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Abstract: In practical scenarios, it is common to encounter fuzzy data that contains numerous 

imprecise observations. The uncertainty associated with this type of data often leads to the use of 

interval statistical measures and the proposal of neutrosophic versions of probability distributions 

to better handle such data. We present a unique methodology that is based on the maximum 

likelihood approach and neutrosophic approach for estimating parameter of the proposed 

neutrosophic geometric distribution (NGD). The proposed methodology is supported by key 

likelihood inference results. The proposed distribution is specifically designed to handle variables 

with imprecise observation, hence effectively addressing a wide range of situations often 

encountered in the analysis of uncertain data. To evaluate the efficacy of the proposed neutrosophic 

model, we have carried out a comprehensive simulation experiment that rigorously examined the 

performance of the proposed model. The practical utility of NGD in the analysis of incomplete data 

is further exemplified through real-world applications. 

Keywords: Neutrosophic logic, uncertain analysis, probability model, estimation, simulation 

1. Introduction 

Statistical distributions are a powerful tool for describing and predicting real-world events. The 

geometric distribution is possibly the most common distribution in statistical applications [1] . The 

geometric distribution is widely employed in various domains such as finance, investment, scientific 

research, and engineering, making it the most frequently utilized distribution [2]. The geometric 

distribution is a discrete probability distribution that is commonly employed to model the probability 

of attaining success in a sequence of independent trials with two possible outcomes [3]. Through the 

use of geometric distribution, it becomes possible to ascertain the likelihood of attaining success 

subsequent to a designated quantity of attempts [4]. The geometric distribution exhibits a multitude 

of uses in practical, real-world situations. As an illustration, it can be employed to simulate the 

quantity of endeavors required to achieve win in a game of probability or the quantity of unsuccessful 

tries prior to attaining success in a manufacturing procedure [5].  

The geometric distribution is also used in banking to figure out how likely it is that a loan will 

not be paid back or how many trades are needed to make a profit [6], [7]. In the field of epidemiology, 
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geometric distribution can also be used to model how many contacts a person with a disease has 

before they spread it to other people [8]. Additionally, it can be used in telecommunications to 

determine how many tries are needed to make a call in a busy network [9]. 

The geometric distribution is an important part of probability theory and has been studied a lot 

for its uses in many different areas [10]. Figuring out the chance of getting the first victory after a 

certain number of tries is what the geometric probability mass function is based on [11]. Well-known 

scientists like Feller [2] and Ross [3] have spent a great deal of time studying and exploring this idea. 

They have come up with detailed explanations and studies of its properties. In queuing theory, the 

geometric distribution is a key tool for finding out how long people will have to wait. Kleinrock's 

efforts [4] have shown that this can be used. 

Barlow and Proschan [2] employ this probability distribution within the domain of reliability 

engineering to examine the duration required for the initial failure occurrence in systems. 

Furthermore, researchers in the field of epidemiology, such as Thelwell et al. [12], employ this tool as 

a means to get valuable understanding regarding the intricacies of disease transmission. The research 

conducted by Mandelbrot emphasises the importance of the Geometric distribution in the assessment 

of financial risk [13]. Furthermore, Preston's research delves into the use of this concept in the field 

of environmental science, namely in the modelling of species abundance [14]. The geometric 

distribution is widely employed in many disciplines, including information theory[15] , machine 

learning for pattern identification [10], game theory for strategic interactions [16], and educational 

research for comprehending learning patterns [17]–[20]. 

Fuzzy sets serve as the fundamental construct underlying the notion of fuzzy set theory. The 

notion of fuzzy sets is a crucial aspect within the framework of fuzzy set theory [21]. Fuzzy sets are 

mathematical constructs that enable the incorporation of partial membership or degrees of truth 

inside their representations [22]. The aforementioned frameworks offer a versatile structure for 

addressing ambiguity and imprecision across many domains, including but not limited to artificial 

intelligence, decision-making, and pattern recognition [23]. The integration of fuzzy sets within the 

framework of fuzzy set theory enables a more sophisticated and authentic methodology for 

modelling intricate systems and representing imprecise data [23]–[26].  The use of fuzzy set theory 

enables a more detailed modelling of complex systems, allowing for effective capture of imprecise 

information. Fuzzy control has been effectively employed in the automobile sector to regulate diverse 

systems, including automatic gearbox, suspension, engine, temperature control, and antilock brakes 

