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1. Introduction

Smarandache [I4] defined the neutrosophic set on three component neutrosophic sets (T-
Truth, F-Falsehood, I-Indeterminacy). Lellis Thivagar et al. [I1] was the first given the geo-
metric existence of N topology and in his paper [I0] introduced the notion of N,,-open (closed)
sets and NV, continuous in N-neutrosophic topological spaces. The concept of N-neutrosophic
crisp topological spaces from neutrosophic crisp topological spaces was first explored and in-
vestigated by Al-Hamido [0]. As a generalization of closed sets, e-closed sets were introduced
and studied by Ekici [@-9]. In 2020, Vadivel and Sundar introduced the concept of Ny, 7-

open [I5], Ny, B-open [I6] and N, d-open sets [I8] and their continuous functions [I7,20, 28|
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and open mappings |19, 21,22]. The new N, open sets called N,. e-open sets and its con-
tinuous functions are introduced in N, ts by Vadivel et al. [23-27]. Recently, Das et al. [2-6]
introduced b-open sets in different types of neutrosophic topological spaces. In this paper, N,.e
open mapping, N,.e closed mapping, N,.e homeomorphism and N,.e-C homeomorphism are

introduced and some results in N,.ts.

2. Preliminaries

Definition 2.1. [I3] Let X be a non-empty set. Then F' is called a neutrosophic crisp set
(in short, nes) in X if F' has the form F' = (Fyi, Foe, Fo3), where Fy, Fyo, and Fys are subsets
of X, then neutrosophic crisp set of types
(1) Fo1 N Fog = Fo2 N Fog = Fo3 N For = ¢
(ii) Fo1 N Fop = Foo N Foz = Foz N Fyr = ¢ and Fo1 U Fyo U Fog = X
(i) Fo1 N Foe N Foz = ¢ and Fy1 U Fyo U Fpz = X

Definition 2.2. [13] Let F = (Fp1, Fo2, Fo3), G = (Go1, Goz2, Go3) € nes(X). Then
(i) ¢n = (0,0, X),
(i) X, = (X, X, 6).
(iii) F C G, if Fo1 € Go1, Fo2 € Goz and Fyz O Gos.
(iv) F=G,if FCGand FCH
(v) F© = (Fos, Iy, For)
(Vi) F NG = (Fo1 N Gor, Foa N Goa, Foz U Gos)
(vil) FUG = (Fo1 UGor, Fo2 U Goz, Fos N Gos).

Definition 2.3. [I2] A neutrosophic crisp topology (briefly, nct) on a non-empty set X is a
family I' of nc subsets of X satisfying the following axioms
(i) ¢n, X, €T
( ) PNk el'VEF & el
(iii) UFb el forany {F,:be K} CT.
(

Then X ,I') is a neutrosophic crisp topological space (briefly, ncts) in X. The I" elements are
called neutrosophic crisp open sets (briefly, ncos) in X and its complement is called neutro-

sophic crisp closed set (briefly, nccs).

Definition 2.4. [0] Let X be a non-empty set. Then ,,. V1, ,¥s, -+, nc VN are N-arbitrary
crisp topologies defined on X and the collection N, .V = {B C X : B = ( L]\j Fy) U ( (]\]7 L),
Fy, Ly, € nc¥y} is called Ny-topology on X if the axioms are satisfied: = =

(1) ¢n, Xpn € Np V.

(if) pl Ki € Npo¥ ¥ {K3, 122, € N, 0.
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n
(iii) ) Ki € NpeW V {Kp}7_, € N V.
k=1

Then (X, N,,.V) is called a N,.-topological space (briefly, N, ts) on X. The N,V elements
are called Npc.-open sets (IN,c0s) on X and its complement is called Ny-closed sets (Nyccs)

on X. The elements of X are known as Ny.-sets (Ny.s) on X.

