1.p2) (a1, Q2)
O, 18, (P1,p2) (a1, ¢2) = min{ty, (p1), 14, (q1), tQ (p242)},
iy, ®ig,)(p1,p2) (a1, 42) = maz{il, (p1), ip, (q1), ify, (P242)},

(i, ®io,)(p1,p2)(q1, 42) = max{ip (p1),ip (1) iy, (P292) }
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( )

(i, @ ilp, )(

(ip, ® ip,)(p1,p2) = max{ip (p1), ik, (p2)}

(fb, © [b,)(p1,p2) = maz{fp, (p1), [p,(p2)},

(F8, @ 1) (p1.p2) = maz{f§ (1), F1, (p2)}, V(p1,p2) € (P % Py).
(2) (th, @ th,)((p,p2)(p, a2)) = min{ty, (p), th, (P2g2)},

(t, © 14,)((p,p2)(p, g2)) = min{ty, (p), ¢, (p2g2)},

(ity, @ i,)((p:p2)(p: g2)) = maz{i, (), i, (P2g2)},

(i, ® it,)((psp2)(p, g2)) = maz{ip, (p),ip, (P2g2)},

(f5, @ 16,)((0:p2) (P, 42)) = maﬂ&'{fpl(p),fé (P292)}

(6, @ 16,)((p,p2)(p: 42)) = maz{fp (). [5,(p2g2)}, Vp € Py and p2g2 € Q.
(3) (th, @ th,)((p1,7)(q1,7)) = min{t, 1(p1Q1)7tp2( )}

(th, ®tH,)((p1,7)(q1, 7)) = min{td, (p1q1), th, ()},

(i, & ZQQ)((plﬂ“) q1,7)) = maz{ily, (prqr), i, (1)},

(i,

(

(

(

(t¢

(i¢
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(b, & 15,) (1, p2) (01, ¢2) = maz{ fp, (p1), fb, (q1), f5, (P242)},
(f6, @ 16,)P1:p2)(q1, q2) = maz{fp (p1), fp (q1), f5,(P2a2)},
Vpiq1 ¢ Q’l,pzqz € Q-

(5) (to, @ th,)(p1,p2)(q1,¢2) = min{tly, (P1a1), th, (p2), th, (42)},
(t 69 t“ ) (P1,02)(q1, @2) = min{tdy, (p1a1), tp, (p2), 1h, (q2)},
(ZQ1 @ iy, ) (p1,p2) (01, 2) = max{ily (p1a1),i'p, (p2),ip, (02)},
(i6y, ®1i%,)(p1,p2)(q1, @2) = maz{ity (P1a1), ip, (P2),ip,(q2)}
(le ©® fQ )(p1,p2) (a1, q2) = maw{le(le)af 2<P2)af1lDz(CI2)}a
(f6, @ 16,)(P1:p2)(q1, q2) = maz{f§ (;aqr), fp,(p2), [p,(a2)},

Vp1g1 € Q1,202 & Qs

Example 3.15. Consider two SIVNGs G; = (P;,Q1) and Go = (P»,Q2) as represented
in Figure Their symmetric difference G7 @ G3 is represented in Figure [9] For instance,
consider the vertex pi1q; in Figure @ Then from the above definition, (tlp1 ® thQ)(pl, Q) =
mm{tp1 (p1), thz((ﬂ)} = min{0.2,0.1} = 0.1 and (tp, ©tp,)(p1,q1) = min{tp (p1),tp, (1)} =
min{0.4,0.3} = 0.3.The other membership values can be found accordingly. Further,
(tl @t 0L, @) (p1,q2) = mm{ltp1 (p1), tlQQ(ql,qg)} = min{0.2,0.1} = 0.1 and (¥4, @
tQ2)(p1,q1)(p1,q2) = min{tp, (p1), O, (q1,92)} = min{0.4,0.3} = 0.3. Similarly, all the other

membership values can be calculated.

q1=[0.1,0.3].
[0.2.0.3],
[0.4,0.6]>
=[0.1.0.3],
<[0.2.0.4], =[0.2,0.3], [0.3.0.5],
[0.3.0.5], [0.4,0.5]. [0.4,0.6]=
[0.4.0.6]= [0.5.0.6]>
p1=[0.2,04], p2=[0.3,05], p3<[0.2.0.3], @<[0204]. 1,03, 93<[0.1.03],
[0.3,0.5], [0.2,0.3], [0.4,0.5], (0303, [03.05], [0.3.0.4],
[0.4,0.6]= [0.1,0.3]> [0.5.0.6]= [0.405]= [0.50.6]= [0.5.0.6]=

FiGURE 8. Strong Interval Valued Neutrosophic Graphs G and Go

Theorem 3.16. The symmetric difference of two SIVNGs G1 and G2 is a SIVNG.

Proof. Let G = (P1,Q1) and Gz = (Py,Q2) be two SIVNGs on G} = (P},Q)) and Gy =
(P}, Q) respectively and ((p1,p2), (q1,42)) € Q) x Q. Then, we have,

Case 1. If p1 = q1 = p,page € Q,27

(th, @ t4,) (0 p2)(p, 02)) = min{th (p), td, (p2a2)}

= min{tp (p), min{th, (p2),t}h,(q2)}}

= min{min{tp (p),th, (p2)}, min{ty (p),t%,(q2)}}

— min{(t}, & 1) (0, po), (£, ® ) (7, 02)}
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(PLa)=0204: <0103, @Lav<[0103]
[0.3,0.5], [0.3,0.5], [0.3.0.5], =
8 [0.4.0.6]= [0.5.0.6]> [0.5.0.6]> mf;»‘. 10,3,
ks -3,0,
“\_\\; o H".ﬁ'.n é{f’
RS s K = (2.a)<10.1,03]
B 3 - 2. L3,
. Q- <]0.1,0.31. 0, @ [0.2,0.3]
(pL-a1)<[0.1,0.3],% 10 o £1.10.4,0.61 L o, 2] P
[0.3.0.5], 10.3.0.51.1 . g ,%i [0.4,0.6]=
[0.4,0.6]> 1820 59 o Z <[0.1,0.3],
S 2 N i
= = N F .4.0.6]=
h\i("\\“ a — ~Ja ,’\Qb .‘_2 (p2.q2)<[0.2.0.4]
N E SN0, Y \& 0305,
¥ Ea NP T [0.4.0.5]>
(p3.93)<[0.1.0.3 In N Ay A ' :
[0.4,0.5], E=EAS X py -
[0.5.0.6]= in L i 103
o 2 A0 _(op s =l ok
S - -L0.5) 5,
/_\“';\\5\'—; ¥ pads A : 26 v
O o8
o
- 5 <[0.1,0.3]. (P2.93)<[0.1,0.3].
<[0.2.0. =<[0.1,0. : =
Egjﬂll;][ﬂ 031, [{I[{:lll{lﬁ:li]?’], (p3.q1)<[0.1.0.3].  [0.4,0.3], [0.3,0.4]
[0.5.0.6]- [0.5.0.6] {gig;} 0506  [050.6]>
T ’ 5.0.6]=

FIGURE 9. Symmetric difference G1 ® Go

Using the same approach, the other conditions can also be evaluated.
Case 2. If po = qo =71,p1q1 € Qll,