[27]. Furthermore, washing machines employ fuzzy control algorithms to adapt their washing 

approach according on several criteria, including the detected degree of filth, kind of cloth, size of 

the load, and water level [28]. The neutrosophy idea, initially proposed by Smarandache, is 

increasingly being recognised and used due to its capacity to offer a more adaptable and all-

encompassing approach in addressing uncertainty and imprecision within the context of data 

analysis [29]. Neutrosophic statistics provide an expanded range of options for the representation 

and analysis of data, hence enabling to achievement of enhanced precision and dependability in the 

obtained outcomes [30], [31]. This strategy demonstrates significant use in scenarios when 

conventional statistical methods prove inadequate, consequently gaining greater popularity within 

the discipline of uncertain data analysis [32]–[35]. The proposal of NGD in this work is driven by the 

recognition of the significant role geometric distribution plays in statistical applications. Its wide 

applicability and the prevalence of uncertainty in real data make NGD an important consideration. 

The proposed distribution and its key characteristics are described in Section 2. The estimation 

procedure for unknown parameters under the neutrosophic logic is presented in Section 3. In Section 

4, the quantile function of the proposed model is formulated and the procedure for simulating data 

is explained. The significance of theoretical findings is concisely explained by analyzing a real-world 

examples in Section 5. Finally, Section 6 provides the final remarks of the study. 
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2. Proposed Model 

This section presents a summary statistic of the proposed model and describes some of its 

important functions. The summary statistics of the proposed model provide a concise overview of its 

key characteristics. Additionally, the description of important functions commonly used in applied 

probability distribution theory helps to understand how the model can be utilized in practical 

applications. The geometric distribution holds significant importance in the field of statistics, being 

one of the fundamental distributions. 

The formula provided below represents the neutrosophic probability density function (𝐷𝐹𝑛). 

ℊ𝑛(𝒳) =  𝒫𝑛(1 − 𝒫𝑛)𝒳  ;  𝒳 ≥ 0        (1) 

where 0 < 𝒫𝑛 = [𝒫𝑙 , 𝒫𝑢] < 1 is the neutrosophic parameter of the NGD. To calculate the probability 

of waiting exactly r trials before the first successful event, we need to know the probability of success 

in a single trial (𝒫𝑛). The probability of failure (𝑞𝑛) can be calculated as 1 minus 𝒫𝑛. This scenario is 

known as a special case of the negative binomial distribution. It should be noted that the suggested 

model differs from the existing framework of the geometric model, where the parameter is precisely 

determined. The suggested model becomes equal to the classical model, when the indeterminate 

portion of the suggested model is zero, i.e., 𝒫𝑙 = 𝒫𝑢 = 𝒫 . The neutrosophic probability density 

function, often denoted as 𝐷𝐹𝑛 , is a mathematical function that describes the likelihood of a 

neutrosophic random variable taking on a particular interval value due to imprecision in 𝒫𝑛 . It 

provides valuable information about the distribution of the neutrosophic variable and can be used to 

calculate probabilities of different outcomes. Based on (1), the NGD is depicted in Figure1.  

 

Figure 1: Density plots of the proposed NGD with different vague values of parameter 

 

Figure 1 illustrates that there is a distinct interval probability for every value of the random variable 

𝒳.As illustrated in Figure 1(a), for instance, 𝒫𝑛 = [0.1, 0.2] approximation for 𝒳 = 1, and the same is 

true for other values. The graph of 𝐷𝐹𝑛 shows that the likelihood of different outcomes occurring 

within a given range. It provides a visual representation of the probability of each possible outcome. 

