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Abstract: Fuzzy logic is an important mathematical tool that deals with uncertainty and imprecision 

in decision-making processes. The prevalent frameworks, known as neutrosophic sets, study the 

connection of neutralities with various ideational spectra in addition to generalizing concept of 

fuzzy sets. Using a penta-partitioned neutrosophic fuzzy environment, a novel optimization 

technique is proposed in this study. Proposed optimization technique is an expansion of fuzzy 

optimization, intuitionistic fuzzy optimization (IFO), single-valued neutrosophic optimization 

(NSO) and four valued neutrosophic optimization (FVNO). Here, the neutrosophic set's 

indeterminacy term is broken down into three components: contradiction (C), unknown (U), 

ignorance (I). To demonstrate the applicability and effectiveness of the suggested approach a 

numerical example is solved and the outcomes are contrasted with those of other methods already 

in use by cumulative percentage gap and sum of optimal values. Finally, a multi objective reliability 

optimization model of LCD display unit is solved by this method. 

Keywords: Reliability; Neutrosophic set; Neutrosophic optimization; Pentapartitioned 

neutrosophic optimization. 

 

1.Introduction 

 

Recent years have seen a rise in interest in the topic of reliability optimization, which aims to 

enhance the performance and dependability of complex systems. Reliability optimization involves 

making decisions regarding system design, maintenance, and resource allocation to improve the 

system's ability to function effectively and consistently in various operating conditions. However, 

traditional reliability optimization approaches often encounter challenges when dealing with 

multiple conflicting objectives, such as maximizing system performance while minimizing costs or 

minimizing failure rates while maximizing system availability. In literature reliability optimization 

models are solved using various exact, heuristic and metaheuristic methods. For example, Misra [1] 

described usage of the integer programming technique before introducing [2] the use of the 

maximum principle and lagrange multipliers to solve reliability optimization problems. Sakawa [3] 

has presented multi-objective reliability allocation problem utilizing surrogate worth trading 

strategies to minimize system cost while maximize system reliability. A method using parametric 

programming was presented by Chern and Jan [4]. W.kuo, V.R.Prsad [5] solved system reliability 

optimization problem using some heuristic and metaheuristic algorithms Kuo et. al [6] presented 

some fundamental method and its application by solving reliability optimization model. 
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Uncertainty and ambiguity are very practical issue in real life mathematical problems. To 

address these challenges, researchers have explored the application of advanced mathematical tools 

and techniques, including fuzzy sets and optimization methods, to multi-objective reliability 

optimization problems. In 1965, Zadeh [7] invented the fuzzy set (FS). Fuzzy sets deals with one 

membership value in [0,1] ,but sometimes uncertainty is not properly expressed by single 

membership value. So, considering the membership as an interval in [0,1] the interval-valued fuzzy 

set (IVFS) [8] was invented. In some situations, only membership is insufficient to fully convey the 

uncertainty, so non-membership value also required to clarify the vagueness. That is outside the 

purview of FS and IVFS. Atanassov [9] first suggested intuitionistic fuzzy sets (IFS) in 1986, expands 

beyond the scope of IVFS and FS. IFS introduce the notion of considering the total of membership 

and non-membership values, ensuring that the sum (≤)1. 

 

In 1998, Smarandache [10] introduced neutrosophic sets (NSs) extending from FS, IFS, hesitant 

fuzzy sets, and IVFS, to handle uncertain information encountered in real-world situations. 

Neutrosophic sets serve as a valuable mathematical tool for addressing ambiguous and conflicting 

information. They consist of three independent components: truth, falsity, and indeterminacy 

membership. However, applying neutrosophic fuzzy sets in practical scenarios presents challenges 

due to the presence of both standard and non-standard intervals of membership values. To address 

these challenges, Wang et al. [11, 12] invented single-valued NSs and interval-valued NSs, enabling 

the application of NSs to real-world problems. In an effort to generalize neutrosophic sets further, F. 

Smarandache [13] introduced n-Valued neutrosophic logic through categorizing truth, 

indeterminacy, and falsity into n types. Subsequently, Freen et al. [14] defined four-valued 

neutrosophic set (FVNS) by refining the indeterminacy term into unknown and contradiction. 

Expanding on this concept, Mallik and Pramanik [15] introduced the penta-partitioned neutrosophic 

set, which splits the indeterminacy term into contradiction, unknown, and ignorance. 

In a wide range of areas, optimization methods are crucial for addressing a variety of practical 

problems and decision-making problems. In last few decades fuzzy optimization [16] is very efficient 

tool as it deals with the ambiguity and uncertainty of real-life problems. Bellman and Zadeh [17] first 

introduced decisions, goals and constraints in fuzzy. As an extension of this work Zimmerman [18] 

introduced fuzzy programming method. To deal with the non-membership of an information 

Angelov [19] invented intuitionistic fuzzy optimization method. It's interesting to observe that there 

are several optimization problems that require a collection of membership grades rather than a single 

grade of membership since experts' estimates of the optimization's parameters vary significantly. 

Considering this a multi objective optimization problem (MOOP) is solved by Bharati [20] in hesitant 

fuzzy environment. To solve a MOOP, Sarkar et al. [21] applied the multi-objective neutrosophic 

optimization algorithm. Abdel-Basset et al. [22] introduced neutrosophic goal programming 

approach. The integer programming problem was proposed by Mohamed, Mai et al. [23] 

in triangular neutrosophic environment. Group decision-making problem was solved by Abdel-

Basset et al. [24] utilizing triangular neutrosophic weighted aggregation operator. In an IVNSs 

framework, Garg [25] has presented a nonlinear programming method to solve MCDM problems. 
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This method provides a systematic approach for tackling decision-making challenges in uncertain 

and ambiguous environments. Recently, Freen et al. [14] proposed FVRNO method to solve MOOP 

and applied it to car-side impact and riser design problems. Recently, in various field the concept of 

Penta partitioned neutrosophic graph (PNG) is used to find the optimal path using Penta partitioned 

neutrosophic set. Quek, Shio Gai, et al. [26] used the concept of PNG to find the safest path of travel 

and stay to reduce the spread of COVID-19. Broumi, Said, et al [27] used PNG to solve MCDM 

problem. Das, Suman, et al [28,29] introduced single valued bipolar PNS and its application by 

solving MADM problem, and author also presented single valued PNG and solution strategy to 

MCDM problem. 