Definition 2.5. [0I,08] Let (X, N,.¥) be Ny.ts on X and F be a N,.s on X, then the Ny,
interior of F' (briefly, Nycint(F')), Ny closure of F' (briefly, Ny.cl(F)), Np.0 interior of F
(briefly, Npcdint(F')) and Ny closure of F' (briefly, Ny.dcl(F')) are defined as

Nypeint(F) =U{C: C C F & Cis a Nyco0s in X}

Npec(F)=n{D:F CD & Disa Npcsin X}
Npedint(F) =U{C : C C F & Cis a Nycros in X}

Npedcd(F)=n{D:F C D & D is a Npcres in X}.

Definition 2.6. [0,05,08,06,08] Let (X, N,,.I[') be any N, ts. Let F be a Nycs in (X, N, V).
Then F is said to be a
(i) Npe-regular (resp. Npe-semi, Npe-pre, Npea & Np.-f3) open set (briefly, N,.ros
(resp.  NpeSos, NpPos, Npcaos & Npcfos)) if F' = Nyeint(Npecl(F)) (resp.
F C Npccl(Npcint(F)), F C Npcint(Npccl(F)), F C Npcint(Npecl(Npcint(F))) &
F C Nyccl(Nypeint(Npecl(F)))).
(i1) Npeo (resp. Nypco-pre, Npcd-semi & Nyce) open set (briefly, Nycdos (resp. Nyp.0Pos,
NpedSos & Npceos)) if F = Npdint(F) (resp. F C Npeint(Npdcl(F)), F C
Nyl (Npedint(F)) & F C Nypecl (Npedint(F)) U Npcint(Npcdcl(F))).

Definition 2.7. [I0,09,21,22,27] Let (X1, N,.V) and (X2, Np,.7) be any two Ny, ts’s. A map
¢ (X1, NpeW) — (Xa, Nyper) is said to be
(i) Npe (resp. Npea, Npe semi, Nye pre, NpeY, NpefS, Nped, Nped semi & Npo0 pre)-
open mapping (briefly, N,.O (resp. Np,.aO, NSO, N, PO, NpeyO, NpefO, Ny 6O,
NpedSO & N,,.0PO) if the inverse image of every Np.0s in (X1, N,VU) is a Nycaos
(resp. NpeSo0s, NucPos, Npevos, NyueS0s, Npcdos, Npc0Sos & NpdPos) in (Xo, NpeT).
(i1) Npe (resp. Npcar, Nype semi, Nye pre, NueY, NpefSy Nped, Nped semi & Npd pre)-
closed mapping (briefly, N,,.C (resp. Np.aC, NueSC, NpePC, NpeyC,y NypeSC, NypdC,
NpedSC & N, dPC)) if the inverse image of every Ny.cs in (X1, N, VU) is a Nycacs
(resp. NpeScs, NpcPes, Npeyes, Npefes, Npcoes, NpedScs & NpcdPes) in (Xo, NpeT).
(i) Npe (resp. Npce)-continuous (briefly, N,.Cts (resp. Np.eCts)) if the inverse image of
every Np.0s in (X, Np7) is a Npc0s (resp. Npceos) in (X1, Ny W).
(iv) Npc-homeomorphism (briefly, N,.Hom) if ¢ & ¢~! are N,.Cts.
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Throughout this article, let (X1, Ny W), (X2, Npe7) and (X3, Npep) are Nycts’s and ( :
(X1, Npe¥) — (X2, Nper) and 1 1 (Xo, NpeT) — (X3, Nyep) are mappings.

3. N-Neutrosophic crisp e-open mapping

Definition 3.1. A mapping ¢ is N-neutrosophic crisp e-open (briefly, N,.eO) if image of
every Npceos of (X1, NpeW) is Nyceos in (Xg, NpeT).

Theorem 3.2. Let ¢ be a function. Then Every

(i) NpeO is a NpaO.
(ii) NpeaO is a N, PO.
(iii) NpcPO is a NpeyO.
(iv) NpeyO is a Ny SO.
(V) NpedO is a N, O.
(Vi) NpedO is a N, SO.
(vil) NpedSO is a NpceO.
(viii) NpPO is a Np0PO.
(ix) NpedPO is a NyeO.
)

(x) NpeeO is a Ny [O.