(1, @ ig,)((p1,r)(q1, 7)) = maz{ity (p1q1), ik, (r)}

= maz{maxz{ip (p1),ip (@)}, ip, ()}

= maz{max{ip, (p1), ip,(r)}, maz{ip, (1), ip,(r)}}

= maz{(ip, @ ip,)(p1,7), (ip, & ip,)(q1,7)}

In the same way, the other conditions can also be verified.
Case 3. If pig1 ¢ Q) p2g2 € Qy,

(f5, ® f6,)(p1,p2)(q1, q2)) = maz{fp (p1), [p, (q1), f&, (P2a2) }
= max{fp (p1), [, (q1), max{fg, (p2), f5,(q2)}}

= maz{maz{fp (1), fp,(p2)}, maz{, fp (q1), [p,(a2)}},
=mazx{(fp ® fp,)(p1,p2), (fB, © [B,)(q1,q2)}

In the same way, the other conditions can also be verified.
Case 4. If pig1 € Q1,p2q2 & Q5,

(fo, ® f5,)((p1,p2) (@1, 42)) = maz{fg, (prar), fp,(p2), fp,(a2)}
= maz{maz{fp, (1), fp, (@)}, [, (p2), fp,(q2)}

= mazx{maz{fp (p1), [p,(p2)}, maz{fp (q1), f5,(q2)}}

= maz{(fp, @ fp,)(p1.p2), (fB, & fp,)(a1,q2)}

Similarly, the other conditions can also be verified.
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Definition 3.17. Let G; = (P, Q1) and Gy = (P, Q)2) be two SIVNGs. The degree for any
vertex (p1,p2) € (Py x Py) is,

(dp)GreG, (P15 p2) = Z((m,pz)(ql,qz))EQ;XQIQ (tlQl ® tlQQ)((plap2)(QI7QQ))

=3 g peanec, Mt (P1): 80, (0202)} + 32, 41t pomge MiNAtG, (P101), th, (P2)}
+ ZP1£I1§ZQI1 P202€Q), min{thl (p1), th1 (q1), ¢ 2 (P2g2) }

3 1@, paasgar, MG, (0101), th, (P2), 1, (42)}

(din)creG, (P1,p2) = Z((p1,p2)(q17q2))€Ql1><Q/2 (tél & t“2)((p1,p2)(q1, q2))

= 2 p—armaeq), TR (P1): 10, (P242)} + 32, et pamgy MG, (P101): 18, (P2)}
2@ peaeeq, MR (1), 15 (01), 1, (202) }

T2 a1€Q) poangq, MG, (101), th, (P2), 15, (42)}

(dit) G106 (P1592) = 22 (51 o) (a1,00)) €@ Q) (ify, ®ig,)((p1,12)(q1,92))

=3 —apaea, M0t {ip, (P1): i, (0202)} + 30, 4 e pamg Ma{ity, (P101). 5, (2)}
+ Zp1q1§£Q/1 D2q2€Q) max{ilpl (1), iljjl (@), ilc22 (P292)}

+ 3 1@, paasgar, Mar{iG, (P101). i, (p2), i, (2)}

(din) 610G (P1:P2) = 221y o) (a1,02))e@, x @), (01 D 1, ) (P15 12) (a1, ¢2))

= 2p—qrpeaneq), MATp (P1): 06, (D242)} + 22, 0 e pa—q M2, (P101), 08, (P2)}
20160 poaneq), M {ip, (01), 18, (01), 1), (P292) }

+ 2 e maeq, Moy, (P1a1), ik, (p2), ip, (¢2)}

(dp)crac: (p1,p2) = Z((pl’m)(qm))eqXQ'Q(fél @ f5,)((p1,p2) (a1, 92))
DD maz{ fp, (p1), fh, (P2a2)} + 2 prareQ, pa—as maz{ f§, (p1a1), b, (p2)}
+ 3 01¢Q, paasect, MAT{Sb, (1) f, (1), 15, (P2a2)}

+ 3 1@, maga, MaT{ G, (P101), fh, (P2), [, (22)}

(dfu)crocs (p1,p2) = Z((m,pz)(ql,qz))eQ/lXQ; (f51 @ fggg)((pla]%)(%, q2))

= 2 pi—avpase@, MU B (01), 16, (P242) Y + 22, 4 e pamae MG, (P101), [, (P2) }
+ 2 @ maseqy, M LUB (01), fB,(01), 16, (p2g2) }

2 e e, MG, (1), fp, (p2), 1, (42) }

Theorem 3.18. Let G; = (P1,Q1) and Gy = (P2, Q2) be two SIVNGs. If tlpl > tlQQ,t}‘,l >
-] D) : : l l l l -] ) -
tg?Q’Zpl = ZQQ’Z}% = ZéQ’fP1 = fQZ’f;él = féﬁz and tPQ =z th’tqlgz = tqél’ZPQ = ZQ1721]é2 <

iqél)f]lDQ < lel’f}% < fél’ then fOT every (plap2) € (Pl X P2)7
(d)G1®G2(p17p2) = q,(d)Gl(pl) + Sl(d)GQ(pQ)J where s’ :’ Pl ‘ _(d)G1<p1)and q/ :’ P2 ’

—(d)a,(p2)-

Proof. Consider,

(dit) oG, (P1,p2) = Z((pl,pz)(q17q2))€Q/1 X Q) (ZIQI D ilcg2 )((p1,p2) (41, 42))

= Zplqu P2q2EQ) maf{ilpl (p1), ilQ2 (p2g2)} + ZplqleQ’l P2=qo maﬂ?{ilQl (p1a1), Z'lpz, (p2)}
+ 3 010, paasect, M {ip, (1), i, (a1), iy, (P202)}
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* ZPUHGQ; P2028Q, max{ilQl (P190), ilPQ (p2), iiD2 (2)}
=4 (d})c, (p1) + 5 ()G, (p2)

In the same way, the other conditions can also be verified.

Definition 3.19. Let G; = (P1,Q1) and G2 = (P2, Q2) be two SIVNGs. The total degree for
any vertex (p1,p2) € (P, X Py) is,

(tdp) e (P1,92) = X (1 po)(ara))e@, <@, Loy @ 10, (P1:2) (41, @2)) + (¢, & thy,) (1, p2)
=3 g peapec, Mt (P1): 10, (0202)} + 32, 41t pamge MiNAtG, (P101), th, (P2)}

+ 3 1@, paaeqt, MR, (1), (1), 1, (P202)}

2 1@, paasgal, MG, (0101), th, (92), 1, (a2)} +min{thy, (p1), th, (p2)}

(tdi) G106 (P1:92) = 22 (1 po)(ar.a0))e@ x @), (£ © 10,)(P1,12) (01, 42)) + (Ep, © 1, ) (P1, p2)
= D p—armaeq), LR (P1): 10, (P242)} + 22, 0 e pamge MG, (P101), EE, (P2)}

+ ZP1£I1¢QI1 P202€Q), min{t}é’l (p1), tp, (q1), to, (P2g2)}

2 a1eQ pagq, MG, (1191),th, (p2), U8, (g2)} +min{lp, (1), th, (p2)}

(tdy) oG, (P1,p2) = Z((phpz)(qhqz))EQ;XQ; (ZlQl ® ilQQ)((pLPZ)((Zl,(ZQ)) + (llPl & ile)(php?)
=3 g panec, M0t {ip, (P1),i, (0202)} + 32, 41 et pamge M {iGy, (P101), i, (P2)}