By examining the shape and characteristics of the 𝐷𝐹𝑛, one can gain insights into the likelihood and 
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spread of values within the distribution. The neutrosophic probability mass function (𝑃𝑀𝐹𝑛) of any 

density is another fascinating feature of probability theory applications. To describe the distribution 

of a discrete random variable, we can use the 𝑃𝑀𝐹𝑛 . This function assigns probabilities to each 

possible value that the random variable can take. The 𝑃𝑀𝐹𝑛is a cooperatively linked variant of the 

𝐷𝐹𝑛 and may be calculated as: 

𝒢𝑛(𝒳) = 1 − (1 − 𝒫𝑛)𝒳          (2) 

It should be noted that the 𝑃𝑀𝐹𝑛  can be applied to any real number in the set R. However, if an 

argument does not belong to the possible values that the variable can take (i.e., the support of the 

sample space), then the 𝑃𝑀𝐹𝑛 will have a value of zero. Conversely, if an argument does belong to 

the support of the sample space, then the 𝑃𝑀𝐹𝑛 will have a positive value. This means that the 𝑃𝑀𝐹𝑛 

assigns probabilities to specific values within the sample space. It is important to note that the sum 

of all the probabilities assigned by the 𝑃𝑀𝐹𝑛 must equal 1. The graph of 𝑃𝑀𝐹𝑛 with imprecise values 

of NGD with different interval values of 𝒫𝑛 is shown in Figure 2. 

 

 

Figure 2: The graph of 𝑃𝑀𝐹𝑛 of the proposed model 

 

The 𝑃𝑀𝐹𝑛 graph provides a visual representation of the probabilities linked to neutrosophic random 

variable. This graph illustrates discrete outcomes on the horizontal axis and their corresponding 

neutrosophic probability on the vertical axis. Each data point on the graph represents the probability 

of a certain result, with taller hight indicating more likely events. Importantly, the total of all 

probabilities shown on the graph equals one. The peaks spots on the graph depict the most probable 

occurrences, providing a distinct comparative examination of the likelihood of various events. The 

graph's discrete form, characterized by distinct double points, sets it apart from the classical plot of 

the geometric distribution. The 𝑃𝑀𝐹𝑛 graph is a useful tool for comprehending and forecasting the 

unpredictability linked to discrete events in statistical research. 

The suggested model's survival function can be described as follows in the neutrosophic 

framework: In the given statistical approach, the survival function plays a significant role in 
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determining the probability of an individual's life surviving for a specific duration. Referred to as the 

survival rate, this function can be defined within the neutrosophic framework according to suggested 

model as: 

𝒮𝑛(𝒳) = (1 − 𝒫𝑛)𝒳          (3) 

The graph of the survival function which is also known as reliability function is depicted in Figure 3. 

 

 

Figure 3: The survival function of the suggested NGD 

 

The neutrosophic hazard function (𝐻𝐹𝑛), often known as the impending failure rate, is another 

important function in reliability analysis. For the given model, it is the ratio of the survival and 

density functions, which may be computed as follows: 

𝒽𝑛(𝒳) =
ℊ𝑛(𝓍)

𝒮𝑛(𝓍)
= 𝒫𝑛          (4) 

The function 𝒽𝑛(𝓍) calculates an individual or item failure probability over a short period of time. 

The 𝐻𝐹𝑛 may increase, decrease, stay constant, or reflect a more complex process. In this way the 

suggested model is memoryless in the family of discrete probability distribution like the exponential 

distribution in the class of continuous distributions. 

Several theorems can be used to establish statistical properties of the proposed distribution. Some of 

these theorems include the derivations of important statistical measures in neutrosophic framework 

that can help to understand the behavior of the distribution for analyzing the vague dataset. These 

theorems provide a solid foundation for making reliable inferences and drawing meaningful 

conclusions. 