Proof. Proof of (i) to (iii), (iv) and (v) to (vi) are proved in [I9], [21] and [22]. We prove only
(vii) to (ix).

(vii) Let ¢ be a N,.0SO mapping and K is a Np.0s in X;. Then ((K) is N,.0S0s in Xs.
Since every N,.0Sos is Ny.eos by Proposition 3.1 in [26], ((K) is Nyceos in Xo. Therefore ¢
is Np.eO mapping.

(viii) Let ¢ be a N,.PO mapping and K is a N,cos in X;. Then ((K) is Np.Pos in Xs.
Since every N, Pos is Ny.0Pos by Proposition 3.1 in [26], ((K) is Np.0Pos in Xo. Therefore
¢ is Np0PO mapping.

(ix) Let ¢ be a N,,.0PO mapping and K is a Ny.0s in X1. Then ((K) is Np0Pos in Xs.
Since every N,.0Pos is Nyceos by Proposition 3.1 in [26], ((K) is Nyceos in Xs. Therefore ¢
is Np.eO mapping.

(x) Let ¢ be a Np.eO mapping and K is a Nycos in X;. Then ((K) is Npceos in Xo. Since
every Nyceos is Ny.os by Proposition 3.1 in [26], ((K) is NycBos in Xo. Therefore ¢ is Ny, 5O

mapping.

Remark 3.3. The following diagram shows N,.eO mapping function in Nyts.
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N;peO map —p NpcaO map —p Nppe PO map —p N, e yO map

\

NpcdPO map

Y
NpedO map—e Ny 0SSO map—» NpeeO map —e N, 5O map

None of these implication is reversible as shown in the following examples.

Example 3.4. Let X = {ao,bo,Co,do, €0} =Y, neV1 = {n, Xn, Ao}, ne¥P2 = {on, Xn}.
Ao = ({ao}, {0}, {bo, Co,do, €0}), then 2,V = {¢n, Xy, Ao}. Let nemi = {¢n, Yn, Bo, Co, Do},
neT2 = {¢n, Ya}. Bo = ({co}, {0}, {a0, b0, dos €0}), Co = ({ao, b0}, {#},{co,dos €0}), Do =
({ao, b0, Co}t, {0}, {do, €0}), then 2,.7 = {dn, Ys, Bo, Co, Dy }. Define ¢ : (X, 2,.¥) — (Y, 2,,.7)
as identity map, then 2,.e0 map but not 2,,050 map, then ¢(({ao},{®}, {bo, Co,do,€0})) =
({ao}, {0}, {bo, Co,do, €0}) 18 @ 2,.€0s but not 2,.0S0s in Y.

Example 3.5. Let X = {ao,bo,Co,do, €0} = Y, neV1 = {n, Xn, Ao}, ne¥P2 = {¢n, Xn}.
Ao = ({co,do}, {0}, {0, bo, €0}), then 2,V = {¢n, X, Ao} Let nett = {¢n, Yn, Bo, Co, Do},
ne2 = {on, Yo}t Bo = ({co}: {0}, {a0, b0, dos€0}), Co = ({@o,bo}, {0}, {co.do, €0}), Do =
({ao, b, Co}t, {0}, {do, €0}), then 2,.7 = {dn, Yn, Bo, Co, Dy }. Define ¢ : (X,2,.¥) — (Y, 2,,07)
as identity map, then 2,.eO map but not 2,,.0PO map, then {({{co,do}, {0}, {@0,bo,€0})) =
({co,do} {0}, {0, b0, €0}) 1S @ 2,08 but not 2,.0Pos in Y.