In formation of a system design, reliability optimization is one of the crucial jobs. Finding the 

most effective way to raise system reliability in limited resource has always been the reliability 

engineer's main objective. There are several parameters in the MOOP that are constantly vague and 

ambiguous in nature for ambiguity in decision makers judgments. Fuzzy technique is used to analyze 

this in MOOP to manage such kind of nature. Fuzzy non-linear programming was utilized by Park 

[30] for the reliability apportionment problem of series system. Fuzzy global optimization reliability 

model was utilized by Ravi et al. [31]. To address the reliability optimization problem, Huang [32] 

suggested a multi-objective fuzzy optimization approach. Later, the intuitionistic fuzzy optimization 

approach [19] is used in a variety of study areas in reliability optimization problem. Mahapatra et al. 

[33] used IFO methods to solve reliability optimization model. To address the problem of multi-

objective reliability optimization IFO method was applied in interval environments by Garg et al [34]. 

Islam and Kundu [35] applied NSO technique to solve the reliability optimization of LCD display 

unit. As far as known to us, there isn't a research paper in the literature that addresses how to solve 

a MOOP in a pentapartitioned neutrosophic environment.  

In this article, a penta-partitioned neutrosophic fuzzy environment is used to suggest a multi-

objective optimization technique. To show that the suggested strategy is effective a nonlinear MOOP 

is solved and the outcomes are compared against those of other techniques already in use. Also, this 

method is applied to solve the reliability optimization model of LCD display unit and the result is 

compared with four valued refined optimization method. Remaining part is arranged as: the 

definition of fuzzy set, its extension and properties are discussed in section 2. The Proposed penta-

partitioned neutrosophic fuzzy optimization technique and computational algorithm is explained in 

section 3. In section 4 a numerical example is solved by developed method. Reliability model of LCD 

display unit is shown in section 5. In Section 6, results and discussion are presented. Finally, in section 

7. conclusion and future works are discussed. 

 

2. Preliminaries 

 

Definition 1. Fuzzy set (FS) [7] 

𝐸 be the universal set, then the FS  𝐹̃  on the set 𝐸 is defined as 𝐹̃ = {(𝑒, 𝜇𝐹(𝑒))| 𝑒 ∈ 𝐸}, where 

𝜇𝐹: 𝐸 → [0,1] is membership function on 𝐸. 

Example: Consider set of number 𝐸 = {1,2,3,4,5,6}, fuzzy set 𝐹̃ is number closed to 4. Then we can 

define 𝐹̃ = {(1,0), (2, .2), (3, .6), (4,1), (5, .5), (6, .3)}.  



Neutrosophic Sets and Systems, Vol. 61, 2023     368  

 

 

Swarup Jana and Sahidul Islam, Pentapartitioned Neutrosophic Fuzzy Optimization Method for Multi-objective 

Reliability Optimization Problem 
 

Definition 2. Intuitionistic Fuzzy Set (IFS) [9] 

𝐸 is the universal set, the IFS 𝐼 on 𝐸 is the collection of order triplets 𝐼 = {(𝑒, 𝜇𝐼(𝑒), 𝜗𝐼(𝑒))| 𝑒 ∈ 𝐸}, 

where 𝜇𝐼 , 𝜗𝐼: 𝐸 → [0,1] represent membership, non-membership function on 𝐸, 0 ≤ 𝜇𝐼(𝑒) + 𝜗𝐼(𝑒) ≤

1 for all 𝑒 ∈ 𝐸. 

 Here the function  𝜋𝐼(𝑒) = (1 − 𝜇𝐼(𝑒) − 𝜗𝐼(𝑒)) is the hesitancy degree for each 𝑒 ∈ 𝐸. 

Example: 

If a company produce three products 𝐸 = {𝑝1, 𝑝2, 𝑝3}, there be three opinions on these products, 

“good (membership)”, “bad(non-membership)”, “no idea (hesitancy)”. Then the intuitionistic fuzzy 

set 𝐼 = {(𝑝1, .6, .3), (𝑝2, .7, .25), (𝑝3, .8, .16)}. Here 𝜋𝐼(𝑝1) = .1, 𝜋𝐼(𝑝2) = .05, 𝜋𝐼(𝑝1) = .04. 

Definition 3. Neutrosophic fuzzy set (NSs) [10] 

𝐸 is the universal set. NSs on 𝐸 is 𝑁 = {(𝑒, 𝑇𝑁(𝑒), 𝐼𝑁(𝑒), 𝐹𝑁̃(𝑒))| 𝑒 ∈ 𝐸}, here 𝑇𝑁(𝑒), 𝐼𝑁̃(𝑒),𝐹𝑁(𝑒) are 

subsets of ]0−, 1+[  which represent truth, indeterminacy and falsity membership on 𝐸 and  0− ≤

𝑆𝑢𝑝𝑇𝑁̃(𝑒) + 𝑆𝑢𝑝𝐼𝑁(𝑒) + 𝑆𝑢𝑝𝐹𝑁̃(𝑒) ≤ 3
+ for all 𝑒 ∈ 𝐸. In real life, the application of NS is difficult 

because the membership values are subsets of ]0−, 1+[  . 

Definition 4. Single valued neutrosophic set (SVNSs) [11] 

In SVNSs, for all 𝑒 ∈ 𝐸 (universal set) the set 𝑆𝑁̃ is characterized by 𝑇𝑆𝑁̃(𝑒), 𝐼𝑆𝑁̃(𝑒), 𝐹𝑆𝑁̃(𝑒) , each 

takes single value in  [0,1], 0 ≤ 𝑇𝑆𝑁̃(𝑒) + 𝐼𝑆𝑁̃(𝑒) + 𝐹𝑆𝑁̃(𝑒) ≤ 3.Where,  

𝑆𝑁̃ = {(𝑒, 𝑇𝑆𝑁̃(𝑒), 𝐼𝑆𝑁̃(𝑒), 𝐹𝑆𝑁̃(𝑒)): 𝑒 ∈ 𝐸}. 