+ 3 1@, paaseqt, M0 ip, (1) ip, (1), i, (P202)}

+ 3 a1, maagar, Mo {iG, (P101), i, (p2), i, (02)} +maz{il, (p1), i, (p2)}

(tdiw) a6 (P1P2) = D20y o) (1,020 2@ x @, 10y © 10,)((P1,P2) (a1, 42)) + (i, @ i, ) (1, p2)
= 2 p—qr e, MAT{p (P1): 06, (P242)} + 22, 0 e pamqe ™02, (P101), i1, (P2)}

+ Zp1q1§£Q/1 P202€Q) max{i}‘;l (1), ip, (@), 252 (P292)}

T2 pa1€Q) poangq, MG, (1101), 78, (p2), i, (42)} +maz{ip, (p1), i, (p2)}

(tdp)rec, (p1,p2) = Z((phpZ)(qth))eQ’le;(fégl @ f5,)((p1:p2) (a1, 2)) + (fp, © fp,)(P1,p2)
= p—a paea, M0 Fp (P1), £0,(0202)} + 32, 4 et o MG, (P100). £, (P2)}

+ 3 01¢Q, paasect, MAT{Sb, (1) [, (1), 16, (P2a2)}

+ 3 1@, paagat, MaT{fG, (0101). [, (P2). [, (a2)} +maz{fp, (p1). fp, (p2)}

(tdfu)Gr0G2 (P1502) = 22 (01 po)(ar.a0))e@, x@, (T @ 16,)((P1sp2) (a1, 02)) + (Fp, © f5,)(1,p2)
= 2 —aupeae@, MO B (01), 16, (P242)} + 22, 1 e e M TG, (P101), [, (P2) }

+ 2 @ maseqy, M LUB (p1), fB,(01), 1§, (p2g2) }

+ 2 e maeq, MG, (ma), fp,(p2), 5, (a2)} +maz{fp, (p1), fp, (p2)}

Theorem 3.20. Let G; = (P1,Q1) and Gy = (P2, Q2) be two SIVNGs. If tlpl > tlQQ,t}‘,l >
tl, i, < i, ih < it o < fo,, [h < f8, and thy > th th >t i < il i, <
i fhy S fh . f8, < f8,, then for every (p1,p2) € (P) x P)),

(tdp)cyocs (p1,p2) = ¢ (tdp)a, (p1) + 8 (tdp)ay(p2) — (¢ — Dtk (p1) — (8" — Dty (p2) —
maz{ty (p1),t, (p2)}

(tdi)Gra6,(P1:,p2) = ¢ (tdp)G, (p1) + §'(tde)a, (p2) — (¢ — Dtg, (p1) — (8" — Dtg, (p2) —
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maz{te, (p1),té, (p2)}
(tdi)cr0G,(P1,p2) = d(tda), (p1) + '(tda)c, (p2) — (¢ — Dig, () — (s = 1)ig,(p2) —

mm{lcl (p1), ZG2 (p2)}
(tdiv)crea, (P1,p2) = ¢'(tdiw)a, (p1) + 8'(tdiw)a,y(p2) — (¢ — 1)ig, (p1) — (8" — 1)ig, (p2) —
mm{zG (p1),1 GQ(pz)}
(tdsi)croa, (P1.p2) = ¢ (tdp)a, (p1) + §'(tdp)a, (p2) — (¢ — D f5, (p1) — (s — 1) fL, (p2) —

min{f, (p1), f&,(p2)}
(Hdy)cnace (prp2) = ¢'(tdp) (1) + 8/ (td ) (p2) = (6 = 1)f, (1) = (5" = 18, (p2) -
mind f&, (p1), fé&, (p2) }

Proof. Consider,

(tdfl)G1@G2 (p1,p2) = Z((pl,pQ)(ql,qg))GQllXQ;(fél @ fCZQQ)((plap2)(QIa q2)) + (f]lsl ® f]lDQ)(pl,pz)
=3 g peane, M, (1) [0, (0202)} + 30, 41 ot pamen MG, (P1010), [, (P2)}

* zmqﬁéQ'pmqaeQ’Q ma:c{fll)l (p1), ﬁ’l (1), fé?z (P242)}

2 e i, maz{fh, (pra1), b, (D2), [b,(02)} +max{fh (p1), fb, (p2)}

_ l l l

- Zm:qhqueQ;’ Q. (p2a2) + Zp1q1€62'1,102=qz fo, (i) + Zplqw?Qll,quzeQ'z Q. (P242)
20160 poag @, fo,p1ar) +maz{fp (1), fp, (p2)}

_ ! ! l

B Zm:th P202€Q%° fQ2 (P2g2) + Zplq1€Q/1 P2=q2 le (Pra1) + Z:quﬁ?Q/l P22€Q} sz (P242)
2 ot fo,(mrar) — min{fp, (1), fp, (p2)}

= ¢'(tdp)c, (p1) + 8/ (tdp)c, (p2) — (4" = 1) fG, (1) — (' = 1) f&, (p2) — min{ fg, (p1), &, (p2)}-
Similarly, the other conditions can also be proved.

Example 3.21. The symmetric difference G1 @ G2 of two SIVNGs G1 and G = (P2, Q2) is
represented in Figure and

<[0.3,0.4], <[0.3.0.4],
[0.3,0.5], [0.3.0.5],
[0.4,0.6]> [0.4,0.6]>
L — @ o
P1=10.4,0.5], P2<[0.3,0.4]. q1<[0.3.0.4], 2<[0.4,0.6],
[0.2,0.4], [0.3.0.5], [0.3,0.5], [0.2,0.4],
[0.4,0.6]> [0.4,0.6]> [0.4,0.6]> [0.3,0.5]>

FiGure 10. Strong Interval Valued Neutrosophic Graphs G; and G»

By direct calculations, du(p1,q1) = 0.3 + 0.3 = 0.6; dw(p1,q1) = 0.4+ 04 = 0.8;
di(p1,q1) = [0.6,0.8]; tdu(p1,q1) = 0.3+ 0.3+ 0.3 = 0.9; tdpu(p1,q1) = 04+ 0.4+ 0.4 = 1.2;
tdi(p1,q1) = [0.9,1.2].

By using theorem, s’ =| P | —(d)g,(p1) =2-1=1;¢ =[ P, | =(d)c,(p2) =2 -1 = 1;
dua(p1,q1) = 1(0.3) + 1(0.3) = 0.6; du(p1,q1) = 1(0.4) + 1(0.4) = 0.8; d¢(p1,91) = [0.6,0.8];
tdy(p1,q1) = 1(0.7) + 1(0.6) — 0(0.4) — 0(0.3) — maz{0.4,0.3} = 0.9; tdp (p1,q1) = 1(0.9) +
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(P1.91)<[0.3.0.4], <[0.3.0.4], (P1:92)<[0.4.0.5],
[0.3.0.5], [0.3,0.5], [0.2,0.4],
[0.4,0.6]= [0.4.0.6]= [0.4,0.6]=

(P2.92)<[0.3,0.4], <[0.3.0.4], (p2.q1)=[0.3.0.4],
[0.3.0.5], [0.3,0.5], [0.3.0.5],
[0.4,0.6]= [0.4.0.6]= [0.4,0.6]=

FIGURE 11. Symmetric difference G1 @ G»

1(0.8) — 0(0.5) — 0(0.4) — maz{0.5,0.4} = 1.2; tdy(p1, 1) = [0.9,1.2)].