Example 3.6. Let X = {ao,bo,Co,do, €0} =Y, neV1 = {n, Xn, Ao}, neP2 = {¢n, X0}
Ao = ({ao,do}, {0}, {bo, Cos €0}), then 2,0 = {¢n, Xy, Ao}. Let nemt = {¢n, Yy, Bo, Co, Do},
neTs = {6, Yn}. Bo = ({co}, {0}, {a0,b0,do, €0}), Co = ({0, b0}, {0}, {C0sdos€0}), Do =
({ao,bo, Co},{b}, {do,€0}), then 2,.7 = {dn, Ys, Bo, Co, Dy }. Define ( : (X,2,.¥) — (Y, 2,,07)
as identity map, then 2,60 map but not 2,.60 map, then ((({ao,do},{®}, {bo;Co,€0})) =
({ao,do}, {0}, {bo, Cos€0}) 18 @ 205 but not 2,.e0s in Y.

Theorem 3.7. A mapping ¢ : (X1, NpeW) — (Xo, Npe) is NpceO iff for every Npes ¢ of
(X1, NneW), ((Nncint(p)) € Nnceint(C(#))-

Proof. Necessity: Let ¢ be a Np.eO & ¢ be a Nyco0s in (X1, NpW). Now, Npcint(p) C ¢
implies ((Npeint(p)) C (). Since ¢ is a NpceO, ((Npcint(p)) is Nyceos in (Xa, Nye7) such
that ((Npcint(p)) C ((¢) therefore ((Npcint(p)) C Nyceint(¢(v)).

Sufficiency: Assume ¢ is a Npcos of (X1, Np¥). Then ((¢) = ((Npeint(p)) C
Npceint(C(¢)). But Npceint(C(¢)) € ((p). So ((¢) = Npceint(yp) which implies ((p) is a
Npceos of (Xo, Npe7) and hence ¢ is a N,.eO.
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Theorem 3.8. If ¢ : (X1, NpeW) — (Xa, Nper) is a NypeeO mapping then Ny int(¢71()\)) C
(Y (Npeeint(N)) for every Npes A of (Xa, NpeT).

Proof. Let A be a Np.s of (X2, Nu7). Then Ny int((71()\)) is a Nyeos in (X1, Ny W).
Since ¢ is NpeeO, ((Npeint(¢71(N)) is Npeeo in (X2, Nper) and hence ((Nyeint(¢7H(N))) C
Npeeint(C(C7HN))) € Npeeint(N). Thus Npeint((HA)) € ¢CTH(Npeeint(N)). g

Theorem 3.9. A mapping ¢ : (X1, NpeW) — (Xo, NpeT) is NypeeO iff for each Npes p of
(Xa, Nper) and for each Ny.cs p of (X1, NpW) containing (~!(u) there is a Np.ecs p of
(X2, Nper) 3 0 C p & ¢ () C p.

Proof. Necessity: Assume ( is a N,.cO. Let pu be the Nyccs of (Xo, NpeT) & p is a Nyecs of
(X1, NeW) 3 ¢H(p) S p. Then p = (¢H(p))" is Nycees of (Xa, Npe) 2 ¢7Hp) S p.

Sufﬁmency: Assume v is a Npcos of (X1, Npe®). Then (TH((¢(v))¢ C v¢ & v° is Npecs in
(X1, NooW). By hypothesis there is a Nycecs p of (Xo, Npe) 3 (C(v))¢ C p & ¢H(p) C ve
Therefore v C (¢~1(p))¢. Hence p¢ € ¢(v) C ¢((¢(1))¢) € ¢ which implies ¢ (v) = uC. Since
u is Npceos of (Xo, Npe7). Hence ((v) is Npceo in (Xo, Nye7) and thus ¢ is NpeO. g

Theorem 3.10. A mapping ¢ : (X1, NpeW) — (Xo, Nper) is NpeeO iff (71 Npeecl(p)) C
Nyecl (¢ (p)) for every Npcs p of (Xa, NpeT).