Example: Suppose a phone company launch a phone, customers may review the phone on the basis 

of 𝐸 = {𝑒1 = 𝑝𝑟𝑖𝑐𝑒, 𝑒2 = 𝑟𝑎𝑚 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑎𝑔𝑒, 𝑒3 = 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑒4 = 𝑐𝑎𝑚𝑒𝑟𝑎} . The customers 

opinion on each criterion be positive (truth degree), Indeterminate, negative (falsity degree). Then 

the set 𝑆𝑁̃ on 𝐸 as : 𝑆𝑁̃ = {(𝑒1, .7, .5, .4), (𝑒2, .5, .6, .3), (𝑒3, .3, .4, .8), (𝑒4, .8, .3, .4)}. 

Definition 5. Four-valued neutrosophic set (FVNS) [14] 

By splitting indeterminacy in two ways, there are two types of FVNS. For one of such FVNS, 

indeterminacy is split into unknown (𝑈) and contradiction (𝐶), where 𝐶 = 𝑇 ∧ 𝐹 . The values of 

𝑇,𝑈, 𝐶  and 𝐹  are the function from 𝐸  to  [0,1] and 0 ≤ 𝑇𝐹𝑁̃(𝑒) + 𝑈𝐹𝑁̃(𝑒) + 𝐶𝐹𝑁̃(𝑒) + 𝐹𝐹𝑁̃(𝑒) ≤ 4. 

Thus, this type of FVNS is  

𝐹𝑁̃ = {(𝑒, 𝑇𝐹𝑁̃(𝑒), 𝐼𝐹𝑁̃(𝑒), 𝐶𝐹𝑁̃(𝑒)𝐹𝐹𝑁̃(𝑒)): 𝑒 ∈ 𝐸}. 

For another type of FVNS, here the indeterminacy split into two parts, Ignorance ( 𝐺 ) and 

contradiction (𝐶), where 𝐶 = 𝑇 ∧ 𝐹 and  𝐺 = 𝑇 ∨ 𝐹. The values of 𝑇,𝐺, 𝐶 and 𝐹 are the function 

from 𝐸 to  [0,1] and 0 ≤ 𝑇𝐹𝑁̃(𝑒) + 𝐶𝐹𝑁̃(𝑒) + 𝐺𝐹𝑁̃(𝑒) + 𝐹𝐹𝑁̃(𝑒) ≤ 4. Thus, this type of FVNS is 

𝐹𝑁̃ = {(𝑒, 𝑇𝐹𝑁̃(𝑒), 𝐶𝐹𝑁̃(𝑒), 𝐺𝐹𝑁̃(𝑒)𝐹𝐹𝑁̃(𝑒)): 𝑒 ∈ 𝐸}. 

Example of FVNS:  

Consider a criterion set 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}. There be four types of opinion for each criterion, such as 

“truth, contradiction, unknown, falsity” or “truth, ignorance, contradiction, falsity”, where each 

degree in [0,1]. Then we can construct FVNS as  

𝑋 =
⟨0.6,0.3,0.5,0.4⟩

𝑒1
+
⟨0.5,0.3,0.7,0.4⟩

𝑒2
+
⟨0.7,0.3,0.4,0.2⟩

𝑒3
+
⟨0.8,0.3,0.2,0.1⟩

𝑒4
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Definition 6: Penta-partitioned neutrosophic set (PNS) [15] 

PNS was defined by Rama Mallick and Surapati Pramanik using the concepts of n-valued 

neutrosophic set. Here indeterminacy divided into ignorance, contradiction, and unknown (U, G, C). 

This is how PNS is defined: 

𝐸 be a universal set. PNS, 𝑃𝑁̃ over 𝐸 is the combination of Truth( 𝑇𝑃𝑁̃), unknown(𝑈𝑃𝑁̃),ignorance 

(𝐺𝑃𝑁̃), contradiction( 𝐶𝑃𝑁̃), falsity(𝐹𝑃𝑁̃) memberships which are in [0,1]for all 𝑒 ∈ 𝐸 and 

 0 ≤ 𝑇𝑃𝑁̃(𝑒) + 𝐶𝑃𝑁̃(𝑒) + 𝐺𝑃𝑁̃(𝑒) + 𝑈𝑃𝑁̃(𝑒) + 𝐹𝑃𝑁̃(𝑒) ≤ 5.  

2.1 Basic properties  

Definition 7. [15] 𝑃1  and 𝑃2  be two PNSs over 𝐸  then  𝑃1 ⊆ 𝑃2  iff  𝑇𝑃1(𝑒) ≤ 𝑇𝑃2(𝑒), 𝐶𝑃1(𝑒) ≤

𝐶𝑃2(𝑒), 𝐺𝑃1(𝑒) ≥ 𝐺𝑃2(𝑒), 𝑈𝑃1(𝑒) ≥ 𝑈𝑃2(𝑒) and 𝐹𝑃1(𝑒) ≥ 𝐹𝑃2(𝑒) for all 𝑒 ∈ 𝐸. 

Definition 8. [15] The complement of PNS 𝑃 is denoted by 𝑃𝑐 and is defined by: 

                                          𝑃 =

{(𝑇𝑃(𝑒), 𝐶𝑃(𝑒), 𝐺𝑃(𝑒), 𝑈𝑃(𝑒), 𝐹𝑃(𝑒))|𝑒 ∈ 𝐸}, then  

𝑃c = {(𝐹𝑃(𝑒), 𝑈𝑃(𝑒),1 − 𝐺𝑃(𝑒), 𝐶𝑃(𝑒), 𝑇𝑃(𝑒)) ∣ 𝑒 ∈ 𝐸}  

i.e,  𝑇𝑃𝑐(𝑒) = 𝐹𝑃(𝑒), 𝐶𝑃𝑐(𝑒) = 𝑈𝑃(𝑒), 𝐺𝑃𝑐(𝑒) = 1 − 𝐺𝑃(𝑒), 𝑈𝑃𝑐(𝑒) = 𝐶𝑃(𝑒),𝐹𝑃𝑐(𝑒) = 𝑇𝑃(𝑒) for all 𝑒 ∈ 𝐸 

Definition 9. [15] 𝑃1 and 𝑃2  be two PNSs. Then  𝑃1 ∪ 𝑃2  and 𝑃1 ∩ 𝑃2 is defined by: 