Definition 3.22. The residue product G1 Go = (P1e Py, Q10Q2) of two SIVNGs G =

and Gy = (P, Q2) is defined as

(1) (th, o th,)(p1,p2) = maz{th, (1), th, (p2)},
(tp, ®tp,)(p1,p2) = maz{tp (p1),tp, (p2)},
(i, @i, ) (p1,p2) = min{il, (p1), i, (p2)},
(i, ®ip,)(p1,p2) = min{ip (p1), %, (p2)},
(b, ® Fb,)(P1,p2) = min{ fp, (p1), [p, ()},
(fB, °fp )(p1,p2) = min{ fp (1), [B,(p2)}-

(2) (th, *th,)((p1,p2)(q1,42)) = th, (P1q1),
(t, *tH,)((p1.p2)(q1,42)) = &), (P1q1),
(i, .ZQQ)((pl p2)(q1,G2)) = ZQ (p1a1),
(igy, *10,)((p1,p2)(q1, 2)) = iy, (Pran),
(lel 'fQ )((p1,p2)(q1,42)) = é (p1q1),
(18, * £5,)((p1,p2) (91, 42)) = f&, (m1q1), VP11 € @1, p2 # qo-

(P1, Q1)

Theorem 3.23. The residue product of two SIVNGs G1 and Go, need not be a SIVNG.

From example Figure [13] it is clear that ¢, and f values of the vertices and the edges

in G1 ® G2 do not satisfy the strong condition and hence it is an IVNG.

Example 3.24. Consider two SIVNGs G = (P1,Q1) and Go = (P»,Q2) as represented in

Figure Their residue product GG; ® G5 is represented in Figure

Theorem 3.25. Let Gy = (P1,Q1) and Gy = (P2, Q2) be two SIVNGSs. If tﬁ;l >
) g . ! 1 ! 1 .
tqjéQ,zpl < ZQQ,Z%,I < z”éh,fp1 < fQQ,f}él < féQ and tp, > th,t}é.Q > t}f?l,z 1

Q2
<igy i, <

th >

Gy fIlDQ < féh’ Ip, < f&, then the residue product of two SIVNGs G1 and G4 is a SIVNG.
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02<[0.3,05],
pe<[0.1,0.2], [ﬂ‘:’ﬂe]’
[0.2,0.3], 0205
_ [0.4.0.5]>
10z, 0203 T <[0.2.0.4], ~0.103),
D012}, <[0.1,0.2], [0.4,0.5], [0.4,03],
{3133}} 040,61 [0.3,0.5], [0.3.0.6]> [0.4.0.5]
405 : [0.4,0.6]>
<[0.1.02
[u[.:.u'. = l p3<[02,0.3], @=<[0.2.04], <[01,03], q,<[0.1,0.3],
0204} 03,05, 0.405),  [0.405]  [02.05],
; [0.4.0.6]= [0.3.0.6]= [0.4.0.6]= [0.4,0.5]=
pi<[0.1.0.2],
[0.2.0.4],
[0.2.0.5]>

FIGURE 12. Strong Interval Valued Neutrosophic Graphs G; and Gs

(Pr.aD<[0.2,04], (Pa.a)<[0.3.0.4], (Pr.a1}<[0.2,0.4], (P1.a1)<[0.2,0.4],
[0.2.0.4], [0.1.0.3], R 5 @ [0.2.0.3],
[0.2,0.5]~ ; 3.0, %

(P4:92)
<[0.3,0.5],
[02.0.3],
[0.2,0.5]>

L L AL o -
P193<[0.1,0.3], (P2.q3)<[0.3.0.4. % (P3.q3)<[0.2,0.3, Q¥ (PJ .q3)<[0.1.0.3],
[0.2,0.4], [0.1,0.3], & [0.2,0.5], [0.2,0.3],
[0.2,0.5]= [0.4,0.5]= [0.4,0.5]= [0.4,0.5]=

Residue Product G; . G,

FiGURE 13. Residue product G e G4

Proof. For pig1 € Q,p2 # ¢,

(th, *t )((pl,m)(fhaf&)) =th (n1q1), = mm{tpl (p1): thp, (@)}
= min{maz{tp, (p1), s, (p2)}, maz{th (q1), 5 (g2)}},

= min{(tp, o tp,)(p1,p2), (tp, *tp,)(a1,22)}- o

Example 3.26. Consider two SIVNGs G = (P1,Q1) and Go = (P»,Q2) as represented in
Figure [I4 Their residue product G @ G is represented in Figure [T5]

Definition 3.27. Let G; = (P1,Q1) and G2 = (P2, Q2) be two SIVNGs. The degree for any
vertex (p1,p2) € (P| x Py) is,

(dtl)G10G2 (p17p2) = z((pl,p2)(q1,q2))€Q/1><Q/2 (tlQl ® tlQQ)((pLPQ)(QI: QQ))

- Zp1q1€Q/17p2;£qz tlQl (Prg1) = (dé)Gl (1)

(dev)Grecs (P1,P2) = Z((p17p2)(q17q2))eQ’1XQ’2 (tggl ® t’éQ)((pl,pg)(ql, a2))

R. Keerthana, S. Venkatesh, R. Srikanth, On Certain Operations on Strong Interval Valued
Neutrosophic Graph with Application in the Cardiac Functioning of the Human Heart




Neutrosophic Sets and Systems, Vol. 60, 2023 ﬁ

ps<03.0.4],  9°002.03].
<[0.2,03), [0.3.0.4] {3 331}}
[0.3,0.4], [0.3.0.4]= .
[0.3,0.4]=
p1=(0.2.0.3]. =[0.2,0.3],
[0.2,0.3], [0.3.0.4],
[0.3.0.4]= [0.3.0.4]=
<[0.2,0.3],
[0.3.0.4],
[0.3.0.4]> py<[0.2,0.4], q2<[0.2,0.3],
[0.3,0.4], [0.3,0.4],
[0.3.0.4]= [0.2,0.3]=

FIGURE 14. Strong Interval Valued Neutrosophic Graphs G and Go

(p1.q1)<[0.2.0.3], (p2.q1)<[0.2.0.3], .
0.2.03]. I [0.3,0.4], (p3.q1)<[0.3.0.4],
[0.3,0.4]= 10.3 ”’“3f [0.3,0.4]= J0.3.0.4],

[0.3.0.4]=

(P3.q2)<[0.3.0.4],

[0.3,0.4],
(P1.92)<[0-2.0.3], (P2:q@2)<[0.3.0.3],  [0.2,0.3]>
[0.2,0.3], [0.3,0.4],
[0.2,0.3]= [0.2,0.3]=

FiGURE 15. Residue product G e Gy

= zplqng’pm?qu tq(:gl(plfh) = (d})c, (p1)

(dit)GreGy (P1,P2) = Z((P17p2)(q1,q2))€Q/1XQ/2 (ZlQl ° ilQQ)((p17p2)(Q1, q2))
= Zplqnglpr;ﬁqQ ilQl(plfh) = (dl')G1 (p1)

(di) 610G (P1:P2) = D2 (1) o) (a1,02)) €@, x @), (101 ® 10,) ((P152) (41, 42))
e s B (101) = ()65 (1)