Theorem 1 If 𝓍 follows the NGD then 𝐸(𝒳) =
1−𝒫𝑛

𝒫𝑛
 

Proof: By definition, the mean of the NGD is given by: 

𝐸(𝒳) = ∑ (1 − 𝒫𝑛)𝒳𝒫𝑛𝒳∞
𝒳=0   

           = (1 − 𝒫𝑛)𝒫𝑛 ∑ (1 − 𝒫𝑛)𝒳−1∞
𝒳=0 𝒳  

           = [(1 − 𝒫𝑙)𝒫𝑙 ∑ (1 − 𝒫𝑙)
𝒳−1∞

𝒳=0 𝒳, (1 − 𝒫𝑢.)𝒫𝑢 ∑ (1 − 𝒫𝑢)𝒳−1∞
𝒳=0 𝒳]   (5) 

Equation (5) further yielded: 

 (1 − 𝒫𝑙)𝒫𝑙 ∑ (1 − 𝒫𝑙)
𝒳−1∞

𝒳=0 𝒳 =
1−𝒫𝑙

𝒫𝑙
 

and 

(1 − 𝒫𝑢.)𝒫𝑢 ∑ (1 − 𝒫𝑢)𝒳−1∞
𝒳=0 𝒳 =

1−𝒫𝑢

𝒫𝑢
  

So, 

[
1−𝒫𝑙

𝒫𝑙
,

1−𝒫𝑢

𝒫𝑢
] =

1−𝒫𝑛

𝒫𝑛
 , hence proved. 
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Theorem 2 If 𝓍 follows the NGD, then 𝑉̃𝑛(𝒳) =
1−𝒫𝑛

𝒫𝑛
2  is the variance of the proposed model. 

Proof: The variance of the NGD is given by:  

𝑉̃𝑛(𝓍) = 𝐸(𝒳2) − [𝐸(𝒳)]2        (6) 

Now 

𝐸(𝒳2) = ∑ (1 − 𝒫𝑛)𝒳𝒫𝑛𝒳2∞
𝒳=0   

           = [(1 − 𝒫𝑢.)
2𝒫𝑙 ∑ (1 − 𝒫𝑙)

𝒳−1𝒳2∞
𝒳=0 , (1 − 𝒫𝑢.)

2𝒫𝑢 ∑ (1 − 𝒫𝑢)𝒳−1∞
𝒳=0 𝒳2]  (7) 

Simplification of (7) provided: 

[
2−3𝒫𝑙+𝒫𝑙

2

𝒫𝑙
2 ,

2−3𝒫𝑢+𝒫𝑢
2

𝒫𝑢
2 ] =

2−3𝒫𝑛+𝒫𝑛
2

𝒫𝑛
2   

Thus (6) becomes: 

𝑉̃𝑛(𝓍) = [
1−𝒫𝑙

𝒫𝑙
2 ,

1−𝒫𝑢

𝒫𝑢
2 ] =

1−𝒫𝑛

𝒫𝑛
2   

Theorem 3 Show that  𝑘𝑡ℎ moment of the NGD is 
𝒫𝑛

1−(1−𝒫𝑛)𝑒𝑘 

Proof: By definition the 𝑘𝑡ℎ moment of the NGD is given by: 

𝜇𝑘𝑛 = ∑ 𝑒𝑘𝒳(1 − 𝒫𝑛)𝒳𝒫𝑛
∞
𝒳=0   

       = 𝒫𝑛 ∑ [𝑒𝑘(1 − 𝒫𝑛)]𝒳∞
𝒳=0   

       = [𝒫𝑙 ∑ [𝑒𝑘(1 − 𝒫𝑙)]𝒳∞
𝒳=0 , 𝒫𝑢 ∑ [𝑒𝑘(1 − 𝒫𝑢)]𝒳∞

𝒳=0 ]      (8) 

From (8), we can write; 

𝒫𝑙 ∑ [𝑒𝑘(1 − 𝒫𝑙)]𝒳∞
𝒳=0 =

𝒫𝑙

1−(1−𝒫𝑙)𝑒𝑘  

and 

𝒫𝑢 ∑ [𝑒𝑘(1 − 𝒫𝑢)]𝒳∞
𝒳=0 =

𝒫𝑢

1−(1−𝒫𝑢)𝑒𝑘  

Hence  

𝜇𝑘𝑛 = [
𝒫𝑙

1−(1−𝒫𝑙)𝑒𝑘 ,
𝒫𝑢

1−(1−𝒫𝑢)𝑒𝑘
] =

𝒫𝑛

1−(1−𝒫𝑛)𝑒𝑘  is required result. 

𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2,3, … is a general expression for the 𝑘𝑡ℎ row moment about the origin of the NGD. By 

using the following relations, moments about the mean for NGD can be derived as: 

𝜇1𝑛
′ = 𝜇1𝑛 =

1−𝒫𝑛

𝒫𝑛
  

𝜇2𝑛
′ = 𝜇2𝑛 − (𝜇1𝑛)2 =

1−𝒫𝑛

𝒫𝑛
2   

𝜇3𝑛
′ = 𝜇3𝑛 − 3𝜇2𝑛𝜇1𝑛 + 2(𝜇1𝑛)3 = (1 − 𝒫𝑛)(1 + (1 − 𝒫𝑛))𝒫𝑛  

𝜇4𝑛
′ = 𝜇4𝑁 − 4𝜇3𝑛𝜇1𝑛 + 6𝜇2𝑛𝜇1𝑛

2 − 3𝜇1𝑛
4 = (

9(1−𝒫𝑛
2)

𝒫𝑛
4 ) + (

1−𝒫𝑛

𝒫𝑛
2 )  

 

Theorem 4 The coefficient of skewness of the NGD is 
(1+(1−𝒫𝑛))

(1−𝒫𝑛)
1

2⁄  
 

Proof: By definition, the coefficient of skewness for NGD is given by: 

𝛼3 =
𝜇3𝑛

′

(𝜇2𝑛
′ )

3
2⁄
           (9) 

Where 𝜇3𝑛
′ = (1 − 𝒫𝑛)(1 + (1 − 𝒫𝑛))𝒫𝑛 and 𝜇2𝑛

′ =
1−𝒫𝑛

𝒫𝑛
2  

Substituting in (9) yielded; 

𝛼3 =
(1+(1−𝒫𝑛))

(1−𝒫𝑛)
1

2⁄  
  

where 𝛼3 ∈ [𝛼𝑙 , 𝛼𝑢]. 

 

Theorem 5 Show that the coefficient of kurtosis for NGD is (9 +
𝒫𝑛

2

1 − 𝒫𝑛
⁄ ) 

Proof: By definition, the coefficient of kurtosis is given by: 

𝛼4 =
𝜇4𝑛

′

𝜇2𝑛
′ 2           (10) 

Where 𝜇4𝑛
′ = (

9(1−𝒫𝑛
2)

𝒫𝑛
4 ) + (

1−𝒫𝑛

𝒫𝑛
2 ) and 𝜇2𝑛

′ =
1−𝒫𝑛

𝒫𝑛
2  
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Substituting in (10) yielded: 

𝛼4 = (9 +
𝒫𝑛

2

1 − 𝒫𝑛
⁄ )  

where 𝛼4 = [𝛼𝑙 , 𝛼𝑢]. 

In the same way, other important distributional properties can also be explored through the 

neutrosophic framework. These properties offer a comprehensive approach to analyzing 

uncertainties and vagueness. 

 

3. Estimation Procedure 

The maximum likelihood estimate (MLE) is a widely used method in many real-world 

applications. It aims to determine the parameter value(s) that provide the highest probability of the 

observed data occurring. In uncertain environments, MLE differs from the classical approach as it 

provides interval estimates of neutrosophic parameters instead of a single point estimate. This allows 

for a more comprehensive representation of uncertainty and variability in the data. By providing 

interval estimates, MLE under the neutrosophic structure accounts for the inherent ambiguity and 

imprecision present in uncertain environments, making it a valuable tool in decision-making 

processes. In this part, a well-known MLE technique is used to determine the neutrosophic parameter 

of the proposed NGD. The ML technique is defined by considering the parameters unknown and 

calculating the joint density of all observations is a dataset that are assumed to be identical and 

dispersed independently. Once the likelihood of the NGD is established, maxima of the function are 

determined. These ML estimators are essential in the statistical viewpoint because of minimal 

variance and asymptotic unbiasedness properties. Let 𝑦1, 𝑦2, … , 𝑦𝑘 are identical and independently 

observations from the k subjects which follow the parametric model given in (1) then the joint density 

is given by: 