𝑃1 ∪ 𝑃2 = {(
max(𝑇𝑃1(𝑒), 𝑇𝑃2(𝑒)) ,max(𝐶𝑃1(𝑒),𝐶𝑃2(𝑒)) ,min (𝐺𝑃1(𝑒), 𝐺𝑃2(𝑒)) ,

min (𝑈𝑃1(𝑒),𝑈𝑃2(𝑒)) ,min (𝐹𝑃1(𝑒), 𝐹𝑃2(𝑒))
) |𝑒 ∈ 𝐸}

𝑃1 ∩ 𝑃2 = {(
min(𝑇𝑃1(𝑒), 𝑇𝑃2(𝑒)) , min(𝐶𝑃1(𝑒), 𝐶𝑃2(𝑒)) ,max(𝐺𝑃1(𝑒), 𝐺𝑃2(𝑒)) ,

max(𝑈𝑃1(𝑒), 𝑈𝑃2(𝑒)) ,max (𝐹𝑃1(𝑒), 𝐹𝑃2(𝑒))
) |𝑒 ∈ 𝐸}

 

 

2.2. Example of PNS: 

Suppose a company have manufactured a car. The quality of the car is determined by some domain 

experts over the set of criterions 𝐸 = {𝑒1, 𝑒2, 𝑒3}, where 𝑒1=reliability, 𝑒2= fuel consumption,  𝑒3= 

cost. The question to the domain experts is “is the car is good?”. There may be the five types of degrees 

of opinions in [0,1]  under each category, which are “good”, “contradictory”, “Ignorance”, 

“Unknown”, “Bad”. 𝑃 and 𝑄  two PNSs, which are opinion of two experts on W, are defined by: 

𝑃 =
⟨0.6,0.3,0.3,0.5,0.4⟩

𝑒1
+
⟨0.5,0.3,0.7,0.4,0.2⟩

𝑒2
+
⟨0.7,0.3,0.4,0.2,0.2⟩

𝑒3

𝑄 =
⟨0.4,0.7,0.3,0.5,0.6⟩

𝑒1
+
⟨0.2,0.8,0.3,0.5,0.7⟩

𝑒2
+
⟨0.3,0.6,0.8,0.5,0.6⟩

𝑒3
.

 

Then we have, 

𝑃𝐶 = ⟨0.4,0.5,0.7,0.3,0.6⟩/𝑒1+ ⟨0.2,0.4,0.3,0.3,0.5⟩/𝑒2 + ⟨0.2,0.2,0.6,0.3,0.7⟩/𝑒3
𝑃 ∪ 𝑄 = ⟨0.6,0.7,0.3,0.5,0.4⟩/𝑒1 + ⟨0.5,0.8,0.3,0.4,0.2⟩/𝑒2 + ⟨0.7,0.6,0.4,0.2,0.2⟩/𝑒3
𝑃 ∩ 𝑄 = ⟨0.4,0.3,0.3,0.5,0.6⟩/𝑒1 + ⟨0.2,0.3,0.7,0.5,0.7⟩/𝑒2 + ⟨0.3,0.3,0.8,0.5,0.6⟩/𝑒3

 

 

 



Neutrosophic Sets and Systems, Vol. 61, 2023     370  

 

 

Swarup Jana and Sahidul Islam, Pentapartitioned Neutrosophic Fuzzy Optimization Method for Multi-objective 

Reliability Optimization Problem 
 

 

3. Proposed penta-partitioned neutrosophic fuzzy optimization technique 

If we take a look at a multi-objective optimization problem (MOOP), 

 Minimize {𝑍𝑖(𝑤)}       𝑖 = 1, … ,𝑚. 

Subject to 

                                                            𝑓𝑗(𝑤)

≤ 𝑏𝑗                  𝑗

= 1, … , 𝑛.                                                        (1) 

𝑤 ≥ 0                                           

where  𝑍𝑖(𝑤) are 𝑚 objectives, 𝑓𝑗(𝑤) are the 𝑛 constraints, 𝑤 are decision variables, and 𝑚 and 

𝑛 presents number of objectives and constraints respectively. 𝐷̃ is the decision set, which combines 

penta-partitioned neurotrophic goals (𝑂̃𝑖) and constraints (𝐿̃𝑗), is defined by: 

𝐷̃ = (∩𝑖=1
𝑚 𝑂̃𝑖) ∩ (∩𝑗=1

𝑛 𝐿̃𝑗) = {𝑤, 𝑇𝐷̃(𝑤), 𝐶𝐷̃(𝑤), 𝐺𝐷̃(𝑤), 𝑈𝐷̃(𝑤), 𝐹𝐷̃(𝑤))} 

Where 𝑤 ∈ 𝑊. 

𝑇𝐷̃(𝑤)  = min{𝑇𝑂̃1(𝑤), 𝑇𝑂̃2(𝑤), … , 𝑇𝑂̃𝑚(𝑤); 𝑇𝐿̃1(𝑤), 𝑇𝐿̃2(𝑤),… , 𝑇𝐿̃𝑛(𝑤)} = 𝐴 

𝐶𝐷̃(𝑤)  = min{𝐶𝑂̃1(𝑤), 𝐶𝑂̃2(𝑤), … , 𝐶𝑂̃𝑚(𝑤); 𝐶𝐿̃1(𝑤), 𝐶𝐿̃2(𝑤), … , 𝐶𝐿̃𝑛(𝑤)} = 𝐵 

𝐺𝐷̃(𝑤) = max{𝐺𝑂̃1(𝑤), 𝐺𝑂̃2(𝑤),… , 𝐺𝑂̃𝑚(𝑤); 𝐺𝐿̃1(𝑤), 𝐺𝐿̃2(𝑤), … , 𝐺𝐿̃𝑛(𝑤)} = 𝐶 

𝑈𝐷̃(𝑤) = max{𝑈𝑂̃1(𝑤),𝑈𝑂̃2(𝑤),… ,𝑈𝑂̃𝑚(𝑤); 𝑈𝐿̃1(𝑤), 𝑈𝐿̃2(𝑤),… ,𝑈𝐿̃𝑛(𝑤)} = 𝐷 

 𝐹𝐷̃(𝑤) = max{𝐹𝑂̃1(𝑤), 𝐹𝑂̃2(𝑤),… , 𝐹𝑂̃𝑚(𝑤); 𝐹𝐿̃1(𝑤), 𝐹𝐿̃2(𝑤),… , 𝐹𝐿̃𝑛(𝑤)} = 𝐸 

Where 𝑇𝐷̃ , 𝐶𝐷̃ , 𝐺𝐷̃ , 𝑈𝐷̃and 𝐹𝐷̃  presents the truth, contradiction, ignorance, unknown and falsity 

degree of membership of penta-partitioned neutrosophic decision set, respectively. Now using PNO, 

the above problem (1) is reformulated into a MOOP as: 

𝑀𝑎𝑥 𝐴,   𝑀𝑎𝑥 𝐵,   𝑀𝑖𝑛 𝐶,   𝑀𝑖𝑛 𝐷,   𝑀𝑖𝑛 𝐸. 