(dfl)G1°G2 (p1,p2) = Z((pl,pz)(ql,qg))GQllXQ;(fClQl ° fégz)((plap2)(QI,QZ))
- ZpuneQ'l,pz#qz fé?l(pl(h) - (dlf)Gl(pl)

(dfv)Grecs (P1,p2) = Z((pl,m)(qlm))gqlx@;(f51 ° f52)((p1,p2)(ql, q2))
= 2 pane@, porta 101 (P101) = (df) G (p1)

Definition 3.28. Let G; = (P, Q1) and G2 = (P2, Q2) be two SIVNGs. The total degree for
any vertex (p1,p2) € (P} x Py) is,
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(td) 61062 (P13 P2) = 3 (11 o) (ar.a2)) e, x @, (Fr @ 1,) (1 12) (01, 02)) + (8, 9 85, ) (P, P2)
= qulGQ/l,pz;ﬁqz tlQl (maq1) + maw{t{Pl (p1); thg (p2)}

3t oy (P161) + th (p1) + th (p2) — min{, (1), ()

= (tdp)c, (p1) + thp, (p2) — min{th, (p1), th, (p2)

(i) 610G (P1P2) = D2 (1 o) (1,020 €@, x @), (£ @ 10, ((P1,P2) (a1, 42)) + (8, @ T, ) (D1, p2)
Y 1 s oy (p161) + maz {8, (). thy ()}

3 oy (P161) + £, (p1) + £, (p2) — min {8, (1), (b))

= (td) e, (1) + th, (p2) — min{t}h (p1), th, (p2)

(tdi1)Grecs (P15 p2) = Z((m,pz)(qhqz))GQ/lXle (ZlQl ® ié22)((plap2)((.71a 42)) + (ZlPl ¢ ilIDQ)(plap2)
S ncQ paay s (P101) + i (1), i 2

= 3 i@ patas 10y (P101) + i (1) + iy, (P2) — maz{ily (1), i, (p2)}

= (td;)a, (p1) + i, (p2) — max{il, (p1), i, (p2)

(tdin)GreGa (P1,2) = Z((p17p2)(q17q2))€Q’1XQ’2 (Zggl ® %2)((1?1,292)(6117(12)) + (1731 ° iLILDQ)(ppr)
= D@, ot 1 (P1@1) +min{ip, (pr), i, (p2)}

= 2160, partan ' (P1@1) + 0, (p1) + i, (p2) — maw{ip, (p1), ip, (p2)}

= (tdiv)c, (1) + i, (p2) — maz{ip, (p1),ip, (p2)

(tdfl)Gsz (p1,p2) = Z((phm)(ql,qg))e@’lXQ;(fégl ® fé22)((p17p2)(Q17 q2)) + (levl ® lea2)(l)1ap2)
= 2 €@, patas fo,(p1ar) + min{fp, (p1), fp, (p2)}

0! o (9182) + £ (01) + Py (p2) — maz{ £, (p1). T, ()}

= (tdp)G, (p1) + fh, (p2) — maz{f} (p1), fh,(p2)

(tdfu)Grec, (P1,P2) = Z((Pl,pQ)(Ql,QZ))GQ;XQ; (f(,%l * fc,%Q)((Pl,PQ)(QL a)) + (f}gl ® f]gz)(ph.m)
= quleQ;,p#qZ f6, (prar) + min{fp, (p1), fp,(p2)}

= 2 pia1€Q) poran T (P101) £ f, (p1) + [B,(p2) — maz{fp, (p1), fB,(p2)}

= (tdgu)c, (p1) + [B,(p2) — maz{f§ (p1), fB,(p2)

From Figure d¢(p1,q2) and tds(p1, g2) for the vertex (p1,q2) are calculated below.
dp(p1, @) = 0.3+ 0.3 = 0.6, dyu(pr, go) = 0.4+ 0.4 = 0.8, dy(p1,2) = [0.6,0.8]
tdgu(pr,g2) = 0.9+ 0.2 — 0.3 = 0.8, tdsu(p1, g2) = 1.2+ 0.3 — 0.4 = L1, tds(p1, q2) = [0.8, 1.1].

4. Application
4.1. The Cardiac Cycle of a Human Heart

The right atrium (RA) of the heart receives deoxygenated blood from both Superior Vena
Cava (SVC) and Inferior Vena Cava (IVC). Then, the tricuspid valve (TVL) opens due to the
contraction of the right atrium and the deoxygenated blood has directed to the right ventricle
(RV). After the ventricular filling, the tricuspid valve (TVL) shuts. Now, the right ventricle
(RV) gets contracted, which causes the opening of the pulmonary valve (PVL) and the blood
is transferred to the pulmonary artery (PA) and then to the lungs for oxygenation. After the
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blood gets oxygenated, it enters the left atrium (LA) via pulmonary veins (PV). Now, the
left atrium gets contracted and the mitral valve (MVL) opens for transferring the oxygenated
blood to the left ventricle. After passing out the blood to the left ventricle (LV), the mitral
valve (MVL) closes. Now, the left ventricle contracts for ejecting the blood to the aorta (A)
through the aortic valve (AVL). From there, the oxygenated blood passes to all the parts
of the human body. The blood flow through the human heart has presented in Figure

Biologically during the period of cardiac cycle, it is observed that

Normal Heart

Superior
Vena Cava

to Lungs

to Lungs o Pulmonary

e Veins from
Pulmonary = Lungs

Mitral
Valve

Atrial
Septum

Tricuspid
Valve

Aortic
Valve

Ventricular

Inferior Septum

Vena Cava

Pulmonary Valve

FIGURE 16. The Human Heart

(1) Left ventricular systole and diastole is the most effective phase on the whole.

(2) The Left side of the human heart has comparatively higher pressure than on the right
side. i.e., Left Atrial (Ventricular) Systole has higher pressure than Right Atrial (Ven-
tricular) Systole and vice versa.

(3) Systolic (ventricular) pressure is higher than diastolic (ventricular) pressure.

The flowchart given in Figure [L7]illustrates the method for evaluating the cardiac functioning

of the human heart.

4.2. The Wright Table - Study of blood flow along with their blood pressure values

Wright’s table , a teaching tool to learn and understand the cardiac cycle, has elaborated
the path of blood flow with the blood pressure changes. The Wright table explains how the
pressures and flows of each compartment fluctuate over time, as well as how the heart functions
as a pump, first filling and then emptying the ventricles and thereby transferring blood from
low-pressure venous to high-pressure arterial compartments. The Wright’s table provided in
Table [T] and Table [2] elaborates the path of blood flow along with the blood pressure changes
during AS/VD and AD/VS phase of the human heart observed for a healthy adult of age
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Conversion of BP values to IVN
values

onstruction of incidence matrices for the
four phases of the human heart

Crispifying each entry in incidence
matrix using score function

|

Calculating the numerical
output for each phase from
the score matrix

omparison and
Decisionmaking

End

F1GURE 17. Flowchart for evaluating Cardiac Functioning of the Human Heart

above 35 years without any cardiac malfunction along with their corresponding hemodynamic

parameters.