ℒ(𝒫𝑛| 𝒳) = ∏ ℊ𝑛(𝒳|𝒫𝑛)𝑘
𝑖=1           

                   = ∏ 𝒫𝑛(1 − 𝒫𝑛)𝒳𝑖𝑘
𝑖=1   

                   = 𝒫𝑛 ∏ (1 − 𝒫𝑛)𝒳𝑖𝑘
𝑖=1          (11) 

Taking the logarithm of (11) and symbolizing it by 𝜔𝑛(𝒯𝑖|𝒫𝑛), 

𝜔𝑛(𝒯𝑖|𝒫𝑛) = 𝑙𝑜𝑔[𝒫𝑛 ∏ (1 − 𝒫𝑛)𝒳𝑖𝑘
𝑖=1  ]        (12) 

Simplification of (12) yielded; 

𝜔𝑛(𝒯𝑖|𝒫𝑛) = 𝑘𝑙𝑜𝑔(𝒫𝑛) + (∑ 𝒳𝑖 − 𝑘𝑘
1 ) log(1 − 𝒫𝑛)       (13) 

Partially differentiating (13) by unknown values and equating to zero implies: 

[
𝛿𝜔𝑛(𝒳𝑖,𝒫𝑛)

𝛿𝒫𝑛
] = 0           (14) 

Further solution of (14) provides the following estimates for unknown parameter of the NGD 

𝒫̂𝑛 =
𝑘

(∑ 𝒳𝑖
𝑘
1 ) 

           (15) 

Note that 𝒫̂𝑛 will be interval forms because of imprecise sample data.  

This aligns with intuition because when observing a geometric random variable across 𝑘 trials, the 

total number of successes observed is represented by the sum of individual trial outcomes ∑ 𝒳𝑖
𝑘
1 . By 

calculating the ratio of the number of successes to the total number of trials, we can estimate the 

probability 𝒫𝑛. It is crucial to note that the maximum likelihood estimator (MLE) can be considered 

as a random variable since it is based on random data. Consequently, the MLE inherits the 

randomness of the underlying dataset from which it is derived. Let us take an example where we see 

that how the MLE estimation can be performed. We consider a situation where we assume that a 

manufacturing process that produce some specific items. We want to model the number of attempts 

needed to produce a defect produced by a manufacturing machine. In a sample of 10 attempts, we 

can record the number of attempts it took to produce a defective item for each attempt. For example, 

in this case, the recorded attempts are: 
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2, 5, [1,2], 3, [4,5] 2, 1, [6,7] 2, [5, 6] 

Here some values such as [1,2], [4,5], [6,7] and [5,6] are imprecise. Here the value for instance [4,5] 

means that position of the defective item is not clearly defined. The same holds for other imprecise 

items. Now this data the unknown neutrosophic parameter can be estimated as: 

The above data can further be written as: 

[2, 2], [5, 5], [1, 2], [3, 3], [4, 5], [2, 2], [1, 1], [6, 7], [2, 2], [5, 6] 

By using (15) the 𝒫𝑛 can be estimated as: 

𝒫̂𝑛 =
10

[∑ 𝒳𝑖𝑙
𝑘
1 , ∑ 𝒳𝑖𝑢

𝑘
1 ] 

 

where ∑ 𝒳𝑖𝑙
𝑘
1  and ∑ 𝒳𝑖𝑢

𝑘
1  are lower and upper values of the neutrosophic data. 

Thus, 

𝒫̂𝑛 =
10

[31,35] 
≅ [0.28, 0.32]  

Hence the estimated imprecise value lies between 0.28 and 0.32. 

 

4. Random Data Generation  

We may require information on the number of trials needed to achieve a 25%, 50% or 75% 

probability of success occurrence. For example in a production line where there is a 5% defective rate, 

we aim to determine the minimum number of inspections, denoted as 𝑎 , required to ensure that the 

probability of observing at least one defective item reaches or exceeds 50%. 

To find 𝑎 such that  

𝑝(𝒳 ≤ 𝑎) ≥ 0.50 
where 𝑎 is known as the 50% quantile of geometric distribution. 