Proof. Necessity: Assume C is a Ny,.€O. For any Ny.s p of (X2, NueT), CHp) € Npecl(CH(p)).
Therefore by Theorem B there exists a Npcecs p in (Xo,NpeT) 2 p € p & (Hu) C
Npecl((7Y(p)). Therefore we obtain that ¢~ (Npeecl(p)) € ¢~ (1) € Nueel(CT1H(p)).
Sufficiency: Assume p is a Nps of (Xo, Npe7) & pis a Npeces of (X1, NpeW) containing
¢(~(p). Put a = Nypecl(p), then p C o and a is Nyeee & (Ha) € Npecl(C71(p)) € p. Then

by Theorem B, ¢ is Ny.eO.

Theorem 3.11. If ( & 7 be two neutrosophic crisp mappings and n o ¢ : (X1, Np¥) —
(X3, Npep) is NpeeO. If n @ (Xo, Nper) — (X3, Npep) is Npeelrr then ¢ @ (X1, NpeW) —
(X2, NpeT) is NpeO mapping.

Proof. Let pu be a Nyc0s in (X1, NpeW). Then no(u) is Npceos of (X3, Npep) because no ( is
NpeeO. Since 1 is Nycelrr & no ((u) is Npceos of (X3, Npep) therefore n71(no ((u)) = ((p)
is Npceos in (Xa, Np.7). Hence ( is N,.eO. 0

Theorem 3.12. If ¢ is N,.O and 7 is Nyp.eO mappings then no ¢ : (X1, Npe V) — (X3, Npep)
is N,,.eO.
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Proof. Let p be a Nyc0s in (X1, NpW). Then ((p) is a Nycos of (Xa, Npe7) because ¢ is a
NpO. Since 1 is NypeeO, n({(n)) = (no)(p) is Npceos of (X3, Npep). Hence no ¢ is NyeO.

4. N-Neutrosophic crisp e-closed mapping

Definition 4.1. A mapping ¢ : (X1, Npe¥) — (X2, Npe7) is N-neutrosophic crisp e-closed
(briefly, Np.eC) if image of every Nyccs of (X1, NpeW) is Nycecs in (Xo, NpeT).

Theorem 4.2. Let ¢ be a function. Then Every
(i) NpcC'is a NycaC.
ii) NpcaC'is a Ny PC.
iii) NpPC is a NpeyC.
iv) NpeyCis a Ny SC.
(V) NpedC'is a Ny C.
(Vi) NpcdC'is a Ny .SC.
(vil) NpedSC is a NyeC.
(viil) NpPC is a N, dPC.
(ix) NpcdPC is a NpceC.
)

(x

Proof. Proof of (i) to (iii), (iv) and (v) to (vi) are proved in [I4], [21] and [22]. We prove only
(vii) to (ix).

(vii) Let ¢ be a N,,.6SC mapping and K is a Nyccs in X;. Then ((K) is Np.0Scs in Xo.
Since every Np.0Scs is Nycecs by Proposition 3.1 in [26], ((K) is Npcecs in Xo. Therefore ¢

Ny.eCis a N, .0C.

is Np.eC mapping.

(viii) Let ¢ be a Np.PC mapping and K is a Npccs in X1. Then ((K) is Np.Pcs in Xo.
Since every N,.Pcs is Ny.0Pcs by Proposition 3.1 in [26], ((K) is N,.0Pcs in Xo. Therefore
¢ is Npc0PC mapping.

(ix) Let ¢ be a N,.0PC mapping and K is a Np.cs in Xj. Then ((K) is N,0Pcs in Xo.
Since every Np.0Pcs is Nycecs by Proposition 3.1 in [26], ((K) is Nycecs in Xo. Therefore ¢
is Np.eC mapping.

(x) Let ¢ be a N,.eC mapping and K is a Ny.cs in X1. Then ((K) is Nycecs in Xo. Since
every Ny.ecs is Ny.Bes by Proposition 3.1 in [26], ((K) is NycSes in Xy. Therefore ¢ is Ny, .fC

mapping.