TABLE 1. The Wright’s table representation of AS/VD and AD/VS phase
(Right Side)

SVC and RA TVL RV PVL PA

IvC
AS/VD 2-5 — 46 — 12.6-29.3 —» 0-8 (closed valve) 0 (closed valve) 8-15 —»
AD/VS 2-5 — 0 (closed valve) 0 (closed valve) 15-25 —» 15-25 — 15-25 —

4.3. Conversion of Blood pressure values into Interval Valued Neutrosophic values (IVN-

values)

As the rate of blood pressure changes from time to time under a certain interval and it is
highly impracticable for getting the same blood pressure value in each prediction, a minute

level of indeterminacy and falsity have been observed.
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TABLE 2. The Wright’s table representation of AS/VD and AD/VS phase (Left

Side)

PV LA MVL LV AVL A
AS/VD 2-5 — 78 — 0 — 0-12 (closed valve) 0 (closed valve) 60-90 —
AD/VS 2-5 — 0  (closed valve) 0 (closed valve) 100-140 — 812 — 100-140 —

The blood pressure values given in Table [I| and Table [2] are converted to fit under an IVN-
environment. The truth-membership values are exactly the blood pressure values taken for
consideration and the indeterminacy-membership values and the falsity-membership values are
estimated accordingly.

Since the IVN-values lie in the range of [0, 1], the blood pressure values (mm/Hg) given in Ta-
ble [1] and Table [2] are re-scaled using bar conversion. For instance, the blood pressure value in
Superior Vena Cava is 2-5 mm/Hg and its bar conversion becomes [0.00266645,0.00666612] ~
[0.003,0.007].

Thus with reference to the bar conversion, Table [3| shows the re-scaled Interval Valued Neu-

trosophic blood pressure values observed in Table [TI] and Table

TABLE 3. Rescaled IVN Blood Pressure Values

AS/VD AD/VS
SVC & IVC < [0.003,0.007], [0.001, 0.0015], [0.001,0.002] > < [0.003,0.007], [0.001,0.0015], [0.001,0.002] >
RA < [0.005,0.008], [0.001, 0.003], [0.001,0.002] > < [0,0],[0.001,0.001], [0.001,0.001] >
TVL < [0.017,0.04], [0.001,0.002], [0.001,0.002] > < [0,0],[0,0],[0,0] >
RV < [0,0.01],0.001,0.002], [0.002, 0.004] > < [0.02,0.03], [0.001, 0.002], [0.001, 0.0015] >
PVL < [0,0],[0,0],[0,0] > < [0.02,0.03],[0.001, 0.002], [0.001, 0.002] >
PA < [0.01,0.02], [0.002,0.004], [0.001,0.003] > < [0.02,0.03],[0.002,0.003], [0.001,0.003] >
PV < [0.003,0.007], [0.001,0.0015], [0.001,0.002] > < [0.003,0.007], [0.001,0.0015], [0.001,0.002] >
LA < [0.009,0.01],0.001,0.002], [0.001,0.002] > < [0,0],[0.001,0.001], [0.001,0.001] >
MVL < [0,0],[0.001,0.001], [0.001,0.001] > < [0,0],[0,0],[0,0] >
LV < [0,0.016], [0.001,0.0012], [0.001,0.0015] > < [0.13,0.19], [0.002,0.003], [0.001,0.002] >
AVL < [0,0],[0,0],[0,0] > < [0.01,0.016], [0.0012, 0.0016], [0.001, 0.0015] >
A < [0.08,0.12], [0.005,0.007], [0.003,0.005] > < [0.13,0.19], [0.003,0.005], [0.002, 0.004] >
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4.4. Modeling of Human Heart as SIVN - Digraph

The blood flow through right and left heart as given in Figure [16|is represented as a digraph
G = (P, 6) with the vertex set X = {p1,p2,ps,...,p16} along with the directed edges in

Figure [I§|

SVC (pq) PA (p7) A (p1g)

PV (pg)
8 LA (p43) PV (p10)
PVipgl @ ®PVip11)
PVL (pg)
MVL (pq3)
TVL (p4)
IVC (p32) RV (ps) LV (p14)

F1GURE 18. The Human Heart digraph

4.5. SIVNDG representation of the cardiac cycle functioning during AS/VD and AD/VS
Phases

During the cardiac cycle functioning, both the right and the left atria narrow down at
first, pumping blood to the right ventricle and the left ventricle, respectively. During this
period, both the right and the left atria are in systolic phase and the corresponding right
and the left ventricles are in diastolic phase. In response to electrical impulses the right and
left ventricles contract instantly, allowing blood to flow to the lungs and to the rest of the
body.At this time, the atria remain in diastolic phase and the ventricles are in systolic phase
and their corresponding strong interval-valued neutrosophic values during this AS/VD and
AD/VS phases are represented in Figure |19 and Figure 20| with reference to Table

During AS/VD phase, the vertices and the edges along with their membership functions for
the directed subgraphs Hy = (PH17Q—I{1>) and Hy = (Pp,, Q—H;) for X = {p1,p2,p3, ..., D16} are
defined by
Py, = {p1 < [0.003,0.007],[0.001, 0.0015], [0.001,0.002] >, p2 < [0.003,0.007],

[0.001, 0.0015], [0.001, 0.002] >, p3 < [0.005,0.008], [0.001, 0.003], [0.001,
0.002] >, p4 < [0.017,0.04], [0.001, 0.002], [0.001, 0.002] >, p5 < [0,0.01],
[0.001,0.002], [0.002, 0.004] >, ps < [0, 0], [0, 0], [0, 0] >, p7 < [0.01,0.02],
[0.002, 0.004], [0.001, 0.003] >}.

Q—Hl) = {}Tpg> < [0.003,0.007], [0.001, 0.003], [0.001, 0.002] >,

Daph < [0.003,0.007], [0.001, 0.003], [0.001, 0.002] >, papi < [0.005, 0.008],
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[0.001,0.003], [0.001, 0.002] >, pap? < [0,0.01],[0.001,0.002], [0.002, 0.004] >
pspe < [0,0],[0.001,0.002], [0.002, 0.004] >, peps < [0, 0], [0.002, 0.004],
(0.001,0.003] >}.

', = {ps < [0.003,0.007], [0.001,0.0015], [0.001, 0.002] >
po < [0.003,0.007], [0.001, 0.0015], [0.001, 0.002] >, p1o < [0.003,0.007],
[0.001,0.0015],[0.001,0.002] >, p11 < [0.003,0.007], [0.001, 0.0015],
0.001,0.002] >, p12 < [0.009,0.01],[0.001, 0.002], [0.001, 0.002] >, p15 < [0, 0],
[0.001,0.001],[0.001,0.001] >,pi4 < [0,0.016],[0.001,0.0012],[0.001,0.0015] >,p15 <
[0,0],[0,0],[0,0] >, ps < [0.08,0.12], [0.005,0.007], [0.003,0.005] >}.