Subject to, 

𝑇𝑂̃𝑖(𝑤) ≥ 𝐴,  𝑇𝐿̃𝑗(𝑤) ≥ 𝐴 

𝐶𝑂̃𝑖(𝑤) ≥ 𝐵,  𝐶𝐿̃𝑗(𝑤) ≥ 𝐵 

𝐺𝑂̃𝑖(𝑤) ≤ 𝐶,  𝐺𝐿̃𝑗(𝑤) ≤ 𝐶 

𝑈𝑂̃𝑖(𝑤) ≤ 𝐷,  𝑈𝐿̃𝑗(𝑤) ≤ 𝐷 

𝐹𝑂̃𝑖(𝑤) ≤ 𝐸,  𝐹𝐿̃𝑗(𝑤) ≤ 𝐸 

𝐴 ≥ 𝐵,𝐴 ≥ 𝐶, 𝐴 ≥ 𝐷,𝐴 ≥ 𝐸 

0 ≤ 𝐴 + 𝐵 + 𝐶 +𝐷 + 𝐸 ≤ 5 

𝐴,𝐵, 𝐶,𝐷, 𝐸 ∈ [0,1], 𝑖 = 1, … ,𝑚 

                                                           𝑓𝑗(𝑤) ≤ 𝑏𝑗 ,  𝑤 ≥

0,  𝑗 = 1, … , 𝑛.                                    (2) 

 

Computational method: 

Step 1: Each objective function is solved individually ignoring the others subject to the constraints. 
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Step 2: Determine the value of other objective functions at the point where the best value of the 

individual objective function occurs. 

Step 3: Using above two steps, construct pay-off matrix: 

[

𝑍1
∗(𝑤1) 𝑍2(𝑤1) ⋯ 𝑍𝑚(𝑤1)

𝑍1(𝑤2) 𝑍2
∗(𝑤2) ⋯ 𝑍m(𝑤2)

⋮ ⋮ ⋱ ⋮
𝑍1(𝑤𝑚) 𝑍2(𝑤𝑚) ⋯ 𝑍𝑚

∗ (𝑤𝑚)

]. 

Step 4: Find lower bound L𝑚
𝑇 , upper bound U𝑚

𝑇  of truth membership of each 𝑍𝑚(𝑤) by, 

                                                    U𝑚
𝑇 =

𝑚𝑎𝑥{𝑍𝑚(𝑤𝑖)}  and  L𝑚
𝑇 = 𝑚𝑖𝑛{𝑍𝑚(𝑤𝑖)}, 𝑖 = 1,2, … ,𝑚. 

Lower bound  L𝑚
𝐶  and upper bound  U𝑚

𝐶  for contradiction membership of objective functions 

𝑍𝑚(𝑤) are, 

L𝑚
𝐶 = L𝑚

𝑇   and  U𝑚
𝐶 = L𝑚

𝑇 + 𝑞𝑚(U𝑚
𝑇 − L𝑚

𝑇 ), 

lower bound L𝑚
𝐺  , Upper bound  U𝑚

𝐺  for Ignorance membership of objectives 𝑍𝑚(𝑤) are  

                              U𝑚
𝐺 = U𝑚

𝑇   and  L𝑚
𝐺 = L𝑚

𝑇 + 𝑟𝑚(U𝑚
𝑇 − L𝑚

𝑇 ),                              

The upper bounds U𝑚
𝑈  and lower bounds  L𝑚

𝑈  for unknown membership function of objectives are, 

U𝑚
𝑈 = U𝑚

𝑇   and  L𝑚
𝑈 = L𝑚

𝑇 + 𝑠𝑚(𝑈𝑚
𝑇 − L𝑚

𝑇 ), 

The upper bounds U𝑚
𝐹  and lower bounds  L𝑚

𝐹  of falsity membership function of objectives are, 

U𝑚
𝐹 = U𝑚

𝑇   and  L𝑚
𝐹 = L𝑚

𝑇 + 𝑡𝑚(𝑈𝑚
𝑇 − L𝑚

𝑇 ), 

 

where 𝑞𝑚 , 𝑟𝑚 , 𝑠𝑚 , 𝑡𝑚 ∈ (0,1).       

 

                           Figure1. membership functions of the objective functions    

 

Step 5: In this step, truth, contradiction, ignorance, unknown, falsity membership functions are: 

𝑇𝑖(𝑍𝑖) 𝐹𝑖(𝑍𝑖) 

𝐿𝐶

= 𝐿𝑇 

𝐿𝐹 𝐿𝐺 𝐿𝑈 𝑈𝐶  𝑈𝑇 = 𝑈𝐹 = 𝑈𝐺 = 𝑈𝑈 
0 

1 
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𝑇𝑚(𝑍𝑚(𝑤)) =

{
 
 

 
 1 𝑍𝑚(𝑤) ≤ L𝑚

𝑇

U𝑚
𝑇 − 𝑍𝑚(𝑤)

U𝑚
𝑇 − L𝑚

𝑇
L𝑚
𝑇 ≤ 𝑍𝑚(𝑤) ≤ U𝑚

𝑇

0 𝑍𝑚(𝑤) ≥ U𝑚
𝑇

 

𝐶𝑚(𝑍𝑚(𝑤)) =

{
 
 

 
 1  𝑍𝑚(𝑤) ≤ L𝑚

𝐶

U𝑚
𝐶 − 𝑍𝑚(𝑤)

U𝑚
𝑈 − L𝑚

𝐶
L𝑚
𝐶 ≤ 𝑍𝑚(𝑤) ≤ U𝑚

𝐶

0 𝑍𝑚(𝑤) ≥ U𝑚
𝑈

𝐺𝑚(𝑍𝑚(𝑤)) =

{
 
 