Generally, 𝑘 percentile provides the minimum interval value of 𝑎 such that 

 𝑝(𝒳 ≤ 𝑎) ≥ 𝑘/100         (16) 

Equation (16) can be expressed as: 

1 − (1 − 𝒫𝑛)𝑎 ≥
𝑘

100
          (17) 

Further simplification of (17) yields: 

𝑎 ≤
ln (1−

𝑘

100
)

ln ((1−𝒫𝑛))
           (18) 

Solution of (8) provides the minimum interval value of 𝑎. For example the 50% quantile for defective 

rate 𝒫𝑛 = [0.1, 0.15] can be found utilizing (8) as: 

𝑎 ≤
ln(1 − 0.5)

ln(1 − [0.1, 0.15])
≅ [4, 6] 

This means that there is at least 50% chance to get the first success in the trial interval [4, 6]. In general 

the inverse distribution can be used to produce random neutrosophic variable from the model as: 

𝒢𝑛(𝒳)−1 =
𝑙𝑛(1−𝑢)

𝑙𝑛(1−𝒫𝑛)
;     0 < 𝑢 < 1.         (19) 

The (19) based on inverse transformation method and can used to generate random data from the 

proposed NGD. 

By taking the value 𝒫𝑛 = [0.2,0.4], exact mean and variance from Theorem 1 and Theorem 2 can be 

calculated as follows: 

𝐸(𝒳) =
1 − 𝒫𝑛

𝒫𝑛

 

             =
1 − [0.2,0.4]

[0.2,0.4]
 

  𝐸(𝒳) = [1.5, 4]  

𝑉(𝒳)  =
1 − 𝒫𝑛

𝒫𝑛
2  
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           =
1−[0.2,0.4]

[0.2,0.4]2  

𝑉(𝒳) = [3.75, 20] 
Thus exact mean and variance of the proposed distribution by considering 𝒫𝑛 = [0.2,0.4] are [1.5, 4] 

and [3.75, 20]  respectively. Now we will see that our simulation results are also in close 

approximation to exact values. 

The study uses a larger sequence of random numbers generated from 10,000 Monte Carlo simulations 

to estimate the parameter of a proposed model. The parameter range considered in the study is 

between 0.2 and 0.4. To obtain simulated results, a program written in R is utilized. Additionally, the 

program utilizes the "moments" package to analyze moment-based characteristics of the proposed 

distribution. The larger sequence of random numbers generated from 10,000 Monte Carlo simulations 

allows for a more accurate estimation of the parameter in the proposed model. By considering a 

parameter range between 0.2 and 0.4, the study ensures a comprehensive analysis of the distribution's 

characteristics. Table 1 displays the estimation results of the NGD parameter using the generated 

simulated data. 

 

Table 1: Summary statistics of the NGD based on simulated data. 

Properties Estimated values 

MLE Estimate [0.20, 0.40] 

Mean [2.49, 4.98] 

Variance [3.73, 19.93] 

Skewness [2.05, 2.00] 

Quartile 1 [1, 2] 

Quartile 2 [2, 4] 

Quartile 3 [3, 7] 

 

The results in Table 1 show that due to uncertainty in the parameter of NGD, the characteristics of 

the distribution are interval based and imprecise. Furthermore, the simulated results closely 

approximate the true characteristics of the distribution. 

 

5. Real Data Applications 

In this section, some numerical examples have been considered to illustrate the application of 

the concepts discussed in this work. These examples serve to provide a practical understanding of 

how the concepts can be applied in real-life scenarios. By showcasing numerical calculations and 

their corresponding interpretations, readers can better grasp the significance and implications of the 

discussed concepts.  

Example1: Assume that a production machine has a faulty rate ranging from 5% to 8%. Considering 

the unknown defective rate of the machine's products, which ranges from𝒫𝑛 = [0.05, 0.08], what is 

the probability range for the occurrence of the first defective item in the third inspection? 

Given the defective rate 𝒫𝑛 = [0.05, 0.08] 

Let 𝒳 be the neutrosophic random variable which denotes the number of defective items produced 

by the machine. 

Neutrosophically, the defective rate is in the range 𝒫𝑛 = [0.05, 0.08], signifying the uncertainty or 

imprecision in the defective rate of the machine's products. 