1, = {Pap13 < [0.003,0.007],[0.001,0.002], [0.001, 0.002] >
Popis < [0.003,0.007], [0.001, 0.002], [0.001, 0.002] >
Propis < [0.003,0.007],[0.001,0.002], [0.001, 0.002] >

pLipis < [0.003,0.007], [0.001,0.002], [0.001, 0.002] >
pr2p1s < [0,0],0.001,0.002], [0.001, 0.002] >
Pp1apis < [0,0],[0.001,0.0012], [0.001, 0.0015] >
puapit < [0,0],[0.001,0.0012], [0.001, 0.0015] >
P1spi6 < [0,0],[0.005,0.007], [0.003,0.005] >}.
mme g, bome  Haim simoio”

[
<[0,0], ‘F P42<[0.009,0.01],

2
s <[0.003,0.007),
[0.002,0.004], S

Q8 [0.001,p, 002],

2<[0.003,0.007],

[0.001,0.0015], [0.001,0, 002]> [0.001,0.003]> [0.001.0.002> af:qéqoo
[0.001,0.002]> . ; %} >
<[n 003,0.007],{0.001,0.0021,[0.001,0.002]> ro{ 003.0. 99,
Ps<[0.003,0.007], > 901,0. gy 0 001 0003

[0.001,0.0015],

[0.001,0.002]= P2<[0.005,0.008],

[0.001,0.003],
[0.001,0.002]

[0.005,0.007],
[0.003,0.005]> P14<[0.003,0.007],
[0.001,0.0015],

[0.001,0.002]>

Pe=<[0,0],
[0,01,[0,01>

e 1
05,903
070,29, P1a<[0,0],
’q%f?a [0.001,0.001],
i [0.001,0.001]>
D
p+<[0.017,0.04],
- [0.001,0.002], f ,
2<[0.003,0.007),  [0.001,0.002]> 0.09-1%.007 o
[0.001,0.0015], o 7.0.097g5-0012]
[0.001,0.002]> Qo\\ S
P Q‘ o
e P14<[0,0.016],
o p5<[0,0.01], [0.001,0.0012],
[0.001,0.002], [0.001,0.0015]>

[0.002,0.004]>

FI1GURrE 19. SIVN Digraph G = H; U Hy during AS/ VD Phase

During AD / VS phase, the vertices and the edges along with their membership functions for
the directed subgraphs Hs = (P, Q—H; ) and Hy = (Pp,, @) ) on X are defined by,

Py, = {p1 < [0.003,0.007],[0.001, 0.0015], [0.001,0.002] >, p2 < [0.003,0.007],
[0.001,0.0015],[0.001, 0.002] >, ps < [0, 0], [0.001, 0.001], [0.001,0.001] >

pa < [0,0],]0,0],[0,0] >, ps < [0.02,0.03],[0.001,0.002], [0.001, 0.0015] >
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pe < [0.02,0.03],[0.001,0.002], [0.001,0.002]
0.001,0.003] >}.

>, pr < [0.02,0.03], [0.002, 0.003],

Q—H3> = {p1p5 < [0,0],[0.001,0.0015], [0.001, 0.002] >, pap3 < [0, 0],

0.001,0.0015], [0.001, 0.002] >, p3p4 < [0, 0],

papi < [0,0],[0.001,0.002], [0.001,0.0015] >,

[0.001,0.001], [0.001, 0.001] >,
Ppé < [0.02,0.03], [0.001,

0.002], [0.001,0.002] >, pep% < [0.02,0.03], [0.002, 0.003], [0.001,0.003] >1}.
Py, = {ps < [0.003,0.007],0.001,0.0015], [0.001, 0.002] >, py < [0.003,

0.007], [0.001,0.0015], [0.001, 0.002] >, p1o <

[0.003,0.007], [0.001, 0.0015],

[0.001,0.002] >, p1; < [0.003,0.007],[0.001,0.0015], [0.001, 0.002] >,

P12 < [0,0],[0.001, 0.001], [0.001,0.001] >, p;

3 < [an]v [070}7 [070] >,

pra < [0.13,0.19],[0.002, 0.003], [0.001,0.002] >, p15 < [0.01,0.016], [0.0012,
0.0016],[0.001,0.0015] >, p1 < [0.13,0.19], [0.003, 0.005], [0.002, 0.004] >}.

S
Qu, = {psp15 < [0,0],[0.001,0.0015], [0.001,

0.001,0.0015], [0.001,0.002] >, props <

0002] >, pop12 < [an]a
[0, 0], [0.001, 0.0015], [0.001, 0.002]

[0,0], [0.001,0.0015], [0.001,0.002] >, prap1s < [0,0], [0.001,0.001],

[0.001,0.001] >, prspi4 < [0,0],[0.002, 0.003]

,[0.001,0.002] >, p1ap15 < [0.01,

0.016], [0.002, 0.003], [0.001,0.002] >, prsp1é < [0.01,0.016], [0.003,0.005],

[0.002,0.004] >}.

p,<[0.003,0.007],
[0.001,0.0015],
[0.001,0.002]> o

p7<[0.02,0.03],
[0.002,0.003],
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Io.am,nlnoz;}
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FIGURE 20. SIVN Digraph G = H3 U H4 during AD/ VS Phase

4.6. Matriz form of SIVNDG during AS/VD and AD/VS phase

>, P11P12

<

The strong Interval Valued Neutrosophic directed subgraphs f—fl(l = 1,2,3,4) during AS/

VD and AD/ VS Phase are represented by the following incident matrices mg = (]_)Z—ﬁ;) where
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i,j=1,2,..,16 and [ = 1,2,3,4.

< [0.003,0.007], [0.001,0.0015], [0.001,0.002] >,  i=1,2,j =3
< [0.005, 0.008], [0.001,0.003], [0.001,0.002] >,  i=3,j =4
] < [0,0.01], [0.001,0.002], [0.002, 0.004] >, i=4,j=5
" < 10,0], 0.001,0.002], [0.002, 0.004] >, i=57=6
< [0,0],[0.002, 0.004], [0.001, 0.003] >, i=6,j="T
< [0,0],[0,0], [1,1] > otherwise
< [0.003,0.007],[0.001,0.002], [0.001,0.002] >, i =8,9,10,11,j =12
< [0,0],[0.001,0.002], [0.001, 0.002] >, i=12,j=13
] < 0,0, [0.001,0.0012], [0.001, 0.0015] >, i=13,j = 14
" 7 < 10,01, 0.001, 00012, [0.001, 0.0015] >, i=14,j = 15
< [0, 0], [0.005,0.007], [0.003, 0.005] >, i=15,j =16
< [0,0],[0,0],[1,1] > otherwise
< [0,0], [0.001, 0.0015], [0.001, 0.002] >, i=1,2,j=3
< [0,0], [0.001,0.001], [0.001,0.001] >, i=3,j=4
| < 10,0, [0.001,0.002], [0.001,0.0015] >, i=4,j=5
"7 < 10.02,0.03], [0.001,0.002], [0.001,0.002 >, i=5.j =6
< [0.02,0.03], [0.002,0.003], [0.001,0.003] >, i=6,j=7
< [0,0],[0,0],[1,1] > otherwise
(< [0,0], [0.001,0.0015], [0.001, 0.002] >, i =8,9,10,11,j = 12
< [0,0],[0.001,0.001], [0.001, 0.001] >, i=12,j =13
] < [0,0],10.002,0.003], [0.001,0.002] >, i=13,j = 14
"HT ) 10.01,0.016], [0.002,0.003], [0.001,0.002] >, i = 14, = 15
< [0.01,0.016], [0.003,0.005], [0.002,0.004] >, i =15,j = 16
< [0,0],10,0],[1,1] > otherwise

For any given Strong Interval Valued Neutrosophic Number ap = ([th, t%], [i%, %],

[fL, f4]) with the score function [23]

S(ap) = <2+(tiv+t§§)—2(ii,+i%,)—(f}>+f1%)> )