 
 0 𝑍𝑚(𝑤) ≤ L𝑚

𝐺

𝑍𝑚(𝑤) − L𝑚
𝐺

U𝑚
𝐺 − L𝑚

𝐺
L𝑚
𝐺 ≤ 𝑍𝑚(𝑤) ≤ U𝑚

𝐺

1 𝑍𝑚(𝑤) ≥ U𝑚
𝐺

 

       𝑈𝑚(𝑍𝑚(𝑤)) =

{
 
 

 
 0 𝑍𝑚(𝑤) ≤ L𝑚

𝑈

𝑍𝑚(𝑤) − L𝑚
𝑈

U𝑚
𝑈 − L𝑚

𝑈
L𝑚
𝑈 ≤ 𝑍𝑚(𝑤) ≤ U𝑚

𝑈

1 𝑍𝑚(𝑤) ≥ U𝑚
𝑈

 

    𝐹𝑚(𝑍𝑚(𝑤)) =

{
 
 

 
 0 𝑍𝑚(𝑤) ≤ L𝑚

𝐹

𝑍𝑚(𝑤) − L𝑚
𝐹

U𝑚
𝐹 − L𝑚

𝐹
L𝑚
𝐹 ≤ 𝑍𝑚(𝑤) ≤ U𝑚

𝐹

1 𝑍𝑚(𝑤) ≥ U𝑚
𝐹

 

 

Step 6: Now PNO method for MOOP is presented by max-min method as: 

 Max ( 𝐴 + 𝐵 − 𝐶 − 𝐷 − 𝐸), 

 Subject to                                    𝑇𝑚(𝑍𝑚(𝑤))   ≥ 𝐴 

  𝐶𝑚(𝑍𝑚(𝑤))   ≥ 𝐵 

𝐺𝑚(𝑍𝑚(𝑤))  ≤ 𝐶 

𝑈𝑚(𝑍𝑚(𝑤))  ≤ 𝐷 

𝐹𝑚(𝑍𝑚(𝑤))   ≤ 𝐸 

                                                                 𝑓𝑗(𝑤) ≤ 𝑏𝑗 ,  𝑤 ≥

0,  𝑗 = 1, … , 𝑛 

                                 with,  0 ≤ 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 ≤ 5, 

                          𝐴 ≥ 𝐵, 𝐴 ≥ 𝐶,𝐴 ≥ 𝐷, 𝐴 ≥ 𝐸 ,     𝐴, 𝐵, 𝐶, 𝐷, 𝐸 ∈ [0,1]                         

(3)                                                                                     

This equivalent to:    

                       Max ( 𝐴 + 𝐵 − 𝐶 −𝐷 − 𝐸) 

Subject to 



Neutrosophic Sets and Systems, Vol. 61, 2023     373  

 

 

Swarup Jana and Sahidul Islam, Pentapartitioned Neutrosophic Fuzzy Optimization Method for Multi-objective 

Reliability Optimization Problem 
 

𝑍𝑚(𝑤) + (U𝑚
𝑇 − L𝑚

𝑇 ) ⋅ 𝐴 ≤ U𝑚
𝑇

𝑍𝑚(𝑤) + (U𝑚
𝐶 − L𝑚

𝐶 ) ⋅ 𝐵 ≤ U𝑚
𝐶

𝑍𝑚(𝑤) − (U𝑚
𝐺 − L𝑚

𝐺 ) ⋅ 𝐶 ≤ L𝑚
𝐺

𝑍𝑚(𝑤) − (U𝑚
𝑈 − L𝑚

𝑈 ) ⋅ 𝐷 ≤ L𝑚
𝑈

 

𝑍𝑚(𝑤) − (U𝑚
𝐹 − L𝑚

𝐹 ) ⋅ 𝐸 ≤ L𝑚
𝐹  

𝑓𝑗(𝑤) ≤ 𝑏𝑗 ,  𝑤 ≥ 0,  𝑗 = 1,… , 𝑛 

For all 𝑚 objectives 

0 ≤ 𝐴 + 𝐵 + 𝐶 +𝐷 + 𝐸 ≤ 5,      𝐴 ≥ 𝐵, 𝐴 ≥ 𝐶, 𝐴 ≥ 𝐷, 𝐴 ≥ 𝐸         𝐴, 𝐵, 𝐶, 𝐷, 𝐸 ∈ [0,1]              

(4)                                                                                          

4. Numerical example [14]  

Consider the following MOOP: 

Min 𝑍1(𝑥1, 𝑥2) = 𝑥1
−1𝑥2

−2,

Min 𝑍2(𝑥1, 𝑥2) = 2𝑥1
−2𝑥2

−3,
 

 Subject to                             𝑥1 + 𝑥2 ≤ 1.          

                                         𝑥1, 𝑥2 ≥ 0                                          (5) 

 

 

 

 

 

 

 

Step 1: Solving the above objective functions individually ignoring other objective subject to the 

constraint, we get the optimal values 𝑍1
∗(𝑋1) = 6.75 at the point 𝑋1 = (.33, .67) and 𝑍2

∗(𝑋2) = 57.87 

at the point 𝑋2 = (. 4, .6). 

Step 2: At the point of optimal the values of other objectives have calculated. Here 𝑍1(𝑋
2) = 6.94 and 

𝑍2(𝑋
1) = 60.78. 

 Step 3: The pay-off matrix is:  

 

 

 

 

 

 

 

 

Step 4: Calculate upper and lower bound of membership functions corresponding to each objective 

function:                                  L1
𝑇 = 6.75, U1

𝑇 = 6.94 

 𝑍1 𝑍2 

𝑋1 6.75 60.78 

𝑋2 6.94 57.87 
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 L1
𝐶 = 6.75,   U1

𝐶 = 6.75 + 0.19 × 𝑞1 = 6.902 

  L1
𝐺 = 6.75 + 0.19 × 𝑟1 = 6.7975,   U1

𝐺 = 6.94 

 L1
𝑈 = 6.75 + 0.19 × 𝑠1 = 6.807,   U1

𝑈 = 6.94 

L1
𝐹 = 6.75 + 0.19 × 𝑡1 = 6.788,   U1

𝐹 = 6.94 

 

                                             L2
𝑇 = 57.87, U2

𝑇 = 60.78 

                                             L2
𝐶 = 57.87,   U2

𝐶 = 57.87 + 2.91 × 𝑞2 = 60.489 

       L2
𝐺 = 57.87 + 2.91 × 𝑟2 = 58.3065,   U2

𝐺 = 60.78 

     L2
𝑈 = 57.87 + 2.91 × 𝑠2 = 58.452,   U2

𝑈 = 60.78 

    L2
𝐹 = 57.87 + 2.91 × 𝑡2 = 58.161,   U2

𝐹 = 60.78 

 

where  𝑞1 = 0.800 , 𝑟1 = 0.250 , 𝑠1 = 0.300 , 𝑡1 = 0.200 , 𝑞2 = 0.900 , 𝑟2 = 0.150 , 𝑠2 = 0.200 , 𝑡2 =

0.100. 