Example 4.3. In Example B4, then 2,.eC map but not 2,.05C map, then
C({({bo, Coydo, €0}, {D}, {ao})) = ({bo, Cos dos €0}, {0}, {a0}) is a 2,cecs but not 2,.dScs.
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Example 4.4. In Example BH, then 2,,eC’ map but not 2,.0PC map, then
C({({ao, bos o}, {0}, {Co,do})) = ({0, bo, €0}, {0}, {Co,do}) is a 2,cecs but not 2,.0Pcs.

Example 4.5. In Example B®d, then 2,.6C' map but not 2,.eC’ map, then
C(({bm Co, 60}7 {d)}y {aw do}>) = <{b0) Co, 60}7 {¢}7 {ao, do}> is a 2pc8cs but not 2,.ecs.

Remark 4.6. The following diagram shows Np.eC mapping function in Npts.

NpeC map —p NpcaC map —p Ny e PC map —p N yC' map

\

Ny .0PC map

Y
NpedC map— Ny 0SC map —» NpceC' map —w Ny 5C map

None of these implication is reversible as shown in the following examples.

Theorem 4.7. A mapping ¢ : (X1, NpeW) — (Xo, Npe7) is NyceC iff for each Npes p of
(X3, Nper) and for each Npcos A of (X1, Np¥) containing ¢~!(u) there is a Ny,.eos p of
(X2, Nper) 2 0 C p & ¢7H(p) S .

Proof. Necessity: Assume ( is a N,.eC. Let p be the Ny.cs of (Xo, NpeT) & A is a Nyc0s of
(X1, NpeW) 3 ¢71(p) € A Then p = X — (7H(X®) is Nyeeos of (Xa, Nper) 3 (7 H(p) C A

Sufficiency: Assume v is a Nyccs of (X1, NpeW). Then (((v))¢ is a Npes of (Xa, Npe7) & v°
is Nyeos in (X1, Npe®) 3 ¢7H(¢(v))¢) C v¢. By hypothesis there is a Ny.e0s p of (Xa, NyeT)
5 (W) C p & CM(p) C v, Therefore v C (¢~1(p))". Hence p° C ¢(p) € C((C1(p)) € p°
which implies {(v) = p°. Since p° is Nycecs of (Xa, Nye7). Hence ((v) is Nycec in (Xo, NpeT)
and thus ¢ is NpeC.

Theorem 4.8. If ¢ is N,,o.C & 1 is NpceC. Then no ¢ : (X1, NpeW) — (X3, Npep) is NyceCl

Proof. Let u be a Nypecs in (X1, NpeW). Then ((p) is Npecs of (Xo, Npe7) because € is Ny .C.
Now (no¢)(r) =n(C(1)) is Nypcecs in (X3, Npep) because 1 is NypceC. Thus no ¢ is NyceC.

Theorem 4.9. If ¢ : (X1, N, V) — (X2, NpeT) is NpeeC' map, then Nycecl(((p)) €
C(Nnecl(p)).

Theorem 4.10. Let ( & n are N,,.eC mappings. If every Ny.ecs of (Xa, NyeT) is Nycc then,
no(: (X1, NpeW) — (X3, Npep) is NyceC.
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Proof. Let pu be a Nyees in (X1, NpeW). Then ((p) is Nycecs of (X, Npe7) because € is Ny.eC
mapping. By hypothesis ((p) is Npccs of (Xo, Nper). Now n(¢(u)) = (no ¢)(p) is Npcecs in
(X3, Npep) because 1 is NpceC. Thus no ¢ is NyeC. o

Theorem 4.11. The following statements are equivalent for a mapping (:
(i) ¢ is a NyeeO.
(ii) ¢ is a NpeeC.
(iii) ¢7!is NpeeCts.

5. N-Neutrosophic crisp e-homeomorphism

Definition 5.1. A bijection ( is called a N,.e-homeomorphism (briefly N, .eHom) if ¢ & ¢!
are N,.eCts.

Theorem 5.2. Each N,,,Hom is a N,,.eHom.