In order to obtain the crisp values from the corresponding SIVN values from the above incidence

matrices ﬁl(l = 1,2,3,4), the score function is used. The score values of each entry of the

corresponding incidence matrices ﬁ; (I=1,2,3,4) are consolidated in Table @
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TABLE 4. Score matrix for AS/VD on the Right side of the heart

D1 D2 D3 2! D5 D6 p7 RowTotal
p1 0.0 0.0 0.49975 0.0 0.0 0.0 0.0 0.49975
ps 0.0 0.0 0.49975 0.0 0.0 0.0 0.0 0.49975
ps 0.0 0.0 0.0 0.5005 0.0 0.0 0.0 0.5005
ps 0.0 0.0 0.0 0.0 0.4995 0.0 0.0 0.4995
ps 0.0 0.0 0.0 0.0 0.0 0.497 0.0 0.497
pe 0.0 0.0 0.0 0.0 0.0 0.0 0.496 0.496
pr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 2.9925

TABLE 5. Score matrix for AD/VS on the Right side of the heart

D1 D2 D3 2! D5 D6 p7 RowTotal
p1 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498
ps 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498
ps 0.0 0.0 0.0 0.4985 0.0 0.0 0.0 0.4985
ps 0.0 0.0 0.0 0.0 0.497875 0.0 0.0 0.497875
ps 0.0 0.0 0.0 0.0 0.0 0.51025 0.0 0.51025
pe 0.0 0.0 0.0 0.0 0.0 0.0 0.509 0.509
p7r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 3.011625

TABLE 6. Score matrix for AS/VD on the Left side of the heart

Ps P9 Plo P11 P12 P13 P14 P15 D16 RowTotal
ps 0.0 0.0 0.0 0.0 0.50025 0.0 0.0 0.0 0.0 0.50025
po 0.0 0.0 0.0 0.0 0.50025 0.0 0.0 0.0 0.0 0.50025
pio 0.0 0.0 0.0 0.0 0.50025 0.0 0.0 0.0 0.0 0.50025
p11 0.0 0.0 0.0 0.0 0.50025 0.0 0.0 0.0 0.0 0.50025
pi2 0.0 0.0 0.0 0.0 0.0 0.49775 0.0 0.0 0.0 0.49775
pi3 0.0 0.0 0.0 0.0 0.0 0.0 0.498275 0.0 0.0 0.498275
pia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.498275 0.0 0.498275
pi5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.492 0.492
pis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 3.9873

5. Sensitivity Analysis and Comparative Study

The Sensitivity Analysis focuses on the uncertainty analysis of a mathematical model or a
system. In decision making problems, it helps to determine the significance of each criterion
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TABLE 7. Score matrix for AD/VS on the Left side of the heart

P8 P9 Pilo P11 P12 D13 D14 D15 D16 RowTotal
ps 0.0 0.0 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498
p9 0.0 0.0 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498
po 0.0 0.0 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498
pi1 0.0 0.0 0.0 0.0 0.498 0.0 0.0 0.0 0.0 0.498
pi2 0.0 0.0 0.0 0.0 0.0 0.4985 0.0 0.0 0.0 0.4985
pi3 0.0 0.0 0.0 0.0 0.0 0.0 0.49675 0.0 0.0 0.49675
pi4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.50325 0.0 0.50325
pis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.501 0.501
pie 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 3.9915

used. Since both SVC and IVC push the deoxygenated blood to the RA with high pressure,
the RA remains in Systolic phase at this time. Then the deoxygenated blood passes to the
RV which remains in diastolic phase. Table [4] represents the crisp value that depicts the flow
of deoxygenated blood during AS/VD phase on the Right side of the human heart. After the
ventricular filling, the deoxygenated blood is transferred to PA. During this time, the RV stays
in Systolic phase and RA remains in Diastolic phase. Table [5] gives the numerical values of the
blood flow of the human heart during AD/VS phase on the Right side. Then, the oxygenated
blood passes to LA and then to the LV. At this time, the LA is in Systolic phase and the
corresponding LV is in Diastolic phase. Table [6] gives the values of the blood flow during
AS/VD phase on the Left side of the human heart. Finally, the LV pushes out the blood to
the Aorta and simultaneously the LV is in Systolic phase whereas the LA is in Diastolic phase.
Table (7] illustrates the values of the blood flow during AD/VS phase on the Left side of the
human heart. Now, by comparing the score values in Table [4 Table [5| Table [6] and Table
the most crucial phase during the cardiac cycle is evaluated. From the cumulative numerical
values of the score matrices for the AS/VD and AD/VS phases on the Right and the Left side
of the human heart, the sensitivity analysis is tabulated in Table

Comparatively, from Table 4] Table |5[ Table @ and Table [7} the AS/VD phase on the Left
side of the human heart is highly significant phase.

6. Results

It is evident that AS/VD phase on the Left side of the human heart is the most crucial
phase. Also, it is observed that,
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TABLE 8. Sensitivity Analysis

Phases in the Human Heart =~ Row Total Ordering
AD/VS Phase(Left Side) 3.9915 1
AS/VD Phase (Left Side) 3.9873
AD/VS Phase (Right Side) 3.011625
AS/VD Phase (Right Side) 2.9925

- W N

(1) Atrial Systole / Ventricular Diastole on the left-hand side of the human heart (3.9873)
has comparatively higher pressure than Atrial Systole / Ventricular Diastole on the
right-hand side of the human heart (2.9925).

(2) Atrial Diastole / Ventricular Systole on the left-hand side of the human heart (3.9915)
has comparatively higher pressure than Atrial Diastole / Ventricular Systole on the

right-hand side of the human heart (3.011625).

7. Discussion
From Table[§] it is clear that

(1) Ventricular Systole and Diastole on the Left side of the human heart is the most
significant process as compared to the Right side.

(2) Systolic ventricular phase is comparatively greater than diastolic ventricular phase.

The above analysis are analogous to the cardiac functioning of a normal and healthy individual.

8. Need, Limitation and Impact

(1) Since the blood flow is uni-directional and the blood pressure values fluctuates within
certain range, it is necessary to depict the blood flow under a directed interval valued
neutrosophic environment. Also, the blood usually flows from high to low pressure,
in order to maintain the optimal level between any two compartments of the human
heart, we model the cardiac functioning of the human heart as SIVNDG.

(2) The score function helps to make the deneutrosophication of SIVN values to a crisp
value.

(3) Modelling the cardiac cycle of the human heart as SIVNDG helps to evaluate the blood
flow in each phase effectively.

(4) The blood pressure is dynamic in nature as it changes while sleeping or doing exercise
or a rest etc. The study of blood flow under these circumstances can be studied by

our proposed model only if the necessary blood pressure values available.
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9. Conclusions

For any two SIVNGs, it is shown that G1xGe, G1 | G2, G1®G, and GG, is again a SIVNG.

By modeling the cardiac functioning of the human heart, it is observed that the cardiac cycle is

fit under the SIVNDG since the blood flow is unidirectional and the hemodynamic parameters

show a varying pattern. Furthermore, the indeterminacy observed in the interval of blood

pressure values is limited within and not more or less that range.With the observation of score

function, we found that our result is identical to the conventional biological approach. Hence,

evaluating the cardiac functioning of the heart by modeling as SIVNDG is the most reasonable

choice.
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