 

Step 5: Now, membership functions of  𝑇, 𝐶, 𝑈, 𝐺, 𝑎𝑛𝑑 𝐹 can be defined as: 

𝑇1(𝑥1 
−1𝑥2

−2) =

{
 

 
1 𝑥1

−1𝑥2
−2 ≤ 6.75

6.94 − 𝑥1
−1𝑥2

−2

6.94 − 6.75
6.75 ≤ 𝑥1

−1𝑥2
−2 ≤ 6.94

0 𝑥1
−1𝑥2

−2 ≥ 6.94

 

            𝑇2(2𝑥1
−2𝑥2

−3) =

{
 

 
1 2𝑥1

−2𝑥2
−3 ≤ 57.87

60.78 − 2𝑥1
−2𝑥2

−3

60.78 − 57.87
57.87 ≤ 2𝑥1

−2𝑥2
−3 ≤ 60.78

0 𝑥1
−1𝑥2 

−2 ≥ 60.78

 

   𝐶1(𝑥1 
−1𝑥2

−2) =

{
 

 
1 𝑥1

−1𝑥2
−2 ≤ 6.75

6.902 − 𝑥1
−1𝑥2

−2

6.94 − 6.75
6.75 ≤ 𝑥1

−1𝑥2
−2 ≤ 6.902

0 𝑥1
−1𝑥2

−2 ≥ 6.902

 

                𝐶2(2𝑥1
−2𝑥2

−3) =

{
 

 
1 2𝑥1

−2𝑥2
−3 ≤ 57.87

60.489 − 2𝑥1
−2𝑥2

−3

60.489 − 57.87
57.87 ≤ 2𝑥1

−2𝑥2
−3 ≤ 60.489

0 𝑥1
−1𝑥2 

−2 ≥ 60.78

 

           𝐺1(𝑥1
−1𝑥2

−2) =

{
 

 
0 𝑥1

−1𝑥2
−2 ≤ 6.7975

𝑥1
−1𝑥2

−2 − 6.7975

6.94 − 6.7975
6.7975 ≤ 𝑥1

−1𝑥2
−2 ≤ 6.94

1 𝑥1
−1𝑥2

−2 ≥ 6.94

 

                𝐺2(2𝑥1
−2𝑥2

−3) =

{
 

 
0 2𝑥1

−2𝑥2
−3 ≤ 58.3065

2𝑥1
−2𝑥2

−3 − 58.3065

60.78 − 58.3065
58.3065 ≤ 2𝑥1

−2𝑥2
−3 ≤ 60.78

1 21
−2𝑥2

−3 ≥ 60.78
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𝑈1(𝑥1
−1𝑥2

−2) =

{
 

 
0 𝑥1

−1𝑥2
−2 ≤ 6.807

𝑥1
−1𝑥2

−2 − 6.807

6.94 − 6.807
6.807 ≤ 𝑥1

−1𝑥2
−2 ≤ 6.94

1 𝑥1
−1𝑥2

−2 ≥ 6.94

 

          𝑈2(2𝑥1
−2𝑥2

−3) =

{
 

 
0 2𝑥1

−2𝑥2
−3 ≤ 58.452

2𝑥1
−2𝑥2

−3 − 58.452

60.78 − 58.452
58.452 ≤ 2𝑥1

−2𝑥2
−3 ≤ 60.78

1 21
−2𝑥2

−3 ≥ 60.78

 

𝐹1(𝑥1
−1𝑥2

−2) =

{
 

 
0 𝑥1

−1𝑥2
−2 ≤ 6.788

𝑥1
−1𝑥2

−2 − 6.788

6.94 − 6.788
6.788 ≤ 𝑥1

−1𝑥2
−2 ≤ 6.94

1 𝑥1
−1𝑥2

−2 ≥ 6.94

 

         𝐹2(2𝑥1
−2𝑥2

−3) =

{
 

 
0 2𝑥1

−2𝑥2
−3 ≤ 58.161

2𝑥1
−2𝑥2

−3 − 58.161

60.78 − 58.161
58.161 ≤ 2𝑥1

−2𝑥2
−3 ≤ 60.78

1 21
−2𝑥2

−3 ≥ 60.78

 

Step 6: The above problem in PNS is now 

 Max (𝐴 + 𝐵 − 𝐶 −𝐷 − 𝐸) 

Subject to 

𝑥1
−1𝑥2

−2 + (0.19)𝐴 ≤ 6.94 

    2𝑥1
−2𝑥2

−3 + (2.19)𝐴 ≤ 60.78 

    𝑥1
−1𝑥2

−2 + (0.152)𝐵 ≤ 6.902 

        2𝑥1
−2𝑥2

−3 + (2.619)𝐵 ≤ 60.489 

        𝑥1
−1𝑥2

−2 − (0.1425)𝐶 ≤ 6.7975 

            2𝑥1
−2𝑥2

−3 − (2.4735)𝐶 ≤ 58.3065 

   𝑥1
−1𝑥2

−2 − (0.133)𝐷 ≤ 6.807 

       2𝑥1
−2𝑥2

−3 − (2.328)𝐷 ≤ 58.452 

  𝑥1
−1𝑥2

−2 − (0.152)𝐸 ≤ 6.788 

       2𝑥1
−2𝑥2

−3 − (2.619)𝐸 ≤ 58.161 

𝑥1 + 𝑥2 ≤ 1 

                                                0 ≤ 𝐴,𝐵, 𝐶,𝐷, 𝐸 ≤ 1 𝑎𝑛𝑑 𝐴 ≥

𝐵, 𝐶,𝐷, 𝐸.    