The probability of the first defective occurring in the third item can be calculated under this interval 

probability as: 
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𝑝(𝒳 = 3)                  = [0.05, 0.08][1 − [0.05, 0.08]]
2
 

                                    = [0.05, 0.08][0.8464, 0.9025] 

                                    = [0.042,0.072] 
By evaluating these expressions we found the probability range of [0.042,0.072] for the occurrence of 

the first defective item in the third position. This range takes into consideration the imprecision or 

uncertainty in the defective rate, which falls between 5% and 8%. 

Example 2: There is an estimated possibility of [0.4, 0.6] in a specific Malaysian city that a randomly 

selected individual owns a motorcycle. What is the likelihood that the first motorbike owner to be 

encountered among the first four people interviewed in this city will be the fourth person 

interviewed? 

We must take into account this interval in the neutrosophic context, where the estimated likelihood 

of owning a motorcycle is between 0.4 and 0.6 (i.e., 𝒫𝑛 = [0.4, 0.6]  ), to determine the range of 

probabilities for the occurrence. 

Let 𝒳 be the random variable that denotes the number of people having motorbike. 

𝑝(𝒳 = 4) = [0.4, 0.6][1 − [0.4, 0.6]]
3
 

                    = [0.4, 0.6][0.064, 0.216] 

                    = [0.0256, 0.1296] 
Thus, assessing these expressions according to neutrosophic arithmetic rules will yield a range of 

probability [0.0256, 0.1296], taking into consideration the imprecision or uncertainty in the estimated 

likelihood of motorcycle ownership between 0.4 and 0.6, in the event that the fourth interviewee is 

the first to have a motorcycle.  

Example 3: Calculate the probability of a student pilot passing the written test for a private pilot's 

license on their third attempt, assuming that the probability of passing the test is between 0.2 and 0.3. 

Let 𝒳 be the neutrosophic random variable that denotes the number of attempts a student makes to 

pass this test. 

Now the required probability can be obtained as: 

𝑝(𝒳 = 4) = [0.2, 0.3][1 − [0.2, 0.3]]
2
 

                    = [0.2, 0.3][0.49, 0.64] 

                    = [0.098, 0.192] 
Example 4: What is the neutrosophic probability of encountering the first defective product within 

the initial six inspections, given a defective rate ranging from 0.03 to 0.05? 

To solve this problem, we need to find involve the neutrosophic distribution function as described 

in (3). 

𝑝(𝒳 ≤ 6) = 1 − [1 − 𝒫𝑛]6 
where 𝒫𝑛 = [0.03, 0.05] 

Now 

𝑝(𝒳 ≤ 6) = 1 − [1 − [0.03, 0.05]]
6
 

                   = 1−[0.95, 0.97]6 

                   = [0.167, 0.265] 

Based on the provided imprecise defective rate (0.03 to 0.05), the neutrosophic probability of first 

defective item out of six inspected items fall between 0.0167 and 0.265. This range indicates that there 

is a relatively low probability of encountering the first defective item, but it is not entirely unlikely. 

 

6. Concluding Remarks 

The neutrosophic geometric distribution (NGD) is a revolutionary framework that has been 

introduced in this research. It is derived from the classical geometric distribution and aims to handle 
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imprecise data analysis. By doing so, it offers a reliable and generalized method for conducting 

modern statistical investigations for another class of data. We have extensively examined the basic 

characteristics of the NGD in a neutrosophic setting and clarified its essential reliability functions. To 

make it more useful in real-life situations, we have devised most method of the ML estimation. The 

effectiveness of this technique in determining the NGD parameters has been demonstrated through 

several numerical instances, proving its applicability in real-world situations. Furthermore, we have 

focused on developing the NGD's quantile function by the inverse cumulative function method. This 

function enabled us to generate simulation data, serving as a valuable tool for estimating parameter 

and providing insightful summary statistics on the behavior of the proposed model. We have 

considered real-life situations to demonstrate the application of NGD and enhance the 

comprehension of its theoretical concepts.  

Furthermore, our research acts as a connection between classical structures and the innovative 

neutrosophic framework, enabling future developments in extending geometric distribution to 

neutrosophic domain and exploring its diverse applications. 
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