Proof. Let ¢ be N,.Hom, then ¢ and ¢(~! are N,,.Cts. But every N,,.Cts is N,.eCts. Hence,
¢ and ¢! is N,.eCts. Therefore, ¢ is a Nyp.eHom. 0

Theorem 5.3. Let ¢ be a bijective mapping. The following statements are equivalent, if ( is
NpceCts:
(i) ¢ is a NyeeC.
(ii) ¢ is a NpeeO.
(iii) ¢7'is a Ny.eHom.

Definition 5.4. A N,.ts (X1, Np.¥) is said to be a neutrosophic crisp eT1 (briefly, Ny.eT1)-
2 2
space if every Npecs is Npcc in (X1, Npe V).

Theorem 5.5. Let ¢ be a Ny.eHom, then ( is a Ny,cHom if (X1, N,V) and (Xo, Ny 7) are
NpceT1-space.
2

Proof. Assume that p is a Nyecs in (Xa, NpeT), then (71(p) is a Nyeecs in (X1, NpeW). Since
(X1, Npe¥) is a NnceT%—space, ¢ () is a Nyees in (X1, NpeW). Therefore, ¢ is N,.Cts. By
hypothesis, (71 is Np.eCts. Let v be a Nyees in (X1, NpeW). Then, (717 ) = ((v) is a
Npees in (Xo, NpeT), by presumption. Since (Xa, Ny 7) is a NnceT%—space, ((v) is a Npecs in
(X3, Npet). Hence, (71 is N,,.Cts. Hence, ( is a N,.Hom. g

Theorem 5.6. The following statements are equivalent for ¢, if (X, Np.7) is a NyceT1-space:
2
(i) ¢ is NpeeC.
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(i) If p is a Nypcos in (X1, NpeW), then ((u) is Nyceos in (Xa, NpeT).
(iii) ¢(Npeint(p)) € Npecl(Npeint(¢(p))) for every Nyes pin (X, NpP).

Proof. (i) = (ii): Obvious.

(ii) = (iii): Let p be a Npes in (X1, NpcV). Then, Nycint(p) is a Npcos in (X1, NpcV).
Then, ((Npcint(p)) is a Npeeos in (Xo, NpeT). Since (Xa, NpeT) is a NnCeT%—space, SO
C(Npeint(p)) is a Npeos in (Xa, Npe7). Therefore, ((Npcint(p)) = Npcint(C(Npeint(p))) C

Nrcel(Nneint(¢(1)))-

(iii) = (i): Let p be a Npees in (X1, NpeW). Then, p€ is a Nyeos in (X1, Npe¥). From,
C(Npeint(p€)) € Npecl (Npeint(¢(uf))). Hence, ((1€) € Nypecl(Npcint(¢(u€))). Therefore, ¢(uc)
is Npceos in (Xg, Np7). Therefore, (i) is a Nycecs in (X1, N, V). Hence, € is a N,,.C.

Theorem 5.7. Let ¢ & 1 be N,.eC, where (X1, Ny, V) and (X3, Nyep) are two Npts’s and
(X2, Npe) a NyceTi-space, then the composition 7o ¢ is NyceC.
2

Proof. Let p be a Nyces in (X1, NpeW). Since € is Nycec & ((p) is a Nycees in (Xo, NpeT), by
assumption, ((u) is a Nyccs in (Xg7 Npet). Since ) is Nycec, then n((p)) is Nycecin (X3, Npep)
& n(¢(p)) = (no¢)(u). Therefore, no ¢ is NyeeC.

Theorem 5.8. The following statements are hold for ¢ & n:

(i) If no(is NpeeO & ( is NpCts, then 1 is NpeO.
(ii) If no ¢ is NpcO & 1 is NpceCts, then ¢ is NyceO.

Proof. Obvious.

6. N-Neutrosophic crisp e-C Homeomorphism

Definition 6.1. A bijection ( is called a Ny.e-C homeomorphism (briefly, N,.eCHom) if
& ¢! are N,.elrr mappings.

Theorem 6.2. Each N,.eCHom is a N,.eHom.