                                                    𝑥1, 𝑥2 ≥ 0                                                   

(6)                                                                                        

The outcomes of the suggested approach and comparison with alternative approaches, IFO, NSO and 

FVRNO using LINGO software are shown by table 1 and table 2 in results and discussion section. 

5. Application of proposed method on multi-objective reliability optimization model [35]  
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Figure2. LCD display unit 

The multi-objective reliability optimization model of the LCD display unit is as follows: 

Max𝑅(r) = r1(𝑟2
10 + 10𝑟2

9(1 − 𝑟2))(1 − (1 − 𝑟3)
2) (𝑟4 + 𝑟4 ln (

1

𝑟4
)) r5 

         
              Min𝐶(r) =

∑  5
𝑗=1   𝑐𝑗 [tan (

𝜋

2
𝑟𝑗)]

𝑎𝑗
                                                                            

 

Subject to, 𝑉(𝑟) =∑ 

5

𝑗=1

 𝑣𝑗𝑟𝑗
𝑏𝑗 ≤ 𝑉𝑚𝑎𝑥 

                                                  0.5 ≤ 𝑟𝑗 ≤ 1            𝑗

= 1,2,… ,5                                                      (7) 

This problem (7) is equivalent to: 

 

          Min 𝑅′(𝑟) = 1 − 𝑅(𝑟) and Min 𝐶(𝑟), subject to same constraints as above.     (8) 

 

 

6. Results and discussion 

 

Table1. results for problem (1) by sum of optimal objective values. 

 

Optimization 

Methods 

Optimal decision variables 
(𝑥1

∗, 𝑥2
∗) 

Optimal value of 

objectives (𝑍1
∗, 𝑍2

∗) 

Sum of the optimal 

objective values 
𝑍 = (𝑍1

∗ + 𝑍2
∗) 

 

IFO 𝑥1
∗ = .3659009,  𝑥2

∗ = .6356811 𝑍1
∗ = 6.797078 
𝑍2
∗ = 58.79110 

𝑍 = 65.588178 

NSO 𝑥1
∗ = .3635224,  𝑥2

∗ = .6364776 𝑍1
∗ = 6.790513 
𝑍2
∗ = 58.68732 

𝑍 = 65.477833 

FVRNO 𝑥1
∗ = .365902,  𝑥2

∗ = .634098 𝑍1
∗ = 6.797081071 
𝑍2
∗ = 58.59104971 

𝑍 = 65.3881308 

PNO 

(proposed 

method) 

𝑥1
∗ = .3688571,  𝑥2

∗ = .6311429 𝑍1
∗ = 6.8059139 

𝑍2
∗ = 58.4696639 

𝑍 = 65.2755778 

 

In Table (1), we have shown that sum of the optimal objective values by IFO is 65.588178, by NSO is 

65.477833, by FVRNO is 65.3881308. Here by the proposed method, the same is 65.2755778. since the 

both objectives of problem (5) are minimization type, we can conclude the proposed method is better. 
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Percentage gap= |
𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝐵𝑒𝑠𝑡 𝑉𝑎𝑙𝑢𝑒

𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 
| × 100% 

 

Table 2. results for problem (1) by percentage gap. 

 

Optimization 

Methods 

Percentage gap of 𝑍1
∗ Percentage gap of 𝑍2

∗ Total percentage gap 

IFO 0. 0965856 0.546742789 0.643328389 

NSO 0 0.370874151 0.370874151 

FVRNO 0.0966308 0.207174663 0.303805463 

PNO 0.2262870 0 0.2262870 

 

From Table 2, we have shown that the total percentage gap by IFO, NSO, FVRNO and PNO are 

0.643328389, 0.370874151, 0.303805463, 0.2262870 respectively. So, the developed method is better in 

the view of percentage gap. Graphical presentation of the results of problem (5) by total optimal 

values of objectives and total percentage gap are presented in Figure 3 and Figure 4. 

 

Figure 3. Comparison of the developed method with other by total optimal values 

 

Figure 4. Comparison of the developed method with other by total percentage gap 
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Table 3. Data used for the reliability optimization model. 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑎𝑗(∀𝑗) 𝑏𝑗(∀𝑗) 𝑉max  

28 30 32 35 29 6 4.5 3.75 3.5 7 0.4 1 24 

 

 Pay-off matrix is: 

 𝑅′ 𝐶 

R1 0.01478132 5196.368 

R2 0.9982949 154 

 

 

Table 4. Optimal solutions by FVRNO and PNO methods  

Methods 𝑟1  𝑟2  𝑟3  𝑟4 𝑟5 𝑅∗ 𝐶∗ 

FVRNO 0.9762522 0.9809396 0.9096640 0.8776727 0.9756593 0.923499 470.4295 

PNO 0.9725617 0.9791286 0.9015574 0.8669358 0.9718783 0.91108 449.5225 

 

Table 5. Efficiency of the proposed method by total percentage gap 

Methods percentage gap of 𝑅∗ percentage gap of 𝐶∗ Total percentage 

gap 

FVRNO 0 4.4442366 4.442366 

PNO 1.36310752 0 1.36310752 

 

In Table 4the outcomes of the suggested approach (PNO) and FVRNO solving the problem (7) are 

shown. The comparison of the result is presented by percentage gap in table 5. From table 5, we can 

conclude that the result obtained by PNO method is better than FVRNO. The graphical presentation 

of the result of percentage gap is presented by Figure 5. 
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Figure 5. Comparison of the proposed method with other by total percentage gap 

7. Conclusion and future directions 

Using a penta-partitioned neutrosophic fuzzy environment, we have suggested a new computational 

approach in this article. A well-known example is solved to show the efficiency of developed method 

and the results are compared with other existing methods such as IFO, NFO, FVRNO by sum of 

optimal values and total percentage gap in table 1 and table 2. We have also applied this method to 

solve multi objective reliability optimization model (LCD display unit) by maximizing the system 

reliability and minimizing system cost and the results are compared with FVRNO by total percentage 

gap in table 5. We could deduce from the results that the suggested approach is effective and more 

flexible than those already in use. 

In future, we can apply this method to inventory model, transportation problem, portfolio selection 

model etc. considering various fuzzy parameters.  
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