Proof. Let us assume that p is a Npecs in (Xo, Nye7). This shows that p is a Nyeecs in
(X2, Nye7). By assumption, (~!(p) is a Nyeecs in (X1, Np¥). Hence, C is a N,.eCts. Hence,
¢ & ¢! are N,.eCts. Hence € is a Ny.eHom. 0

Theorem 6.3. If ¢ : (X1, Npe¥) — (Xo, NpeT) is a NpeceCHom, then Npeecl(¢1(p)) C
(Y Npecl(p)) for each Npets pin (Xo, NpeT).
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Proof. Let p be a Nypcts in (Xg, Nper). Then, Npccl(p) is a Npees in (Xo, NpeT), and ev-
ery Npecs is a Nypeees in (Xa, Nper).  Assume ¢ is Nyeelrr, (TH(Npecl())) is a Nyeecs
in (X1, Npe¥), then Npecl((TH(Npecl(p))) = ¢H(Npecl(p)). Here, Nyeecl (((u)) C
Npeeel(CTH(Npeel(p))) = ¢H(Npeel (). Therefore, Nyeecl(¢7H (i) € ¢TH(Npecl(p)) for ev-
ery Npes pin (Xo, NpeT). g

Theorem 6.4. Let ¢ : (X1, NpW) — (Xa, NppeT) be a NyeeCHom, then Nycecl((™H(u)) =
(Y Npeecl(p)) for each Nyes pin (Xo, Nper).

Proof. Since ¢ is a Nypc.eCHom, then ( is a Nypcelrr. Let pu be a Npes in (Xg, Np.7). Clearly,
Npcecl(p) is a Nycecs in (X1, NpeW). Then Npcecl(p) is a Npcecs in (X1, Np¥).  Since
¢ (w) C N (Npeeel(p)), then Npcecl(¢™' (1)) © Nucecl(¢™! (Nneecl(p))) = ¢ (Neeel (i)
Therefore, Npeecl(C71(p)) € ("Y(Npeecl(u)). Let ¢ be a NpeCHom. (! is a
Npeelrr.  Let us consider Nyes ¢~'(p) in (X1, Npe¥), which implies Npcecl(¢71(p)) is
a Npeecs in (X1, NueW). Hence, Nyeecl(¢71(p)) is a Nyeecs in (X1, NpeW).  This im-
plies that (¢71) ™! (Npeecl(¢7H(1)) = ¢((Npeecl(¢™ (1)) is a Npeecs in (Xa, Nper).  This
proves i = (¢ C) € (¢ (Naeed(C (1)) = C(Nnaeel((~'(1))). Therefore,
Npeeel(p) € Npcecl(C(Npeecl (1)) = ((Npeecl (¢ (p))), since (71 is a Nyeelrr. Hence,
¢ (Naceel()) S ¢HC(Naeeel(CHp)))) = Nacecl(¢H(p)). That is, ¢~'(Npceel(p)) C
Npeecl(¢H(p)). Hence, Npcecl(¢TH(p)) = ¢ H(Npe ecl(p)). o

Theorem 6.5. If ( & n are N,.eCHom’s, then no ( is a Ny.eCHom.

Proof. Let ¢ and 1 to be two N,,.eCHom’s. Assume p is a Ny.ecs in (X3, Npep). Then, n=1(p)
is a Nycecs in (X, Npe7). Then, by hypothesis, (71 (71 (11)) is a Nyeees in (X1, N, V). Hence,
no ( is a Npcelrr mapping. Now, let v be a Nycecs in (X1, Ny ¥). Then, by presumption,
¢(n) is a Nycecs in (Xo, Npe7). Then, by hypothesis, n({(v)) is a Npcecs in (X3, Npep). This
implies that no ( is a Nycelrr. Hence, no ( is a Nyc.eCHom.

7. Conclusions

In this paper, the new concept of a N,,.eO and N, .eC mappings, N,.Hom and a N,,.eHom
in Ny.ts are studied and discussed their properties. Also, we extended to N,.eCHom’s and
NpceT 1-space with some of their properties.
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